mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	No functional change (and no FE change to generate them). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55753 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			4884 lines
		
	
	
		
			195 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			4884 lines
		
	
	
		
			195 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the PPCISelLowering class.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "PPCISelLowering.h"
 | 
						|
#include "PPCMachineFunctionInfo.h"
 | 
						|
#include "PPCPredicates.h"
 | 
						|
#include "PPCTargetMachine.h"
 | 
						|
#include "PPCPerfectShuffle.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/VectorExtras.h"
 | 
						|
#include "llvm/CodeGen/CallingConvLower.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/PseudoSourceValue.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAG.h"
 | 
						|
#include "llvm/CallingConv.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/Intrinsics.h"
 | 
						|
#include "llvm/ParameterAttributes.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc", 
 | 
						|
cl::desc("enable preincrement load/store generation on PPC (experimental)"),
 | 
						|
                                     cl::Hidden);
 | 
						|
 | 
						|
PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
 | 
						|
  : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
 | 
						|
    
 | 
						|
  setPow2DivIsCheap();
 | 
						|
 | 
						|
  // Use _setjmp/_longjmp instead of setjmp/longjmp.
 | 
						|
  setUseUnderscoreSetJmp(true);
 | 
						|
  setUseUnderscoreLongJmp(true);
 | 
						|
    
 | 
						|
  // Set up the register classes.
 | 
						|
  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
 | 
						|
  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
 | 
						|
  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
 | 
						|
  
 | 
						|
  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
 | 
						|
  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote);
 | 
						|
  setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
 | 
						|
 | 
						|
  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
 | 
						|
    
 | 
						|
  // PowerPC has pre-inc load and store's.
 | 
						|
  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
 | 
						|
  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
 | 
						|
  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
 | 
						|
  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
 | 
						|
  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
 | 
						|
  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
 | 
						|
  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
 | 
						|
  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
 | 
						|
  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
 | 
						|
  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
 | 
						|
 | 
						|
  // Shortening conversions involving ppcf128 get expanded (2 regs -> 1 reg)
 | 
						|
  setConvertAction(MVT::ppcf128, MVT::f64, Expand);
 | 
						|
  setConvertAction(MVT::ppcf128, MVT::f32, Expand);
 | 
						|
  // This is used in the ppcf128->int sequence.  Note it has different semantics
 | 
						|
  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
 | 
						|
  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
 | 
						|
 | 
						|
  // PowerPC has no SREM/UREM instructions
 | 
						|
  setOperationAction(ISD::SREM, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::UREM, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::SREM, MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::UREM, MVT::i64, Expand);
 | 
						|
 | 
						|
  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
 | 
						|
  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
 | 
						|
  
 | 
						|
  // We don't support sin/cos/sqrt/fmod/pow
 | 
						|
  setOperationAction(ISD::FSIN , MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FCOS , MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FREM , MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FPOW , MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FLOG , MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FEXP  ,MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FEXP2 ,MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FSIN , MVT::f32, Expand);
 | 
						|
  setOperationAction(ISD::FCOS , MVT::f32, Expand);
 | 
						|
  setOperationAction(ISD::FREM , MVT::f32, Expand);
 | 
						|
  setOperationAction(ISD::FPOW , MVT::f32, Expand);
 | 
						|
  setOperationAction(ISD::FLOG , MVT::f32, Expand);
 | 
						|
  setOperationAction(ISD::FLOG2 ,MVT::f32, Expand);
 | 
						|
  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
 | 
						|
  setOperationAction(ISD::FEXP  ,MVT::f32, Expand);
 | 
						|
  setOperationAction(ISD::FEXP2 ,MVT::f32, Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
 | 
						|
  
 | 
						|
  // If we're enabling GP optimizations, use hardware square root
 | 
						|
  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
 | 
						|
    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
 | 
						|
    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
 | 
						|
  }
 | 
						|
  
 | 
						|
  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
 | 
						|
  
 | 
						|
  // PowerPC does not have BSWAP, CTPOP or CTTZ
 | 
						|
  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
 | 
						|
  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
 | 
						|
  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
 | 
						|
  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
 | 
						|
  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
 | 
						|
  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
 | 
						|
  
 | 
						|
  // PowerPC does not have ROTR
 | 
						|
  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
 | 
						|
  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
 | 
						|
  
 | 
						|
  // PowerPC does not have Select
 | 
						|
  setOperationAction(ISD::SELECT, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::SELECT, MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::SELECT, MVT::f32, Expand);
 | 
						|
  setOperationAction(ISD::SELECT, MVT::f64, Expand);
 | 
						|
  
 | 
						|
  // PowerPC wants to turn select_cc of FP into fsel when possible.
 | 
						|
  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
 | 
						|
  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
 | 
						|
 | 
						|
  // PowerPC wants to optimize integer setcc a bit
 | 
						|
  setOperationAction(ISD::SETCC, MVT::i32, Custom);
 | 
						|
  
 | 
						|
  // PowerPC does not have BRCOND which requires SetCC
 | 
						|
  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
 | 
						|
  
 | 
						|
  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
 | 
						|
  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
 | 
						|
 | 
						|
  // PowerPC does not have [U|S]INT_TO_FP
 | 
						|
  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
 | 
						|
  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
 | 
						|
 | 
						|
  // We cannot sextinreg(i1).  Expand to shifts.
 | 
						|
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
 | 
						|
 | 
						|
  // Support label based line numbers.
 | 
						|
  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
 | 
						|
  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
 | 
						|
  
 | 
						|
  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
 | 
						|
  
 | 
						|
  
 | 
						|
  // We want to legalize GlobalAddress and ConstantPool nodes into the 
 | 
						|
  // appropriate instructions to materialize the address.
 | 
						|
  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
 | 
						|
  
 | 
						|
  // RET must be custom lowered, to meet ABI requirements.
 | 
						|
  setOperationAction(ISD::RET               , MVT::Other, Custom);
 | 
						|
 | 
						|
  // TRAP is legal.
 | 
						|
  setOperationAction(ISD::TRAP, MVT::Other, Legal);
 | 
						|
    
 | 
						|
  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
 | 
						|
  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
 | 
						|
  
 | 
						|
  // VAARG is custom lowered with ELF 32 ABI
 | 
						|
  if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
 | 
						|
    setOperationAction(ISD::VAARG, MVT::Other, Custom);
 | 
						|
  else
 | 
						|
    setOperationAction(ISD::VAARG, MVT::Other, Expand);
 | 
						|
  
 | 
						|
  // Use the default implementation.
 | 
						|
  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
 | 
						|
  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
 | 
						|
  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand); 
 | 
						|
  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
 | 
						|
  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
 | 
						|
  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
 | 
						|
 | 
						|
  // We want to custom lower some of our intrinsics.
 | 
						|
  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
 | 
						|
  
 | 
						|
  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
 | 
						|
    // They also have instructions for converting between i64 and fp.
 | 
						|
    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
 | 
						|
    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
 | 
						|
    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
 | 
						|
    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
 | 
						|
 
 | 
						|
    // FIXME: disable this lowered code.  This generates 64-bit register values,
 | 
						|
    // and we don't model the fact that the top part is clobbered by calls.  We
 | 
						|
    // need to flag these together so that the value isn't live across a call.
 | 
						|
    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
 | 
						|
    
 | 
						|
    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
 | 
						|
    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
 | 
						|
  } else {
 | 
						|
    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
 | 
						|
    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
 | 
						|
    // 64-bit PowerPC implementations can support i64 types directly
 | 
						|
    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
 | 
						|
    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
 | 
						|
    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
 | 
						|
    // 64-bit PowerPC wants to expand i128 shifts itself.
 | 
						|
    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
 | 
						|
    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
 | 
						|
    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
 | 
						|
  } else {
 | 
						|
    // 32-bit PowerPC wants to expand i64 shifts itself.
 | 
						|
    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
 | 
						|
    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
 | 
						|
    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
 | 
						|
  }
 | 
						|
 | 
						|
  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
 | 
						|
    // First set operation action for all vector types to expand. Then we
 | 
						|
    // will selectively turn on ones that can be effectively codegen'd.
 | 
						|
    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
 | 
						|
         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
 | 
						|
      MVT VT = (MVT::SimpleValueType)i;
 | 
						|
 | 
						|
      // add/sub are legal for all supported vector VT's.
 | 
						|
      setOperationAction(ISD::ADD , VT, Legal);
 | 
						|
      setOperationAction(ISD::SUB , VT, Legal);
 | 
						|
      
 | 
						|
      // We promote all shuffles to v16i8.
 | 
						|
      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
 | 
						|
      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
 | 
						|
 | 
						|
      // We promote all non-typed operations to v4i32.
 | 
						|
      setOperationAction(ISD::AND   , VT, Promote);
 | 
						|
      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
 | 
						|
      setOperationAction(ISD::OR    , VT, Promote);
 | 
						|
      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
 | 
						|
      setOperationAction(ISD::XOR   , VT, Promote);
 | 
						|
      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
 | 
						|
      setOperationAction(ISD::LOAD  , VT, Promote);
 | 
						|
      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
 | 
						|
      setOperationAction(ISD::SELECT, VT, Promote);
 | 
						|
      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
 | 
						|
      setOperationAction(ISD::STORE, VT, Promote);
 | 
						|
      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
 | 
						|
      
 | 
						|
      // No other operations are legal.
 | 
						|
      setOperationAction(ISD::MUL , VT, Expand);
 | 
						|
      setOperationAction(ISD::SDIV, VT, Expand);
 | 
						|
      setOperationAction(ISD::SREM, VT, Expand);
 | 
						|
      setOperationAction(ISD::UDIV, VT, Expand);
 | 
						|
      setOperationAction(ISD::UREM, VT, Expand);
 | 
						|
      setOperationAction(ISD::FDIV, VT, Expand);
 | 
						|
      setOperationAction(ISD::FNEG, VT, Expand);
 | 
						|
      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
 | 
						|
      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
 | 
						|
      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
 | 
						|
      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
 | 
						|
      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
 | 
						|
      setOperationAction(ISD::UDIVREM, VT, Expand);
 | 
						|
      setOperationAction(ISD::SDIVREM, VT, Expand);
 | 
						|
      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
 | 
						|
      setOperationAction(ISD::FPOW, VT, Expand);
 | 
						|
      setOperationAction(ISD::CTPOP, VT, Expand);
 | 
						|
      setOperationAction(ISD::CTLZ, VT, Expand);
 | 
						|
      setOperationAction(ISD::CTTZ, VT, Expand);
 | 
						|
    }
 | 
						|
 | 
						|
    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
 | 
						|
    // with merges, splats, etc.
 | 
						|
    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
 | 
						|
 | 
						|
    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
 | 
						|
    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
 | 
						|
    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
 | 
						|
    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
 | 
						|
    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
 | 
						|
    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
 | 
						|
    
 | 
						|
    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
 | 
						|
    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
 | 
						|
    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
 | 
						|
    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
 | 
						|
    
 | 
						|
    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
 | 
						|
    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
 | 
						|
    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
 | 
						|
    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
 | 
						|
 | 
						|
    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
 | 
						|
    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
 | 
						|
    
 | 
						|
    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
 | 
						|
    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
 | 
						|
    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
 | 
						|
    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
 | 
						|
  }
 | 
						|
  
 | 
						|
  setShiftAmountType(MVT::i32);
 | 
						|
  setSetCCResultContents(ZeroOrOneSetCCResult);
 | 
						|
  
 | 
						|
  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
 | 
						|
    setStackPointerRegisterToSaveRestore(PPC::X1);
 | 
						|
    setExceptionPointerRegister(PPC::X3);
 | 
						|
    setExceptionSelectorRegister(PPC::X4);
 | 
						|
  } else {
 | 
						|
    setStackPointerRegisterToSaveRestore(PPC::R1);
 | 
						|
    setExceptionPointerRegister(PPC::R3);
 | 
						|
    setExceptionSelectorRegister(PPC::R4);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // We have target-specific dag combine patterns for the following nodes:
 | 
						|
  setTargetDAGCombine(ISD::SINT_TO_FP);
 | 
						|
  setTargetDAGCombine(ISD::STORE);
 | 
						|
  setTargetDAGCombine(ISD::BR_CC);
 | 
						|
  setTargetDAGCombine(ISD::BSWAP);
 | 
						|
  
 | 
						|
  // Darwin long double math library functions have $LDBL128 appended.
 | 
						|
  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
 | 
						|
    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
 | 
						|
    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
 | 
						|
    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
 | 
						|
    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
 | 
						|
    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
 | 
						|
    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
 | 
						|
    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
 | 
						|
    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
 | 
						|
    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
 | 
						|
    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
 | 
						|
  }
 | 
						|
 | 
						|
  computeRegisterProperties();
 | 
						|
}
 | 
						|
 | 
						|
/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
 | 
						|
/// function arguments in the caller parameter area.
 | 
						|
unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
 | 
						|
  TargetMachine &TM = getTargetMachine();
 | 
						|
  // Darwin passes everything on 4 byte boundary.
 | 
						|
  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
 | 
						|
    return 4;
 | 
						|
  // FIXME Elf TBD
 | 
						|
  return 4;
 | 
						|
}
 | 
						|
 | 
						|
const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
 | 
						|
  switch (Opcode) {
 | 
						|
  default: return 0;
 | 
						|
  case PPCISD::FSEL:            return "PPCISD::FSEL";
 | 
						|
  case PPCISD::FCFID:           return "PPCISD::FCFID";
 | 
						|
  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
 | 
						|
  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
 | 
						|
  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
 | 
						|
  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
 | 
						|
  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
 | 
						|
  case PPCISD::VPERM:           return "PPCISD::VPERM";
 | 
						|
  case PPCISD::Hi:              return "PPCISD::Hi";
 | 
						|
  case PPCISD::Lo:              return "PPCISD::Lo";
 | 
						|
  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
 | 
						|
  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
 | 
						|
  case PPCISD::SRL:             return "PPCISD::SRL";
 | 
						|
  case PPCISD::SRA:             return "PPCISD::SRA";
 | 
						|
  case PPCISD::SHL:             return "PPCISD::SHL";
 | 
						|
  case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
 | 
						|
  case PPCISD::STD_32:          return "PPCISD::STD_32";
 | 
						|
  case PPCISD::CALL_ELF:        return "PPCISD::CALL_ELF";
 | 
						|
  case PPCISD::CALL_Macho:      return "PPCISD::CALL_Macho";
 | 
						|
  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
 | 
						|
  case PPCISD::BCTRL_Macho:     return "PPCISD::BCTRL_Macho";
 | 
						|
  case PPCISD::BCTRL_ELF:       return "PPCISD::BCTRL_ELF";
 | 
						|
  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
 | 
						|
  case PPCISD::MFCR:            return "PPCISD::MFCR";
 | 
						|
  case PPCISD::VCMP:            return "PPCISD::VCMP";
 | 
						|
  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
 | 
						|
  case PPCISD::LBRX:            return "PPCISD::LBRX";
 | 
						|
  case PPCISD::STBRX:           return "PPCISD::STBRX";
 | 
						|
  case PPCISD::LARX:            return "PPCISD::LARX";
 | 
						|
  case PPCISD::STCX:            return "PPCISD::STCX";
 | 
						|
  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
 | 
						|
  case PPCISD::MFFS:            return "PPCISD::MFFS";
 | 
						|
  case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
 | 
						|
  case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
 | 
						|
  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
 | 
						|
  case PPCISD::MTFSF:           return "PPCISD::MTFSF";
 | 
						|
  case PPCISD::TAILCALL:        return "PPCISD::TAILCALL";
 | 
						|
  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
MVT PPCTargetLowering::getSetCCResultType(const SDValue &) const {
 | 
						|
  return MVT::i32;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Node matching predicates, for use by the tblgen matching code.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
 | 
						|
static bool isFloatingPointZero(SDValue Op) {
 | 
						|
  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
 | 
						|
    return CFP->getValueAPF().isZero();
 | 
						|
  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
 | 
						|
    // Maybe this has already been legalized into the constant pool?
 | 
						|
    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
 | 
						|
      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
 | 
						|
        return CFP->getValueAPF().isZero();
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
 | 
						|
/// true if Op is undef or if it matches the specified value.
 | 
						|
static bool isConstantOrUndef(SDValue Op, unsigned Val) {
 | 
						|
  return Op.getOpcode() == ISD::UNDEF || 
 | 
						|
         cast<ConstantSDNode>(Op)->getValue() == Val;
 | 
						|
}
 | 
						|
 | 
						|
/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
 | 
						|
/// VPKUHUM instruction.
 | 
						|
bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
 | 
						|
  if (!isUnary) {
 | 
						|
    for (unsigned i = 0; i != 16; ++i)
 | 
						|
      if (!isConstantOrUndef(N->getOperand(i),  i*2+1))
 | 
						|
        return false;
 | 
						|
  } else {
 | 
						|
    for (unsigned i = 0; i != 8; ++i)
 | 
						|
      if (!isConstantOrUndef(N->getOperand(i),  i*2+1) ||
 | 
						|
          !isConstantOrUndef(N->getOperand(i+8),  i*2+1))
 | 
						|
        return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
 | 
						|
/// VPKUWUM instruction.
 | 
						|
bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
 | 
						|
  if (!isUnary) {
 | 
						|
    for (unsigned i = 0; i != 16; i += 2)
 | 
						|
      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
 | 
						|
          !isConstantOrUndef(N->getOperand(i+1),  i*2+3))
 | 
						|
        return false;
 | 
						|
  } else {
 | 
						|
    for (unsigned i = 0; i != 8; i += 2)
 | 
						|
      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
 | 
						|
          !isConstantOrUndef(N->getOperand(i+1),  i*2+3) ||
 | 
						|
          !isConstantOrUndef(N->getOperand(i+8),  i*2+2) ||
 | 
						|
          !isConstantOrUndef(N->getOperand(i+9),  i*2+3))
 | 
						|
        return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isVMerge - Common function, used to match vmrg* shuffles.
 | 
						|
///
 | 
						|
static bool isVMerge(SDNode *N, unsigned UnitSize, 
 | 
						|
                     unsigned LHSStart, unsigned RHSStart) {
 | 
						|
  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
 | 
						|
         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
 | 
						|
  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
 | 
						|
         "Unsupported merge size!");
 | 
						|
  
 | 
						|
  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
 | 
						|
    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
 | 
						|
      if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
 | 
						|
                             LHSStart+j+i*UnitSize) ||
 | 
						|
          !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
 | 
						|
                             RHSStart+j+i*UnitSize))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
      return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
 | 
						|
/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
 | 
						|
bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
 | 
						|
  if (!isUnary)
 | 
						|
    return isVMerge(N, UnitSize, 8, 24);
 | 
						|
  return isVMerge(N, UnitSize, 8, 8);
 | 
						|
}
 | 
						|
 | 
						|
/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
 | 
						|
/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
 | 
						|
bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
 | 
						|
  if (!isUnary)
 | 
						|
    return isVMerge(N, UnitSize, 0, 16);
 | 
						|
  return isVMerge(N, UnitSize, 0, 0);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
 | 
						|
/// amount, otherwise return -1.
 | 
						|
int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
 | 
						|
  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
 | 
						|
         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
 | 
						|
  // Find the first non-undef value in the shuffle mask.
 | 
						|
  unsigned i;
 | 
						|
  for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
 | 
						|
    /*search*/;
 | 
						|
  
 | 
						|
  if (i == 16) return -1;  // all undef.
 | 
						|
  
 | 
						|
  // Otherwise, check to see if the rest of the elements are consequtively
 | 
						|
  // numbered from this value.
 | 
						|
  unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
 | 
						|
  if (ShiftAmt < i) return -1;
 | 
						|
  ShiftAmt -= i;
 | 
						|
 | 
						|
  if (!isUnary) {
 | 
						|
    // Check the rest of the elements to see if they are consequtive.
 | 
						|
    for (++i; i != 16; ++i)
 | 
						|
      if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
 | 
						|
        return -1;
 | 
						|
  } else {
 | 
						|
    // Check the rest of the elements to see if they are consequtive.
 | 
						|
    for (++i; i != 16; ++i)
 | 
						|
      if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
 | 
						|
        return -1;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return ShiftAmt;
 | 
						|
}
 | 
						|
 | 
						|
/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
 | 
						|
/// specifies a splat of a single element that is suitable for input to
 | 
						|
/// VSPLTB/VSPLTH/VSPLTW.
 | 
						|
bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
 | 
						|
  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
 | 
						|
         N->getNumOperands() == 16 &&
 | 
						|
         (EltSize == 1 || EltSize == 2 || EltSize == 4));
 | 
						|
  
 | 
						|
  // This is a splat operation if each element of the permute is the same, and
 | 
						|
  // if the value doesn't reference the second vector.
 | 
						|
  unsigned ElementBase = 0;
 | 
						|
  SDValue Elt = N->getOperand(0);
 | 
						|
  if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
 | 
						|
    ElementBase = EltV->getValue();
 | 
						|
  else
 | 
						|
    return false;   // FIXME: Handle UNDEF elements too!
 | 
						|
 | 
						|
  if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // Check that they are consequtive.
 | 
						|
  for (unsigned i = 1; i != EltSize; ++i) {
 | 
						|
    if (!isa<ConstantSDNode>(N->getOperand(i)) ||
 | 
						|
        cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
 | 
						|
  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
 | 
						|
    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
 | 
						|
    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
 | 
						|
           "Invalid VECTOR_SHUFFLE mask!");
 | 
						|
    for (unsigned j = 0; j != EltSize; ++j)
 | 
						|
      if (N->getOperand(i+j) != N->getOperand(j))
 | 
						|
        return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isAllNegativeZeroVector - Returns true if all elements of build_vector
 | 
						|
/// are -0.0.
 | 
						|
bool PPC::isAllNegativeZeroVector(SDNode *N) {
 | 
						|
  assert(N->getOpcode() == ISD::BUILD_VECTOR);
 | 
						|
  if (PPC::isSplatShuffleMask(N, N->getNumOperands()))
 | 
						|
    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N))
 | 
						|
      return CFP->getValueAPF().isNegZero();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
 | 
						|
/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
 | 
						|
unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
 | 
						|
  assert(isSplatShuffleMask(N, EltSize));
 | 
						|
  return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
 | 
						|
}
 | 
						|
 | 
						|
/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
 | 
						|
/// by using a vspltis[bhw] instruction of the specified element size, return
 | 
						|
/// the constant being splatted.  The ByteSize field indicates the number of
 | 
						|
/// bytes of each element [124] -> [bhw].
 | 
						|
SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
 | 
						|
  SDValue OpVal(0, 0);
 | 
						|
 | 
						|
  // If ByteSize of the splat is bigger than the element size of the
 | 
						|
  // build_vector, then we have a case where we are checking for a splat where
 | 
						|
  // multiple elements of the buildvector are folded together into a single
 | 
						|
  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
 | 
						|
  unsigned EltSize = 16/N->getNumOperands();
 | 
						|
  if (EltSize < ByteSize) {
 | 
						|
    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
 | 
						|
    SDValue UniquedVals[4];
 | 
						|
    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
 | 
						|
    
 | 
						|
    // See if all of the elements in the buildvector agree across.
 | 
						|
    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | 
						|
      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
 | 
						|
      // If the element isn't a constant, bail fully out.
 | 
						|
      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
 | 
						|
 | 
						|
          
 | 
						|
      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
 | 
						|
        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
 | 
						|
      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
 | 
						|
        return SDValue();  // no match.
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
 | 
						|
    // either constant or undef values that are identical for each chunk.  See
 | 
						|
    // if these chunks can form into a larger vspltis*.
 | 
						|
    
 | 
						|
    // Check to see if all of the leading entries are either 0 or -1.  If
 | 
						|
    // neither, then this won't fit into the immediate field.
 | 
						|
    bool LeadingZero = true;
 | 
						|
    bool LeadingOnes = true;
 | 
						|
    for (unsigned i = 0; i != Multiple-1; ++i) {
 | 
						|
      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
 | 
						|
      
 | 
						|
      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
 | 
						|
      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
 | 
						|
    }
 | 
						|
    // Finally, check the least significant entry.
 | 
						|
    if (LeadingZero) {
 | 
						|
      if (UniquedVals[Multiple-1].getNode() == 0)
 | 
						|
        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
 | 
						|
      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
 | 
						|
      if (Val < 16)
 | 
						|
        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
 | 
						|
    }
 | 
						|
    if (LeadingOnes) {
 | 
						|
      if (UniquedVals[Multiple-1].getNode() == 0)
 | 
						|
        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
 | 
						|
      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
 | 
						|
      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
 | 
						|
        return DAG.getTargetConstant(Val, MVT::i32);
 | 
						|
    }
 | 
						|
    
