mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@26763 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			936 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			936 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- Dominators.cpp - Dominator Calculation -----------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements simple dominator construction algorithms for finding
 | |
| // forward dominators.  Postdominators are available in libanalysis, but are not
 | |
| // included in libvmcore, because it's not needed.  Forward dominators are
 | |
| // needed to support the Verifier pass.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Assembly/Writer.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/SetOperations.h"
 | |
| #include <algorithm>
 | |
| #include <iostream>
 | |
| using namespace llvm;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  ImmediateDominators Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Immediate Dominators construction - This pass constructs immediate dominator
 | |
| // information for a flow-graph based on the algorithm described in this
 | |
| // document:
 | |
| //
 | |
| //   A Fast Algorithm for Finding Dominators in a Flowgraph
 | |
| //   T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141.
 | |
| //
 | |
| // This implements both the O(n*ack(n)) and the O(n*log(n)) versions of EVAL and
 | |
| // LINK, but it turns out that the theoretically slower O(n*log(n))
 | |
| // implementation is actually faster than the "efficient" algorithm (even for
 | |
| // large CFGs) because the constant overheads are substantially smaller.  The
 | |
| // lower-complexity version can be enabled with the following #define:
 | |
| //
 | |
| #define BALANCE_IDOM_TREE 0
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static RegisterAnalysis<ImmediateDominators>
 | |
| C("idom", "Immediate Dominators Construction", true);
 | |
| 
 | |
| unsigned ImmediateDominators::DFSPass(BasicBlock *V, InfoRec &VInfo,
 | |
|                                       unsigned N) {
 | |
|   VInfo.Semi = ++N;
 | |
|   VInfo.Label = V;
 | |
| 
 | |
|   Vertex.push_back(V);        // Vertex[n] = V;
 | |
|   //Info[V].Ancestor = 0;     // Ancestor[n] = 0
 | |
|   //Child[V] = 0;             // Child[v] = 0
 | |
|   VInfo.Size = 1;             // Size[v] = 1
 | |
| 
 | |
|   for (succ_iterator SI = succ_begin(V), E = succ_end(V); SI != E; ++SI) {
 | |
|     InfoRec &SuccVInfo = Info[*SI];
 | |
|     if (SuccVInfo.Semi == 0) {
 | |
|       SuccVInfo.Parent = V;
 | |
|       N = DFSPass(*SI, SuccVInfo, N);
 | |
|     }
 | |
|   }
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| void ImmediateDominators::Compress(BasicBlock *V, InfoRec &VInfo) {
 | |
|   BasicBlock *VAncestor = VInfo.Ancestor;
 | |
|   InfoRec &VAInfo = Info[VAncestor];
 | |
|   if (VAInfo.Ancestor == 0)
 | |
|     return;
 | |
| 
 | |
|   Compress(VAncestor, VAInfo);
 | |
| 
 | |
|   BasicBlock *VAncestorLabel = VAInfo.Label;
 | |
|   BasicBlock *VLabel = VInfo.Label;
 | |
|   if (Info[VAncestorLabel].Semi < Info[VLabel].Semi)
 | |
|     VInfo.Label = VAncestorLabel;
 | |
| 
 | |
|   VInfo.Ancestor = VAInfo.Ancestor;
 | |
| }
 | |
| 
 | |
| BasicBlock *ImmediateDominators::Eval(BasicBlock *V) {
 | |
|   InfoRec &VInfo = Info[V];
 | |
| #if !BALANCE_IDOM_TREE
 | |
|   // Higher-complexity but faster implementation
 | |
|   if (VInfo.Ancestor == 0)
 | |
|     return V;
 | |
|   Compress(V, VInfo);
 | |
|   return VInfo.Label;
 | |
| #else
 | |
|   // Lower-complexity but slower implementation
 | |
|   if (VInfo.Ancestor == 0)
 | |
|     return VInfo.Label;
 | |
|   Compress(V, VInfo);
 | |
|   BasicBlock *VLabel = VInfo.Label;
 | |
| 
 | |
|   BasicBlock *VAncestorLabel = Info[VInfo.Ancestor].Label;
 | |
|   if (Info[VAncestorLabel].Semi >= Info[VLabel].Semi)
 | |
|     return VLabel;
 | |
|   else
 | |
|     return VAncestorLabel;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void ImmediateDominators::Link(BasicBlock *V, BasicBlock *W, InfoRec &WInfo){
 | |
| #if !BALANCE_IDOM_TREE
 | |
|   // Higher-complexity but faster implementation
 | |
|   WInfo.Ancestor = V;
 | |
| #else
 | |
|   // Lower-complexity but slower implementation
 | |
|   BasicBlock *WLabel = WInfo.Label;
 | |
