mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@14201 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			349 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			349 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- InstructionWriter.cpp - Functions for writing instructions --------===//
 | |
| // 
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| // 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the routines for encoding instruction opcodes to a 
 | |
| // bytecode stream.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "WriterInternals.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "Support/Statistic.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| typedef unsigned char uchar;
 | |
| 
 | |
| // outputInstructionFormat0 - Output those wierd instructions that have a large
 | |
| // number of operands or have large operands themselves...
 | |
| //
 | |
| // Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>]
 | |
| //
 | |
| static void outputInstructionFormat0(const Instruction *I, unsigned Opcode,
 | |
| 				     const SlotCalculator &Table,
 | |
| 				     unsigned Type, std::deque<uchar> &Out) {
 | |
|   // Opcode must have top two bits clear...
 | |
|   output_vbr(Opcode << 2, Out);                  // Instruction Opcode ID
 | |
|   output_vbr(Type, Out);                         // Result type
 | |
| 
 | |
|   unsigned NumArgs = I->getNumOperands();
 | |
|   output_vbr(NumArgs + (isa<CastInst>(I) || isa<VANextInst>(I) ||
 | |
|                         isa<VAArgInst>(I)), Out);
 | |
| 
 | |
|   if (!isa<GetElementPtrInst>(&I)) {
 | |
|     for (unsigned i = 0; i < NumArgs; ++i) {
 | |
|       int Slot = Table.getSlot(I->getOperand(i));
 | |
|       assert(Slot >= 0 && "No slot number for value!?!?");      
 | |
|       output_vbr((unsigned)Slot, Out);
 | |
|     }
 | |
| 
 | |
|     if (isa<CastInst>(I) || isa<VAArgInst>(I)) {
 | |
|       int Slot = Table.getSlot(I->getType());
 | |
|       assert(Slot != -1 && "Cast return type unknown?");
 | |
|       output_vbr((unsigned)Slot, Out);
 | |
|     } else if (const VANextInst *VAI = dyn_cast<VANextInst>(I)) {
 | |
|       int Slot = Table.getSlot(VAI->getArgType());
 | |
|       assert(Slot != -1 && "VarArg argument type unknown?");
 | |
|       output_vbr((unsigned)Slot, Out);
 | |
|     }
 | |
| 
 | |
|   } else {
 | |
|     int Slot = Table.getSlot(I->getOperand(0));
 | |
|     assert(Slot >= 0 && "No slot number for value!?!?");      
 | |
|     output_vbr(unsigned(Slot), Out);
 | |
| 
 | |
|     // We need to encode the type of sequential type indices into their slot #
 | |
|     unsigned Idx = 1;
 | |
|     for (gep_type_iterator TI = gep_type_begin(I), E = gep_type_end(I);
 | |
|          Idx != NumArgs; ++TI, ++Idx) {
 | |
|       Slot = Table.getSlot(I->getOperand(Idx));
 | |
|       assert(Slot >= 0 && "No slot number for value!?!?");      
 | |
|     
 | |
|       if (isa<SequentialType>(*TI)) {
 | |
|         unsigned IdxId;
 | |
|         switch (I->getOperand(Idx)->getType()->getTypeID()) {
 | |
|         default: assert(0 && "Unknown index type!");
 | |
|         case Type::UIntTyID:  IdxId = 0; break;
 | |
|         case Type::IntTyID:   IdxId = 1; break;
 | |
|         case Type::ULongTyID: IdxId = 2; break;
 | |
|         case Type::LongTyID:  IdxId = 3; break;
 | |
|         }
 | |
|         Slot = (Slot << 2) | IdxId;
 | |
|       }
 | |
|       output_vbr(unsigned(Slot), Out);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   align32(Out);    // We must maintain correct alignment!
 | |
| }
 | |
| 
 | |
| 
 | |
| // outputInstrVarArgsCall - Output the absurdly annoying varargs function calls.
 | |
| // This are more annoying than most because the signature of the call does not
 | |
| // tell us anything about the types of the arguments in the varargs portion.
 | |
| // Because of this, we encode (as type 0) all of the argument types explicitly
 | |
| // before the argument value.  This really sucks, but you shouldn't be using
 | |
| // varargs functions in your code! *death to printf*!