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Check to see if this buildvec has a single non-undef value in its elements.
 | 
						|
  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | 
						|
    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
 | 
						|
    if (OpVal.getNode() == 0)
 | 
						|
      OpVal = N->getOperand(i);
 | 
						|
    else if (OpVal != N->getOperand(i))
 | 
						|
      return SDValue();
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
 | 
						|
  
 | 
						|
  unsigned ValSizeInBytes = 0;
 | 
						|
  uint64_t Value = 0;
 | 
						|
  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
 | 
						|
    Value = CN->getValue();
 | 
						|
    ValSizeInBytes = CN->getValueType(0).getSizeInBits()/8;
 | 
						|
  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
 | 
						|
    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
 | 
						|
    Value = FloatToBits(CN->getValueAPF().convertToFloat());
 | 
						|
    ValSizeInBytes = 4;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the splat value is larger than the element value, then we can never do
 | 
						|
  // this splat.  The only case that we could fit the replicated bits into our
 | 
						|
  // immediate field for would be zero, and we prefer to use vxor for it.
 | 
						|
  if (ValSizeInBytes < ByteSize) return SDValue();
 | 
						|
  
 | 
						|
  // If the element value is larger than the splat value, cut it in half and
 | 
						|
  // check to see if the two halves are equal.  Continue doing this until we
 | 
						|
  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
 | 
						|
  while (ValSizeInBytes > ByteSize) {
 | 
						|
    ValSizeInBytes >>= 1;
 | 
						|
    
 | 
						|
    // If the top half equals the bottom half, we're still ok.
 | 
						|
    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
 | 
						|
         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
 | 
						|
      return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  // Properly sign extend the value.
 | 
						|
  int ShAmt = (4-ByteSize)*8;
 | 
						|
  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
 | 
						|
  
 | 
						|
  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
 | 
						|
  if (MaskVal == 0) return SDValue();
 | 
						|
 | 
						|
  // Finally, if this value fits in a 5 bit sext field, return it
 | 
						|
  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
 | 
						|
    return DAG.getTargetConstant(MaskVal, MVT::i32);
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Addressing Mode Selection
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
 | 
						|
/// or 64-bit immediate, and if the value can be accurately represented as a
 | 
						|
/// sign extension from a 16-bit value.  If so, this returns true and the
 | 
						|
/// immediate.
 | 
						|
static bool isIntS16Immediate(SDNode *N, short &Imm) {
 | 
						|
  if (N->getOpcode() != ISD::Constant)
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  Imm = (short)cast<ConstantSDNode>(N)->getValue();
 | 
						|
  if (N->getValueType(0) == MVT::i32)
 | 
						|
    return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
 | 
						|
  else
 | 
						|
    return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
 | 
						|
}
 | 
						|
static bool isIntS16Immediate(SDValue Op, short &Imm) {
 | 
						|
  return isIntS16Immediate(Op.getNode(), Imm);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// SelectAddressRegReg - Given the specified addressed, check to see if it
 | 
						|
/// can be represented as an indexed [r+r] operation.  Returns false if it
 | 
						|
/// can be more efficiently represented with [r+imm].
 | 
						|
bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
 | 
						|
                                            SDValue &Index,
 | 
						|
                                            SelectionDAG &DAG) {
 | 
						|
  short imm = 0;
 | 
						|
  if (N.getOpcode() == ISD::ADD) {
 | 
						|
    if (isIntS16Immediate(N.getOperand(1), imm))
 | 
						|
      return false;    // r+i
 | 
						|
    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
 | 
						|
      return false;    // r+i
 | 
						|
    
 | 
						|
    Base = N.getOperand(0);
 | 
						|
    Index = N.getOperand(1);
 | 
						|
    return true;
 | 
						|
  } else if (N.getOpcode() == ISD::OR) {
 | 
						|
    if (isIntS16Immediate(N.getOperand(1), imm))
 | 
						|
      return false;    // r+i can fold it if we can.
 | 
						|
    
 | 
						|
    // If this is an or of disjoint bitfields, we can codegen this as an add
 | 
						|
    // (for better address arithmetic) if the LHS and RHS of the OR are provably
 | 
						|
    // disjoint.
 | 
						|
    APInt LHSKnownZero, LHSKnownOne;
 | 
						|
    APInt RHSKnownZero, RHSKnownOne;
 | 
						|
    DAG.ComputeMaskedBits(N.getOperand(0),
 | 
						|
                          APInt::getAllOnesValue(N.getOperand(0)
 | 
						|
                            .getValueSizeInBits()),
 | 
						|
                          LHSKnownZero, LHSKnownOne);
 | 
						|
    
 | 
						|
    if (LHSKnownZero.getBoolValue()) {
 | 
						|
      DAG.ComputeMaskedBits(N.getOperand(1),
 | 
						|
                            APInt::getAllOnesValue(N.getOperand(1)
 | 
						|
                              .getValueSizeInBits()),
 | 
						|
                            RHSKnownZero, RHSKnownOne);
 | 
						|
      // If all of the bits are known zero on the LHS or RHS, the add won't
 | 
						|
      // carry.
 | 
						|
      if (~(LHSKnownZero | RHSKnownZero) == 0) {
 | 
						|
        Base = N.getOperand(0);
 | 
						|
        Index = N.getOperand(1);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if the address N can be represented by a base register plus
 | 
						|
/// a signed 16-bit displacement [r+imm], and if it is not better
 | 
						|
/// represented as reg+reg.
 | 
						|
bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
 | 
						|
                                            SDValue &Base, SelectionDAG &DAG){
 | 
						|
  // If this can be more profitably realized as r+r, fail.
 | 
						|
  if (SelectAddressRegReg(N, Disp, Base, DAG))
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  if (N.getOpcode() == ISD::ADD) {
 | 
						|
    short imm = 0;
 | 
						|
    if (isIntS16Immediate(N.getOperand(1), imm)) {
 | 
						|
      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
 | 
						|
      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
 | 
						|
        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
 | 
						|
      } else {
 | 
						|
        Base = N.getOperand(0);
 | 
						|
      }
 | 
						|
      return true; // [r+i]
 | 
						|
    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
 | 
						|
      // Match LOAD (ADD (X, Lo(G))).
 | 
						|
      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
 | 
						|
             && "Cannot handle constant offsets yet!");
 | 
						|
      Disp = N.getOperand(1).getOperand(0);  // The global address.
 | 
						|
      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
 | 
						|
             Disp.getOpcode() == ISD::TargetConstantPool ||
 | 
						|
             Disp.getOpcode() == ISD::TargetJumpTable);
 | 
						|
      Base = N.getOperand(0);
 | 
						|
      return true;  // [&g+r]
 | 
						|
    }
 | 
						|
  } else if (N.getOpcode() == ISD::OR) {
 | 
						|
    short imm = 0;
 | 
						|
    if (isIntS16Immediate(N.getOperand(1), imm)) {
 | 
						|
      // If this is an or of disjoint bitfields, we can codegen this as an add
 | 
						|
      // (for better address arithmetic) if the LHS and RHS of the OR are
 | 
						|
      // provably disjoint.
 | 
						|
      APInt LHSKnownZero, LHSKnownOne;
 | 
						|
      DAG.ComputeMaskedBits(N.getOperand(0),
 | 
						|
                            APInt::getAllOnesValue(N.getOperand(0)
 | 
						|
                                                   .getValueSizeInBits()),
 | 
						|
                            LHSKnownZero, LHSKnownOne);
 | 
						|
 | 
						|
      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
 | 
						|
        // If all of the bits are known zero on the LHS or RHS, the add won't
 | 
						|
        // carry.
 | 
						|
        Base = N.getOperand(0);
 | 
						|
        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
 | 
						|
    // Loading from a constant address.
 | 
						|
    
 | 
						|
    // If this address fits entirely in a 16-bit sext immediate field, codegen
 | 
						|
    // this as "d, 0"
 | 
						|
    short Imm;
 | 
						|
    if (isIntS16Immediate(CN, Imm)) {
 | 
						|
      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
 | 
						|
      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Handle 32-bit sext immediates with LIS + addr mode.
 | 
						|
    if (CN->getValueType(0) == MVT::i32 ||
 | 
						|
        (int64_t)CN->getValue() == (int)CN->getValue()) {
 | 
						|
      int Addr = (int)CN->getValue();
 | 
						|
      
 | 
						|
      // Otherwise, break this down into an LIS + disp.
 | 
						|
      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
 | 
						|
      
 | 
						|
      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
 | 
						|
      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
 | 
						|
      Base = SDValue(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  Disp = DAG.getTargetConstant(0, getPointerTy());
 | 
						|
  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
 | 
						|
    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
 | 
						|
  else
 | 
						|
    Base = N;
 | 
						|
  return true;      // [r+0]
 | 
						|
}
 | 
						|
 | 
						|
/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
 | 
						|
/// represented as an indexed [r+r] operation.
 | 
						|
bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
 | 
						|
                                                SDValue &Index,
 | 
						|
                                                SelectionDAG &DAG) {
 | 
						|
  // Check to see if we can easily represent this as an [r+r] address.  This
 | 
						|
  // will fail if it thinks that the address is more profitably represented as
 | 
						|
  // reg+imm, e.g. where imm = 0.
 | 
						|
  if (SelectAddressRegReg(N, Base, Index, DAG))
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  // If the operand is an addition, always emit this as [r+r], since this is
 | 
						|
  // better (for code size, and execution, as the memop does the add for free)
 | 
						|
  // than emitting an explicit add.
 | 
						|
  if (N.getOpcode() == ISD::ADD) {
 | 
						|
    Base = N.getOperand(0);
 | 
						|
    Index = N.getOperand(1);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Otherwise, do it the hard way, using R0 as the base register.
 | 
						|
  Base = DAG.getRegister(PPC::R0, N.getValueType());
 | 
						|
  Index = N;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// SelectAddressRegImmShift - Returns true if the address N can be
 | 
						|
/// represented by a base register plus a signed 14-bit displacement
 | 
						|
/// [r+imm*4].  Suitable for use by STD and friends.
 | 
						|
bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
 | 
						|
                                                 SDValue &Base,
 | 
						|
                                                 SelectionDAG &DAG) {
 | 
						|
  // If this can be more profitably realized as r+r, fail.
 | 
						|
  if (SelectAddressRegReg(N, Disp, Base, DAG))
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  if (N.getOpcode() == ISD::ADD) {
 | 
						|
    short imm = 0;
 | 
						|
    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
 | 
						|
      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
 | 
						|
      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
 | 
						|
        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
 | 
						|
      } else {
 | 
						|
        Base = N.getOperand(0);
 | 
						|
      }
 | 
						|
      return true; // [r+i]
 | 
						|
    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
 | 
						|
      // Match LOAD (ADD (X, Lo(G))).
 | 
						|
      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
 | 
						|
             && "Cannot handle constant offsets yet!");
 | 
						|
      Disp = N.getOperand(1).getOperand(0);  // The global address.
 | 
						|
      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
 | 
						|
             Disp.getOpcode() == ISD::TargetConstantPool ||
 | 
						|
             Disp.getOpcode() == ISD::TargetJumpTable);
 | 
						|
      Base = N.getOperand(0);
 | 
						|
      return true;  // [&g+r]
 | 
						|
    }
 | 
						|
  } else if (N.getOpcode() == ISD::OR) {
 | 
						|
    short imm = 0;
 | 
						|
    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
 | 
						|
      // If this is an or of disjoint bitfields, we can codegen this as an add
 | 
						|
      // (for better address arithmetic) if the LHS and RHS of the OR are
 | 
						|
      // provably disjoint.
 | 
						|
      APInt LHSKnownZero, LHSKnownOne;
 | 
						|
      DAG.ComputeMaskedBits(N.getOperand(0),
 | 
						|
                            APInt::getAllOnesValue(N.getOperand(0)
 | 
						|
                                                   .getValueSizeInBits()),
 | 
						|
                            LHSKnownZero, LHSKnownOne);
 | 
						|
      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
 | 
						|
        // If all of the bits are known zero on the LHS or RHS, the add won't
 | 
						|
        // carry.
 | 
						|
        Base = N.getOperand(0);
 | 
						|
        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
 | 
						|
    // Loading from a constant address.  Verify low two bits are clear.
 | 
						|
    if ((CN->getValue() & 3) == 0) {
 | 
						|
      // If this address fits entirely in a 14-bit sext immediate field, codegen
 | 
						|
      // this as "d, 0"
 | 
						|
      short Imm;
 | 
						|
      if (isIntS16Immediate(CN, Imm)) {
 | 
						|
        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
 | 
						|
        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    
 | 
						|
      // Fold the low-part of 32-bit absolute addresses into addr mode.
 | 
						|
      if (CN->getValueType(0) == MVT::i32 ||
 | 
						|
          (int64_t)CN->getValue() == (int)CN->getValue()) {
 | 
						|
        int Addr = (int)CN->getValue();
 | 
						|
      
 | 
						|
        // Otherwise, break this down into an LIS + disp.
 | 
						|
        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
 | 
						|
        
 | 
						|
        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
 | 
						|
        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
 | 
						|
        Base = SDValue(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  Disp = DAG.getTargetConstant(0, getPointerTy());
 | 
						|
  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
 | 
						|
    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
 | 
						|
  else
 | 
						|
    Base = N;
 | 
						|
  return true;      // [r+0]
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// getPreIndexedAddressParts - returns true by value, base pointer and
 | 
						|
/// offset pointer and addressing mode by reference if the node's address
 | 
						|
/// can be legally represented as pre-indexed load / store address.
 | 
						|
bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
 | 
						|
                                                  SDValue &Offset,
 | 
						|
                                                  ISD::MemIndexedMode &AM,
 | 
						|
                                                  SelectionDAG &DAG) {
 | 
						|
  // Disabled by default for now.
 | 
						|
  if (!EnablePPCPreinc) return false;
 | 
						|
  
 | 
						|
  SDValue Ptr;
 | 
						|
  MVT VT;
 | 
						|
  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
 | 
						|
    Ptr = LD->getBasePtr();
 | 
						|
    VT = LD->getMemoryVT();
 | 
						|
    
 | 
						|
  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
 | 
						|
    ST = ST;
 | 
						|
    Ptr = ST->getBasePtr();
 | 
						|
    VT  = ST->getMemoryVT();
 | 
						|
  } else
 | 
						|
    return false;
 | 
						|
 | 
						|
  // PowerPC doesn't have preinc load/store instructions for vectors.
 | 
						|
  if (VT.isVector())
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // TODO: Check reg+reg first.
 | 
						|
  
 | 
						|
  // LDU/STU use reg+imm*4, others use reg+imm.
 | 
						|
  if (VT != MVT::i64) {
 | 
						|
    // reg + imm
 | 
						|
    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
 | 
						|
      return false;
 | 
						|
  } else {
 | 
						|
    // reg + imm * 4.
 | 
						|
    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
 | 
						|
    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
 | 
						|
    // sext i32 to i64 when addr mode is r+i.
 | 
						|
    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
 | 
						|
        LD->getExtensionType() == ISD::SEXTLOAD &&
 | 
						|
        isa<ConstantSDNode>(Offset))
 | 
						|
      return false;
 | 
						|
  }    
 | 
						|
  
 | 
						|
  AM = ISD::PRE_INC;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  LowerOperation implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 
 | 
						|
                                             SelectionDAG &DAG) {
 | 
						|
  MVT PtrVT = Op.getValueType();
 | 
						|
  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
 | 
						|
  Constant *C = CP->getConstVal();
 | 
						|
  SDValue CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
 | 
						|
  SDValue Zero = DAG.getConstant(0, PtrVT);
 | 
						|
 | 
						|
  const TargetMachine &TM = DAG.getTarget();
 | 
						|
  
 | 
						|
  SDValue Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
 | 
						|
  SDValue Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
 | 
						|
 | 
						|
  // If this is a non-darwin platform, we don't support non-static relo models
 | 
						|
  // yet.
 | 
						|
  if (TM.getRelocationModel() == Reloc::Static ||
 | 
						|
      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
 | 
						|
    // Generate non-pic code that has direct accesses to the constant pool.
 | 
						|
    // The address of the global is just (hi(&g)+lo(&g)).
 | 
						|
    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (TM.getRelocationModel() == Reloc::PIC_) {
 | 
						|
    // With PIC, the first instruction is actually "GR+hi(&G)".
 | 
						|
    Hi = DAG.getNode(ISD::ADD, PtrVT,
 | 
						|
                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
 | 
						|
  }
 | 
						|
  
 | 
						|
  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
 | 
						|
  return Lo;
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  MVT PtrVT = Op.getValueType();
 | 
						|
  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
 | 
						|
  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
 | 
						|
  SDValue Zero = DAG.getConstant(0, PtrVT);
 | 
						|
  
 | 
						|
  const TargetMachine &TM = DAG.getTarget();
 | 
						|
 | 
						|
  SDValue Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
 | 
						|
  SDValue Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
 | 
						|
 | 
						|
  // If this is a non-darwin platform, we don't support non-static relo models
 | 
						|
  // yet.
 | 
						|
  if (TM.getRelocationModel() == Reloc::Static ||
 | 
						|
      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
 | 
						|
    // Generate non-pic code that has direct accesses to the constant pool.
 | 
						|
    // The address of the global is just (hi(&g)+lo(&g)).
 | 
						|
    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (TM.getRelocationModel() == Reloc::PIC_) {
 | 
						|
    // With PIC, the first instruction is actually "GR+hi(&G)".
 | 
						|
    Hi = DAG.getNode(ISD::ADD, PtrVT,
 | 
						|
                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
 | 
						|
  }
 | 
						|
  
 | 
						|
  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
 | 
						|
  return Lo;
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 
 | 
						|
                                                   SelectionDAG &DAG) {
 | 
						|
  assert(0 && "TLS not implemented for PPC.");
 | 
						|
  return SDValue(); // Not reached
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 
 | 
						|
                                                SelectionDAG &DAG) {
 | 
						|
  MVT PtrVT = Op.getValueType();
 | 
						|
  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
 | 
						|
  GlobalValue *GV = GSDN->getGlobal();
 | 
						|
  SDValue GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
 | 
						|
  // If it's a debug information descriptor, don't mess with it.
 | 
						|
  if (DAG.isVerifiedDebugInfoDesc(Op))
 | 
						|
    return GA;
 | 
						|
  SDValue Zero = DAG.getConstant(0, PtrVT);
 | 
						|
  
 | 
						|
  const TargetMachine &TM = DAG.getTarget();
 | 
						|
 | 
						|
  SDValue Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
 | 
						|
  SDValue Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
 | 
						|
 | 
						|
  // If this is a non-darwin platform, we don't support non-static relo models
 | 
						|
  // yet.
 | 
						|
  if (TM.getRelocationModel() == Reloc::Static ||
 | 
						|
      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
 | 
						|
    // Generate non-pic code that has direct accesses to globals.
 | 
						|
    // The address of the global is just (hi(&g)+lo(&g)).
 | 
						|
    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (TM.getRelocationModel() == Reloc::PIC_) {
 | 
						|
    // With PIC, the first instruction is actually "GR+hi(&G)".
 | 
						|
    Hi = DAG.getNode(ISD::ADD, PtrVT,
 | 
						|
                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
 | 
						|
  }
 | 
						|
  
 | 
						|
  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
 | 
						|
  
 | 
						|
  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
 | 
						|
    return Lo;
 | 
						|
  
 | 
						|
  // If the global is weak or external, we have to go through the lazy
 | 
						|
  // resolution stub.
 | 
						|
  return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
 | 
						|
  
 | 
						|
  // If we're comparing for equality to zero, expose the fact that this is
 | 
						|
  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
 | 
						|
  // fold the new nodes.
 | 
						|
  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | 
						|
    if (C->isNullValue() && CC == ISD::SETEQ) {
 | 
						|
      MVT VT = Op.getOperand(0).getValueType();
 | 
						|
      SDValue Zext = Op.getOperand(0);
 | 
						|
      if (VT.bitsLT(MVT::i32)) {
 | 
						|
        VT = MVT::i32;
 | 
						|
        Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
 | 
						|
      } 
 | 
						|
      unsigned Log2b = Log2_32(VT.getSizeInBits());
 | 
						|
      SDValue Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
 | 
						|
      SDValue Scc = DAG.getNode(ISD::SRL, VT, Clz,
 | 
						|
                                  DAG.getConstant(Log2b, MVT::i32));
 | 
						|
      return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
 | 
						|
    }
 | 
						|
    // Leave comparisons against 0 and -1 alone for now, since they're usually 
 | 
						|
    // optimized.  FIXME: revisit this when we can custom lower all setcc
 | 
						|
    // optimizations.
 | 
						|
    if (C->isAllOnesValue() || C->isNullValue())
 | 
						|
      return SDValue();
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If we have an integer seteq/setne, turn it into a compare against zero
 | 
						|
  // by xor'ing the rhs with the lhs, which is faster than setting a
 | 
						|
  // condition register, reading it back out, and masking the correct bit.  The
 | 
						|
  // normal approach here uses sub to do this instead of xor.  Using xor exposes
 | 
						|
  // the result to other bit-twiddling opportunities.
 | 
						|
  MVT LHSVT = Op.getOperand(0).getValueType();
 | 
						|
  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
 | 
						|
    MVT VT = Op.getValueType();
 | 
						|
    SDValue Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0), 
 | 
						|
                                Op.getOperand(1));
 | 
						|
    return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
 | 
						|
                              int VarArgsFrameIndex,
 | 
						|
                              int VarArgsStackOffset,
 | 
						|
                              unsigned VarArgsNumGPR,
 | 
						|
                              unsigned VarArgsNumFPR,
 | 
						|
                              const PPCSubtarget &Subtarget) {
 | 
						|
  
 | 
						|
  assert(0 && "VAARG in ELF32 ABI not implemented yet!");
 | 
						|
  return SDValue(); // Not reached
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
 | 
						|
                              int VarArgsFrameIndex,
 | 
						|
                              int VarArgsStackOffset,
 | 
						|
                              unsigned VarArgsNumGPR,
 | 
						|
                              unsigned VarArgsNumFPR,
 | 
						|
                              const PPCSubtarget &Subtarget) {
 | 
						|
 | 
						|
  if (Subtarget.isMachoABI()) {
 | 
						|
    // vastart just stores the address of the VarArgsFrameIndex slot into the
 | 
						|
    // memory location argument.
 | 
						|
    MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | 
						|
    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
 | 
						|
    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
 | 
						|
    return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  // For ELF 32 ABI we follow the layout of the va_list struct.
 | 
						|
  // We suppose the given va_list is already allocated.
 | 
						|
  //
 | 
						|
  // typedef struct {
 | 
						|
  //  char gpr;     /* index into the array of 8 GPRs
 | 
						|
  //                 * stored in the register save area
 | 
						|
  //                 * gpr=0 corresponds to r3,
 | 
						|
  //                 * gpr=1 to r4, etc.
 | 
						|
  //                 */
 | 
						|
  //  char fpr;     /* index into the array of 8 FPRs
 | 
						|
  //                 * stored in the register save area
 | 
						|
  //                 * fpr=0 corresponds to f1,
 | 
						|
  //                 * fpr=1 to f2, etc.
 | 
						|
  //                 */
 | 
						|
  //  char *overflow_arg_area;
 | 
						|
  //                /* location on stack that holds
 | 
						|
  //                 * the next overflow argument
 | 
						|
  //                 */
 | 
						|
  //  char *reg_save_area;
 | 
						|
  //               /* where r3:r10 and f1:f8 (if saved)
 | 
						|
  //                * are stored
 | 
						|
  //                */
 | 
						|
  // } va_list[1];
 | 
						|
 | 
						|
 | 
						|
  SDValue ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
 | 
						|
  SDValue ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
 | 
						|
  
 | 
						|
 | 
						|
  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | 
						|
  
 | 
						|
  SDValue StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
 | 
						|
  SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
 | 
						|
  
 | 
						|
  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
 | 
						|
  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
 | 
						|
 | 
						|
  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
 | 
						|
  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
 | 
						|
 | 
						|
  uint64_t FPROffset = 1;
 | 
						|
  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
 | 
						|
  
 | 
						|
  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
 | 
						|
  
 | 
						|
  // Store first byte : number of int regs
 | 
						|
  SDValue firstStore = DAG.getStore(Op.getOperand(0), ArgGPR,
 | 
						|
                                      Op.getOperand(1), SV, 0);
 | 
						|
  uint64_t nextOffset = FPROffset;
 | 
						|
  SDValue nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1),
 | 
						|
                                  ConstFPROffset);
 | 
						|
  
 | 
						|
  // Store second byte : number of float regs
 | 
						|
  SDValue secondStore =
 | 
						|
    DAG.getStore(firstStore, ArgFPR, nextPtr, SV, nextOffset);
 | 
						|
  nextOffset += StackOffset;
 | 
						|
  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset);
 | 
						|
  
 | 
						|
  // Store second word : arguments given on stack
 | 
						|
  SDValue thirdStore =
 | 
						|
    DAG.getStore(secondStore, StackOffsetFI, nextPtr, SV, nextOffset);
 | 
						|
  nextOffset += FrameOffset;
 | 
						|
  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset);
 | 
						|
 | 
						|
  // Store third word : arguments given in registers
 | 
						|
  return DAG.getStore(thirdStore, FR, nextPtr, SV, nextOffset);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
#include "PPCGenCallingConv.inc"
 | 
						|
 | 
						|
/// GetFPR - Get the set of FP registers that should be allocated for arguments,
 | 
						|
/// depending on which subtarget is selected.
 | 
						|
static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
 | 
						|
  if (Subtarget.isMachoABI()) {
 | 
						|
    static const unsigned FPR[] = {
 | 
						|
      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
 | 
						|
      PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
 | 
						|
    };
 | 
						|
    return FPR;
 | 
						|
  }
 | 
						|
  