|   unsigned WLabelSemi = Info[WLabel].Semi;
 | |
|   BasicBlock *S = W;
 | |
|   InfoRec *SInfo = &Info[S];
 | |
| 
 | |
|   BasicBlock *SChild = SInfo->Child;
 | |
|   InfoRec *SChildInfo = &Info[SChild];
 | |
| 
 | |
|   while (WLabelSemi < Info[SChildInfo->Label].Semi) {
 | |
|     BasicBlock *SChildChild = SChildInfo->Child;
 | |
|     if (SInfo->Size+Info[SChildChild].Size >= 2*SChildInfo->Size) {
 | |
|       SChildInfo->Ancestor = S;
 | |
|       SInfo->Child = SChild = SChildChild;
 | |
|       SChildInfo = &Info[SChild];
 | |
|     } else {
 | |
|       SChildInfo->Size = SInfo->Size;
 | |
|       S = SInfo->Ancestor = SChild;
 | |
|       SInfo = SChildInfo;
 | |
|       SChild = SChildChild;
 | |
|       SChildInfo = &Info[SChild];
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   InfoRec &VInfo = Info[V];
 | |
|   SInfo->Label = WLabel;
 | |
| 
 | |
|   assert(V != W && "The optimization here will not work in this case!");
 | |
|   unsigned WSize = WInfo.Size;
 | |
|   unsigned VSize = (VInfo.Size += WSize);
 | |
| 
 | |
|   if (VSize < 2*WSize)
 | |
|     std::swap(S, VInfo.Child);
 | |
| 
 | |
|   while (S) {
 | |
|     SInfo = &Info[S];
 | |
|     SInfo->Ancestor = V;
 | |
|     S = SInfo->Child;
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| bool ImmediateDominators::runOnFunction(Function &F) {
 | |
|   IDoms.clear();     // Reset from the last time we were run...
 | |
|   BasicBlock *Root = &F.getEntryBlock();
 | |
|   Roots.clear();
 | |
|   Roots.push_back(Root);
 | |
| 
 | |
|   Vertex.push_back(0);
 | |
| 
 | |
|   // Step #1: Number blocks in depth-first order and initialize variables used
 | |
|   // in later stages of the algorithm.
 | |
|   unsigned N = 0;
 | |
|   for (unsigned i = 0, e = Roots.size(); i != e; ++i)
 | |
|     N = DFSPass(Roots[i], Info[Roots[i]], 0);
 | |
| 
 | |
|   for (unsigned i = N; i >= 2; --i) {
 | |
|     BasicBlock *W = Vertex[i];
 | |
|     InfoRec &WInfo = Info[W];
 | |
| 
 | |
|     // Step #2: Calculate the semidominators of all vertices
 | |
|     for (pred_iterator PI = pred_begin(W), E = pred_end(W); PI != E; ++PI)
 | |
|       if (Info.count(*PI)) {  // Only if this predecessor is reachable!
 | |
|         unsigned SemiU = Info[Eval(*PI)].Semi;
 | |
|         if (SemiU < WInfo.Semi)
 | |
|           WInfo.Semi = SemiU;
 | |
|       }
 | |
| 
 | |
|     Info[Vertex[WInfo.Semi]].Bucket.push_back(W);
 | |
| 
 | |
|     BasicBlock *WParent = WInfo.Parent;
 | |
|     Link(WParent, W, WInfo);
 | |
| 
 | |
|     // Step #3: Implicitly define the immediate dominator of vertices
 | |
|     std::vector<BasicBlock*> &WParentBucket = Info[WParent].Bucket;
 | |
|     while (!WParentBucket.empty()) {
 | |
|       BasicBlock *V = WParentBucket.back();
 | |
|       WParentBucket.pop_back();
 | |
|       BasicBlock *U = Eval(V);
 | |
|       IDoms[V] = Info[U].Semi < Info[V].Semi ? U : WParent;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Step #4: Explicitly define the immediate dominator of each vertex
 | |
|   for (unsigned i = 2; i <= N; ++i) {
 | |
|     BasicBlock *W = Vertex[i];
 | |
|     BasicBlock *&WIDom = IDoms[W];
 | |
|     if (WIDom != Vertex[Info[W].Semi])
 | |
|       WIDom = IDoms[WIDom];
 | |
|   }
 | |
| 
 | |
|   // Free temporary memory used to construct idom's
 | |
|   Info.clear();
 | |
|   std::vector<BasicBlock*>().swap(Vertex);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void ImmediateDominatorsBase::print(std::ostream &o, const Module* ) const {
 | |
|   Function *F = getRoots()[0]->getParent();
 | |
|   for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
 | |
|     o << "  Immediate Dominator For Basic Block:";
 | |
|     WriteAsOperand(o, I, false);
 | |
|     o << " is:";
 | |
|     if (BasicBlock *ID = get(I))
 | |
|       WriteAsOperand(o, ID, false);
 | |
|     else
 | |
|       o << " <<exit node>>";
 | |
|     o << "\n";
 | |
|   }
 | |
|   o << "\n";
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  DominatorSet Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static RegisterAnalysis<DominatorSet>
 | |
| B("domset", "Dominator Set Construction", true);
 | |
| 
 | |
| // dominates - Return true if A dominates B.  This performs the special checks
 | |
| // necessary if A and B are in the same basic block.