 | |
| //
 | |
| // Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>]
 | |
| //
 | |
| static void outputInstrVarArgsCall(const Instruction *I, unsigned Opcode,
 | |
| 				   const SlotCalculator &Table, unsigned Type,
 | |
| 				   std::deque<uchar> &Out) {
 | |
|   assert(isa<CallInst>(I) || isa<InvokeInst>(I));
 | |
|   // Opcode must have top two bits clear...
 | |
|   output_vbr(Opcode << 2, Out);                  // Instruction Opcode ID
 | |
|   output_vbr(Type, Out);                         // Result type (varargs type)
 | |
| 
 | |
|   const PointerType *PTy = cast<PointerType>(I->getOperand(0)->getType());
 | |
|   const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
 | |
|   unsigned NumParams = FTy->getNumParams();
 | |
| 
 | |
|   unsigned NumFixedOperands;
 | |
|   if (isa<CallInst>(I)) {
 | |
|     // Output an operand for the callee and each fixed argument, then two for
 | |
|     // each variable argument.
 | |
|     NumFixedOperands = 1+NumParams;
 | |
|   } else {
 | |
|     assert(isa<InvokeInst>(I) && "Not call or invoke??");
 | |
|     // Output an operand for the callee and destinations, then two for each
 | |
|     // variable argument.
 | |
|     NumFixedOperands = 3+NumParams;
 | |
|   }
 | |
|   output_vbr(2 * I->getNumOperands()-NumFixedOperands, Out);
 | |
| 
 | |
|   // The type for the function has already been emitted in the type field of the
 | |
|   // instruction.  Just emit the slot # now.
 | |
|   for (unsigned i = 0; i != NumFixedOperands; ++i) {
 | |
|     int Slot = Table.getSlot(I->getOperand(i));
 | |
|     assert(Slot >= 0 && "No slot number for value!?!?");      
 | |
|     output_vbr((unsigned)Slot, Out);
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = NumFixedOperands, e = I->getNumOperands(); i != e; ++i) {
 | |
|     // Output Arg Type ID
 | |
|     int Slot = Table.getSlot(I->getOperand(i)->getType());
 | |
|     assert(Slot >= 0 && "No slot number for value!?!?");      
 | |
|     output_vbr((unsigned)Slot, Out);
 | |
|     
 | |
|     // Output arg ID itself
 | |
|     Slot = Table.getSlot(I->getOperand(i));
 | |
|     assert(Slot >= 0 && "No slot number for value!?!?");      
 | |
|     output_vbr((unsigned)Slot, Out);
 | |
|   }
 | |
|   align32(Out);    // We must maintain correct alignment!
 | |
| }
 | |
| 
 | |
| 
 | |
| // outputInstructionFormat1 - Output one operand instructions, knowing that no
 | |
| // operand index is >= 2^12.
 | |
| //
 | |
| static void outputInstructionFormat1(const Instruction *I, unsigned Opcode,
 | |
| 				     const SlotCalculator &Table,
 | |
|                                      unsigned *Slots, unsigned Type, 
 | |
|                                      std::deque<uchar> &Out) {
 | |
|   // bits   Instruction format:
 | |
|   // --------------------------
 | |
|   // 01-00: Opcode type, fixed to 1.
 | |
|   // 07-02: Opcode
 | |
|   // 19-08: Resulting type plane
 | |
|   // 31-20: Operand #1 (if set to (2^12-1), then zero operands)
 | |
|   //
 | |
|   unsigned Bits = 1 | (Opcode << 2) | (Type << 8) | (Slots[0] << 20);
 | |
|   //  cerr << "1 " << IType << " " << Type << " " << Slots[0] << endl;
 | |
|   output(Bits, Out);
 | |
| }
 | |
| 
 | |
| 
 | |
| // outputInstructionFormat2 - Output two operand instructions, knowing that no
 | |
| // operand index is >= 2^8.
 | |
| //
 | |
| static void outputInstructionFormat2(const Instruction *I, unsigned Opcode,
 | |
| 				     const SlotCalculator &Table,
 | |
|                                      unsigned *Slots, unsigned Type, 
 | |
|                                      std::deque<uchar> &Out) {
 | |
|   // bits   Instruction format:
 | |
|   // --------------------------
 | |
|   // 01-00: Opcode type, fixed to 2.