 | 
						|
  
 | 
						|
  static const unsigned FPR[] = {
 | 
						|
    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
 | 
						|
    PPC::F8
 | 
						|
  };
 | 
						|
  return FPR;
 | 
						|
}
 | 
						|
 | 
						|
/// CalculateStackSlotSize - Calculates the size reserved for this argument on
 | 
						|
/// the stack.
 | 
						|
static unsigned CalculateStackSlotSize(SDValue Arg, SDValue Flag,
 | 
						|
                                       bool isVarArg, unsigned PtrByteSize) {
 | 
						|
  MVT ArgVT = Arg.getValueType();
 | 
						|
  ISD::ArgFlagsTy Flags = cast<ARG_FLAGSSDNode>(Flag)->getArgFlags();
 | 
						|
  unsigned ArgSize =ArgVT.getSizeInBits()/8;
 | 
						|
  if (Flags.isByVal())
 | 
						|
    ArgSize = Flags.getByValSize();
 | 
						|
  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
 | 
						|
 | 
						|
  return ArgSize;
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
PPCTargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, 
 | 
						|
                                         SelectionDAG &DAG,
 | 
						|
                                         int &VarArgsFrameIndex,
 | 
						|
                                         int &VarArgsStackOffset,
 | 
						|
                                         unsigned &VarArgsNumGPR,
 | 
						|
                                         unsigned &VarArgsNumFPR,
 | 
						|
                                         const PPCSubtarget &Subtarget) {
 | 
						|
  // TODO: add description of PPC stack frame format, or at least some docs.
 | 
						|
  //
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
  MachineRegisterInfo &RegInfo = MF.getRegInfo();
 | 
						|
  SmallVector<SDValue, 8> ArgValues;
 | 
						|
  SDValue Root = Op.getOperand(0);
 | 
						|
  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
 | 
						|
  
 | 
						|
  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | 
						|
  bool isPPC64 = PtrVT == MVT::i64;
 | 
						|
  bool isMachoABI = Subtarget.isMachoABI();
 | 
						|
  bool isELF32_ABI = Subtarget.isELF32_ABI();
 | 
						|
  // Potential tail calls could cause overwriting of argument stack slots.
 | 
						|
  unsigned CC = MF.getFunction()->getCallingConv();
 | 
						|
  bool isImmutable = !(PerformTailCallOpt && (CC==CallingConv::Fast));
 | 
						|
  unsigned PtrByteSize = isPPC64 ? 8 : 4;
 | 
						|
 | 
						|
  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
 | 
						|
  // Area that is at least reserved in caller of this function.
 | 
						|
  unsigned MinReservedArea = ArgOffset;
 | 
						|
 | 
						|
  static const unsigned GPR_32[] = {           // 32-bit registers.
 | 
						|
    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
 | 
						|
    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
 | 
						|
  };
 | 
						|
  static const unsigned GPR_64[] = {           // 64-bit registers.
 | 
						|
    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
 | 
						|
    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
 | 
						|
  };
 | 
						|
  
 | 
						|
  static const unsigned *FPR = GetFPR(Subtarget);
 | 
						|
  
 | 
						|
  static const unsigned VR[] = {
 | 
						|
    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
 | 
						|
    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
 | 
						|
  };
 | 
						|
 | 
						|
  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
 | 
						|
  const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
 | 
						|
  const unsigned Num_VR_Regs  = array_lengthof( VR);
 | 
						|
 | 
						|
  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
 | 
						|
  
 | 
						|
  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
 | 
						|
  
 | 
						|
  // In 32-bit non-varargs functions, the stack space for vectors is after the
 | 
						|
  // stack space for non-vectors.  We do not use this space unless we have
 | 
						|
  // too many vectors to fit in registers, something that only occurs in
 | 
						|
  // constructed examples:), but we have to walk the arglist to figure 
 | 
						|
  // that out...for the pathological case, compute VecArgOffset as the
 | 
						|
  // start of the vector parameter area.  Computing VecArgOffset is the
 | 
						|
  // entire point of the following loop.
 | 
						|
  // Altivec is not mentioned in the ppc32 Elf Supplement, so I'm not trying
 | 
						|
  // to handle Elf here.
 | 
						|
  unsigned VecArgOffset = ArgOffset;
 | 
						|
  if (!isVarArg && !isPPC64) {
 | 
						|
    for (unsigned ArgNo = 0, e = Op.getNode()->getNumValues()-1; ArgNo != e; 
 | 
						|
         ++ArgNo) {
 | 
						|
      MVT ObjectVT = Op.getValue(ArgNo).getValueType();
 | 
						|
      unsigned ObjSize = ObjectVT.getSizeInBits()/8;
 | 
						|
      ISD::ArgFlagsTy Flags =
 | 
						|
        cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
 | 
						|
 | 
						|
      if (Flags.isByVal()) {
 | 
						|
        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
 | 
						|
        ObjSize = Flags.getByValSize();
 | 
						|
        unsigned ArgSize = 
 | 
						|
                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
 | 
						|
        VecArgOffset += ArgSize;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      switch(ObjectVT.getSimpleVT()) {
 | 
						|
      default: assert(0 && "Unhandled argument type!");
 | 
						|
      case MVT::i32:
 | 
						|
      case MVT::f32:
 | 
						|
        VecArgOffset += isPPC64 ? 8 : 4;
 | 
						|
        break;
 | 
						|
      case MVT::i64:  // PPC64
 | 
						|
      case MVT::f64:
 | 
						|
        VecArgOffset += 8;
 | 
						|
        break;
 | 
						|
      case MVT::v4f32:
 | 
						|
      case MVT::v4i32:
 | 
						|
      case MVT::v8i16:
 | 
						|
      case MVT::v16i8:
 | 
						|
        // Nothing to do, we're only looking at Nonvector args here.
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // We've found where the vector parameter area in memory is.  Skip the
 | 
						|
  // first 12 parameters; these don't use that memory.
 | 
						|
  VecArgOffset = ((VecArgOffset+15)/16)*16;
 | 
						|
  VecArgOffset += 12*16;
 | 
						|
 | 
						|
  // Add DAG nodes to load the arguments or copy them out of registers.  On
 | 
						|
  // entry to a function on PPC, the arguments start after the linkage area,
 | 
						|
  // although the first ones are often in registers.
 | 
						|
  // 
 | 
						|
  // In the ELF 32 ABI, GPRs and stack are double word align: an argument
 | 
						|
  // represented with two words (long long or double) must be copied to an
 | 
						|
  // even GPR_idx value or to an even ArgOffset value.
 | 
						|
 | 
						|
  SmallVector<SDValue, 8> MemOps;
 | 
						|
  unsigned nAltivecParamsAtEnd = 0;
 | 
						|
  for (unsigned ArgNo = 0, e = Op.getNode()->getNumValues() - 1;
 | 
						|
       ArgNo != e; ++ArgNo) {
 | 
						|
    SDValue ArgVal;
 | 
						|
    bool needsLoad = false;
 | 
						|
    MVT ObjectVT = Op.getValue(ArgNo).getValueType();
 | 
						|
    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
 | 
						|
    unsigned ArgSize = ObjSize;
 | 
						|
    ISD::ArgFlagsTy Flags =
 | 
						|
      cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
 | 
						|
    // See if next argument requires stack alignment in ELF
 | 
						|
    bool Align = Flags.isSplit(); 
 | 
						|
 | 
						|
    unsigned CurArgOffset = ArgOffset;
 | 
						|
 | 
						|
    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
 | 
						|
    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
 | 
						|
        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
 | 
						|
      if (isVarArg || isPPC64) {
 | 
						|
        MinReservedArea = ((MinReservedArea+15)/16)*16;
 | 
						|
        MinReservedArea += CalculateStackSlotSize(Op.getValue(ArgNo),
 | 
						|
                                                  Op.getOperand(ArgNo+3),
 | 
						|
                                                  isVarArg,
 | 
						|
                                                  PtrByteSize);
 | 
						|
      } else  nAltivecParamsAtEnd++;
 | 
						|
    } else
 | 
						|
      // Calculate min reserved area.
 | 
						|
      MinReservedArea += CalculateStackSlotSize(Op.getValue(ArgNo),
 | 
						|
                                                Op.getOperand(ArgNo+3),
 | 
						|
                                                isVarArg,
 | 
						|
                                                PtrByteSize);
 | 
						|
 | 
						|
    // FIXME alignment for ELF may not be right
 | 
						|
    // FIXME the codegen can be much improved in some cases.
 | 
						|
    // We do not have to keep everything in memory.
 | 
						|
    if (Flags.isByVal()) {
 | 
						|
      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
 | 
						|
      ObjSize = Flags.getByValSize();
 | 
						|
      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
 | 
						|
      // Double word align in ELF
 | 
						|
      if (Align && isELF32_ABI) GPR_idx += (GPR_idx % 2);
 | 
						|
      // Objects of size 1 and 2 are right justified, everything else is
 | 
						|
      // left justified.  This means the memory address is adjusted forwards.
 | 
						|
      if (ObjSize==1 || ObjSize==2) {
 | 
						|
        CurArgOffset = CurArgOffset + (4 - ObjSize);
 | 
						|
      }
 | 
						|
      // The value of the object is its address.
 | 
						|
      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
 | 
						|
      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | 
						|
      ArgValues.push_back(FIN);
 | 
						|
      if (ObjSize==1 || ObjSize==2) {
 | 
						|
        if (GPR_idx != Num_GPR_Regs) {
 | 
						|
          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
 | 
						|
          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
 | 
						|
          SDValue Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
 | 
						|
          SDValue Store = DAG.getTruncStore(Val.getValue(1), Val, FIN, 
 | 
						|
                               NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16 );
 | 
						|
          MemOps.push_back(Store);
 | 
						|
          ++GPR_idx;
 | 
						|
          if (isMachoABI) ArgOffset += PtrByteSize;
 | 
						|
        } else {
 | 
						|
          ArgOffset += PtrByteSize;
 | 
						|
        }
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
 | 
						|
        // Store whatever pieces of the object are in registers
 | 
						|
        // to memory.  ArgVal will be address of the beginning of
 | 
						|
        // the object.
 | 
						|
        if (GPR_idx != Num_GPR_Regs) {
 | 
						|
          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
 | 
						|
          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
 | 
						|
          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset);
 | 
						|
          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | 
						|
          SDValue Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
 | 
						|
          SDValue Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
 | 
						|
          MemOps.push_back(Store);
 | 
						|
          ++GPR_idx;
 | 
						|
          if (isMachoABI) ArgOffset += PtrByteSize;
 | 
						|
        } else {
 | 
						|
          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (ObjectVT.getSimpleVT()) {
 | 
						|
    default: assert(0 && "Unhandled argument type!");
 | 
						|
    case MVT::i32:
 | 
						|
      if (!isPPC64) {
 | 
						|
        // Double word align in ELF
 | 
						|
        if (Align && isELF32_ABI) GPR_idx += (GPR_idx % 2);
 | 
						|
 | 
						|
        if (GPR_idx != Num_GPR_Regs) {
 | 
						|
          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
 | 
						|
          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
 | 
						|
          ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
 | 
						|
          ++GPR_idx;
 | 
						|
        } else {
 | 
						|
          needsLoad = true;
 | 
						|
          ArgSize = PtrByteSize;
 | 
						|
        }
 | 
						|
        // Stack align in ELF
 | 
						|
        if (needsLoad && Align && isELF32_ABI) 
 | 
						|
          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
 | 
						|
        // All int arguments reserve stack space in Macho ABI.
 | 
						|
        if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      // FALLTHROUGH
 | 
						|
    case MVT::i64:  // PPC64
 | 
						|
      if (GPR_idx != Num_GPR_Regs) {
 | 
						|
        unsigned VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
 | 
						|
        RegInfo.addLiveIn(GPR[GPR_idx], VReg);
 | 
						|
        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
 | 
						|
 | 
						|
        if (ObjectVT == MVT::i32) {
 | 
						|
          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
 | 
						|
          // value to MVT::i64 and then truncate to the correct register size.
 | 
						|
          if (Flags.isSExt())
 | 
						|
            ArgVal = DAG.getNode(ISD::AssertSext, MVT::i64, ArgVal,
 | 
						|
                                 DAG.getValueType(ObjectVT));
 | 
						|
          else if (Flags.isZExt())
 | 
						|
            ArgVal = DAG.getNode(ISD::AssertZext, MVT::i64, ArgVal,
 | 
						|
                                 DAG.getValueType(ObjectVT));
 | 
						|
 | 
						|
          ArgVal = DAG.getNode(ISD::TRUNCATE, MVT::i32, ArgVal);
 | 
						|
        }
 | 
						|
 | 
						|
        ++GPR_idx;
 | 
						|
      } else {
 | 
						|
        needsLoad = true;
 | 
						|
        ArgSize = PtrByteSize;
 | 
						|
      }
 | 
						|
      // All int arguments reserve stack space in Macho ABI.
 | 
						|
      if (isMachoABI || needsLoad) ArgOffset += 8;
 | 
						|
      break;
 | 
						|
      
 | 
						|
    case MVT::f32:
 | 
						|
    case MVT::f64:
 | 
						|
      // Every 4 bytes of argument space consumes one of the GPRs available for
 | 
						|
      // argument passing.
 | 
						|
      if (GPR_idx != Num_GPR_Regs && isMachoABI) {
 | 
						|
        ++GPR_idx;
 | 
						|
        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
 | 
						|
          ++GPR_idx;
 | 
						|
      }
 | 
						|
      if (FPR_idx != Num_FPR_Regs) {
 | 
						|
        unsigned VReg;
 | 
						|
        if (ObjectVT == MVT::f32)
 | 
						|
          VReg = RegInfo.createVirtualRegister(&PPC::F4RCRegClass);
 | 
						|
        else
 | 
						|
          VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
 | 
						|
        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
 | 
						|
        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
 | 
						|
        ++FPR_idx;
 | 
						|
      } else {
 | 
						|
        needsLoad = true;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Stack align in ELF
 | 
						|
      if (needsLoad && Align && isELF32_ABI)
 | 
						|
        ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
 | 
						|
      // All FP arguments reserve stack space in Macho ABI.
 | 
						|
      if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
 | 
						|
      break;
 | 
						|
    case MVT::v4f32:
 | 
						|
    case MVT::v4i32:
 | 
						|
    case MVT::v8i16:
 | 
						|
    case MVT::v16i8:
 | 
						|
      // Note that vector arguments in registers don't reserve stack space,
 | 
						|
      // except in varargs functions.
 | 
						|
      if (VR_idx != Num_VR_Regs) {
 | 
						|
        unsigned VReg = RegInfo.createVirtualRegister(&PPC::VRRCRegClass);
 | 
						|
        RegInfo.addLiveIn(VR[VR_idx], VReg);
 | 
						|
        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
 | 
						|
        if (isVarArg) {
 | 
						|
          while ((ArgOffset % 16) != 0) {
 | 
						|
            ArgOffset += PtrByteSize;
 | 
						|
            if (GPR_idx != Num_GPR_Regs)
 | 
						|
              GPR_idx++;
 | 
						|
          }
 | 
						|
          ArgOffset += 16;
 | 
						|
          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs);
 | 
						|
        }
 | 
						|
        ++VR_idx;
 | 
						|
      } else {
 | 
						|
        if (!isVarArg && !isPPC64) {
 | 
						|
          // Vectors go after all the nonvectors.
 | 
						|
          CurArgOffset = VecArgOffset;
 | 
						|
          VecArgOffset += 16;
 | 
						|
        } else {
 | 
						|
          // Vectors are aligned.
 | 
						|
          ArgOffset = ((ArgOffset+15)/16)*16;
 | 
						|
          CurArgOffset = ArgOffset;
 | 
						|
          ArgOffset += 16;
 | 
						|
        }
 | 
						|
        needsLoad = true;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // We need to load the argument to a virtual register if we determined above
 | 
						|
    // that we ran out of physical registers of the appropriate type.
 | 
						|
    if (needsLoad) {
 | 
						|
      int FI = MFI->CreateFixedObject(ObjSize,
 | 
						|
                                      CurArgOffset + (ArgSize - ObjSize),
 | 
						|
                                      isImmutable);
 | 
						|
      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | 
						|
      ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
 | 
						|
    }
 | 
						|
    
 | 
						|
    ArgValues.push_back(ArgVal);
 | 
						|
  }
 | 
						|
 | 
						|
  // Set the size that is at least reserved in caller of this function.  Tail
 | 
						|
  // call optimized function's reserved stack space needs to be aligned so that
 | 
						|
  // taking the difference between two stack areas will result in an aligned
 | 
						|
  // stack.
 | 
						|
  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
 | 
						|
  // Add the Altivec parameters at the end, if needed.
 | 
						|
  if (nAltivecParamsAtEnd) {
 | 
						|
    MinReservedArea = ((MinReservedArea+15)/16)*16;
 | 
						|
    MinReservedArea += 16*nAltivecParamsAtEnd;
 | 
						|
  }
 | 
						|
  MinReservedArea =
 | 
						|
    std::max(MinReservedArea,
 | 
						|
             PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
 | 
						|
  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
 | 
						|
    getStackAlignment();
 | 
						|
  unsigned AlignMask = TargetAlign-1;
 | 
						|
  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
 | 
						|
  FI->setMinReservedArea(MinReservedArea);
 | 
						|
 | 
						|
  // If the function takes variable number of arguments, make a frame index for
 | 
						|
  // the start of the first vararg value... for expansion of llvm.va_start.
 | 
						|
  if (isVarArg) {
 | 
						|
    
 | 
						|
    int depth;
 | 
						|
    if (isELF32_ABI) {
 | 
						|
      VarArgsNumGPR = GPR_idx;
 | 
						|
      VarArgsNumFPR = FPR_idx;
 | 
						|
   
 | 
						|
      // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
 | 
						|
      // pointer.
 | 
						|
      depth = -(Num_GPR_Regs * PtrVT.getSizeInBits()/8 +
 | 
						|
                Num_FPR_Regs * MVT(MVT::f64).getSizeInBits()/8 +
 | 
						|
                PtrVT.getSizeInBits()/8);
 | 
						|
      
 | 
						|
      VarArgsStackOffset = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
 | 
						|
                                                  ArgOffset);
 | 
						|
 | 
						|
    }
 | 
						|
    else
 | 
						|
      depth = ArgOffset;
 | 
						|
    
 | 
						|
    VarArgsFrameIndex = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
 | 
						|
                                               depth);
 | 
						|
    SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
 | 
						|
    
 | 
						|
    // In ELF 32 ABI, the fixed integer arguments of a variadic function are
 | 
						|
    // stored to the VarArgsFrameIndex on the stack.
 | 
						|
    if (isELF32_ABI) {
 | 
						|
      for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
 | 
						|
        SDValue Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
 | 
						|
        SDValue Store = DAG.getStore(Root, Val, FIN, NULL, 0);
 | 
						|
        MemOps.push_back(Store);
 | 
						|
        // Increment the address by four for the next argument to store
 | 
						|
        SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
 | 
						|
        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If this function is vararg, store any remaining integer argument regs
 | 
						|
    // to their spots on the stack so that they may be loaded by deferencing the
 | 
						|
    // result of va_next.
 | 
						|
    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
 | 
						|
      unsigned VReg;
 | 
						|
      if (isPPC64)
 | 
						|
        VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
 | 
						|
      else
 | 
						|
        VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
 | 
						|
 | 
						|
      RegInfo.addLiveIn(GPR[GPR_idx], VReg);
 | 
						|
      SDValue Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
 | 
						|
      SDValue Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
 | 
						|
      MemOps.push_back(Store);
 | 
						|
      // Increment the address by four for the next argument to store
 | 
						|
      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
 | 
						|
      FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
 | 
						|
    }
 | 
						|
 | 
						|
    // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
 | 
						|
    // on the stack.
 | 
						|
    if (isELF32_ABI) {
 | 
						|
      for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
 | 
						|
        SDValue Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
 | 
						|
        SDValue Store = DAG.getStore(Root, Val, FIN, NULL, 0);
 | 
						|
        MemOps.push_back(Store);
 | 
						|
        // Increment the address by eight for the next argument to store
 | 
						|
        SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
 | 
						|
                                           PtrVT);
 | 
						|
        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
 | 
						|
      }
 | 
						|
 | 
						|
      for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
 | 
						|
        unsigned VReg;
 | 
						|
        VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
 | 
						|
 | 
						|
        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
 | 
						|
        SDValue Val = DAG.getCopyFromReg(Root, VReg, MVT::f64);
 | 
						|
        SDValue Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
 | 
						|
        MemOps.push_back(Store);
 | 
						|
        // Increment the address by eight for the next argument to store
 | 
						|
        SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
 | 
						|
                                           PtrVT);
 | 
						|
        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (!MemOps.empty())
 | 
						|
    Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
 | 
						|
 | 
						|
  ArgValues.push_back(Root);
 | 
						|
 
 | 
						|
  // Return the new list of results.
 | 
						|
  return DAG.getMergeValues(Op.getNode()->getVTList(), &ArgValues[0],
 | 
						|
                            ArgValues.size());
 | 
						|
}
 | 
						|
 | 
						|
/// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
 | 
						|
/// linkage area.
 | 
						|
static unsigned
 | 
						|
CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
 | 
						|
                                     bool isPPC64,
 | 
						|
                                     bool isMachoABI,
 | 
						|
                                     bool isVarArg,
 | 
						|
                                     unsigned CC,
 | 
						|
                                     SDValue Call,
 | 
						|
                                     unsigned &nAltivecParamsAtEnd) {
 | 
						|
  // Count how many bytes are to be pushed on the stack, including the linkage
 | 
						|
  // area, and parameter passing area.  We start with 24/48 bytes, which is
 | 
						|
  // prereserved space for [SP][CR][LR][3 x unused].
 | 
						|
  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
 | 
						|
  unsigned NumOps = (Call.getNumOperands() - 5) / 2;
 | 
						|
  unsigned PtrByteSize = isPPC64 ? 8 : 4;
 | 
						|
 | 
						|
  // Add up all the space actually used.
 | 
						|
  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
 | 
						|
  // they all go in registers, but we must reserve stack space for them for
 | 
						|
  // possible use by the caller.  In varargs or 64-bit calls, parameters are
 | 
						|
  // assigned stack space in order, with padding so Altivec parameters are
 | 
						|
  // 16-byte aligned.
 | 
						|
  nAltivecParamsAtEnd = 0;
 | 
						|
  for (unsigned i = 0; i != NumOps; ++i) {
 | 
						|
    SDValue Arg = Call.getOperand(5+2*i);
 | 
						|
    SDValue Flag = Call.getOperand(5+2*i+1);
 | 
						|
    MVT ArgVT = Arg.getValueType();
 | 
						|
    // Varargs Altivec parameters are padded to a 16 byte boundary.
 | 
						|
    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
 | 
						|
        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
 | 
						|
      if (!isVarArg && !isPPC64) {
 | 
						|
        // Non-varargs Altivec parameters go after all the non-Altivec
 | 
						|
        // parameters; handle those later so we know how much padding we need.
 | 
						|
        nAltivecParamsAtEnd++;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
 | 
						|
      NumBytes = ((NumBytes+15)/16)*16;
 | 
						|
    }
 | 
						|
    NumBytes += CalculateStackSlotSize(Arg, Flag, isVarArg, PtrByteSize);
 | 
						|
  }
 | 
						|
 | 
						|
   // Allow for Altivec parameters at the end, if needed.
 | 
						|
  if (nAltivecParamsAtEnd) {
 | 
						|
    NumBytes = ((NumBytes+15)/16)*16;
 | 
						|
    NumBytes += 16*nAltivecParamsAtEnd;
 | 
						|
  }
 | 
						|
 | 
						|
  // The prolog code of the callee may store up to 8 GPR argument registers to
 | 
						|
  // the stack, allowing va_start to index over them in memory if its varargs.
 | 
						|
  // Because we cannot tell if this is needed on the caller side, we have to
 | 
						|
  // conservatively assume that it is needed.  As such, make sure we have at
 | 
						|
  // least enough stack space for the caller to store the 8 GPRs.
 | 
						|
  NumBytes = std::max(NumBytes,
 | 
						|
                      PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
 | 
						|
 | 
						|
  // Tail call needs the stack to be aligned.
 | 
						|
  if (CC==CallingConv::Fast && PerformTailCallOpt) {
 | 
						|
    unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
 | 
						|
      getStackAlignment();
 | 
						|
    unsigned AlignMask = TargetAlign-1;
 | 
						|
    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
 | 
						|
  }
 | 
						|
 | 
						|
  return NumBytes;
 | 
						|
}
 | 
						|
 | 
						|
/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
 | 
						|
/// adjusted to accomodate the arguments for the tailcall.
 | 
						|
static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool IsTailCall,
 | 
						|
                                   unsigned ParamSize) {
 | 
						|
 | 
						|
  if (!IsTailCall) return 0;
 | 
						|
 | 
						|
  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
 | 
						|
  unsigned CallerMinReservedArea = FI->getMinReservedArea();
 | 
						|
  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
 | 
						|
  // Remember only if the new adjustement is bigger.
 | 
						|
  if (SPDiff < FI->getTailCallSPDelta())
 | 
						|
    FI->setTailCallSPDelta(SPDiff);
 | 
						|
 | 
						|
  return SPDiff;
 | 
						|
}
 | 
						|
 | 
						|
/// IsEligibleForTailCallElimination - Check to see whether the next instruction
 | 
						|
/// following the call is a return. A function is eligible if caller/callee
 | 
						|
/// calling conventions match, currently only fastcc supports tail calls, and
 | 
						|
/// the function CALL is immediatly followed by a RET.
 | 
						|
bool
 | 
						|
PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Call,
 | 
						|
                                                     SDValue Ret,
 | 
						|
                                                     SelectionDAG& DAG) const {
 | 
						|
  // Variable argument functions are not supported.
 | 
						|
  if (!PerformTailCallOpt ||
 | 
						|
      cast<ConstantSDNode>(Call.getOperand(2))->getValue() != 0) return false;
 | 
						|
 | 
						|
  if (CheckTailCallReturnConstraints(Call, Ret)) {
 | 
						|
    MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
    unsigned CallerCC = MF.getFunction()->getCallingConv();
 | 
						|
    unsigned CalleeCC = cast<ConstantSDNode>(Call.getOperand(1))->getValue();
 | 
						|
    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
 | 
						|
      // Functions containing by val parameters are not supported.
 | 
						|
      for (unsigned i = 0; i != ((Call.getNumOperands()-5)/2); i++) {
 | 
						|
         ISD::ArgFlagsTy Flags = cast<ARG_FLAGSSDNode>(Call.getOperand(5+2*i+1))
 | 
						|
           ->getArgFlags();
 | 
						|
         if (Flags.isByVal()) return false;
 | 
						|
      }
 | 
						|
 | 
						|
      SDValue Callee = Call.getOperand(4);
 | 
						|
      // Non PIC/GOT  tail calls are supported.
 | 
						|
      if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
 | 
						|
        return true;
 | 
						|
 | 
						|
      // At the moment we can only do local tail calls (in same module, hidden
 | 
						|
      // or protected) if we are generating PIC.
 | 
						|
      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
 | 
						|
        return G->getGlobal()->hasHiddenVisibility()
 | 
						|
            || G->getGlobal()->hasProtectedVisibility();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isCallCompatibleAddress - Return the immediate to use if the specified
 | 
						|
/// 32-bit value is representable in the immediate field of a BxA instruction.
 | 
						|
static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
 | 
						|
  if (!C) return 0;
 | 
						|
  