 | |
| //
 | |
| bool DominatorSetBase::dominates(Instruction *A, Instruction *B) const {
 | |
|   BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
 | |
|   if (BBA != BBB) return dominates(BBA, BBB);
 | |
| 
 | |
|   // Loop through the basic block until we find A or B.
 | |
|   BasicBlock::iterator I = BBA->begin();
 | |
|   for (; &*I != A && &*I != B; ++I) /*empty*/;
 | |
| 
 | |
|   if(!IsPostDominators) {
 | |
|     // A dominates B if it is found first in the basic block.
 | |
|     return &*I == A;
 | |
|   } else {
 | |
|     // A post-dominates B if B is found first in the basic block.
 | |
|     return &*I == B;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // runOnFunction - This method calculates the forward dominator sets for the
 | |
| // specified function.
 | |
| //
 | |
| bool DominatorSet::runOnFunction(Function &F) {
 | |
|   BasicBlock *Root = &F.getEntryBlock();
 | |
|   Roots.clear();
 | |
|   Roots.push_back(Root);
 | |
|   assert(pred_begin(Root) == pred_end(Root) &&
 | |
|          "Root node has predecessors in function!");
 | |
| 
 | |
|   ImmediateDominators &ID = getAnalysis<ImmediateDominators>();
 | |
|   Doms.clear();
 | |
|   if (Roots.empty()) return false;
 | |
| 
 | |
|   // Root nodes only dominate themselves.
 | |
|   for (unsigned i = 0, e = Roots.size(); i != e; ++i)
 | |
|     Doms[Roots[i]].insert(Roots[i]);
 | |
| 
 | |
|   // Loop over all of the blocks in the function, calculating dominator sets for
 | |
|   // each function.
 | |
|   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
 | |
|     if (BasicBlock *IDom = ID[I]) {   // Get idom if block is reachable
 | |
|       DomSetType &DS = Doms[I];
 | |
|       assert(DS.empty() && "Domset already filled in for this block?");
 | |
|       DS.insert(I);  // Blocks always dominate themselves
 | |
| 
 | |
|       // Insert all dominators into the set...
 | |
|       while (IDom) {
 | |
|         // If we have already computed the dominator sets for our immediate
 | |
|         // dominator, just use it instead of walking all the way up to the root.
 | |
|         DomSetType &IDS = Doms[IDom];
 | |
|         if (!IDS.empty()) {
 | |
|           DS.insert(IDS.begin(), IDS.end());
 | |
|           break;
 | |
|         } else {
 | |
|           DS.insert(IDom);
 | |
|           IDom = ID[IDom];
 | |
|         }
 | |
|       }
 | |
|     } else {
 | |
|       // Ensure that every basic block has at least an empty set of nodes.  This
 | |
|       // is important for the case when there is unreachable blocks.
 | |
|       Doms[I];
 | |
|     }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void DominatorSet::stub() {}
 | |
| 
 | |
| namespace llvm {
 | |
| static std::ostream &operator<<(std::ostream &o,
 | |
|                                 const std::set<BasicBlock*> &BBs) {
 | |
|   for (std::set<BasicBlock*>::const_iterator I = BBs.begin(), E = BBs.end();
 | |
|        I != E; ++I)
 | |
|     if (*I)
 | |
|       WriteAsOperand(o, *I, false);
 | |
|     else
 | |
|       o << " <<exit node>>";
 | |
|   return o;
 | |
| }
 | |
| }
 | |
| 
 | |
| void DominatorSetBase::print(std::ostream &o, const Module* ) const {
 | |
|   for (const_iterator I = begin(), E = end(); I != E; ++I) {
 | |
|     o << "  DomSet For BB: ";
 | |
|     if (I->first)
 | |
|       WriteAsOperand(o, I->first, false);
 | |
|     else
 | |
|       o << " <<exit node>>";
 | |
|     o << " is:\t" << I->second << "\n";
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  DominatorTree Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static RegisterAnalysis<DominatorTree>
 | |
| E("domtree", "Dominator Tree Construction", true);
 | |
| 
 | |
| // DominatorTreeBase::reset - Free all of the tree node memory.