 | |
|   // 07-02: Opcode
 | |
|   // 15-08: Resulting type plane
 | |
|   // 23-16: Operand #1
 | |
|   // 31-24: Operand #2  
 | |
|   //
 | |
|   unsigned Bits = 2 | (Opcode << 2) | (Type << 8) |
 | |
|                     (Slots[0] << 16) | (Slots[1] << 24);
 | |
|   //  cerr << "2 " << IType << " " << Type << " " << Slots[0] << " " 
 | |
|   //       << Slots[1] << endl;
 | |
|   output(Bits, Out);
 | |
| }
 | |
| 
 | |
| 
 | |
| // outputInstructionFormat3 - Output three operand instructions, knowing that no
 | |
| // operand index is >= 2^6.
 | |
| //
 | |
| static void outputInstructionFormat3(const Instruction *I, unsigned Opcode,
 | |
| 				     const SlotCalculator &Table,
 | |
|                                      unsigned *Slots, unsigned Type,
 | |
|                                      std::deque<uchar> &Out) {
 | |
|   // bits   Instruction format:
 | |
|   // --------------------------
 | |
|   // 01-00: Opcode type, fixed to 3.
 | |
|   // 07-02: Opcode
 | |
|   // 13-08: Resulting type plane
 | |
|   // 19-14: Operand #1
 | |
|   // 25-20: Operand #2
 | |
|   // 31-26: Operand #3
 | |
|   //
 | |
|   unsigned Bits = 3 | (Opcode << 2) | (Type << 8) |
 | |
|           (Slots[0] << 14) | (Slots[1] << 20) | (Slots[2] << 26);
 | |
|   //cerr << "3 " << IType << " " << Type << " " << Slots[0] << " " 
 | |
|   //     << Slots[1] << " " << Slots[2] << endl;
 | |
|   output(Bits, Out);
 | |
| }
 | |
| 
 | |
| void BytecodeWriter::outputInstruction(const Instruction &I) {
 | |
|   assert(I.getOpcode() < 62 && "Opcode too big???");
 | |
|   unsigned Opcode = I.getOpcode();
 | |
|   unsigned NumOperands = I.getNumOperands();
 | |
| 
 | |
|   // Encode 'volatile load' as 62 and 'volatile store' as 63.
 | |
|   if (isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile())
 | |
|     Opcode = 62;
 | |
|   if (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())
 | |
|     Opcode = 63;
 | |
| 
 | |
|   // Figure out which type to encode with the instruction.  Typically we want
 | |
|   // the type of the first parameter, as opposed to the type of the instruction
 | |
|   // (for example, with setcc, we always know it returns bool, but the type of
 | |
|   // the first param is actually interesting).  But if we have no arguments
 | |
|   // we take the type of the instruction itself.  
 | |
|   //
 | |
|   const Type *Ty;
 | |
|   switch (I.getOpcode()) {
 | |
|   case Instruction::Select:
 | |
|   case Instruction::Malloc:
 | |
|   case Instruction::Alloca:
 | |
|     Ty = I.getType();  // These ALWAYS want to encode the return type
 | |
|     break;
 | |
|   case Instruction::Store:
 | |
|     Ty = I.getOperand(1)->getType();  // Encode the pointer type...
 | |
|     assert(isa<PointerType>(Ty) && "Store to nonpointer type!?!?");
 | |
|     break;
 | |
|   default:              // Otherwise use the default behavior...
 | |
|     Ty = NumOperands ? I.getOperand(0)->getType() : I.getType();
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   unsigned Type;
 | |
|   int Slot = Table.getSlot(Ty);
 | |
|   assert(Slot != -1 && "Type not available!!?!");
 | |
|   Type = (unsigned)Slot;
 | |
| 
 | |
|   // Varargs calls and invokes are encoded entirely different from any other
 | |
|   // instructions.