 | 
						|
  int Addr = C->getValue();
 | 
						|
  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
 | 
						|
      (Addr << 6 >> 6) != Addr)
 | 
						|
    return 0;  // Top 6 bits have to be sext of immediate.
 | 
						|
  
 | 
						|
  return DAG.getConstant((int)C->getValue() >> 2,
 | 
						|
                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
struct TailCallArgumentInfo {
 | 
						|
  SDValue Arg;
 | 
						|
  SDValue FrameIdxOp;
 | 
						|
  int       FrameIdx;
 | 
						|
 | 
						|
  TailCallArgumentInfo() : FrameIdx(0) {}
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
 | 
						|
static void
 | 
						|
StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
 | 
						|
                                           SDValue Chain,
 | 
						|
                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
 | 
						|
                   SmallVector<SDValue, 8> &MemOpChains) {
 | 
						|
  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
 | 
						|
    SDValue Arg = TailCallArgs[i].Arg;
 | 
						|
    SDValue FIN = TailCallArgs[i].FrameIdxOp;
 | 
						|
    int FI = TailCallArgs[i].FrameIdx;
 | 
						|
    // Store relative to framepointer.
 | 
						|
    MemOpChains.push_back(DAG.getStore(Chain, Arg, FIN,
 | 
						|
                                       PseudoSourceValue::getFixedStack(FI),
 | 
						|
                                       0));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
 | 
						|
/// the appropriate stack slot for the tail call optimized function call.
 | 
						|
static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
 | 
						|
                                               MachineFunction &MF,
 | 
						|
                                               SDValue Chain,
 | 
						|
                                               SDValue OldRetAddr,
 | 
						|
                                               SDValue OldFP,
 | 
						|
                                               int SPDiff,
 | 
						|
                                               bool isPPC64,
 | 
						|
                                               bool isMachoABI) {
 | 
						|
  if (SPDiff) {
 | 
						|
    // Calculate the new stack slot for the return address.
 | 
						|
    int SlotSize = isPPC64 ? 8 : 4;
 | 
						|
    int NewRetAddrLoc = SPDiff + PPCFrameInfo::getReturnSaveOffset(isPPC64,
 | 
						|
                                                                   isMachoABI);
 | 
						|
    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
 | 
						|
                                                          NewRetAddrLoc);
 | 
						|
    int NewFPLoc = SPDiff + PPCFrameInfo::getFramePointerSaveOffset(isPPC64,
 | 
						|
                                                                    isMachoABI);
 | 
						|
    int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc);
 | 
						|
 | 
						|
    MVT VT = isPPC64 ? MVT::i64 : MVT::i32;
 | 
						|
    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
 | 
						|
    Chain = DAG.getStore(Chain, OldRetAddr, NewRetAddrFrIdx,
 | 
						|
                         PseudoSourceValue::getFixedStack(NewRetAddr), 0);
 | 
						|
    SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
 | 
						|
    Chain = DAG.getStore(Chain, OldFP, NewFramePtrIdx,
 | 
						|
                         PseudoSourceValue::getFixedStack(NewFPIdx), 0);
 | 
						|
  }
 | 
						|
  return Chain;
 | 
						|
}
 | 
						|
 | 
						|
/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
 | 
						|
/// the position of the argument.
 | 
						|
static void
 | 
						|
CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
 | 
						|
                         SDValue Arg, int SPDiff, unsigned ArgOffset,
 | 
						|
                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
 | 
						|
  int Offset = ArgOffset + SPDiff;
 | 
						|
  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
 | 
						|
  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
 | 
						|
  MVT VT = isPPC64 ? MVT::i64 : MVT::i32;
 | 
						|
  SDValue FIN = DAG.getFrameIndex(FI, VT);
 | 
						|
  TailCallArgumentInfo Info;
 | 
						|
  Info.Arg = Arg;
 | 
						|
  Info.FrameIdxOp = FIN;
 | 
						|
  Info.FrameIdx = FI;
 | 
						|
  TailCallArguments.push_back(Info);
 | 
						|
}
 | 
						|
 | 
						|
/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
 | 
						|
/// stack slot. Returns the chain as result and the loaded frame pointers in
 | 
						|
/// LROpOut/FPOpout. Used when tail calling.
 | 
						|
SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
 | 
						|
                                                          int SPDiff,
 | 
						|
                                                          SDValue Chain,
 | 
						|
                                                          SDValue &LROpOut,
 | 
						|
                                                          SDValue &FPOpOut) {
 | 
						|
  if (SPDiff) {
 | 
						|
    // Load the LR and FP stack slot for later adjusting.
 | 
						|
    MVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
 | 
						|
    LROpOut = getReturnAddrFrameIndex(DAG);
 | 
						|
    LROpOut = DAG.getLoad(VT, Chain, LROpOut, NULL, 0);
 | 
						|
    Chain = SDValue(LROpOut.getNode(), 1);
 | 
						|
    FPOpOut = getFramePointerFrameIndex(DAG);
 | 
						|
    FPOpOut = DAG.getLoad(VT, Chain, FPOpOut, NULL, 0);
 | 
						|
    Chain = SDValue(FPOpOut.getNode(), 1);
 | 
						|
  }
 | 
						|
  return Chain;
 | 
						|
}
 | 
						|
 | 
						|
/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
 | 
						|
/// by "Src" to address "Dst" of size "Size".  Alignment information is 
 | 
						|
/// specified by the specific parameter attribute. The copy will be passed as
 | 
						|
/// a byval function parameter.
 | 
						|
/// Sometimes what we are copying is the end of a larger object, the part that
 | 
						|
/// does not fit in registers.
 | 
						|
static SDValue 
 | 
						|
CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
 | 
						|
                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
 | 
						|
                          unsigned Size) {
 | 
						|
  SDValue SizeNode = DAG.getConstant(Size, MVT::i32);
 | 
						|
  return DAG.getMemcpy(Chain, Dst, Src, SizeNode, Flags.getByValAlign(), false,
 | 
						|
                       NULL, 0, NULL, 0);
 | 
						|
}
 | 
						|
 | 
						|
/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
 | 
						|
/// tail calls.
 | 
						|
static void
 | 
						|
LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
 | 
						|
                 SDValue Arg, SDValue PtrOff, int SPDiff,
 | 
						|
                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
 | 
						|
                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
 | 
						|
                 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
 | 
						|
  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | 
						|
  if (!isTailCall) {
 | 
						|
    if (isVector) {
 | 
						|
      SDValue StackPtr;
 | 
						|
      if (isPPC64)
 | 
						|
        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
 | 
						|
      else
 | 
						|
        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
 | 
						|
      PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
 | 
						|
                           DAG.getConstant(ArgOffset, PtrVT));
 | 
						|
    }
 | 
						|
    MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
 | 
						|
  // Calculate and remember argument location.
 | 
						|
  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
 | 
						|
                                  TailCallArguments);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG,
 | 
						|
                                       const PPCSubtarget &Subtarget,
 | 
						|
                                       TargetMachine &TM) {
 | 
						|
  SDValue Chain  = Op.getOperand(0);
 | 
						|
  bool isVarArg    = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
 | 
						|
  unsigned CC      = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
 | 
						|
  bool isTailCall  = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0 &&
 | 
						|
                     CC == CallingConv::Fast && PerformTailCallOpt;
 | 
						|
  SDValue Callee = Op.getOperand(4);
 | 
						|
  unsigned NumOps  = (Op.getNumOperands() - 5) / 2;
 | 
						|
  
 | 
						|
  bool isMachoABI = Subtarget.isMachoABI();
 | 
						|
  bool isELF32_ABI  = Subtarget.isELF32_ABI();
 | 
						|
 | 
						|
  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | 
						|
  bool isPPC64 = PtrVT == MVT::i64;
 | 
						|
  unsigned PtrByteSize = isPPC64 ? 8 : 4;
 | 
						|
  
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
 | 
						|
  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
 | 
						|
  // SelectExpr to use to put the arguments in the appropriate registers.
 | 
						|
  std::vector<SDValue> args_to_use;
 | 
						|
  
 | 
						|
  // Mark this function as potentially containing a function that contains a
 | 
						|
  // tail call. As a consequence the frame pointer will be used for dynamicalloc
 | 
						|
  // and restoring the callers stack pointer in this functions epilog. This is
 | 
						|
  // done because by tail calling the called function might overwrite the value
 | 
						|
  // in this function's (MF) stack pointer stack slot 0(SP).
 | 
						|
  if (PerformTailCallOpt && CC==CallingConv::Fast)
 | 
						|
    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
 | 
						|
 | 
						|
  unsigned nAltivecParamsAtEnd = 0;
 | 
						|
 | 
						|
  // Count how many bytes are to be pushed on the stack, including the linkage
 | 
						|
  // area, and parameter passing area.  We start with 24/48 bytes, which is
 | 
						|
  // prereserved space for [SP][CR][LR][3 x unused].
 | 
						|
  unsigned NumBytes =
 | 
						|
    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isMachoABI, isVarArg, CC,
 | 
						|
                                         Op, nAltivecParamsAtEnd);
 | 
						|
 | 
						|
  // Calculate by how many bytes the stack has to be adjusted in case of tail
 | 
						|
  // call optimization.
 | 
						|
  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
 | 
						|
  
 | 
						|
  // Adjust the stack pointer for the new arguments...
 | 
						|
  // These operations are automatically eliminated by the prolog/epilog pass
 | 
						|
  Chain = DAG.getCALLSEQ_START(Chain,
 | 
						|
                               DAG.getConstant(NumBytes, PtrVT));
 | 
						|
  SDValue CallSeqStart = Chain;
 | 
						|
  
 | 
						|
  // Load the return address and frame pointer so it can be move somewhere else
 | 
						|
  // later.
 | 
						|
  SDValue LROp, FPOp;
 | 
						|
  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp);
 | 
						|
 | 
						|
  // Set up a copy of the stack pointer for use loading and storing any
 | 
						|
  // arguments that may not fit in the registers available for argument
 | 
						|
  // passing.
 | 
						|
  SDValue StackPtr;
 | 
						|
  if (isPPC64)
 | 
						|
    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
 | 
						|
  else
 | 
						|
    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
 | 
						|
  
 | 
						|
  // Figure out which arguments are going to go in registers, and which in
 | 
						|
  // memory.  Also, if this is a vararg function, floating point operations
 | 
						|
  // must be stored to our stack, and loaded into integer regs as well, if
 | 
						|
  // any integer regs are available for argument passing.
 | 
						|
  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
 | 
						|
  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
 | 
						|
  
 | 
						|
  static const unsigned GPR_32[] = {           // 32-bit registers.
 | 
						|
    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
 | 
						|
    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
 | 
						|
  };
 | 
						|
  static const unsigned GPR_64[] = {           // 64-bit registers.
 | 
						|
    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
 | 
						|
    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
 | 
						|
  };
 | 
						|
  static const unsigned *FPR = GetFPR(Subtarget);
 | 
						|
  
 | 
						|
  static const unsigned VR[] = {
 | 
						|
    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
 | 
						|
    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
 | 
						|
  };
 | 
						|
  const unsigned NumGPRs = array_lengthof(GPR_32);
 | 
						|
  const unsigned NumFPRs = isMachoABI ? 13 : 8;
 | 
						|
  const unsigned NumVRs  = array_lengthof( VR);
 | 
						|
  
 | 
						|
  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
 | 
						|
 | 
						|
  std::vector<std::pair<unsigned, SDValue> > RegsToPass;
 | 
						|
  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
 | 
						|
 | 
						|
  SmallVector<SDValue, 8> MemOpChains;
 | 
						|
  for (unsigned i = 0; i != NumOps; ++i) {
 | 
						|
    bool inMem = false;
 | 
						|
    SDValue Arg = Op.getOperand(5+2*i);
 | 
						|
    ISD::ArgFlagsTy Flags =
 | 
						|
      cast<ARG_FLAGSSDNode>(Op.getOperand(5+2*i+1))->getArgFlags();
 | 
						|
    // See if next argument requires stack alignment in ELF
 | 
						|
    bool Align = Flags.isSplit();
 | 
						|
 | 
						|
    // PtrOff will be used to store the current argument to the stack if a
 | 
						|
    // register cannot be found for it.
 | 
						|
    SDValue PtrOff;
 | 
						|
    
 | 
						|
    // Stack align in ELF 32
 | 
						|
    if (isELF32_ABI && Align)
 | 
						|
      PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
 | 
						|
                               StackPtr.getValueType());
 | 
						|
    else
 | 
						|
      PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
 | 
						|
 | 
						|
    PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
 | 
						|
 | 
						|
    // On PPC64, promote integers to 64-bit values.
 | 
						|
    if (isPPC64 && Arg.getValueType() == MVT::i32) {
 | 
						|
      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
 | 
						|
      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
 | 
						|
      Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
 | 
						|
    }
 | 
						|
 | 
						|
    // FIXME Elf untested, what are alignment rules?
 | 
						|
    // FIXME memcpy is used way more than necessary.  Correctness first.
 | 
						|
    if (Flags.isByVal()) {
 | 
						|
      unsigned Size = Flags.getByValSize();
 | 
						|
      if (isELF32_ABI && Align) GPR_idx += (GPR_idx % 2);
 | 
						|
      if (Size==1 || Size==2) {
 | 
						|
        // Very small objects are passed right-justified.
 | 
						|
        // Everything else is passed left-justified.
 | 
						|
        MVT VT = (Size==1) ? MVT::i8 : MVT::i16;
 | 
						|
        if (GPR_idx != NumGPRs) {
 | 
						|
          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, PtrVT, Chain, Arg, 
 | 
						|
                                          NULL, 0, VT);
 | 
						|
          MemOpChains.push_back(Load.getValue(1));
 | 
						|
          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | 
						|
          if (isMachoABI)
 | 
						|
            ArgOffset += PtrByteSize;
 | 
						|
        } else {
 | 
						|
          SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
 | 
						|
          SDValue AddPtr = DAG.getNode(ISD::ADD, PtrVT, PtrOff, Const);
 | 
						|
          SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
 | 
						|
                                CallSeqStart.getNode()->getOperand(0), 
 | 
						|
                                Flags, DAG, Size);
 | 
						|
          // This must go outside the CALLSEQ_START..END.
 | 
						|
          SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
 | 
						|
                               CallSeqStart.getNode()->getOperand(1));
 | 
						|
          DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
 | 
						|
                                 NewCallSeqStart.getNode());
 | 
						|
          Chain = CallSeqStart = NewCallSeqStart;
 | 
						|
          ArgOffset += PtrByteSize;
 | 
						|
        }
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      // Copy entire object into memory.  There are cases where gcc-generated
 | 
						|
      // code assumes it is there, even if it could be put entirely into
 | 
						|
      // registers.  (This is not what the doc says.)
 | 
						|
      SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
 | 
						|
                            CallSeqStart.getNode()->getOperand(0), 
 | 
						|
                            Flags, DAG, Size);
 | 
						|
      // This must go outside the CALLSEQ_START..END.
 | 
						|
      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
 | 
						|
                           CallSeqStart.getNode()->getOperand(1));
 | 
						|
      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
 | 
						|
      Chain = CallSeqStart = NewCallSeqStart;
 | 
						|
      // And copy the pieces of it that fit into registers.
 | 
						|
      for (unsigned j=0; j<Size; j+=PtrByteSize) {
 | 
						|
        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
 | 
						|
        SDValue AddArg = DAG.getNode(ISD::ADD, PtrVT, Arg, Const);
 | 
						|
        if (GPR_idx != NumGPRs) {
 | 
						|
          SDValue Load = DAG.getLoad(PtrVT, Chain, AddArg, NULL, 0);
 | 
						|
          MemOpChains.push_back(Load.getValue(1));
 | 
						|
          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | 
						|
          if (isMachoABI)
 | 
						|
            ArgOffset += PtrByteSize;
 | 
						|
        } else {
 | 
						|
          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (Arg.getValueType().getSimpleVT()) {
 | 
						|
    default: assert(0 && "Unexpected ValueType for argument!");
 | 
						|
    case MVT::i32:
 | 
						|
    case MVT::i64:
 | 
						|
      // Double word align in ELF
 | 
						|
      if (isELF32_ABI && Align) GPR_idx += (GPR_idx % 2);
 | 
						|
      if (GPR_idx != NumGPRs) {
 | 
						|
        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
 | 
						|
      } else {
 | 
						|
        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
 | 
						|
                         isPPC64, isTailCall, false, MemOpChains,
 | 
						|
                         TailCallArguments);
 | 
						|
        inMem = true;
 | 
						|
      }
 | 
						|
      if (inMem || isMachoABI) {
 | 
						|
        // Stack align in ELF
 | 
						|
        if (isELF32_ABI && Align)
 | 
						|
          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
 | 
						|
 | 
						|
        ArgOffset += PtrByteSize;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case MVT::f32:
 | 
						|
    case MVT::f64:
 | 
						|
      if (FPR_idx != NumFPRs) {
 | 
						|
        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
 | 
						|
 | 
						|
        if (isVarArg) {
 | 
						|
          SDValue Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
 | 
						|
          MemOpChains.push_back(Store);
 | 
						|
 | 
						|
          // Float varargs are always shadowed in available integer registers
 | 
						|
          if (GPR_idx != NumGPRs) {
 | 
						|
            SDValue Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
 | 
						|
            MemOpChains.push_back(Load.getValue(1));
 | 
						|
            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
 | 
						|
                                                                Load));
 | 
						|
          }
 | 
						|
          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
 | 
						|
            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
 | 
						|
            PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
 | 
						|
            SDValue Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
 | 
						|
            MemOpChains.push_back(Load.getValue(1));
 | 
						|
            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
 | 
						|
                                                                Load));
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          // If we have any FPRs remaining, we may also have GPRs remaining.
 | 
						|
          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
 | 
						|
          // GPRs.
 | 
						|
          if (isMachoABI) {
 | 
						|
            if (GPR_idx != NumGPRs)
 | 
						|
              ++GPR_idx;
 | 
						|
            if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
 | 
						|
                !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
 | 
						|
              ++GPR_idx;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
 | 
						|
                         isPPC64, isTailCall, false, MemOpChains,
 | 
						|
                         TailCallArguments);
 | 
						|
        inMem = true;
 | 
						|
      }
 | 
						|
      if (inMem || isMachoABI) {
 | 
						|
        // Stack align in ELF
 | 
						|
        if (isELF32_ABI && Align)
 | 
						|
          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
 | 
						|
        if (isPPC64)
 | 
						|
          ArgOffset += 8;
 | 
						|
        else
 | 
						|
          ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case MVT::v4f32:
 | 
						|
    case MVT::v4i32:
 | 
						|
    case MVT::v8i16:
 | 
						|
    case MVT::v16i8:
 | 
						|
      if (isVarArg) {
 | 
						|
        // These go aligned on the stack, or in the corresponding R registers
 | 
						|
        // when within range.  The Darwin PPC ABI doc claims they also go in 
 | 
						|
        // V registers; in fact gcc does this only for arguments that are
 | 
						|
        // prototyped, not for those that match the ...  We do it for all
 | 
						|
        // arguments, seems to work.
 | 
						|
        while (ArgOffset % 16 !=0) {
 | 
						|
          ArgOffset += PtrByteSize;
 | 
						|
          if (GPR_idx != NumGPRs)
 | 
						|
            GPR_idx++;
 | 
						|
        }
 | 
						|
        // We could elide this store in the case where the object fits
 | 
						|
        // entirely in R registers.  Maybe later.
 | 
						|
        PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, 
 | 
						|
                            DAG.getConstant(ArgOffset, PtrVT));
 | 
						|
        SDValue Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
 | 
						|
        MemOpChains.push_back(Store);
 | 
						|
        if (VR_idx != NumVRs) {
 | 
						|
          SDValue Load = DAG.getLoad(MVT::v4f32, Store, PtrOff, NULL, 0);
 | 
						|
          MemOpChains.push_back(Load.getValue(1));
 | 
						|
          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
 | 
						|
        }
 | 
						|
        ArgOffset += 16;
 | 
						|
        for (unsigned i=0; i<16; i+=PtrByteSize) {
 | 
						|
          if (GPR_idx == NumGPRs)
 | 
						|
            break;
 | 
						|
          SDValue Ix = DAG.getNode(ISD::ADD, PtrVT, PtrOff,
 | 
						|
                                  DAG.getConstant(i, PtrVT));
 | 
						|
          SDValue Load = DAG.getLoad(PtrVT, Store, Ix, NULL, 0);
 | 
						|
          MemOpChains.push_back(Load.getValue(1));
 | 
						|
          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // Non-varargs Altivec params generally go in registers, but have
 | 
						|
      // stack space allocated at the end.
 | 
						|
      if (VR_idx != NumVRs) {
 | 
						|
        // Doesn't have GPR space allocated.
 | 
						|
        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
 | 
						|
      } else if (nAltivecParamsAtEnd==0) {
 | 
						|
        // We are emitting Altivec params in order.
 | 
						|
        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
 | 
						|
                         isPPC64, isTailCall, true, MemOpChains,
 | 
						|
                         TailCallArguments);
 | 
						|
        ArgOffset += 16;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // If all Altivec parameters fit in registers, as they usually do,
 | 
						|
  // they get stack space following the non-Altivec parameters.  We
 | 
						|
  // don't track this here because nobody below needs it.
 | 
						|
  // If there are more Altivec parameters than fit in registers emit
 | 
						|
  // the stores here.
 | 
						|
  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
 | 
						|
    unsigned j = 0;
 | 
						|
    // Offset is aligned; skip 1st 12 params which go in V registers.
 | 
						|
    ArgOffset = ((ArgOffset+15)/16)*16;
 | 
						|
    ArgOffset += 12*16;
 | 
						|
    for (unsigned i = 0; i != NumOps; ++i) {
 | 
						|
      SDValue Arg = Op.getOperand(5+2*i);
 | 
						|
      MVT ArgType = Arg.getValueType();
 | 
						|
      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
 | 
						|
          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
 | 
						|
        if (++j > NumVRs) {
 | 
						|
          SDValue PtrOff;
 | 
						|
          // We are emitting Altivec params in order.
 | 
						|
          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
 | 
						|
                           isPPC64, isTailCall, true, MemOpChains,
 | 
						|
                           TailCallArguments);
 | 
						|
          ArgOffset += 16;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!MemOpChains.empty())
 | 
						|
    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
 | 
						|
                        &MemOpChains[0], MemOpChains.size());
 | 
						|
  
 | 
						|
  // Build a sequence of copy-to-reg nodes chained together with token chain
 | 
						|
  // and flag operands which copy the outgoing args into the appropriate regs.
 | 
						|
  SDValue InFlag;
 | 
						|
  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | 
						|
    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
 | 
						|
                             InFlag);
 | 
						|
    InFlag = Chain.getValue(1);
 | 
						|
  }
 | 
						|
 
 | 
						|
  // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
 | 
						|
  if (isVarArg && isELF32_ABI) {
 | 
						|
    SDValue SetCR(DAG.getTargetNode(PPC::CRSET, MVT::i32), 0);
 | 
						|
    Chain = DAG.getCopyToReg(Chain, PPC::CR1EQ, SetCR, InFlag);
 | 
						|
    InFlag = Chain.getValue(1);
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
 | 
						|
  // might overwrite each other in case of tail call optimization.
 | 
						|
  if (isTailCall) {
 | 
						|
    SmallVector<SDValue, 8> MemOpChains2;
 | 
						|
    // Do not flag preceeding copytoreg stuff together with the following stuff.
 | 
						|
    InFlag = SDValue();
 | 
						|
    StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
 | 
						|
                                      MemOpChains2);
 | 
						|
    if (!MemOpChains2.empty())
 | 
						|
      Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
 | 
						|
                          &MemOpChains2[0], MemOpChains2.size());
 | 
						|
 | 
						|
    // Store the return address to the appropriate stack slot.
 | 
						|
    Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
 | 
						|
                                          isPPC64, isMachoABI);
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit callseq_end just before tailcall node.
 | 
						|
  if (isTailCall) {
 | 
						|
    SmallVector<SDValue, 8> CallSeqOps;
 | 
						|
    SDVTList CallSeqNodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
 | 
						|
    CallSeqOps.push_back(Chain);
 | 
						|
    CallSeqOps.push_back(DAG.getIntPtrConstant(NumBytes));
 | 
						|
    CallSeqOps.push_back(DAG.getIntPtrConstant(0));
 | 
						|
    if (InFlag.getNode())
 | 
						|
      CallSeqOps.push_back(InFlag);
 | 
						|
    Chain = DAG.getNode(ISD::CALLSEQ_END, CallSeqNodeTys, &CallSeqOps[0],
 | 
						|
                        CallSeqOps.size());
 | 
						|
    InFlag = Chain.getValue(1);
 | 
						|
  }
 | 
						|
 | 
						|
  std::vector<MVT> NodeTys;
 | 
						|
  NodeTys.push_back(MVT::Other);   // Returns a chain
 | 
						|
  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
 | 
						|
 | 
						|
  SmallVector<SDValue, 8> Ops;
 | 
						|
  unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
 | 
						|
  