 | |
| //
 | |
| void DominatorTreeBase::reset() {
 | |
|   for (NodeMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I)
 | |
|     delete I->second;
 | |
|   Nodes.clear();
 | |
|   RootNode = 0;
 | |
| }
 | |
| 
 | |
| void DominatorTreeBase::Node::setIDom(Node *NewIDom) {
 | |
|   assert(IDom && "No immediate dominator?");
 | |
|   if (IDom != NewIDom) {
 | |
|     std::vector<Node*>::iterator I =
 | |
|       std::find(IDom->Children.begin(), IDom->Children.end(), this);
 | |
|     assert(I != IDom->Children.end() &&
 | |
|            "Not in immediate dominator children set!");
 | |
|     // I am no longer your child...
 | |
|     IDom->Children.erase(I);
 | |
| 
 | |
|     // Switch to new dominator
 | |
|     IDom = NewIDom;
 | |
|     IDom->Children.push_back(this);
 | |
|   }
 | |
| }
 | |
| 
 | |
| DominatorTreeBase::Node *DominatorTree::getNodeForBlock(BasicBlock *BB) {
 | |
|   Node *&BBNode = Nodes[BB];
 | |
|   if (BBNode) return BBNode;
 | |
| 
 | |
|   // Haven't calculated this node yet?  Get or calculate the node for the
 | |
|   // immediate dominator.
 | |
|   BasicBlock *IDom = getAnalysis<ImmediateDominators>()[BB];
 | |
|   Node *IDomNode = getNodeForBlock(IDom);
 | |
| 
 | |
|   // Add a new tree node for this BasicBlock, and link it as a child of
 | |
|   // IDomNode
 | |
|   return BBNode = IDomNode->addChild(new Node(BB, IDomNode));
 | |
| }
 | |
| 
 | |
| void DominatorTree::calculate(const ImmediateDominators &ID) {
 | |
|   assert(Roots.size() == 1 && "DominatorTree should have 1 root block!");
 | |
|   BasicBlock *Root = Roots[0];
 | |
|   Nodes[Root] = RootNode = new Node(Root, 0); // Add a node for the root...
 | |
| 
 | |
|   Function *F = Root->getParent();
 | |
|   // Loop over all of the reachable blocks in the function...
 | |
|   for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
 | |
|     if (BasicBlock *ImmDom = ID.get(I)) {  // Reachable block.
 | |
|       Node *&BBNode = Nodes[I];
 | |
|       if (!BBNode) {  // Haven't calculated this node yet?
 | |
|         // Get or calculate the node for the immediate dominator
 | |
|         Node *IDomNode = getNodeForBlock(ImmDom);
 | |
| 
 | |
|         // Add a new tree node for this BasicBlock, and link it as a child of
 | |
|         // IDomNode
 | |
|         BBNode = IDomNode->addChild(new Node(I, IDomNode));
 | |
|       }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static std::ostream &operator<<(std::ostream &o,
 | |
|                                 const DominatorTreeBase::Node *Node) {
 | |
|   if (Node->getBlock())
 | |
|     WriteAsOperand(o, Node->getBlock(), false);
 | |
|   else
 | |
|     o << " <<exit node>>";
 | |
|   return o << "\n";
 | |
| }
 | |
| 
 | |
| static void PrintDomTree(const DominatorTreeBase::Node *N, std::ostream &o,
 | |
|                          unsigned Lev) {
 | |
|   o << std::string(2*Lev, ' ') << "[" << Lev << "] " << N;
 | |
|   for (DominatorTreeBase::Node::const_iterator I = N->begin(), E = N->end();
 | |
|        I != E; ++I)
 | |
|     PrintDomTree(*I, o, Lev+1);
 | |
| }
 | |
| 
 | |
| void DominatorTreeBase::print(std::ostream &o, const Module* ) const {
 | |
|   o << "=============================--------------------------------\n"
 | |
|     << "Inorder Dominator Tree:\n";
 | |
|   PrintDomTree(getRootNode(), o, 1);
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  DominanceFrontier Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static RegisterAnalysis<DominanceFrontier>
 | |
| G("domfrontier", "Dominance Frontier Construction", true);
 | |
| 
 | |
| const DominanceFrontier::DomSetType &
 | |
| DominanceFrontier::calculate(const DominatorTree &DT,
 | |
|                              const DominatorTree::Node *Node) {
 | |
|   // Loop over CFG successors to calculate DFlocal[Node]
 | |
|   BasicBlock *BB = Node->getBlock();
 | |
|   DomSetType &S = Frontiers[BB];       // The new set to fill in...
 | |
| 
 | |
|   for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
 | |
|        SI != SE; ++SI) {
 | |
|     // Does Node immediately dominate this successor?