 | |
|   if (const CallInst *CI = dyn_cast<CallInst>(&I)){
 | |
|     const PointerType *Ty =cast<PointerType>(CI->getCalledValue()->getType());
 | |
|     if (cast<FunctionType>(Ty->getElementType())->isVarArg()) {
 | |
|       outputInstrVarArgsCall(CI, Opcode, Table, Type, Out);
 | |
|       return;
 | |
|     }
 | |
|   } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
 | |
|     const PointerType *Ty =cast<PointerType>(II->getCalledValue()->getType());
 | |
|     if (cast<FunctionType>(Ty->getElementType())->isVarArg()) {
 | |
|       outputInstrVarArgsCall(II, Opcode, Table, Type, Out);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (NumOperands <= 3) {
 | |
|     // Make sure that we take the type number into consideration.  We don't want
 | |
|     // to overflow the field size for the instruction format we select.
 | |
|     //
 | |
|     unsigned MaxOpSlot = Type;
 | |
|     unsigned Slots[3]; Slots[0] = (1 << 12)-1;   // Marker to signify 0 operands
 | |
|     
 | |
|     for (unsigned i = 0; i != NumOperands; ++i) {
 | |
|       int slot = Table.getSlot(I.getOperand(i));
 | |
|       assert(slot != -1 && "Broken bytecode!");
 | |
|       if (unsigned(slot) > MaxOpSlot) MaxOpSlot = unsigned(slot);
 | |
|       Slots[i] = unsigned(slot);
 | |
|     }
 | |
| 
 | |
|     // Handle the special cases for various instructions...
 | |
|     if (isa<CastInst>(I) || isa<VAArgInst>(I)) {
 | |
|       // Cast has to encode the destination type as the second argument in the
 | |
|       // packet, or else we won't know what type to cast to!
 | |
|       Slots[1] = Table.getSlot(I.getType());
 | |
|       assert(Slots[1] != ~0U && "Cast return type unknown?");
 | |
|       if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1];
 | |
|       NumOperands++;
 | |
|     } else if (const VANextInst *VANI = dyn_cast<VANextInst>(&I)) {
 | |
|       Slots[1] = Table.getSlot(VANI->getArgType());
 | |
|       assert(Slots[1] != ~0U && "va_next return type unknown?");
 | |
|       if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1];
 | |
|       NumOperands++;
 | |
|     } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
 | |
|       // We need to encode the type of sequential type indices into their slot #
 | |
|       unsigned Idx = 1;
 | |
|       for (gep_type_iterator I = gep_type_begin(GEP), E = gep_type_end(GEP);
 | |
|            I != E; ++I, ++Idx)
 | |
|         if (isa<SequentialType>(*I)) {
 | |
|           unsigned IdxId;
 | |
|           switch (GEP->getOperand(Idx)->getType()->getTypeID()) {
 | |
|           default: assert(0 && "Unknown index type!");
 | |
|           case Type::UIntTyID:  IdxId = 0; break;
 | |
|           case Type::IntTyID:   IdxId = 1; break;
 | |
|           case Type::ULongTyID: IdxId = 2; break;
 | |
|           case Type::LongTyID:  IdxId = 3; break;
 | |
|           }
 | |
|           Slots[Idx] = (Slots[Idx] << 2) | IdxId;
 | |
|           if (Slots[Idx] > MaxOpSlot) MaxOpSlot = Slots[Idx];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Decide which instruction encoding to use.  This is determined primarily
 | |
|     // by the number of operands, and secondarily by whether or not the max
 | |
|     // operand will fit into the instruction encoding.  More operands == fewer
 | |
|     // bits per operand.
 | |
|     //
 | |
|     switch (NumOperands) {
 | |
|     case 0:
 | |
|     case 1:
 | |
|       if (MaxOpSlot < (1 << 12)-1) { // -1 because we use 4095 to indicate 0 ops
 | |
|         outputInstructionFormat1(&I, Opcode, Table, Slots, Type, Out);
 | |
|         return;
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case 2:
 | |
|       if (MaxOpSlot < (1 << 8)) {
 | |
|         outputInstructionFormat2(&I, Opcode, Table, Slots, Type, Out);
 | |
|         return;
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case 3:
 | |
|       if (MaxOpSlot < (1 << 6)) {
 | |
|         outputInstructionFormat3(&I, Opcode, Table, Slots, Type, Out);
 | |
|         return;
 | |
|       }
 | |
|       break;
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we weren't handled before here, we either have a large number of
 | |
|   // operands or a large operand index that we are referring to.
 | |
|   outputInstructionFormat0(&I, Opcode, Table, Type, Out);
 | |
| }
 |