 | 
						|
  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
 | 
						|
  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
 | 
						|
  // node so that legalize doesn't hack it.
 | 
						|
  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
 | 
						|
    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
 | 
						|
  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
 | 
						|
    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
 | 
						|
  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
 | 
						|
    // If this is an absolute destination address, use the munged value.
 | 
						|
    Callee = SDValue(Dest, 0);
 | 
						|
  else {
 | 
						|
    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
 | 
						|
    // to do the call, we can't use PPCISD::CALL.
 | 
						|
    SDValue MTCTROps[] = {Chain, Callee, InFlag};
 | 
						|
    Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps,
 | 
						|
                        2 + (InFlag.getNode() != 0));
 | 
						|
    InFlag = Chain.getValue(1);
 | 
						|
    
 | 
						|
    // Copy the callee address into R12/X12 on darwin.
 | 
						|
    if (isMachoABI) {
 | 
						|
      unsigned Reg = Callee.getValueType() == MVT::i32 ? PPC::R12 : PPC::X12;
 | 
						|
      Chain = DAG.getCopyToReg(Chain, Reg, Callee, InFlag);
 | 
						|
      InFlag = Chain.getValue(1);
 | 
						|
    }
 | 
						|
 | 
						|
    NodeTys.clear();
 | 
						|
    NodeTys.push_back(MVT::Other);
 | 
						|
    NodeTys.push_back(MVT::Flag);
 | 
						|
    Ops.push_back(Chain);
 | 
						|
    CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
 | 
						|
    Callee.setNode(0);
 | 
						|
    // Add CTR register as callee so a bctr can be emitted later.
 | 
						|
    if (isTailCall)
 | 
						|
      Ops.push_back(DAG.getRegister(PPC::CTR, getPointerTy()));
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a direct call, pass the chain and the callee.
 | 
						|
  if (Callee.getNode()) {
 | 
						|
    Ops.push_back(Chain);
 | 
						|
    Ops.push_back(Callee);
 | 
						|
  }
 | 
						|
  // If this is a tail call add stack pointer delta.
 | 
						|
  if (isTailCall)
 | 
						|
    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
 | 
						|
 | 
						|
  // Add argument registers to the end of the list so that they are known live
 | 
						|
  // into the call.
 | 
						|
  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
 | 
						|
    Ops.push_back(DAG.getRegister(RegsToPass[i].first, 
 | 
						|
                                  RegsToPass[i].second.getValueType()));
 | 
						|
 | 
						|
  // When performing tail call optimization the callee pops its arguments off
 | 
						|
  // the stack. Account for this here so these bytes can be pushed back on in
 | 
						|
  // PPCRegisterInfo::eliminateCallFramePseudoInstr.
 | 
						|
  int BytesCalleePops =
 | 
						|
    (CC==CallingConv::Fast && PerformTailCallOpt) ? NumBytes : 0;
 | 
						|
 | 
						|
  if (InFlag.getNode())
 | 
						|
    Ops.push_back(InFlag);
 | 
						|
 | 
						|
  // Emit tail call.
 | 
						|
  if (isTailCall) {
 | 
						|
    assert(InFlag.getNode() &&
 | 
						|
           "Flag must be set. Depend on flag being set in LowerRET");
 | 
						|
    Chain = DAG.getNode(PPCISD::TAILCALL,
 | 
						|
                        Op.getNode()->getVTList(), &Ops[0], Ops.size());
 | 
						|
    return SDValue(Chain.getNode(), Op.getResNo());
 | 
						|
  }
 | 
						|
 | 
						|
  Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
 | 
						|
  InFlag = Chain.getValue(1);
 | 
						|
 | 
						|
  Chain = DAG.getCALLSEQ_END(Chain,
 | 
						|
                             DAG.getConstant(NumBytes, PtrVT),
 | 
						|
                             DAG.getConstant(BytesCalleePops, PtrVT),
 | 
						|
                             InFlag);
 | 
						|
  if (Op.getNode()->getValueType(0) != MVT::Other)
 | 
						|
    InFlag = Chain.getValue(1);
 | 
						|
 | 
						|
  SmallVector<SDValue, 16> ResultVals;
 | 
						|
  SmallVector<CCValAssign, 16> RVLocs;
 | 
						|
  unsigned CallerCC = DAG.getMachineFunction().getFunction()->getCallingConv();
 | 
						|
  CCState CCInfo(CallerCC, isVarArg, TM, RVLocs);
 | 
						|
  CCInfo.AnalyzeCallResult(Op.getNode(), RetCC_PPC);
 | 
						|
  
 | 
						|
  // Copy all of the result registers out of their specified physreg.
 | 
						|
  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
 | 
						|
    CCValAssign &VA = RVLocs[i];
 | 
						|
    MVT VT = VA.getValVT();
 | 
						|
    assert(VA.isRegLoc() && "Can only return in registers!");
 | 
						|
    Chain = DAG.getCopyFromReg(Chain, VA.getLocReg(), VT, InFlag).getValue(1);
 | 
						|
    ResultVals.push_back(Chain.getValue(0));
 | 
						|
    InFlag = Chain.getValue(2);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the function returns void, just return the chain.
 | 
						|
  if (RVLocs.empty())
 | 
						|
    return Chain;
 | 
						|
  
 | 
						|
  // Otherwise, merge everything together with a MERGE_VALUES node.
 | 
						|
  ResultVals.push_back(Chain);
 | 
						|
  SDValue Res = DAG.getMergeValues(Op.getNode()->getVTList(), &ResultVals[0],
 | 
						|
                                     ResultVals.size());
 | 
						|
  return Res.getValue(Op.getResNo());
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG, 
 | 
						|
                                      TargetMachine &TM) {
 | 
						|
  SmallVector<CCValAssign, 16> RVLocs;
 | 
						|
  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
 | 
						|
  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
 | 
						|
  CCState CCInfo(CC, isVarArg, TM, RVLocs);
 | 
						|
  CCInfo.AnalyzeReturn(Op.getNode(), RetCC_PPC);
 | 
						|
  
 | 
						|
  // If this is the first return lowered for this function, add the regs to the
 | 
						|
  // liveout set for the function.
 | 
						|
  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
 | 
						|
    for (unsigned i = 0; i != RVLocs.size(); ++i)
 | 
						|
      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue Chain = Op.getOperand(0);
 | 
						|
 | 
						|
  Chain = GetPossiblePreceedingTailCall(Chain, PPCISD::TAILCALL);
 | 
						|
  if (Chain.getOpcode() == PPCISD::TAILCALL) {
 | 
						|
    SDValue TailCall = Chain;
 | 
						|
    SDValue TargetAddress = TailCall.getOperand(1);
 | 
						|
    SDValue StackAdjustment = TailCall.getOperand(2);
 | 
						|
 | 
						|
    assert(((TargetAddress.getOpcode() == ISD::Register &&
 | 
						|
             cast<RegisterSDNode>(TargetAddress)->getReg() == PPC::CTR) ||
 | 
						|
            TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
 | 
						|
            TargetAddress.getOpcode() == ISD::TargetGlobalAddress ||
 | 
						|
            isa<ConstantSDNode>(TargetAddress)) &&
 | 
						|
    "Expecting an global address, external symbol, absolute value or register");
 | 
						|
 | 
						|
    assert(StackAdjustment.getOpcode() == ISD::Constant &&
 | 
						|
           "Expecting a const value");
 | 
						|
 | 
						|
    SmallVector<SDValue,8> Operands;
 | 
						|
    Operands.push_back(Chain.getOperand(0));
 | 
						|
    Operands.push_back(TargetAddress);
 | 
						|
    Operands.push_back(StackAdjustment);
 | 
						|
    // Copy registers used by the call. Last operand is a flag so it is not
 | 
						|
    // copied.
 | 
						|
    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
 | 
						|
      Operands.push_back(Chain.getOperand(i));
 | 
						|
    }
 | 
						|
    return DAG.getNode(PPCISD::TC_RETURN, MVT::Other, &Operands[0],
 | 
						|
                       Operands.size());
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue Flag;
 | 
						|
  
 | 
						|
  // Copy the result values into the output registers.
 | 
						|
  for (unsigned i = 0; i != RVLocs.size(); ++i) {
 | 
						|
    CCValAssign &VA = RVLocs[i];
 | 
						|
    assert(VA.isRegLoc() && "Can only return in registers!");
 | 
						|
    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag);
 | 
						|
    Flag = Chain.getValue(1);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Flag.getNode())
 | 
						|
    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag);
 | 
						|
  else
 | 
						|
    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
 | 
						|
                                   const PPCSubtarget &Subtarget) {
 | 
						|
  // When we pop the dynamic allocation we need to restore the SP link.
 | 
						|
  
 | 
						|
  // Get the corect type for pointers.
 | 
						|
  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | 
						|
 | 
						|
  // Construct the stack pointer operand.
 | 
						|
  bool IsPPC64 = Subtarget.isPPC64();
 | 
						|
  unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
 | 
						|
  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
 | 
						|
 | 
						|
  // Get the operands for the STACKRESTORE.
 | 
						|
  SDValue Chain = Op.getOperand(0);
 | 
						|
  SDValue SaveSP = Op.getOperand(1);
 | 
						|
  
 | 
						|
  // Load the old link SP.
 | 
						|
  SDValue LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
 | 
						|
  
 | 
						|
  // Restore the stack pointer.
 | 
						|
  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
 | 
						|
  
 | 
						|
  // Store the old link SP.
 | 
						|
  return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
SDValue
 | 
						|
PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  bool IsPPC64 = PPCSubTarget.isPPC64();
 | 
						|
  bool isMachoABI = PPCSubTarget.isMachoABI();
 | 
						|
  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | 
						|
 | 
						|
  // Get current frame pointer save index.  The users of this index will be
 | 
						|
  // primarily DYNALLOC instructions.
 | 
						|
  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
 | 
						|
  int RASI = FI->getReturnAddrSaveIndex();
 | 
						|
 | 
						|
  // If the frame pointer save index hasn't been defined yet.
 | 
						|
  if (!RASI) {
 | 
						|
    // Find out what the fix offset of the frame pointer save area.
 | 
						|
    int LROffset = PPCFrameInfo::getReturnSaveOffset(IsPPC64, isMachoABI);
 | 
						|
    // Allocate the frame index for frame pointer save area.
 | 
						|
    RASI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, LROffset);
 | 
						|
    // Save the result.
 | 
						|
    FI->setReturnAddrSaveIndex(RASI);
 | 
						|
  }
 | 
						|
  return DAG.getFrameIndex(RASI, PtrVT);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  bool IsPPC64 = PPCSubTarget.isPPC64();
 | 
						|
  bool isMachoABI = PPCSubTarget.isMachoABI();
 | 
						|
  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | 
						|
 | 
						|
  // Get current frame pointer save index.  The users of this index will be
 | 
						|
  // primarily DYNALLOC instructions.
 | 
						|
  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
 | 
						|
  int FPSI = FI->getFramePointerSaveIndex();
 | 
						|
 | 
						|
  // If the frame pointer save index hasn't been defined yet.
 | 
						|
  if (!FPSI) {
 | 
						|
    // Find out what the fix offset of the frame pointer save area.
 | 
						|
    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
 | 
						|
    
 | 
						|
    // Allocate the frame index for frame pointer save area.
 | 
						|
    FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset); 
 | 
						|
    // Save the result.
 | 
						|
    FI->setFramePointerSaveIndex(FPSI);                      
 | 
						|
  }
 | 
						|
  return DAG.getFrameIndex(FPSI, PtrVT);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
 | 
						|
                                         SelectionDAG &DAG,
 | 
						|
                                         const PPCSubtarget &Subtarget) {
 | 
						|
  // Get the inputs.
 | 
						|
  SDValue Chain = Op.getOperand(0);
 | 
						|
  SDValue Size  = Op.getOperand(1);
 | 
						|
  
 | 
						|
  // Get the corect type for pointers.
 | 
						|
  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | 
						|
  // Negate the size.
 | 
						|
  SDValue NegSize = DAG.getNode(ISD::SUB, PtrVT,
 | 
						|
                                  DAG.getConstant(0, PtrVT), Size);
 | 
						|
  // Construct a node for the frame pointer save index.
 | 
						|
  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
 | 
						|
  // Build a DYNALLOC node.
 | 
						|
  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
 | 
						|
  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
 | 
						|
  return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
 | 
						|
}
 | 
						|
 | 
						|
/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
 | 
						|
/// possible.
 | 
						|
SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  // Not FP? Not a fsel.
 | 
						|
  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
 | 
						|
      !Op.getOperand(2).getValueType().isFloatingPoint())
 | 
						|
    return SDValue();
 | 
						|
  
 | 
						|
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
 | 
						|
  
 | 
						|
  // Cannot handle SETEQ/SETNE.
 | 
						|
  if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDValue();
 | 
						|
  
 | 
						|
  MVT ResVT = Op.getValueType();
 | 
						|
  MVT CmpVT = Op.getOperand(0).getValueType();
 | 
						|
  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
 | 
						|
  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
 | 
						|
  
 | 
						|
  // If the RHS of the comparison is a 0.0, we don't need to do the
 | 
						|
  // subtraction at all.
 | 
						|
  if (isFloatingPointZero(RHS))
 | 
						|
    switch (CC) {
 | 
						|
    default: break;       // SETUO etc aren't handled by fsel.
 | 
						|
    case ISD::SETULT:
 | 
						|
    case ISD::SETLT:
 | 
						|
      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
 | 
						|
    case ISD::SETOGE:
 | 
						|
    case ISD::SETGE:
 | 
						|
      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | 
						|
        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
 | 
						|
      return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
 | 
						|
    case ISD::SETUGT:
 | 
						|
    case ISD::SETGT:
 | 
						|
      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
 | 
						|
    case ISD::SETOLE:
 | 
						|
    case ISD::SETLE:
 | 
						|
      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | 
						|
        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
 | 
						|
      return DAG.getNode(PPCISD::FSEL, ResVT,
 | 
						|
                         DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
 | 
						|
    }
 | 
						|
      
 | 
						|
  SDValue Cmp;
 | 
						|
  switch (CC) {
 | 
						|
  default: break;       // SETUO etc aren't handled by fsel.
 | 
						|
  case ISD::SETULT:
 | 
						|
  case ISD::SETLT:
 | 
						|
    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
 | 
						|
    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | 
						|
      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
 | 
						|
      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
 | 
						|
  case ISD::SETOGE:
 | 
						|
  case ISD::SETGE:
 | 
						|
    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
 | 
						|
    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | 
						|
      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
 | 
						|
      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
 | 
						|
  case ISD::SETUGT:
 | 
						|
  case ISD::SETGT:
 | 
						|
    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
 | 
						|
    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | 
						|
      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
 | 
						|
      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
 | 
						|
  case ISD::SETOLE:
 | 
						|
  case ISD::SETLE:
 | 
						|
    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
 | 
						|
    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | 
						|
      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
 | 
						|
      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
// FIXME: Split this code up when LegalizeDAGTypes lands.
 | 
						|
SDValue PPCTargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  assert(Op.getOperand(0).getValueType().isFloatingPoint());
 | 
						|
  SDValue Src = Op.getOperand(0);
 | 
						|
  if (Src.getValueType() == MVT::f32)
 | 
						|
    Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
 | 
						|
 | 
						|
  SDValue Tmp;
 | 
						|
  switch (Op.getValueType().getSimpleVT()) {
 | 
						|
  default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
 | 
						|
  case MVT::i32:
 | 
						|
    Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
 | 
						|
    break;
 | 
						|
  case MVT::i64:
 | 
						|
    Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Convert the FP value to an int value through memory.
 | 
						|
  SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
 | 
						|
 | 
						|
  // Emit a store to the stack slot.
 | 
						|
  SDValue Chain = DAG.getStore(DAG.getEntryNode(), Tmp, FIPtr, NULL, 0);
 | 
						|
 | 
						|
  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
 | 
						|
  // add in a bias.
 | 
						|
  if (Op.getValueType() == MVT::i32)
 | 
						|
    FIPtr = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr,
 | 
						|
                        DAG.getConstant(4, FIPtr.getValueType()));
 | 
						|
  return DAG.getLoad(Op.getValueType(), Chain, FIPtr, NULL, 0);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerFP_ROUND_INREG(SDValue Op, 
 | 
						|
                                                 SelectionDAG &DAG) {
 | 
						|
  assert(Op.getValueType() == MVT::ppcf128);
 | 
						|
  SDNode *Node = Op.getNode();
 | 
						|
  assert(Node->getOperand(0).getValueType() == MVT::ppcf128);
 | 
						|
  assert(Node->getOperand(0).getNode()->getOpcode() == ISD::BUILD_PAIR);
 | 
						|
  SDValue Lo = Node->getOperand(0).getNode()->getOperand(0);
 | 
						|
  SDValue Hi = Node->getOperand(0).getNode()->getOperand(1);
 | 
						|
 | 
						|
  // This sequence changes FPSCR to do round-to-zero, adds the two halves
 | 
						|
  // of the long double, and puts FPSCR back the way it was.  We do not
 | 
						|
  // actually model FPSCR.
 | 
						|
  std::vector<MVT> NodeTys;
 | 
						|
  SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
 | 
						|
 | 
						|
  NodeTys.push_back(MVT::f64);   // Return register
 | 
						|
  NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns
 | 
						|
  Result = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
 | 
						|
  MFFSreg = Result.getValue(0);
 | 
						|
  InFlag = Result.getValue(1);
 | 
						|
 | 
						|
  NodeTys.clear();
 | 
						|
  NodeTys.push_back(MVT::Flag);   // Returns a flag
 | 
						|
  Ops[0] = DAG.getConstant(31, MVT::i32);
 | 
						|
  Ops[1] = InFlag;
 | 
						|
  Result = DAG.getNode(PPCISD::MTFSB1, NodeTys, Ops, 2);
 | 
						|
  InFlag = Result.getValue(0);
 | 
						|
 | 
						|
  NodeTys.clear();
 | 
						|
  NodeTys.push_back(MVT::Flag);   // Returns a flag
 | 
						|
  Ops[0] = DAG.getConstant(30, MVT::i32);
 | 
						|
  Ops[1] = InFlag;
 | 
						|
  Result = DAG.getNode(PPCISD::MTFSB0, NodeTys, Ops, 2);
 | 
						|
  InFlag = Result.getValue(0);
 | 
						|
 | 
						|
  NodeTys.clear();
 | 
						|
  NodeTys.push_back(MVT::f64);    // result of add
 | 
						|
  NodeTys.push_back(MVT::Flag);   // Returns a flag
 | 
						|
  Ops[0] = Lo;
 | 
						|
  Ops[1] = Hi;
 | 
						|
  Ops[2] = InFlag;
 | 
						|
  Result = DAG.getNode(PPCISD::FADDRTZ, NodeTys, Ops, 3);
 | 
						|
  FPreg = Result.getValue(0);
 | 
						|
  InFlag = Result.getValue(1);
 | 
						|
 | 
						|
  NodeTys.clear();
 | 
						|
  NodeTys.push_back(MVT::f64);
 | 
						|
  Ops[0] = DAG.getConstant(1, MVT::i32);
 | 
						|
  Ops[1] = MFFSreg;
 | 
						|
  Ops[2] = FPreg;
 | 
						|
  Ops[3] = InFlag;
 | 
						|
  Result = DAG.getNode(PPCISD::MTFSF, NodeTys, Ops, 4);
 | 
						|
  FPreg = Result.getValue(0);
 | 
						|
 | 
						|
  // We know the low half is about to be thrown away, so just use something
 | 
						|
  // convenient.
 | 
						|
  return DAG.getNode(ISD::BUILD_PAIR, Lo.getValueType(), FPreg, FPreg);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
 | 
						|
  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (Op.getOperand(0).getValueType() == MVT::i64) {
 | 
						|
    SDValue Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
 | 
						|
    SDValue FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
 | 
						|
    if (Op.getValueType() == MVT::f32)
 | 
						|
      FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
 | 
						|
    return FP;
 | 
						|
  }
 | 
						|
  
 | 
						|
  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
 | 
						|
         "Unhandled SINT_TO_FP type in custom expander!");
 | 
						|
  // Since we only generate this in 64-bit mode, we can take advantage of
 | 
						|
  // 64-bit registers.  In particular, sign extend the input value into the
 | 
						|
  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
 | 
						|
  // then lfd it and fcfid it.
 | 
						|
  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
 | 
						|
  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
 | 
						|
  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | 
						|
  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
 | 
						|
  
 | 
						|
  SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
 | 
						|
                                Op.getOperand(0));
 | 
						|
  
 | 
						|
  // STD the extended value into the stack slot.
 | 
						|
  MachineMemOperand MO(PseudoSourceValue::getFixedStack(FrameIdx),
 | 
						|
                       MachineMemOperand::MOStore, 0, 8, 8);
 | 
						|
  SDValue Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
 | 
						|
                                DAG.getEntryNode(), Ext64, FIdx,
 | 
						|
                                DAG.getMemOperand(MO));
 | 
						|
  // Load the value as a double.
 | 
						|
  SDValue Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
 | 
						|
  
 | 
						|
  // FCFID it and return it.
 | 
						|
  SDValue FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
 | 
						|
  if (Op.getValueType() == MVT::f32)
 | 
						|
    FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
 | 
						|
  return FP;
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  /*
 | 
						|
   The rounding mode is in bits 30:31 of FPSR, and has the following
 | 
						|
   settings:
 | 
						|
     00 Round to nearest
 | 
						|
     01 Round to 0
 | 
						|
     10 Round to +inf
 | 
						|
     11 Round to -inf
 | 
						|
 | 
						|
  FLT_ROUNDS, on the other hand, expects the following:
 | 
						|
    -1 Undefined
 | 
						|
     0 Round to 0
 | 
						|
     1 Round to nearest
 | 
						|
     2 Round to +inf
 | 
						|
     3 Round to -inf
 | 
						|
 | 
						|
  To perform the conversion, we do:
 | 
						|
    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
 | 
						|
  */
 | 
						|
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  MVT VT = Op.getValueType();
 | 
						|
  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | 
						|
  std::vector<MVT> NodeTys;
 | 
						|
  SDValue MFFSreg, InFlag;
 | 
						|
 | 
						|
  // Save FP Control Word to register
 | 
						|
  NodeTys.push_back(MVT::f64);    // return register
 | 
						|
  NodeTys.push_back(MVT::Flag);   // unused in this context
 | 
						|
  SDValue Chain = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
 | 
						|
 | 
						|
  // Save FP register to stack slot
 | 
						|
  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
 | 
						|
  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
 | 
						|
  SDValue Store = DAG.getStore(DAG.getEntryNode(), Chain,
 | 
						|
                                 StackSlot, NULL, 0);
 | 
						|
 | 
						|
  // Load FP Control Word from low 32 bits of stack slot.
 | 
						|
  SDValue Four = DAG.getConstant(4, PtrVT);
 | 
						|
  SDValue Addr = DAG.getNode(ISD::ADD, PtrVT, StackSlot, Four);
 | 
						|
  SDValue CWD = DAG.getLoad(MVT::i32, Store, Addr, NULL, 0);
 | 
						|
 | 
						|
  // Transform as necessary
 | 
						|
  SDValue CWD1 =
 | 
						|
    DAG.getNode(ISD::AND, MVT::i32,
 | 
						|
                CWD, DAG.getConstant(3, MVT::i32));
 | 
						|
  SDValue CWD2 =
 | 
						|
    DAG.getNode(ISD::SRL, MVT::i32,
 | 
						|
                DAG.getNode(ISD::AND, MVT::i32,
 | 
						|
                            DAG.getNode(ISD::XOR, MVT::i32,
 | 
						|
                                        CWD, DAG.getConstant(3, MVT::i32)),
 | 
						|
                            DAG.getConstant(3, MVT::i32)),
 | 
						|
                DAG.getConstant(1, MVT::i8));
 | 
						|
 | 
						|
  SDValue RetVal =
 | 
						|
    DAG.getNode(ISD::XOR, MVT::i32, CWD1, CWD2);
 | 
						|
 | 
						|
  return DAG.getNode((VT.getSizeInBits() < 16 ?
 | 
						|
                      ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  MVT VT = Op.getValueType();
 | 
						|
  unsigned BitWidth = VT.getSizeInBits();
 | 
						|
  assert(Op.getNumOperands() == 3 &&
 | 
						|
         VT == Op.getOperand(1).getValueType() &&
 | 
						|
         "Unexpected SHL!");
 | 
						|
  
 | 
						|
  // Expand into a bunch of logical ops.  Note that these ops
 | 
						|
  // depend on the PPC behavior for oversized shift amounts.
 | 
						|
  SDValue Lo = Op.getOperand(0);
 | 
						|
  SDValue Hi = Op.getOperand(1);
 | 
						|
  SDValue Amt = Op.getOperand(2);
 | 
						|
  MVT AmtVT = Amt.getValueType();
 | 
						|
  