 | |
|     if (DT[*SI]->getIDom() != Node)
 | |
|       S.insert(*SI);
 | |
|   }
 | |
| 
 | |
|   // At this point, S is DFlocal.  Now we union in DFup's of our children...
 | |
|   // Loop through and visit the nodes that Node immediately dominates (Node's
 | |
|   // children in the IDomTree)
 | |
|   //
 | |
|   for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end();
 | |
|        NI != NE; ++NI) {
 | |
|     DominatorTree::Node *IDominee = *NI;
 | |
|     const DomSetType &ChildDF = calculate(DT, IDominee);
 | |
| 
 | |
|     DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
 | |
|     for (; CDFI != CDFE; ++CDFI) {
 | |
|       if (!Node->properlyDominates(DT[*CDFI]))
 | |
|         S.insert(*CDFI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| void DominanceFrontierBase::print(std::ostream &o, const Module* ) const {
 | |
|   for (const_iterator I = begin(), E = end(); I != E; ++I) {
 | |
|     o << "  DomFrontier for BB";
 | |
|     if (I->first)
 | |
|       WriteAsOperand(o, I->first, false);
 | |
|     else
 | |
|       o << " <<exit node>>";
 | |
|     o << " is:\t" << I->second << "\n";
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // ETOccurrence Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void ETOccurrence::Splay() {
 | |
|   ETOccurrence *father;
 | |
|   ETOccurrence *grandfather;
 | |
|   int occdepth;
 | |
|   int fatherdepth;
 | |
|   
 | |
|   while (Parent) {
 | |
|     occdepth = Depth;
 | |
|     
 | |
|     father = Parent;
 | |
|     fatherdepth = Parent->Depth;
 | |
|     grandfather = father->Parent;
 | |
|     
 | |
|     // If we have no grandparent, a single zig or zag will do.
 | |
|     if (!grandfather) {
 | |
|       setDepthAdd(fatherdepth);
 | |
|       MinOccurrence = father->MinOccurrence;
 | |
|       Min = father->Min;
 | |
|       
 | |
|       // See what we have to rotate
 | |
|       if (father->Left == this) {
 | |
|         // Zig
 | |
|         father->setLeft(Right);
 | |
|         setRight(father);
 | |
|         if (father->Left)
 | |
|           father->Left->setDepthAdd(occdepth);
 | |
|       } else {
 | |
|         // Zag
 | |
|         father->setRight(Left);
 | |
|         setLeft(father);
 | |
|         if (father->Right)
 | |
|           father->Right->setDepthAdd(occdepth);
 | |
|       }
 | |
|       father->setDepth(-occdepth);
 | |
|       Parent = NULL;
 | |
|       
 | |
|       father->recomputeMin();
 | |
|       return;
 | |
|     }
 | |
|     
 | |
|     // If we have a grandfather, we need to do some
 | |
|     // combination of zig and zag.
 | |
|     int grandfatherdepth = grandfather->Depth;
 | |
|     
 | |
|     setDepthAdd(fatherdepth + grandfatherdepth);
 | |
|     MinOccurrence = grandfather->MinOccurrence;
 | |
|     Min = grandfather->Min;
 | |
|     
 | |
|     ETOccurrence *greatgrandfather = grandfather->Parent;
 | |
|     
 | |
|     if (grandfather->Left == father) {
 | |
|       if (father->Left == this) {
 | |
|         // Zig zig
 | |
|         grandfather->setLeft(father->Right);
 | |
|         father->setLeft(Right);
 | |
|         setRight(father);
 | |
|         father->setRight(grandfather);
 | |
|         
 | |
|         father->setDepth(-occdepth);
 | |
|         
 | |
|         if (father->Left)
 | |
|           father->Left->setDepthAdd(occdepth);
 | |
|         
 | |
|         grandfather->setDepth(-fatherdepth);
 | |
|         if (grandfather->Left)
 | |
|           grandfather->Left->setDepthAdd(fatherdepth);
 | |
|       } else {
 | |
|         // Zag zig
 | |
|         grandfather->setLeft(Right);
 | |
|         father->setRight(Left);
 | |
|         setLeft(father);
 | |
|         setRight(grandfather);
 | |
|         
 | |
|         father->setDepth(-occdepth);
 | |
|         if (father->Right)
 | |
|           father->Right->setDepthAdd(occdepth);
 | |
|         grandfather->setDepth(-occdepth - fatherdepth);
 | |
|         if (grandfather->Left)
 | |
|           grandfather->Left->setDepthAdd(occdepth + fatherdepth);
 | |
|       }
 | |
|     } else {
 | |
|       if (father->Left == this) {
 | |
|         // Zig zag
 | |
|         grandfather->setRight(Left);
 | |
|         father->setLeft(Right);
 | |
|         setLeft(grandfather);
 | |
|         setRight(father);
 | |
|         
 | |
|         father->setDepth(-occdepth);
 | |
|         if (father->Left)
 | |
|           father->Left->setDepthAdd(occdepth);
 | |
|         grandfather->setDepth(-occdepth - fatherdepth);
 | |
|         if (grandfather->Right)
 | |
|           grandfather->Right->setDepthAdd(occdepth + fatherdepth);
 | |
|       } else {              // Zag Zag
 | |
|         grandfather->setRight(father->Left);
 | |
|         father->setRight(Left);
 | |
|         setLeft(father);
 | |
|         father->setLeft(grandfather);
 | |
|         
 | |
|         father->setDepth(-occdepth);
 | |
|         if (father->Right)
 | |
|           father->Right->setDepthAdd(occdepth);
 | |
|         grandfather->setDepth(-fatherdepth);
 | |
|         if (grandfather->Right)
 | |
|           grandfather->Right->setDepthAdd(fatherdepth);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // Might need one more rotate depending on greatgrandfather.