 | 
						|
  SDValue Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
 | 
						|
                               DAG.getConstant(BitWidth, AmtVT), Amt);
 | 
						|
  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, VT, Hi, Amt);
 | 
						|
  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, VT, Lo, Tmp1);
 | 
						|
  SDValue Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
 | 
						|
  SDValue Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
 | 
						|
                               DAG.getConstant(-BitWidth, AmtVT));
 | 
						|
  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, VT, Lo, Tmp5);
 | 
						|
  SDValue OutHi = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
 | 
						|
  SDValue OutLo = DAG.getNode(PPCISD::SHL, VT, Lo, Amt);
 | 
						|
  SDValue OutOps[] = { OutLo, OutHi };
 | 
						|
  return DAG.getMergeValues(OutOps, 2);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  MVT VT = Op.getValueType();
 | 
						|
  unsigned BitWidth = VT.getSizeInBits();
 | 
						|
  assert(Op.getNumOperands() == 3 &&
 | 
						|
         VT == Op.getOperand(1).getValueType() &&
 | 
						|
         "Unexpected SRL!");
 | 
						|
  
 | 
						|
  // Expand into a bunch of logical ops.  Note that these ops
 | 
						|
  // depend on the PPC behavior for oversized shift amounts.
 | 
						|
  SDValue Lo = Op.getOperand(0);
 | 
						|
  SDValue Hi = Op.getOperand(1);
 | 
						|
  SDValue Amt = Op.getOperand(2);
 | 
						|
  MVT AmtVT = Amt.getValueType();
 | 
						|
  
 | 
						|
  SDValue Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
 | 
						|
                               DAG.getConstant(BitWidth, AmtVT), Amt);
 | 
						|
  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
 | 
						|
  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
 | 
						|
  SDValue Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
 | 
						|
  SDValue Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
 | 
						|
                               DAG.getConstant(-BitWidth, AmtVT));
 | 
						|
  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, VT, Hi, Tmp5);
 | 
						|
  SDValue OutLo = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
 | 
						|
  SDValue OutHi = DAG.getNode(PPCISD::SRL, VT, Hi, Amt);
 | 
						|
  SDValue OutOps[] = { OutLo, OutHi };
 | 
						|
  return DAG.getMergeValues(OutOps, 2);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  MVT VT = Op.getValueType();
 | 
						|
  unsigned BitWidth = VT.getSizeInBits();
 | 
						|
  assert(Op.getNumOperands() == 3 &&
 | 
						|
         VT == Op.getOperand(1).getValueType() &&
 | 
						|
         "Unexpected SRA!");
 | 
						|
  
 | 
						|
  // Expand into a bunch of logical ops, followed by a select_cc.
 | 
						|
  SDValue Lo = Op.getOperand(0);
 | 
						|
  SDValue Hi = Op.getOperand(1);
 | 
						|
  SDValue Amt = Op.getOperand(2);
 | 
						|
  MVT AmtVT = Amt.getValueType();
 | 
						|
  
 | 
						|
  SDValue Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
 | 
						|
                               DAG.getConstant(BitWidth, AmtVT), Amt);
 | 
						|
  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
 | 
						|
  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
 | 
						|
  SDValue Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
 | 
						|
  SDValue Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
 | 
						|
                               DAG.getConstant(-BitWidth, AmtVT));
 | 
						|
  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, VT, Hi, Tmp5);
 | 
						|
  SDValue OutHi = DAG.getNode(PPCISD::SRA, VT, Hi, Amt);
 | 
						|
  SDValue OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, AmtVT),
 | 
						|
                                    Tmp4, Tmp6, ISD::SETLE);
 | 
						|
  SDValue OutOps[] = { OutLo, OutHi };
 | 
						|
  return DAG.getMergeValues(OutOps, 2);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Vector related lowering.
 | 
						|
//
 | 
						|
 | 
						|
// If this is a vector of constants or undefs, get the bits.  A bit in
 | 
						|
// UndefBits is set if the corresponding element of the vector is an 
 | 
						|
// ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
 | 
						|
// zero.   Return true if this is not an array of constants, false if it is.
 | 
						|
//
 | 
						|
static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
 | 
						|
                                       uint64_t UndefBits[2]) {
 | 
						|
  // Start with zero'd results.
 | 
						|
  VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
 | 
						|
  
 | 
						|
  unsigned EltBitSize = BV->getOperand(0).getValueType().getSizeInBits();
 | 
						|
  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
 | 
						|
    SDValue OpVal = BV->getOperand(i);
 | 
						|
    
 | 
						|
    unsigned PartNo = i >= e/2;     // In the upper 128 bits?
 | 
						|
    unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t.
 | 
						|
 | 
						|
    uint64_t EltBits = 0;
 | 
						|
    if (OpVal.getOpcode() == ISD::UNDEF) {
 | 
						|
      uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
 | 
						|
      UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
 | 
						|
      continue;
 | 
						|
    } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
 | 
						|
      EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
 | 
						|
    } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
 | 
						|
      assert(CN->getValueType(0) == MVT::f32 &&
 | 
						|
             "Only one legal FP vector type!");
 | 
						|
      EltBits = FloatToBits(CN->getValueAPF().convertToFloat());
 | 
						|
    } else {
 | 
						|
      // Nonconstant element.
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    
 | 
						|
    VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
 | 
						|
  }
 | 
						|
  
 | 
						|
  //printf("%llx %llx  %llx %llx\n", 
 | 
						|
  //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// If this is a splat (repetition) of a value across the whole vector, return
 | 
						|
// the smallest size that splats it.  For example, "0x01010101010101..." is a
 | 
						|
// splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and 
 | 
						|
// SplatSize = 1 byte.
 | 
						|
static bool isConstantSplat(const uint64_t Bits128[2], 
 | 
						|
                            const uint64_t Undef128[2],
 | 
						|
                            unsigned &SplatBits, unsigned &SplatUndef,
 | 
						|
                            unsigned &SplatSize) {
 | 
						|
  
 | 
						|
  // Don't let undefs prevent splats from matching.  See if the top 64-bits are
 | 
						|
  // the same as the lower 64-bits, ignoring undefs.
 | 
						|
  if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
 | 
						|
    return false;  // Can't be a splat if two pieces don't match.
 | 
						|
  
 | 
						|
  uint64_t Bits64  = Bits128[0] | Bits128[1];
 | 
						|
  uint64_t Undef64 = Undef128[0] & Undef128[1];
 | 
						|
  
 | 
						|
  // Check that the top 32-bits are the same as the lower 32-bits, ignoring
 | 
						|
  // undefs.
 | 
						|
  if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
 | 
						|
    return false;  // Can't be a splat if two pieces don't match.
 | 
						|
 | 
						|
  uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
 | 
						|
  uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
 | 
						|
 | 
						|
  // If the top 16-bits are different than the lower 16-bits, ignoring
 | 
						|
  // undefs, we have an i32 splat.
 | 
						|
  if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
 | 
						|
    SplatBits = Bits32;
 | 
						|
    SplatUndef = Undef32;
 | 
						|
    SplatSize = 4;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16);
 | 
						|
  uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
 | 
						|
 | 
						|
  // If the top 8-bits are different than the lower 8-bits, ignoring
 | 
						|
  // undefs, we have an i16 splat.
 | 
						|
  if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
 | 
						|
    SplatBits = Bits16;
 | 
						|
    SplatUndef = Undef16;
 | 
						|
    SplatSize = 2;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Otherwise, we have an 8-bit splat.
 | 
						|
  SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8);
 | 
						|
  SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
 | 
						|
  SplatSize = 1;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// BuildSplatI - Build a canonical splati of Val with an element size of
 | 
						|
/// SplatSize.  Cast the result to VT.
 | 
						|
static SDValue BuildSplatI(int Val, unsigned SplatSize, MVT VT,
 | 
						|
                             SelectionDAG &DAG) {
 | 
						|
  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
 | 
						|
 | 
						|
  static const MVT VTys[] = { // canonical VT to use for each size.
 | 
						|
    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
 | 
						|
  };
 | 
						|
 | 
						|
  MVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
 | 
						|
  
 | 
						|
  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
 | 
						|
  if (Val == -1)
 | 
						|
    SplatSize = 1;
 | 
						|
  
 | 
						|
  MVT CanonicalVT = VTys[SplatSize-1];
 | 
						|
  
 | 
						|
  // Build a canonical splat for this value.
 | 
						|
  SDValue Elt = DAG.getConstant(Val, CanonicalVT.getVectorElementType());
 | 
						|
  SmallVector<SDValue, 8> Ops;
 | 
						|
  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
 | 
						|
  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
 | 
						|
                              &Ops[0], Ops.size());
 | 
						|
  return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
 | 
						|
}
 | 
						|
 | 
						|
/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
 | 
						|
/// specified intrinsic ID.
 | 
						|
static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
 | 
						|
                                  SelectionDAG &DAG, 
 | 
						|
                                  MVT DestVT = MVT::Other) {
 | 
						|
  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
 | 
						|
  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
 | 
						|
                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
 | 
						|
}
 | 
						|
 | 
						|
/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
 | 
						|
/// specified intrinsic ID.
 | 
						|
static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
 | 
						|
                                  SDValue Op2, SelectionDAG &DAG, 
 | 
						|
                                  MVT DestVT = MVT::Other) {
 | 
						|
  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
 | 
						|
  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
 | 
						|
                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
 | 
						|
/// amount.  The result has the specified value type.
 | 
						|
static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
 | 
						|
                             MVT VT, SelectionDAG &DAG) {
 | 
						|
  // Force LHS/RHS to be the right type.
 | 
						|
  LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
 | 
						|
  RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
 | 
						|
 | 
						|
  SDValue Ops[16];
 | 
						|
  for (unsigned i = 0; i != 16; ++i)
 | 
						|
    Ops[i] = DAG.getConstant(i+Amt, MVT::i8);
 | 
						|
  SDValue T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
 | 
						|
                            DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
 | 
						|
  return DAG.getNode(ISD::BIT_CONVERT, VT, T);
 | 
						|
}
 | 
						|
 | 
						|
// If this is a case we can't handle, return null and let the default
 | 
						|
// expansion code take care of it.  If we CAN select this case, and if it
 | 
						|
// selects to a single instruction, return Op.  Otherwise, if we can codegen
 | 
						|
// this case more efficiently than a constant pool load, lower it to the
 | 
						|
// sequence of ops that should be used.
 | 
						|
SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 
 | 
						|
                                               SelectionDAG &DAG) {
 | 
						|
  // If this is a vector of constants or undefs, get the bits.  A bit in
 | 
						|
  // UndefBits is set if the corresponding element of the vector is an 
 | 
						|
  // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
 | 
						|
  // zero. 
 | 
						|
  uint64_t VectorBits[2];
 | 
						|
  uint64_t UndefBits[2];
 | 
						|
  if (GetConstantBuildVectorBits(Op.getNode(), VectorBits, UndefBits))
 | 
						|
    return SDValue();   // Not a constant vector.
 | 
						|
  
 | 
						|
  // If this is a splat (repetition) of a value across the whole vector, return
 | 
						|
  // the smallest size that splats it.  For example, "0x01010101010101..." is a
 | 
						|
  // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and 
 | 
						|
  // SplatSize = 1 byte.
 | 
						|
  unsigned SplatBits, SplatUndef, SplatSize;
 | 
						|
  if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
 | 
						|
    bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
 | 
						|
    
 | 
						|
    // First, handle single instruction cases.
 | 
						|
    
 | 
						|
    // All zeros?
 | 
						|
    if (SplatBits == 0) {
 | 
						|
      // Canonicalize all zero vectors to be v4i32.
 | 
						|
      if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
 | 
						|
        SDValue Z = DAG.getConstant(0, MVT::i32);
 | 
						|
        Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
 | 
						|
        Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
 | 
						|
      }
 | 
						|
      return Op;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
 | 
						|
    int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
 | 
						|
    if (SextVal >= -16 && SextVal <= 15)
 | 
						|
      return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
 | 
						|
    
 | 
						|
    
 | 
						|
    // Two instruction sequences.
 | 
						|
    
 | 
						|
    // If this value is in the range [-32,30] and is even, use:
 | 
						|
    //    tmp = VSPLTI[bhw], result = add tmp, tmp
 | 
						|
    if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
 | 
						|
      SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG);
 | 
						|
      Res = DAG.getNode(ISD::ADD, Res.getValueType(), Res, Res);
 | 
						|
      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is 
 | 
						|
    // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
 | 
						|
    // for fneg/fabs.
 | 
						|
    if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
 | 
						|
      // Make -1 and vspltisw -1:
 | 
						|
      SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
 | 
						|
      
 | 
						|
      // Make the VSLW intrinsic, computing 0x8000_0000.
 | 
						|
      SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 
 | 
						|
                                       OnesV, DAG);
 | 
						|
      
 | 
						|
      // xor by OnesV to invert it.
 | 
						|
      Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
 | 
						|
      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
 | 
						|
    }
 | 
						|
 | 
						|
    // Check to see if this is a wide variety of vsplti*, binop self cases.
 | 
						|
    unsigned SplatBitSize = SplatSize*8;
 | 
						|
    static const signed char SplatCsts[] = {
 | 
						|
      -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
 | 
						|
      -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
 | 
						|
    };
 | 
						|
    
 | 
						|
    for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
 | 
						|
      // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
 | 
						|
      // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
 | 
						|
      int i = SplatCsts[idx];
 | 
						|
      
 | 
						|
      // Figure out what shift amount will be used by altivec if shifted by i in
 | 
						|
      // this splat size.
 | 
						|
      unsigned TypeShiftAmt = i & (SplatBitSize-1);
 | 
						|
      
 | 
						|
      // vsplti + shl self.
 | 
						|
      if (SextVal == (i << (int)TypeShiftAmt)) {
 | 
						|
        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
 | 
						|
        static const unsigned IIDs[] = { // Intrinsic to use for each size.
 | 
						|
          Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
 | 
						|
          Intrinsic::ppc_altivec_vslw
 | 
						|
        };
 | 
						|
        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
 | 
						|
        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
 | 
						|
      }
 | 
						|
      
 | 
						|
      // vsplti + srl self.
 | 
						|
      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
 | 
						|
        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
 | 
						|
        static const unsigned IIDs[] = { // Intrinsic to use for each size.
 | 
						|
          Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
 | 
						|
          Intrinsic::ppc_altivec_vsrw
 | 
						|
        };
 | 
						|
        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
 | 
						|
        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
 | 
						|
      }
 | 
						|
      
 | 
						|
      // vsplti + sra self.
 | 
						|
      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
 | 
						|
        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
 | 
						|
        static const unsigned IIDs[] = { // Intrinsic to use for each size.
 | 
						|
          Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
 | 
						|
          Intrinsic::ppc_altivec_vsraw
 | 
						|
        };
 | 
						|
        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
 | 
						|
        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
 | 
						|
      }
 | 
						|
      
 | 
						|
      // vsplti + rol self.
 | 
						|
      if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
 | 
						|
                           ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
 | 
						|
        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
 | 
						|
        static const unsigned IIDs[] = { // Intrinsic to use for each size.
 | 
						|
          Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
 | 
						|
          Intrinsic::ppc_altivec_vrlw
 | 
						|
        };
 | 
						|
        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
 | 
						|
        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
 | 
						|
      }
 | 
						|
 | 
						|
      // t = vsplti c, result = vsldoi t, t, 1
 | 
						|
      if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
 | 
						|
        SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
 | 
						|
        return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
 | 
						|
      }
 | 
						|
      // t = vsplti c, result = vsldoi t, t, 2
 | 
						|
      if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
 | 
						|
        SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
 | 
						|
        return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
 | 
						|
      }
 | 
						|
      // t = vsplti c, result = vsldoi t, t, 3
 | 
						|
      if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
 | 
						|
        SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
 | 
						|
        return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Three instruction sequences.
 | 
						|
    
 | 
						|
    // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
 | 
						|
    if (SextVal >= 0 && SextVal <= 31) {
 | 
						|
      SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
 | 
						|
      SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
 | 
						|
      LHS = DAG.getNode(ISD::SUB, LHS.getValueType(), LHS, RHS);
 | 
						|
      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
 | 
						|
    }
 | 
						|
    // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
 | 
						|
    if (SextVal >= -31 && SextVal <= 0) {
 | 
						|
      SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
 | 
						|
      SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
 | 
						|
      LHS = DAG.getNode(ISD::ADD, LHS.getValueType(), LHS, RHS);
 | 
						|
      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
 | 
						|
    }
 | 
						|
  }
 | 
						|
    
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
 | 
						|
/// the specified operations to build the shuffle.
 | 
						|
static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
 | 
						|
                                        SDValue RHS, SelectionDAG &DAG) {
 | 
						|
  unsigned OpNum = (PFEntry >> 26) & 0x0F;
 | 
						|
  unsigned LHSID  = (PFEntry >> 13) & ((1 << 13)-1);
 | 
						|
  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
 | 
						|
  
 | 
						|
  enum {
 | 
						|
    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
 | 
						|
    OP_VMRGHW,
 | 
						|
    OP_VMRGLW,
 | 
						|
    OP_VSPLTISW0,
 | 
						|
    OP_VSPLTISW1,
 | 
						|
    OP_VSPLTISW2,
 | 
						|
    OP_VSPLTISW3,
 | 
						|
    OP_VSLDOI4,
 | 
						|
    OP_VSLDOI8,
 | 
						|
    OP_VSLDOI12
 | 
						|
  };
 | 
						|
  
 | 
						|
  if (OpNum == OP_COPY) {
 | 
						|
    if (LHSID == (1*9+2)*9+3) return LHS;
 | 
						|
    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
 | 
						|
    return RHS;
 | 
						|
  }
 | 
						|
  
 | 
						|
  SDValue OpLHS, OpRHS;
 | 
						|
  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
 | 
						|
  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
 | 
						|
  
 | 
						|
  unsigned ShufIdxs[16];
 | 
						|
  switch (OpNum) {
 | 
						|
  default: assert(0 && "Unknown i32 permute!");
 | 
						|
  case OP_VMRGHW:
 | 
						|
    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
 | 
						|
    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
 | 
						|
    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
 | 
						|
    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
 | 
						|
    break;
 | 
						|
  case OP_VMRGLW:
 | 
						|
    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
 | 
						|
    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
 | 
						|
    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
 | 
						|
    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
 | 
						|
    break;
 | 
						|
  case OP_VSPLTISW0:
 | 
						|
    for (unsigned i = 0; i != 16; ++i)
 | 
						|
      ShufIdxs[i] = (i&3)+0;
 | 
						|
    break;
 | 
						|
  case OP_VSPLTISW1:
 | 
						|
    for (unsigned i = 0; i != 16; ++i)
 | 
						|
      ShufIdxs[i] = (i&3)+4;
 | 
						|
    break;
 | 
						|
  case OP_VSPLTISW2:
 | 
						|
    for (unsigned i = 0; i != 16; ++i)
 | 
						|
      ShufIdxs[i] = (i&3)+8;
 | 
						|
    break;
 | 
						|
  case OP_VSPLTISW3:
 | 
						|
    for (unsigned i = 0; i != 16; ++i)
 | 
						|
      ShufIdxs[i] = (i&3)+12;
 | 
						|
    break;
 | 
						|
  case OP_VSLDOI4:
 | 
						|
    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
 | 
						|
  case OP_VSLDOI8:
 | 
						|
    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
 | 
						|
  case OP_VSLDOI12:
 | 
						|
    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
 | 
						|
  }
 | 
						|
  SDValue Ops[16];
 | 
						|
  for (unsigned i = 0; i != 16; ++i)
 | 
						|
    Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i8);
 | 
						|
  
 | 
						|
  return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
 | 
						|
                     DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
 | 
						|
}
 | 
						|
 | 
						|
/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
 | 
						|
/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
 | 
						|
/// return the code it can be lowered into.  Worst case, it can always be
 | 
						|
/// lowered into a vperm.
 | 
						|
SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 
 | 
						|
                                                 SelectionDAG &DAG) {
 | 
						|
  SDValue V1 = Op.getOperand(0);
 | 
						|
  SDValue V2 = Op.getOperand(1);
 | 
						|
  SDValue PermMask = Op.getOperand(2);
 | 
						|
  
 | 
						|
  // Cases that are handled by instructions that take permute immediates
 | 
						|
  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
 | 
						|
  // selected by the instruction selector.
 | 
						|
  if (V2.getOpcode() == ISD::UNDEF) {
 | 
						|
    if (PPC::isSplatShuffleMask(PermMask.getNode(), 1) ||
 | 
						|
        PPC::isSplatShuffleMask(PermMask.getNode(), 2) ||
 | 
						|
        PPC::isSplatShuffleMask(PermMask.getNode(), 4) ||
 | 
						|
        PPC::isVPKUWUMShuffleMask(PermMask.getNode(), true) ||
 | 
						|
        PPC::isVPKUHUMShuffleMask(PermMask.getNode(), true) ||
 | 
						|
        PPC::isVSLDOIShuffleMask(PermMask.getNode(), true) != -1 ||
 | 
						|
        PPC::isVMRGLShuffleMask(PermMask.getNode(), 1, true) ||
 | 
						|
        PPC::isVMRGLShuffleMask(PermMask.getNode(), 2, true) ||
 | 
						|
        PPC::isVMRGLShuffleMask(PermMask.getNode(), 4, true) ||
 | 
						|
        PPC::isVMRGHShuffleMask(PermMask.getNode(), 1, true) ||
 | 
						|
        PPC::isVMRGHShuffleMask(PermMask.getNode(), 2, true) ||
 | 
						|
        PPC::isVMRGHShuffleMask(PermMask.getNode(), 4, true)) {
 | 
						|
      return Op;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Altivec has a variety of "shuffle immediates" that take two vector inputs
 | 
						|
  // and produce a fixed permutation.  If any of these match, do not lower to
 | 
						|
  // VPERM.
 | 
						|
  if (PPC::isVPKUWUMShuffleMask(PermMask.getNode(), false) ||
 | 
						|
      PPC::isVPKUHUMShuffleMask(PermMask.getNode(), false) ||
 | 
						|
      PPC::isVSLDOIShuffleMask(PermMask.getNode(), false) != -1 ||
 | 
						|
      PPC::isVMRGLShuffleMask(PermMask.getNode(), 1, false) ||
 | 
						|
      PPC::isVMRGLShuffleMask(PermMask.getNode(), 2, false) ||
 | 
						|
      PPC::isVMRGLShuffleMask(PermMask.getNode(), 4, false) ||
 | 
						|
      PPC::isVMRGHShuffleMask(PermMask.getNode(), 1, false) ||
 | 
						|
      PPC::isVMRGHShuffleMask(PermMask.getNode(), 2, false) ||
 | 
						|
      PPC::isVMRGHShuffleMask(PermMask.getNode(), 4, false))
 | 
						|
    return Op;
 | 
						|
  
 | 
						|
  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
 | 
						|
  // perfect shuffle table to emit an optimal matching sequence.
 | 
						|
  unsigned PFIndexes[4];
 | 
						|
  bool isFourElementShuffle = true;
 | 
						|
  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
 | 
						|
    unsigned EltNo = 8;   // Start out undef.
 | 
						|
    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
 | 
						|
      if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
 | 
						|
        continue;   // Undef, ignore it.
 | 
						|
      
 | 
						|
      unsigned ByteSource = 
 | 
						|
        cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
 | 
						|
      if ((ByteSource & 3) != j) {
 | 
						|
        isFourElementShuffle = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      
 | 
						|
      if (EltNo == 8) {
 | 
						|
        EltNo = ByteSource/4;
 | 
						|
      } else if (EltNo != ByteSource/4) {
 | 
						|
        isFourElementShuffle = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    PFIndexes[i] = EltNo;
 | 
						|
  }
 | 
						|
    
 | 
						|
  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 
 | 
						|
  // perfect shuffle vector to determine if it is cost effective to do this as
 | 
						|
  // discrete instructions, or whether we should use a vperm.
 | 
						|
  if (isFourElementShuffle) {
 | 
						|
    // Compute the index in the perfect shuffle table.
 | 
						|
    unsigned PFTableIndex = 
 | 
						|
      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
 | 
						|
    
 | 
						|
    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
 | 
						|
    unsigned Cost  = (PFEntry >> 30);
 | 
						|
    
 | 
						|
    // Determining when to avoid vperm is tricky.  Many things affect the cost
 | 
						|
    // of vperm, particularly how many times the perm mask needs to be computed.
 | 
						|
    // For example, if the perm mask can be hoisted out of a loop or is already
 | 
						|
    // used (perhaps because there are multiple permutes with the same shuffle
 | 
						|
    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
 | 
						|
    // the loop requires an extra register.
 | 
						|
    //
 | 
						|
    // As a compromise, we only emit discrete instructions if the shuffle can be
 | 
						|
    // generated in 3 or fewer operations.  When we have loop information 
 | 
						|
    // available, if this block is within a loop, we should avoid using vperm
 | 
						|
    // for 3-operation perms and use a constant pool load instead.
 | 
						|
    if (Cost < 3) 
 | 
						|
      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
 | 
						|
  // vector that will get spilled to the constant pool.
 | 
						|
  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
 | 
						|
  
 | 
						|
  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
 | 
						|
  // that it is in input element units, not in bytes.  Convert now.
 | 
						|
  MVT EltVT = V1.getValueType().getVectorElementType();
 | 
						|
  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
 | 
						|
  
 | 
						|
  SmallVector<SDValue, 16> ResultMask;
 | 
						|
  for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
 | 
						|
    unsigned SrcElt;
 | 
						|
    if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
 | 
						|
      SrcElt = 0;
 | 
						|
    else 
 | 
						|
      SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
 | 
						|
    
 | 
						|
    for (unsigned j = 0; j != BytesPerElement; ++j)
 | 
						|
      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
 | 
						|
                                           MVT::i8));
 | 
						|
  }
 | 
						|
  
 | 
						|
  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
 | 
						|
                                    &ResultMask[0], ResultMask.size());
 | 
						|
  return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
 | 
						|
}
 | 
						|
 | 
						|
/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
 | 
						|
/// altivec comparison.  If it is, return true and fill in Opc/isDot with
 | 
						|
/// information about the intrinsic.
 | 
						|
static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
 | 
						|
                                  bool &isDot) {
 | 
						|
  unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
 | 
						|
  CompareOpc = -1;
 | 
						|
  isDot = false;
 | 
						|
  switch (IntrinsicID) {
 | 
						|
  default: return false;
 | 
						|
    // Comparison predicates.
 | 
						|
  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
 | 
						|
    
 | 
						|
    // Normal Comparisons.
 | 
						|
  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
 | 
						|
/// lower, do it, otherwise return null.
 | 
						|
SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 
 | 
						|
                                                     SelectionDAG &DAG) {
 | 
						|
  // If this is a lowered altivec predicate compare, CompareOpc is set to the
 | 
						|
  // opcode number of the comparison.
 | 
						|
  int CompareOpc;
 | 
						|
  bool isDot;
 | 
						|
  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
 | 
						|
    return SDValue();    // Don't custom lower most intrinsics.
 | 
						|
  
 | 
						|
  // If this is a non-dot comparison, make the VCMP node and we are done.
 | 
						|
  if (!isDot) {
 | 
						|
    SDValue Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
 | 
						|
                                Op.getOperand(1), Op.getOperand(2),
 | 
						|
                                DAG.getConstant(CompareOpc, MVT::i32));
 | 
						|
    return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Create the PPCISD altivec 'dot' comparison node.
 | 
						|
  SDValue Ops[] = {
 | 
						|
    Op.getOperand(2),  // LHS
 | 
						|
    Op.getOperand(3),  // RHS
 | 
						|
    DAG.getConstant(CompareOpc, MVT::i32)
 | 
						|
  };
 | 
						|
  std::vector<MVT> VTs;
 | 
						|
  VTs.push_back(Op.getOperand(2).getValueType());
 | 
						|
  VTs.push_back(MVT::Flag);
 | 
						|
  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
 | 
						|
  
 | 
						|
  // Now that we have the comparison, emit a copy from the CR to a GPR.
 | 
						|
  // This is flagged to the above dot comparison.
 | 
						|
  SDValue Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
 | 
						|
                                DAG.getRegister(PPC::CR6, MVT::i32),
 | 
						|
                                CompNode.getValue(1)); 
 | 
						|
  
 | 
						|
  // Unpack the result based on how the target uses it.
 | 
						|
  unsigned BitNo;   // Bit # of CR6.
 | 
						|
  bool InvertBit;   // Invert result?
 | 
						|
  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
 | 
						|
  default:  // Can't happen, don't crash on invalid number though.
 | 
						|
  case 0:   // Return the value of the EQ bit of CR6.
 | 
						|
    BitNo = 0; InvertBit = false;
 | 
						|
    break;
 | 
						|
  case 1:   // Return the inverted value of the EQ bit of CR6.
 | 
						|
    BitNo = 0; InvertBit = true;
 | 
						|
    break;
 | 
						|
  case 2:   // Return the value of the LT bit of CR6.
 | 
						|
    BitNo = 2; InvertBit = false;
 | 
						|
    break;
 | 
						|
  case 3:   // Return the inverted value of the LT bit of CR6.
 | 
						|
    BitNo = 2; InvertBit = true;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Shift the bit into the low position.
 | 
						|
  Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
 | 
						|
                      DAG.getConstant(8-(3-BitNo), MVT::i32));
 | 
						|
  // Isolate the bit.
 | 
						|
  Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
 | 
						|
                      DAG.getConstant(1, MVT::i32));
 | 
						|
  
 | 
						|
  // If we are supposed to, toggle the bit.
 | 
						|
  if (InvertBit)
 | 
						|
    Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
 | 
						|
                        DAG.getConstant(1, MVT::i32));
 | 
						|
  return Flags;
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 
 | 
						|
                                                   SelectionDAG &DAG) {
 | 
						|
  // Create a stack slot that is 16-byte aligned.
 | 
						|
  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
 | 
						|
  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
 | 
						|
  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | 
						|
  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
 | 
						|
  
 | 
						|
  // Store the input value into Value#0 of the stack slot.
 | 
						|
  SDValue Store = DAG.getStore(DAG.getEntryNode(),
 | 
						|
                                 Op.getOperand(0), FIdx, NULL, 0);
 | 
						|
  // Load it out.
 | 
						|
  return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  if (Op.getValueType() == MVT::v4i32) {
 | 
						|
    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
 | 
						|
    
 | 
						|
    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG);
 | 
						|
    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
 | 
						|
    
 | 
						|
    SDValue RHSSwap =   // = vrlw RHS, 16
 | 
						|
      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
 | 
						|
    
 | 
						|
    // Shrinkify inputs to v8i16.
 | 
						|
    LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
 | 
						|
    RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
 | 
						|
    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
 | 
						|
    
 | 
						|
    // Low parts multiplied together, generating 32-bit results (we ignore the
 | 
						|
    // top parts).
 | 
						|
    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
 | 
						|
                                        LHS, RHS, DAG, MVT::v4i32);
 | 
						|
    
 | 
						|
    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
 | 
						|
                                        LHS, RHSSwap, Zero, DAG, MVT::v4i32);
 | 
						|
    // Shift the high parts up 16 bits.
 | 
						|
    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
 | 
						|
    return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
 | 
						|
  } else if (Op.getValueType() == MVT::v8i16) {
 | 
						|
    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
 | 
						|
    
 | 
						|
    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
 | 
						|
 | 
						|
    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
 | 
						|
                            LHS, RHS, Zero, DAG);
 | 
						|
  } else if (Op.getValueType() == MVT::v16i8) {
 | 
						|
    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
 | 
						|
    
 | 
						|
    // Multiply the even 8-bit parts, producing 16-bit sums.
 | 
						|
    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
 | 
						|
                                           LHS, RHS, DAG, MVT::v8i16);
 | 
						|
    EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
 | 
						|
    
 | 
						|
    // Multiply the odd 8-bit parts, producing 16-bit sums.
 | 
						|
    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
 | 
						|
                                          LHS, RHS, DAG, MVT::v8i16);
 | 
						|
    OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
 | 
						|
    
 | 
						|
    // Merge the results together.
 | 
						|
    SDValue Ops[16];
 | 
						|
    for (unsigned i = 0; i != 8; ++i) {
 | 
						|
      Ops[i*2  ] = DAG.getConstant(2*i+1, MVT::i8);
 | 
						|
      Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
 | 
						|
    }
 | 
						|
    return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
 | 
						|
                       DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
 | 
						|
  } else {
 | 
						|
    assert(0 && "Unknown mul to lower!");
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// LowerOperation - Provide custom lowering hooks for some operations.
 | 
						|
///
 | 
						|
SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  switch (Op.getOpcode()) {
 | 
						|
  default: assert(0 && "Wasn't expecting to be able to lower this!"); 
 | 
						|
  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
 | 
						|
  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
 | 
						|
  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
 | 
						|
  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
 | 
						|
  case ISD::SETCC:              return LowerSETCC(Op, DAG);
 | 
						|
  case ISD::VASTART:            
 | 
						|
    return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
 | 
						|
                        VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
 | 
						|
  
 | 
						|
  case ISD::VAARG:            
 | 
						|
    return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
 | 
						|
                      VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
 | 
						|
 | 
						|
  case ISD::FORMAL_ARGUMENTS:
 | 
						|
    return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex, 
 | 
						|
                                 VarArgsStackOffset, VarArgsNumGPR,
 | 
						|
                                 VarArgsNumFPR, PPCSubTarget);
 | 
						|
 | 
						|
  case ISD::CALL:               return LowerCALL(Op, DAG, PPCSubTarget,
 | 
						|
                                                 getTargetMachine());
 | 
						|
  case ISD::RET:                return LowerRET(Op, DAG, getTargetMachine());
 | 
						|
  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
 | 
						|
  case ISD::DYNAMIC_STACKALLOC:
 | 
						|
    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
 | 
						|
 | 
						|
  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
 | 
						|
  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
 | 
						|
  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
 | 
						|
  case ISD::FP_ROUND_INREG:     return LowerFP_ROUND_INREG(Op, DAG);
 | 
						|
  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
 | 
						|
 | 
						|
  // Lower 64-bit shifts.
 | 
						|
  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
 | 
						|
  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
 | 
						|
  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
 | 
						|
 | 
						|
  // Vector-related lowering.
 | 
						|
  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
 | 
						|
  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
 | 
						|
  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
 | 
						|
  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
 | 
						|
  case ISD::MUL:                return LowerMUL(Op, DAG);
 | 
						|
  
 | 
						|
  // Frame & Return address.
 | 
						|
  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
 | 
						|
  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDNode *PPCTargetLowering::ReplaceNodeResults(SDNode *N, SelectionDAG &DAG) {
 | 
						|
  switch (N->getOpcode()) {
 | 
						|
  default: assert(0 && "Wasn't expecting to be able to lower this!");
 | 
						|
  case ISD::FP_TO_SINT: {
 | 
						|
    SDValue Res = LowerFP_TO_SINT(SDValue(N, 0), DAG);
 | 
						|
    // Use MERGE_VALUES to drop the chain result value and get a node with one
 | 
						|
    // result.  This requires turning off getMergeValues simplification, since
 | 
						|
    // otherwise it will give us Res back.
 | 
						|
    return DAG.getMergeValues(&Res, 1, false).getNode();
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Other Lowering Code
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
MachineBasicBlock *
 | 
						|
PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
 | 
						|
                                    bool is64bit, unsigned BinOpcode) {
 | 
						|
  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
 | 
						|
  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | 
						|
 | 
						|
  const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | 
						|
  MachineFunction *F = BB->getParent();
 | 
						|
  MachineFunction::iterator It = BB;
 | 
						|
  ++It;
 | 
						|
 | 
						|
  unsigned dest = MI->getOperand(0).getReg();
 | 
						|
  unsigned ptrA = MI->getOperand(1).getReg();
 | 
						|
  unsigned ptrB = MI->getOperand(2).getReg();
 | 
						|
  unsigned incr = MI->getOperand(3).getReg();
 | 
						|
 | 
						|
  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
  F->insert(It, loopMBB);
 | 
						|
  F->insert(It, exitMBB);
 | 
						|
  exitMBB->transferSuccessors(BB);
 | 
						|
 | 
						|
  MachineRegisterInfo &RegInfo = F->getRegInfo();
 | 
						|
  unsigned TmpReg = (!BinOpcode) ? incr :
 | 
						|
    RegInfo.createVirtualRegister(
 | 
						|
       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
 | 
						|
                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
 | 
						|
 | 
						|
  //  thisMBB:
 | 
						|
  //   ...
 | 
						|
  //   fallthrough --> loopMBB
 | 
						|
  BB->addSuccessor(loopMBB);
 | 
						|
 | 
						|
  //  loopMBB:
 | 
						|
  //   l[wd]arx dest, ptr
 | 
						|
  //   add r0, dest, incr
 | 
						|
  //   st[wd]cx. r0, ptr
 | 
						|
  //   bne- loopMBB
 | 
						|
  //   fallthrough --> exitMBB
 | 
						|
  BB = loopMBB;
 | 
						|
  BuildMI(BB, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
 | 
						|
    .addReg(ptrA).addReg(ptrB);
 | 
						|
  if (BinOpcode)
 | 
						|
    BuildMI(BB, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
 | 
						|
  BuildMI(BB, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
 | 
						|
    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
 | 
						|
  BuildMI(BB, TII->get(PPC::BCC))
 | 
						|
    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);    
 | 
						|
  BB->addSuccessor(loopMBB);
 | 
						|
  BB->addSuccessor(exitMBB);
 | 
						|
 | 
						|
  //  exitMBB:
 | 
						|
  //   ...
 | 
						|
  BB = exitMBB;
 | 
						|
  return BB;
 | 
						|
}
 | 
						|
 | 
						|
MachineBasicBlock *
 | 
						|
PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI, 
 | 
						|
                                            MachineBasicBlock *BB,
 | 
						|
                                            bool is8bit,    // operation
 | 
						|
                                            unsigned BinOpcode) {
 | 
						|
  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
 | 
						|
  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | 
						|
  // In 64 bit mode we have to use 64 bits for addresses, even though the
 | 
						|
  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
 | 
						|
  // registers without caring whether they're 32 or 64, but here we're
 | 
						|
  // doing actual arithmetic on the addresses.
 | 
						|
  bool is64bit = PPCSubTarget.isPPC64();
 | 
						|
 | 
						|
  const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | 
						|
  MachineFunction *F = BB->getParent();
 | 
						|
  MachineFunction::iterator It = BB;
 | 
						|
  ++It;
 | 
						|
 | 
						|
  unsigned dest = MI->getOperand(0).getReg();
 | 
						|
  unsigned ptrA = MI->getOperand(1).getReg();
 | 
						|
  unsigned ptrB = MI->getOperand(2).getReg();
 | 
						|
  unsigned incr = MI->getOperand(3).getReg();
 | 
						|
 | 
						|
  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
  F->insert(It, loopMBB);
 | 
						|
  F->insert(It, exitMBB);
 | 
						|
  exitMBB->transferSuccessors(BB);
 | 
						|
 | 
						|
  MachineRegisterInfo &RegInfo = F->getRegInfo();
 | 
						|
  const TargetRegisterClass *RC = 
 | 
						|
    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
 | 
						|
              (const TargetRegisterClass *) &PPC::GPRCRegClass;
 | 
						|
  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
 | 
						|
  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
 | 
						|
  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
 | 
						|
  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
 | 
						|
  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
 | 
						|
  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
 | 
						|
  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
 | 
						|
  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
 | 
						|
  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
 | 
						|
  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
 | 
						|
  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
 | 
						|
  unsigned Ptr1Reg;
 | 
						|
  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
 | 
						|
 | 
						|
  //  thisMBB:
 | 
						|
  //   ...
 | 
						|
  //   fallthrough --> loopMBB
 | 
						|
  BB->addSuccessor(loopMBB);
 | 
						|
 | 
						|
  // The 4-byte load must be aligned, while a char or short may be
 | 
						|
  // anywhere in the word.  Hence all this nasty bookkeeping code.
 | 
						|
  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
 | 
						|
  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
 | 
						|
  //   xori shift, shift1, 24 [16]
 | 
						|
  //   rlwinm ptr, ptr1, 0, 0, 29
 | 
						|
  //   slw incr2, incr, shift
 | 
						|
  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
 | 
						|
  //   slw mask, mask2, shift
 | 
						|
  //  loopMBB:
 | 
						|
  //   lwarx tmpDest, ptr
 | 
						|
  //   add tmp, tmpDest, incr2
 | 
						|
  //   andc tmp2, tmpDest, mask
 | 
						|
  //   and tmp3, tmp, mask
 | 
						|
  //   or tmp4, tmp3, tmp2
 | 
						|
  //   stwcx. tmp4, ptr
 | 
						|
  //   bne- loopMBB
 | 
						|
  //   fallthrough --> exitMBB
 | 
						|
  //   srw dest, tmpDest, shift
 | 
						|
 | 
						|
  if (ptrA!=PPC::R0) {
 | 
						|
    Ptr1Reg = RegInfo.createVirtualRegister(RC);
 | 
						|
    BuildMI(BB, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
 | 
						|
      .addReg(ptrA).addReg(ptrB);
 | 
						|
  } else {
 | 
						|
    Ptr1Reg = ptrB;
 | 
						|
  }
 | 
						|
  BuildMI(BB, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
 | 
						|
      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
 | 
						|
  BuildMI(BB, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
 | 
						|
      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
 | 
						|
  if (is64bit)
 | 
						|
    BuildMI(BB, TII->get(PPC::RLDICR), PtrReg)
 | 
						|
      .addReg(Ptr1Reg).addImm(0).addImm(61);
 | 
						|
  else
 | 
						|
    BuildMI(BB, TII->get(PPC::RLWINM), PtrReg)
 | 
						|
      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
 | 
						|
  BuildMI(BB, TII->get(PPC::SLW), Incr2Reg)
 | 
						|
      .addReg(incr).addReg(ShiftReg);
 | 
						|
  if (is8bit)
 | 
						|
    BuildMI(BB, TII->get(PPC::LI), Mask2Reg).addImm(255);
 | 
						|
  else {
 | 
						|
    BuildMI(BB, TII->get(PPC::LI), Mask3Reg).addImm(0);
 | 
						|
    BuildMI(BB, TII->get(PPC::ORI), Mask2Reg).addReg(Mask3Reg).addImm(65535);
 | 
						|
  }
 | 
						|
  BuildMI(BB, TII->get(PPC::SLW), MaskReg)
 | 
						|
      .addReg(Mask2Reg).addReg(ShiftReg);
 | 
						|
 | 
						|
  BB = loopMBB;
 | 
						|
  BuildMI(BB, TII->get(PPC::LWARX), TmpDestReg)
 | 
						|
    .addReg(PPC::R0).addReg(PtrReg);
 | 
						|
  if (BinOpcode)
 | 
						|
    BuildMI(BB, TII->get(BinOpcode), TmpReg)
 | 
						|
      .addReg(Incr2Reg).addReg(TmpDestReg);
 | 
						|
  BuildMI(BB, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
 | 
						|
    .addReg(TmpDestReg).addReg(MaskReg);
 | 
						|
  BuildMI(BB, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
 | 
						|
    .addReg(TmpReg).addReg(MaskReg);
 | 
						|
  BuildMI(BB, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
 | 
						|
    .addReg(Tmp3Reg).addReg(Tmp2Reg);
 | 
						|
  BuildMI(BB, TII->get(PPC::STWCX))
 | 
						|
    .addReg(Tmp4Reg).addReg(PPC::R0).addReg(PtrReg);
 | 
						|
  BuildMI(BB, TII->get(PPC::BCC))
 | 
						|
    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);    
 | 
						|
  BB->addSuccessor(loopMBB);
 | 
						|
  BB->addSuccessor(exitMBB);
 | 
						|
 | 
						|
  //  exitMBB:
 | 
						|
  //   ...
 | 
						|
  BB = exitMBB;
 | 
						|
  BuildMI(BB, TII->get(PPC::SRW), dest).addReg(TmpDestReg).addReg(ShiftReg);
 | 
						|
  return BB;
 | 
						|
}
 | 
						|
 | 
						|
MachineBasicBlock *
 | 
						|
PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
 | 
						|
                                               MachineBasicBlock *BB) {
 | 
						|
  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | 
						|
 | 
						|
  // To "insert" these instructions we actually have to insert their
 | 
						|
  // control-flow patterns.
 | 
						|
  const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | 
						|
  MachineFunction::iterator It = BB;
 | 
						|
  ++It;
 | 
						|
 | 
						|
  MachineFunction *F = BB->getParent();
 | 
						|
 | 
						|
  if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
 | 
						|
      MI->getOpcode() == PPC::SELECT_CC_I8 ||
 | 
						|
      MI->getOpcode() == PPC::SELECT_CC_F4 ||
 | 
						|
      MI->getOpcode() == PPC::SELECT_CC_F8 ||
 | 
						|
      MI->getOpcode() == PPC::SELECT_CC_VRRC) {
 | 
						|
 | 
						|
    // The incoming instruction knows the destination vreg to set, the
 | 
						|
    // condition code register to branch on, the true/false values to
 | 
						|
    // select between, and a branch opcode to use.
 | 
						|
 | 
						|
    //  thisMBB:
 | 
						|
    //  ...
 | 
						|
    //   TrueVal = ...
 | 
						|
    //   cmpTY ccX, r1, r2
 | 
						|
    //   bCC copy1MBB
 | 
						|
    //   fallthrough --> copy0MBB
 | 
						|
    MachineBasicBlock *thisMBB = BB;
 | 
						|
    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
    unsigned SelectPred = MI->getOperand(4).getImm();
 | 
						|
    BuildMI(BB, TII->get(PPC::BCC))
 | 
						|
      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
 | 
						|
    F->insert(It, copy0MBB);
 | 
						|
    F->insert(It, sinkMBB);
 | 
						|
    // Update machine-CFG edges by transferring all successors of the current
 | 
						|
    // block to the new block which will contain the Phi node for the select.
 | 
						|
    sinkMBB->transferSuccessors(BB);
 | 
						|
    // Next, add the true and fallthrough blocks as its successors.
 | 
						|
    BB->addSuccessor(copy0MBB);
 | 
						|
    BB->addSuccessor(sinkMBB);
 | 
						|
    
 | 
						|
    //  copy0MBB:
 | 
						|
    //   %FalseValue = ...
 | 
						|
    //   # fallthrough to sinkMBB
 | 
						|
    BB = copy0MBB;
 | 
						|
    
 | 
						|
    // Update machine-CFG edges
 | 
						|
    BB->addSuccessor(sinkMBB);
 | 
						|
    
 | 
						|
    //  sinkMBB:
 | 
						|
    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
 | 
						|
    //  ...
 | 
						|
    BB = sinkMBB;
 | 
						|
    BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
 | 
						|
      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
 | 
						|
      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
 | 
						|
  }
 | 
						|
  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
 | 
						|
  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
 | 
						|
  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
 | 
						|
  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
 | 
						|
 | 
						|
  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
 | 
						|
  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
 | 
						|
  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
 | 
						|
  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
 | 
						|
 | 
						|
  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
 | 
						|
  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
 | 
						|
  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
 | 
						|
  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
 | 
						|
 | 
						|
  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
 | 
						|
  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
 | 
						|
  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
 | 
						|
  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
 | 
						|
 | 
						|
  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
 | 
						|
  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
 | 
						|
  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, false, PPC::NAND);
 | 
						|
  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, true, PPC::NAND8);
 | 
						|
 | 
						|
  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
 | 
						|
  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
 | 
						|
  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
 | 
						|
  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
 | 
						|
 | 
						|
  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
 | 
						|
  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
 | 
						|
  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, false, 0);
 | 
						|
  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, true, 0);
 | 
						|
 | 
						|
  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
 | 
						|
           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
 | 
						|
    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
 | 
						|
 | 
						|
    unsigned dest   = MI->getOperand(0).getReg();
 | 
						|
    unsigned ptrA   = MI->getOperand(1).getReg();
 | 
						|
    unsigned ptrB   = MI->getOperand(2).getReg();
 | 
						|
    unsigned oldval = MI->getOperand(3).getReg();
 | 
						|
    unsigned newval = MI->getOperand(4).getReg();
 | 
						|
 | 
						|
    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
    F->insert(It, loop1MBB);
 | 
						|
    F->insert(It, loop2MBB);
 | 
						|
    F->insert(It, midMBB);
 | 
						|
    F->insert(It, exitMBB);
 | 
						|
    exitMBB->transferSuccessors(BB);
 | 
						|
 | 
						|
    //  thisMBB:
 | 
						|
    //   ...
 | 
						|
    //   fallthrough --> loopMBB
 | 
						|
    BB->addSuccessor(loop1MBB);
 | 
						|
 | 
						|
    // loop1MBB:
 | 
						|
    //   l[wd]arx dest, ptr
 | 
						|
    //   cmp[wd] dest, oldval
 | 
						|
    //   bne- midMBB
 | 
						|
    // loop2MBB:
 | 
						|
    //   st[wd]cx. newval, ptr
 | 
						|
    //   bne- loopMBB
 | 
						|
    //   b exitBB
 | 
						|
    // midMBB:
 | 
						|
    //   st[wd]cx. dest, ptr
 | 
						|
    // exitBB:
 | 
						|
    BB = loop1MBB;
 | 
						|
    BuildMI(BB, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
 | 
						|
      .addReg(ptrA).addReg(ptrB);
 | 
						|
    BuildMI(BB, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
 | 
						|
      .addReg(oldval).addReg(dest);
 | 
						|
    BuildMI(BB, TII->get(PPC::BCC))
 | 
						|
      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
 | 
						|
    BB->addSuccessor(loop2MBB);
 | 
						|
    BB->addSuccessor(midMBB);
 | 
						|
 | 
						|
    BB = loop2MBB;
 | 
						|
    BuildMI(BB, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
 | 
						|
      .addReg(newval).addReg(ptrA).addReg(ptrB);
 | 
						|
    BuildMI(BB, TII->get(PPC::BCC))
 | 
						|
      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
 | 
						|
    BuildMI(BB, TII->get(PPC::B)).addMBB(exitMBB);
 | 
						|
    BB->addSuccessor(loop1MBB);
 | 
						|
    BB->addSuccessor(exitMBB);
 | 
						|
    