 | |
|     setParent(greatgrandfather);
 | |
|     if (greatgrandfather) {
 | |
|       if (greatgrandfather->Left == grandfather)
 | |
|         greatgrandfather->Left = this;
 | |
|       else
 | |
|         greatgrandfather->Right = this;
 | |
|       
 | |
|     }
 | |
|     grandfather->recomputeMin();
 | |
|     father->recomputeMin();
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // ETNode implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void ETNode::Split() {
 | |
|   ETOccurrence *right, *left;
 | |
|   ETOccurrence *rightmost = RightmostOcc;
 | |
|   ETOccurrence *parent;
 | |
| 
 | |
|   // Update the occurrence tree first.
 | |
|   RightmostOcc->Splay();
 | |
| 
 | |
|   // Find the leftmost occurrence in the rightmost subtree, then splay
 | |
|   // around it.
 | |
|   for (right = rightmost->Right; right->Left; right = right->Left);
 | |
| 
 | |
|   right->Splay();
 | |
| 
 | |
|   // Start splitting
 | |
|   right->Left->Parent = NULL;
 | |
|   parent = ParentOcc;
 | |
|   parent->Splay();
 | |
|   ParentOcc = NULL;
 | |
| 
 | |
|   left = parent->Left;
 | |
|   parent->Right->Parent = NULL;
 | |
| 
 | |
|   right->setLeft(left);
 | |
| 
 | |
|   right->recomputeMin();
 | |
| 
 | |
|   rightmost->Splay();
 | |
|   rightmost->Depth = 0;
 | |
|   rightmost->Min = 0;
 | |
| 
 | |
|   delete parent;
 | |
| 
 | |
|   // Now update *our* tree
 | |
| 
 | |
|   if (Father->Son == this)
 | |
|     Father->Son = Right;
 | |
| 
 | |
|   if (Father->Son == this)
 | |
|     Father->Son = NULL;
 | |
|   else {
 | |
|     Left->Right = Right;
 | |
|     Right->Left = Left;
 | |
|   }
 | |
|   Left = Right = NULL;
 | |
|   Father = NULL;
 | |
| }
 | |
| 
 | |
| void ETNode::setFather(ETNode *NewFather) {
 | |
|   ETOccurrence *rightmost;
 | |
|   ETOccurrence *leftpart;
 | |
|   ETOccurrence *NewFatherOcc;
 | |
|   ETOccurrence *temp;
 | |
| 
 | |
|   // First update the path in the splay tree
 | |
|   NewFatherOcc = new ETOccurrence(NewFather);
 | |
| 
 | |
|   rightmost = NewFather->RightmostOcc;
 | |
|   rightmost->Splay();
 | |
| 
 | |
|   leftpart = rightmost->Left;
 | |
| 
 | |
|   temp = RightmostOcc;
 | |
|   temp->Splay();
 | |
| 
 | |
|   NewFatherOcc->setLeft(leftpart);
 | |
|   NewFatherOcc->setRight(temp);
 | |
| 
 | |
|   temp->Depth++;
 | |
|   temp->Min++;
 | |
|   NewFatherOcc->recomputeMin();
 | |
| 
 | |
|   rightmost->setLeft(NewFatherOcc);
 | |
| 
 | |
|   if (NewFatherOcc->Min + rightmost->Depth < rightmost->Min) {
 | |
|     rightmost->Min = NewFatherOcc->Min + rightmost->Depth;
 | |
|     rightmost->MinOccurrence = NewFatherOcc->MinOccurrence;
 | |
|   }
 | |
| 
 | |
|   delete ParentOcc;
 | |
|   ParentOcc = NewFatherOcc;
 | |
| 
 | |
|   // Update *our* tree
 | |
|   ETNode *left;
 | |
|   ETNode *right;
 | |
| 
 | |
|   Father = NewFather;
 | |
|   right = Father->Son;
 | |
| 
 | |
|   if (right)
 | |
|     left = right->Left;
 | |
|   else
 | |
|     left = right = this;
 | |
| 
 | |
|   left->Right = this;
 | |
|   right->Left = this;
 | |