 | 
						|
    BB = midMBB;
 | 
						|
    BuildMI(BB, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
 | 
						|
      .addReg(dest).addReg(ptrA).addReg(ptrB);
 | 
						|
    BB->addSuccessor(exitMBB);
 | 
						|
 | 
						|
    //  exitMBB:
 | 
						|
    //   ...
 | 
						|
    BB = exitMBB;
 | 
						|
  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
 | 
						|
             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
 | 
						|
    // We must use 64-bit registers for addresses when targeting 64-bit,
 | 
						|
    // since we're actually doing arithmetic on them.  Other registers
 | 
						|
    // can be 32-bit.
 | 
						|
    bool is64bit = PPCSubTarget.isPPC64();
 | 
						|
    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
 | 
						|
 | 
						|
    unsigned dest   = MI->getOperand(0).getReg();
 | 
						|
    unsigned ptrA   = MI->getOperand(1).getReg();
 | 
						|
    unsigned ptrB   = MI->getOperand(2).getReg();
 | 
						|
    unsigned oldval = MI->getOperand(3).getReg();
 | 
						|
    unsigned newval = MI->getOperand(4).getReg();
 | 
						|
 | 
						|
    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
    F->insert(It, loop1MBB);
 | 
						|
    F->insert(It, loop2MBB);
 | 
						|
    F->insert(It, midMBB);
 | 
						|
    F->insert(It, exitMBB);
 | 
						|
    exitMBB->transferSuccessors(BB);
 | 
						|
 | 
						|
    MachineRegisterInfo &RegInfo = F->getRegInfo();
 | 
						|
    const TargetRegisterClass *RC = 
 | 
						|
      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
 | 
						|
                (const TargetRegisterClass *) &PPC::GPRCRegClass;
 | 
						|
    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
 | 
						|
    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
 | 
						|
    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
 | 
						|
    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
 | 
						|
    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
 | 
						|
    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
 | 
						|
    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
 | 
						|
    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
 | 
						|
    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
 | 
						|
    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
 | 
						|
    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
 | 
						|
    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
 | 
						|
    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
 | 
						|
    unsigned Ptr1Reg;
 | 
						|
    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
 | 
						|
    //  thisMBB:
 | 
						|
    //   ...
 | 
						|
    //   fallthrough --> loopMBB
 | 
						|
    BB->addSuccessor(loop1MBB);
 | 
						|
 | 
						|
    // The 4-byte load must be aligned, while a char or short may be
 | 
						|
    // anywhere in the word.  Hence all this nasty bookkeeping code.
 | 
						|
    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
 | 
						|
    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
 | 
						|
    //   xori shift, shift1, 24 [16]
 | 
						|
    //   rlwinm ptr, ptr1, 0, 0, 29
 | 
						|
    //   slw newval2, newval, shift
 | 
						|
    //   slw oldval2, oldval,shift
 | 
						|
    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
 | 
						|
    //   slw mask, mask2, shift
 | 
						|
    //   and newval3, newval2, mask
 | 
						|
    //   and oldval3, oldval2, mask
 | 
						|
    // loop1MBB:
 | 
						|
    //   lwarx tmpDest, ptr
 | 
						|
    //   and tmp, tmpDest, mask
 | 
						|
    //   cmpw tmp, oldval3
 | 
						|
    //   bne- midMBB
 | 
						|
    // loop2MBB:
 | 
						|
    //   andc tmp2, tmpDest, mask
 | 
						|
    //   or tmp4, tmp2, newval3
 | 
						|
    //   stwcx. tmp4, ptr
 | 
						|
    //   bne- loop1MBB
 | 
						|
    //   b exitBB
 | 
						|
    // midMBB:
 | 
						|
    //   stwcx. tmpDest, ptr
 | 
						|
    // exitBB:
 | 
						|
    //   srw dest, tmpDest, shift
 | 
						|
    if (ptrA!=PPC::R0) {
 | 
						|
      Ptr1Reg = RegInfo.createVirtualRegister(RC);
 | 
						|
      BuildMI(BB, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
 | 
						|
        .addReg(ptrA).addReg(ptrB);
 | 
						|
    } else {
 | 
						|
      Ptr1Reg = ptrB;
 | 
						|
    }
 | 
						|
    BuildMI(BB, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
 | 
						|
        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
 | 
						|
    BuildMI(BB, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
 | 
						|
        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
 | 
						|
    if (is64bit)
 | 
						|
      BuildMI(BB, TII->get(PPC::RLDICR), PtrReg)
 | 
						|
        .addReg(Ptr1Reg).addImm(0).addImm(61);
 | 
						|
    else
 | 
						|
      BuildMI(BB, TII->get(PPC::RLWINM), PtrReg)
 | 
						|
        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
 | 
						|
    BuildMI(BB, TII->get(PPC::SLW), NewVal2Reg)
 | 
						|
        .addReg(newval).addReg(ShiftReg);
 | 
						|
    BuildMI(BB, TII->get(PPC::SLW), OldVal2Reg)
 | 
						|
        .addReg(oldval).addReg(ShiftReg);
 | 
						|
    if (is8bit)
 | 
						|
      BuildMI(BB, TII->get(PPC::LI), Mask2Reg).addImm(255);
 | 
						|
    else {
 | 
						|
      BuildMI(BB, TII->get(PPC::LI), Mask3Reg).addImm(0);
 | 
						|
      BuildMI(BB, TII->get(PPC::ORI), Mask2Reg).addReg(Mask3Reg).addImm(65535);
 | 
						|
    }
 | 
						|
    BuildMI(BB, TII->get(PPC::SLW), MaskReg)
 | 
						|
        .addReg(Mask2Reg).addReg(ShiftReg);
 | 
						|
    BuildMI(BB, TII->get(PPC::AND), NewVal3Reg)
 | 
						|
        .addReg(NewVal2Reg).addReg(MaskReg);
 | 
						|
    BuildMI(BB, TII->get(PPC::AND), OldVal3Reg)
 | 
						|
        .addReg(OldVal2Reg).addReg(MaskReg);
 | 
						|
 | 
						|
    BB = loop1MBB;
 | 
						|
    BuildMI(BB, TII->get(PPC::LWARX), TmpDestReg)
 | 
						|
        .addReg(PPC::R0).addReg(PtrReg);
 | 
						|
    BuildMI(BB, TII->get(PPC::AND),TmpReg).addReg(TmpDestReg).addReg(MaskReg);
 | 
						|
    BuildMI(BB, TII->get(PPC::CMPW), PPC::CR0)
 | 
						|
        .addReg(TmpReg).addReg(OldVal3Reg);
 | 
						|
    BuildMI(BB, TII->get(PPC::BCC))
 | 
						|
        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
 | 
						|
    BB->addSuccessor(loop2MBB);
 | 
						|
    BB->addSuccessor(midMBB);
 | 
						|
 | 
						|
    BB = loop2MBB;
 | 
						|
    BuildMI(BB, TII->get(PPC::ANDC),Tmp2Reg).addReg(TmpDestReg).addReg(MaskReg);
 | 
						|
    BuildMI(BB, TII->get(PPC::OR),Tmp4Reg).addReg(Tmp2Reg).addReg(NewVal3Reg);
 | 
						|
    BuildMI(BB, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
 | 
						|
        .addReg(PPC::R0).addReg(PtrReg);
 | 
						|
    BuildMI(BB, TII->get(PPC::BCC))
 | 
						|
      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
 | 
						|
    BuildMI(BB, TII->get(PPC::B)).addMBB(exitMBB);
 | 
						|
    BB->addSuccessor(loop1MBB);
 | 
						|
    BB->addSuccessor(exitMBB);
 | 
						|
    
 | 
						|
    BB = midMBB;
 | 
						|
    BuildMI(BB, TII->get(PPC::STWCX)).addReg(TmpDestReg)
 | 
						|
      .addReg(PPC::R0).addReg(PtrReg);
 | 
						|
    BB->addSuccessor(exitMBB);
 | 
						|
 | 
						|
    //  exitMBB:
 | 
						|
    //   ...
 | 
						|
    BB = exitMBB;
 | 
						|
    BuildMI(BB, TII->get(PPC::SRW),dest).addReg(TmpReg).addReg(ShiftReg);
 | 
						|
  } else {
 | 
						|
    assert(0 && "Unexpected instr type to insert");
 | 
						|
  }
 | 
						|
 | 
						|
  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
 | 
						|
  return BB;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Target Optimization Hooks
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 
 | 
						|
                                               DAGCombinerInfo &DCI) const {
 | 
						|
  TargetMachine &TM = getTargetMachine();
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  switch (N->getOpcode()) {
 | 
						|
  default: break;
 | 
						|
  case PPCISD::SHL:
 | 
						|
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
 | 
						|
      if (C->getValue() == 0)   // 0 << V -> 0.
 | 
						|
        return N->getOperand(0);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case PPCISD::SRL:
 | 
						|
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
 | 
						|
      if (C->getValue() == 0)   // 0 >>u V -> 0.
 | 
						|
        return N->getOperand(0);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case PPCISD::SRA:
 | 
						|
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
 | 
						|
      if (C->getValue() == 0 ||   //  0 >>s V -> 0.
 | 
						|
          C->isAllOnesValue())    // -1 >>s V -> -1.
 | 
						|
        return N->getOperand(0);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
    
 | 
						|
  case ISD::SINT_TO_FP:
 | 
						|
    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
 | 
						|
      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
 | 
						|
        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
 | 
						|
        // We allow the src/dst to be either f32/f64, but the intermediate
 | 
						|
        // type must be i64.
 | 
						|
        if (N->getOperand(0).getValueType() == MVT::i64 &&
 | 
						|
            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
 | 
						|
          SDValue Val = N->getOperand(0).getOperand(0);
 | 
						|
          if (Val.getValueType() == MVT::f32) {
 | 
						|
            Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
 | 
						|
            DCI.AddToWorklist(Val.getNode());
 | 
						|
          }
 | 
						|
            
 | 
						|
          Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
 | 
						|
          DCI.AddToWorklist(Val.getNode());
 | 
						|
          Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
 | 
						|
          DCI.AddToWorklist(Val.getNode());
 | 
						|
          if (N->getValueType(0) == MVT::f32) {
 | 
						|
            Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val, 
 | 
						|
                              DAG.getIntPtrConstant(0));
 | 
						|
            DCI.AddToWorklist(Val.getNode());
 | 
						|
          }
 | 
						|
          return Val;
 | 
						|
        } else if (N->getOperand(0).getValueType() == MVT::i32) {
 | 
						|
          // If the intermediate type is i32, we can avoid the load/store here
 | 
						|
          // too.
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case ISD::STORE:
 | 
						|
    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
 | 
						|
    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
 | 
						|
        !cast<StoreSDNode>(N)->isTruncatingStore() &&
 | 
						|
        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
 | 
						|
        N->getOperand(1).getValueType() == MVT::i32 &&
 | 
						|
        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
 | 
						|
      SDValue Val = N->getOperand(1).getOperand(0);
 | 
						|
      if (Val.getValueType() == MVT::f32) {
 | 
						|
        Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
 | 
						|
        DCI.AddToWorklist(Val.getNode());
 | 
						|
      }
 | 
						|
      Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
 | 
						|
      DCI.AddToWorklist(Val.getNode());
 | 
						|
 | 
						|
      Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
 | 
						|
                        N->getOperand(2), N->getOperand(3));
 | 
						|
      DCI.AddToWorklist(Val.getNode());
 | 
						|
      return Val;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
 | 
						|
    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
 | 
						|
        N->getOperand(1).getNode()->hasOneUse() &&
 | 
						|
        (N->getOperand(1).getValueType() == MVT::i32 ||
 | 
						|
         N->getOperand(1).getValueType() == MVT::i16)) {
 | 
						|
      SDValue BSwapOp = N->getOperand(1).getOperand(0);
 | 
						|
      // Do an any-extend to 32-bits if this is a half-word input.
 | 
						|
      if (BSwapOp.getValueType() == MVT::i16)
 | 
						|
        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
 | 
						|
 | 
						|
      return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
 | 
						|
                         N->getOperand(2), N->getOperand(3),
 | 
						|
                         DAG.getValueType(N->getOperand(1).getValueType()));
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case ISD::BSWAP:
 | 
						|
    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
 | 
						|
    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
 | 
						|
        N->getOperand(0).hasOneUse() &&
 | 
						|
        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
 | 
						|
      SDValue Load = N->getOperand(0);
 | 
						|
      LoadSDNode *LD = cast<LoadSDNode>(Load);
 | 
						|
      // Create the byte-swapping load.
 | 
						|
      std::vector<MVT> VTs;
 | 
						|
      VTs.push_back(MVT::i32);
 | 
						|
      VTs.push_back(MVT::Other);
 | 
						|
      SDValue MO = DAG.getMemOperand(LD->getMemOperand());
 | 
						|
      SDValue Ops[] = {
 | 
						|
        LD->getChain(),    // Chain
 | 
						|
        LD->getBasePtr(),  // Ptr
 | 
						|
        MO,                // MemOperand
 | 
						|
        DAG.getValueType(N->getValueType(0)) // VT
 | 
						|
      };
 | 
						|
      SDValue BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
 | 
						|
 | 
						|
      // If this is an i16 load, insert the truncate.  
 | 
						|
      SDValue ResVal = BSLoad;
 | 
						|
      if (N->getValueType(0) == MVT::i16)
 | 
						|
        ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
 | 
						|
      
 | 
						|
      // First, combine the bswap away.  This makes the value produced by the
 | 
						|
      // load dead.
 | 
						|
      DCI.CombineTo(N, ResVal);
 | 
						|
 | 
						|
      // Next, combine the load away, we give it a bogus result value but a real
 | 
						|
      // chain result.  The result value is dead because the bswap is dead.
 | 
						|
      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
 | 
						|
      
 | 
						|
      // Return N so it doesn't get rechecked!
 | 
						|
      return SDValue(N, 0);
 | 
						|
    }
 | 
						|
    
 | 
						|
    break;
 | 
						|
  case PPCISD::VCMP: {
 | 
						|
    // If a VCMPo node already exists with exactly the same operands as this
 | 
						|
    // node, use its result instead of this node (VCMPo computes both a CR6 and
 | 
						|
    // a normal output).
 | 
						|
    //
 | 
						|
    if (!N->getOperand(0).hasOneUse() &&
 | 
						|
        !N->getOperand(1).hasOneUse() &&
 | 
						|
        !N->getOperand(2).hasOneUse()) {
 | 
						|
      
 | 
						|
      // Scan all of the users of the LHS, looking for VCMPo's that match.
 | 
						|
      SDNode *VCMPoNode = 0;
 | 
						|
      
 | 
						|
      SDNode *LHSN = N->getOperand(0).getNode();
 | 
						|
      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
 | 
						|
           UI != E; ++UI)
 | 
						|
        if (UI->getOpcode() == PPCISD::VCMPo &&
 | 
						|
            UI->getOperand(1) == N->getOperand(1) &&
 | 
						|
            UI->getOperand(2) == N->getOperand(2) &&
 | 
						|
            UI->getOperand(0) == N->getOperand(0)) {
 | 
						|
          VCMPoNode = *UI;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      
 | 
						|
      // If there is no VCMPo node, or if the flag value has a single use, don't
 | 
						|
      // transform this.
 | 
						|
      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
 | 
						|
        break;
 | 
						|
        
 | 
						|
      // Look at the (necessarily single) use of the flag value.  If it has a 
 | 
						|
      // chain, this transformation is more complex.  Note that multiple things
 | 
						|
      // could use the value result, which we should ignore.
 | 
						|
      SDNode *FlagUser = 0;
 | 
						|
      for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 
 | 
						|
           FlagUser == 0; ++UI) {
 | 
						|
        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
 | 
						|
        SDNode *User = *UI;
 | 
						|
        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
 | 
						|
          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
 | 
						|
            FlagUser = User;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      
 | 
						|
      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
 | 
						|
      // give up for right now.
 | 
						|
      if (FlagUser->getOpcode() == PPCISD::MFCR)
 | 
						|
        return SDValue(VCMPoNode, 0);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::BR_CC: {
 | 
						|
    // If this is a branch on an altivec predicate comparison, lower this so
 | 
						|
    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
 | 
						|
    // lowering is done pre-legalize, because the legalizer lowers the predicate
 | 
						|
    // compare down to code that is difficult to reassemble.
 | 
						|
    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
 | 
						|
    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
 | 
						|
    int CompareOpc;
 | 
						|
    bool isDot;
 | 
						|
    
 | 
						|
    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
 | 
						|
        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
 | 
						|
        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
 | 
						|
      assert(isDot && "Can't compare against a vector result!");
 | 
						|
      
 | 
						|
      // If this is a comparison against something other than 0/1, then we know
 | 
						|
      // that the condition is never/always true.
 | 
						|
      unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
 | 
						|
      if (Val != 0 && Val != 1) {
 | 
						|
        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
 | 
						|
          return N->getOperand(0);
 | 
						|
        // Always !=, turn it into an unconditional branch.
 | 
						|
        return DAG.getNode(ISD::BR, MVT::Other, 
 | 
						|
                           N->getOperand(0), N->getOperand(4));
 | 
						|
      }
 | 
						|
    
 | 
						|
      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
 | 
						|
      
 | 
						|
      // Create the PPCISD altivec 'dot' comparison node.
 | 
						|
      std::vector<MVT> VTs;
 | 
						|
      SDValue Ops[] = {
 | 
						|
        LHS.getOperand(2),  // LHS of compare
 | 
						|
        LHS.getOperand(3),  // RHS of compare
 | 
						|
        DAG.getConstant(CompareOpc, MVT::i32)
 | 
						|
      };
 | 
						|
      VTs.push_back(LHS.getOperand(2).getValueType());
 | 
						|
      VTs.push_back(MVT::Flag);
 | 
						|
      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
 | 
						|
      
 | 
						|
      // Unpack the result based on how the target uses it.
 | 
						|
      PPC::Predicate CompOpc;
 | 
						|
      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
 | 
						|
      default:  // Can't happen, don't crash on invalid number though.
 | 
						|
      case 0:   // Branch on the value of the EQ bit of CR6.
 | 
						|
        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
 | 
						|
        break;
 | 
						|
      case 1:   // Branch on the inverted value of the EQ bit of CR6.
 | 
						|
        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
 | 
						|
        break;
 | 
						|
      case 2:   // Branch on the value of the LT bit of CR6.
 | 
						|
        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
 | 
						|
        break;
 | 
						|
      case 3:   // Branch on the inverted value of the LT bit of CR6.
 | 
						|
        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
 | 
						|
                         DAG.getConstant(CompOpc, MVT::i32),
 | 
						|
                         DAG.getRegister(PPC::CR6, MVT::i32),
 | 
						|
                         N->getOperand(4), CompNode.getValue(1));
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Inline Assembly Support
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
 | 
						|
                                                       const APInt &Mask,
 | 
						|
                                                       APInt &KnownZero, 
 | 
						|
                                                       APInt &KnownOne,
 | 
						|
                                                       const SelectionDAG &DAG,
 | 
						|
                                                       unsigned Depth) const {
 | 
						|
  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
 | 
						|
  switch (Op.getOpcode()) {
 | 
						|
  default: break;
 | 
						|
  case PPCISD::LBRX: {
 | 
						|
    // lhbrx is known to have the top bits cleared out.
 | 
						|
    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
 | 
						|
      KnownZero = 0xFFFF0000;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::INTRINSIC_WO_CHAIN: {
 | 
						|
    switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
 | 
						|
    default: break;
 | 
						|
    case Intrinsic::ppc_altivec_vcmpbfp_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpeqfp_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpequb_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpequh_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpequw_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgefp_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgtfp_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgtsb_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgtsh_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgtsw_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgtub_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgtuh_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgtuw_p:
 | 
						|
      KnownZero = ~1U;  // All bits but the low one are known to be zero.
 | 
						|
      break;
 | 
						|
    }        
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// getConstraintType - Given a constraint, return the type of
 | 
						|
/// constraint it is for this target.
 | 
						|
PPCTargetLowering::ConstraintType 
 | 
						|
PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
 | 
						|
  if (Constraint.size() == 1) {
 | 
						|
    switch (Constraint[0]) {
 | 
						|
    default: break;
 | 
						|
    case 'b':
 | 
						|
    case 'r':
 | 
						|
    case 'f':
 | 
						|
    case 'v':
 | 
						|
    case 'y':
 | 
						|
      return C_RegisterClass;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return TargetLowering::getConstraintType(Constraint);
 | 
						|
}
 | 
						|
 | 
						|
std::pair<unsigned, const TargetRegisterClass*> 
 | 
						|
PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
 | 
						|
                                                MVT VT) const {
 | 
						|
  if (Constraint.size() == 1) {
 | 
						|
    // GCC RS6000 Constraint Letters
 | 
						|
    switch (Constraint[0]) {
 | 
						|
    case 'b':   // R1-R31
 | 
						|
    case 'r':   // R0-R31
 | 
						|
      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
 | 
						|
        return std::make_pair(0U, PPC::G8RCRegisterClass);
 | 
						|
      return std::make_pair(0U, PPC::GPRCRegisterClass);
 | 
						|
    case 'f':
 | 
						|
      if (VT == MVT::f32)
 | 
						|
        return std::make_pair(0U, PPC::F4RCRegisterClass);
 | 
						|
      else if (VT == MVT::f64)
 | 
						|
        return std::make_pair(0U, PPC::F8RCRegisterClass);
 | 
						|
      break;
 | 
						|
    case 'v': 
 | 
						|
      return std::make_pair(0U, PPC::VRRCRegisterClass);
 | 
						|
    case 'y':   // crrc
 | 
						|
      return std::make_pair(0U, PPC::CRRCRegisterClass);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
 | 
						|
/// vector.  If it is invalid, don't add anything to Ops.
 | 
						|
void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Letter,
 | 
						|
                                                     std::vector<SDValue>&Ops,
 | 
						|
                                                     SelectionDAG &DAG) const {
 | 
						|
  SDValue Result(0,0);
 | 
						|
  switch (Letter) {
 | 
						|
  default: break;
 | 
						|
  case 'I':
 | 
						|
  case 'J':
 | 
						|
  case 'K':
 | 
						|
  case 'L':
 | 
						|
  case 'M':
 | 
						|
  case 'N':
 | 
						|
  case 'O':
 | 
						|
  case 'P': {
 | 
						|
    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
 | 
						|
    if (!CST) return; // Must be an immediate to match.
 | 
						|
    unsigned Value = CST->getValue();
 | 
						|
    switch (Letter) {
 | 
						|
    default: assert(0 && "Unknown constraint letter!");
 | 
						|
    case 'I':  // "I" is a signed 16-bit constant.
 | 
						|
      if ((short)Value == (int)Value)
 | 
						|
        Result = DAG.getTargetConstant(Value, Op.getValueType());
 | 
						|
      break;
 | 
						|
    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
 | 
						|
    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
 | 
						|
      if ((short)Value == 0)
 | 
						|
        Result = DAG.getTargetConstant(Value, Op.getValueType());
 | 
						|
      break;
 | 
						|
    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
 | 
						|
      if ((Value >> 16) == 0)
 | 
						|
        Result = DAG.getTargetConstant(Value, Op.getValueType());
 | 
						|
      break;
 | 
						|
    case 'M':  // "M" is a constant that is greater than 31.
 | 
						|
      if (Value > 31)
 | 
						|
        Result = DAG.getTargetConstant(Value, Op.getValueType());
 | 
						|
      break;
 | 
						|
    case 'N':  // "N" is a positive constant that is an exact power of two.
 | 
						|
      if ((int)Value > 0 && isPowerOf2_32(Value))
 | 
						|
        Result = DAG.getTargetConstant(Value, Op.getValueType());
 | 
						|
      break;
 | 
						|
    case 'O':  // "O" is the constant zero. 
 | 
						|
      if (Value == 0)
 | 
						|
        Result = DAG.getTargetConstant(Value, Op.getValueType());
 | 
						|
      break;
 | 
						|
    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
 | 
						|
      if ((short)-Value == (int)-Value)
 | 
						|
        Result = DAG.getTargetConstant(Value, Op.getValueType());
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (Result.getNode()) {
 | 
						|
    Ops.push_back(Result);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Handle standard constraint letters.
 | 
						|
  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG);
 | 
						|
}
 | 
						|
 | 
						|
// isLegalAddressingMode - Return true if the addressing mode represented
 | 
						|
// by AM is legal for this target, for a load/store of the specified type.
 | 
						|
bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM, 
 | 
						|
                                              const Type *Ty) const {
 | 
						|
  // FIXME: PPC does not allow r+i addressing modes for vectors!
 | 
						|
  
 | 
						|
  // PPC allows a sign-extended 16-bit immediate field.
 | 
						|
  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // No global is ever allowed as a base.
 | 
						|
  if (AM.BaseGV)
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // PPC only support r+r, 
 | 
						|
  switch (AM.Scale) {
 | 
						|
  case 0:  // "r+i" or just "i", depending on HasBaseReg.
 | 
						|
    break;
 | 
						|
  case 1:
 | 
						|
    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
 | 
						|
      return false;
 | 
						|
    // Otherwise we have r+r or r+i.
 | 
						|
    break;
 | 
						|
  case 2:
 | 
						|
    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
 | 
						|
      return false;
 | 
						|
    // Allow 2*r as r+r.
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    // No other scales are supported.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isLegalAddressImmediate - Return true if the integer value can be used
 | 
						|
/// as the offset of the target addressing mode for load / store of the
 | 
						|
/// given type.
 | 
						|
bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
 | 
						|
  // PPC allows a sign-extended 16-bit immediate field.
 | 
						|
  return (V > -(1 << 16) && V < (1 << 16)-1);
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
 | 
						|
  return false; 
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  // Depths > 0 not supported yet! 
 | 
						|
  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 | 
						|
 | 
						|
  // Just load the return address off the stack.
 | 
						|
  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
 | 
						|
 | 
						|
  // Make sure the function really does not optimize away the store of the RA
 | 
						|
  // to the stack.
 | 
						|
  FuncInfo->setLRStoreRequired();
 | 
						|
  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  // Depths > 0 not supported yet! 
 | 
						|
  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
 | 
						|
    return SDValue();
 | 
						|
  
 | 
						|
  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | 
						|
  bool isPPC64 = PtrVT == MVT::i64;
 | 
						|
  
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
  bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects()) 
 | 
						|
                  && MFI->getStackSize();
 | 
						|
 | 
						|
  if (isPPC64)
 | 
						|
    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1,
 | 
						|
      MVT::i64);
 | 
						|
  else
 | 
						|
    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1,
 | 
						|
      MVT::i32);
 | 
						|
}
 |