|   Left = left;
 | |
|   Right = right;
 | |
| 
 | |
|   Father->Son = this;
 | |
| }
 | |
| 
 | |
| bool ETNode::Below(ETNode *other) {
 | |
|   ETOccurrence *up = other->RightmostOcc;
 | |
|   ETOccurrence *down = RightmostOcc;
 | |
| 
 | |
|   if (this == other)
 | |
|     return true;
 | |
| 
 | |
|   up->Splay();
 | |
| 
 | |
|   ETOccurrence *left, *right;
 | |
|   left = up->Left;
 | |
|   right = up->Right;
 | |
| 
 | |
|   if (!left)
 | |
|     return false;
 | |
| 
 | |
|   left->Parent = NULL;
 | |
| 
 | |
|   if (right)
 | |
|     right->Parent = NULL;
 | |
| 
 | |
|   down->Splay();
 | |
| 
 | |
|   if (left == down || left->Parent != NULL) {
 | |
|     if (right)
 | |
|       right->Parent = up;
 | |
|     up->setLeft(down);
 | |
|   } else {
 | |
|     left->Parent = up;
 | |
| 
 | |
|     // If the two occurrences are in different trees, put things
 | |
|     // back the way they were.
 | |
|     if (right && right->Parent != NULL)
 | |
|       up->setRight(down);
 | |
|     else
 | |
|       up->setRight(right);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (down->Depth <= 0)
 | |
|     return false;
 | |
| 
 | |
|   return !down->Right || down->Right->Min + down->Depth >= 0;
 | |
| }
 | |
| 
 | |
| ETNode *ETNode::NCA(ETNode *other) {
 | |
|   ETOccurrence *occ1 = RightmostOcc;
 | |
|   ETOccurrence *occ2 = other->RightmostOcc;
 | |
|   
 | |
|   ETOccurrence *left, *right, *ret;
 | |
|   ETOccurrence *occmin;
 | |
|   int mindepth;
 | |
|   
 | |
|   if (this == other)
 | |
|     return this;
 | |
|   
 | |
|   occ1->Splay();
 | |
|   left = occ1->Left;
 | |
|   right = occ1->Right;
 | |
|   
 | |
|   if (left)
 | |
|     left->Parent = NULL;
 | |
|   
 | |
|   if (right)
 | |
|     right->Parent = NULL;
 | |
|   occ2->Splay();
 | |
| 
 | |
|   if (left == occ2 || (left && left->Parent != NULL)) {
 | |
|     ret = occ2->Right;
 | |
|     
 | |
|     occ1->setLeft(occ2);
 | |
|     if (right)
 | |
|       right->Parent = occ1;
 | |
|   } else {
 | |
|     ret = occ2->Left;
 | |
|     
 | |
|     occ1->setRight(occ2);
 | |
|     if (left)
 | |
|       left->Parent = occ1;
 | |
|   }
 | |
| 
 | |
|   if (occ2->Depth > 0) {
 | |
|     occmin = occ1;
 | |
|     mindepth = occ1->Depth;
 | |
|   } else {
 | |
|     occmin = occ2;
 | |
|     mindepth = occ2->Depth + occ1->Depth;
 | |
|   }
 | |
|   
 | |
|   if (ret && ret->Min + occ1->Depth + occ2->Depth < mindepth)
 | |
|     return ret->MinOccurrence->OccFor;
 | |
|   else
 | |
|     return occmin->OccFor;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // ETForest implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static RegisterAnalysis<ETForest>
 | |
| D("etforest", "ET Forest Construction", true);
 | |
| 
 | |
| void ETForestBase::reset() {
 | |
|   for (ETMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I)
 | |
|     delete I->second;
 | |
|   Nodes.clear();
 | |
| }
 | |
| 
 | |
| void ETForestBase::updateDFSNumbers()
 | |
| {
 | |
|   int dfsnum = 0;
 | |
|   // Iterate over all nodes in depth first order.
 | |
|   for (unsigned i = 0, e = Roots.size(); i != e; ++i)
 | |
|     for (df_iterator<BasicBlock*> I = df_begin(Roots[i]),
 | |
|            E = df_end(Roots[i]); I != E; ++I) {
 | |
|       BasicBlock *BB = *I;
 | |
|       if (!getNode(BB)->hasFather())
 | |
|         getNode(BB)->assignDFSNumber(dfsnum);    
 | |
|   }
 | |
|   SlowQueries = 0;
 | |
|   DFSInfoValid = true;
 | |
| }
 | |
| 
 | |
| ETNode *ETForest::getNodeForBlock(BasicBlock *BB) {
 | |
|   ETNode *&BBNode = Nodes[BB];
 | |
|   if (BBNode) return BBNode;
 | |
| 
 | |
|   // Haven't calculated this node yet?  Get or calculate the node for the
 | |
|   // immediate dominator.
 | |
|   BasicBlock *IDom = getAnalysis<ImmediateDominators>()[BB];
 | |
| 
 | |
|   // If we are unreachable, we may not have an immediate dominator.
 | |
|   if (!IDom)
 | |
|     return BBNode = new ETNode(BB);
 | |
|   else {
 | |
|     ETNode *IDomNode = getNodeForBlock(IDom);
 | |
|     
 | |
|     // Add a new tree node for this BasicBlock, and link it as a child of
 | |
|     // IDomNode
 | |
|     BBNode = new ETNode(BB);
 | |
|     BBNode->setFather(IDomNode);
 | |
|     return BBNode;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ETForest::calculate(const ImmediateDominators &ID) {
 | |
|   assert(Roots.size() == 1 && "ETForest should have 1 root block!");
 | |
|   BasicBlock *Root = Roots[0];
 | |
|   Nodes[Root] = new ETNode(Root); // Add a node for the root
 | |
| 
 | |
|   Function *F = Root->getParent();
 | |
|   // Loop over all of the reachable blocks in the function...
 | |
|   for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
 | |
|     if (BasicBlock *ImmDom = ID.get(I)) {  // Reachable block.
 | |
|       ETNode *&BBNode = Nodes[I];
 | |
|       if (!BBNode) {  // Haven't calculated this node yet?
 | |
|         // Get or calculate the node for the immediate dominator
 | |
|         ETNode *IDomNode =  getNodeForBlock(ImmDom);
 | |
| 
 | |
|         // Add a new ETNode for this BasicBlock, and set it's parent
 | |
|         // to it's immediate dominator.
 | |
|         BBNode = new ETNode(I);
 | |
|         BBNode->setFather(IDomNode);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // Make sure we've got nodes around for every block
 | |
|   for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
 | |
|     ETNode *&BBNode = Nodes[I];
 | |
|     if (!BBNode)
 | |
|       BBNode = new ETNode(I);
 | |
|   }
 | |
| 
 | |
|   updateDFSNumbers ();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // ETForestBase Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void ETForestBase::addNewBlock(BasicBlock *BB, BasicBlock *IDom) {
 | |
|   ETNode *&BBNode = Nodes[BB];
 | |
|   assert(!BBNode && "BasicBlock already in ET-Forest");
 | |
| 
 | |
|   BBNode = new ETNode(BB);
 | |
|   BBNode->setFather(getNode(IDom));
 | |
|   DFSInfoValid = false;
 | |
| }
 | |
| 
 | |
| void ETForestBase::setImmediateDominator(BasicBlock *BB, BasicBlock *newIDom) {
 | |
|   assert(getNode(BB) && "BasicBlock not in ET-Forest");
 | |
|   assert(getNode(newIDom) && "IDom not in ET-Forest");
 | |
|   
 | |
|   ETNode *Node = getNode(BB);
 | |
|   if (Node->hasFather()) {
 | |
|     if (Node->getFather()->getData<BasicBlock>() == newIDom)
 | |
|       return;
 | |
|     Node->Split();
 | |
|   }
 | |
|   Node->setFather(getNode(newIDom));
 | |
|   DFSInfoValid= false;
 | |
| }
 | |
| 
 | |
| void ETForestBase::print(std::ostream &o, const Module *) const {
 | |
|   o << "=============================--------------------------------\n";
 | |
|   o << "ET Forest:\n";
 | |
|   o << "DFS Info ";
 | |
|   if (DFSInfoValid)
 | |
|     o << "is";
 | |
|   else
 | |
|     o << "is not";
 | |
|   o << " up to date\n";
 | |
| 
 | |
|   Function *F = getRoots()[0]->getParent();
 | |
|   for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
 | |
|     o << "  DFS Numbers For Basic Block:";
 | |
|     WriteAsOperand(o, I, false);
 | |
|     o << " are:";
 | |
|     if (ETNode *EN = getNode(I)) {
 | |
|       o << "In: " << EN->getDFSNumIn();
 | |
|       o << " Out: " << EN->getDFSNumOut() << "\n";
 | |
|     } else {
 | |
|       o << "No associated ETNode";
 | |
|     }
 | |
|     o << "\n";
 | |
|   }
 | |
|   o << "\n";
 | |
| }
 |