llvm-6502/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp
Chris Lattner a4479cd946 Implement freopen for burg
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@4606 91177308-0d34-0410-b5e6-96231b3b80d8
2002-11-07 19:33:50 +00:00

645 lines
21 KiB
C++

//===-- ExternalFunctions.cpp - Implement External Functions --------------===//
//
// This file contains both code to deal with invoking "external" functions, but
// also contains code that implements "exported" external functions.
//
// External functions in LLI are implemented by dlopen'ing the lli executable
// and using dlsym to look op the functions that we want to invoke. If a
// function is found, then the arguments are mangled and passed in to the
// function call.
//
//===----------------------------------------------------------------------===//
#include "Interpreter.h"
#include "ExecutionAnnotations.h"
#include "llvm/DerivedTypes.h"
#include "llvm/SymbolTable.h"
#include "llvm/Target/TargetData.h"
#include <map>
#include <dlfcn.h>
#include <link.h>
#include <math.h>
#include <stdio.h>
using std::vector;
using std::cout;
extern TargetData TD;
typedef GenericValue (*ExFunc)(FunctionType *, const vector<GenericValue> &);
static std::map<const Function *, ExFunc> Functions;
static std::map<std::string, ExFunc> FuncNames;
static Interpreter *TheInterpreter;
// getCurrentExecutablePath() - Return the directory that the lli executable
// lives in.
//
std::string Interpreter::getCurrentExecutablePath() const {
Dl_info Info;
if (dladdr(&TheInterpreter, &Info) == 0) return "";
std::string LinkAddr(Info.dli_fname);
unsigned SlashPos = LinkAddr.rfind('/');
if (SlashPos != std::string::npos)
LinkAddr.resize(SlashPos); // Trim the executable name off...
return LinkAddr;
}
static char getTypeID(const Type *Ty) {
switch (Ty->getPrimitiveID()) {
case Type::VoidTyID: return 'V';
case Type::BoolTyID: return 'o';
case Type::UByteTyID: return 'B';
case Type::SByteTyID: return 'b';
case Type::UShortTyID: return 'S';
case Type::ShortTyID: return 's';
case Type::UIntTyID: return 'I';
case Type::IntTyID: return 'i';
case Type::ULongTyID: return 'L';
case Type::LongTyID: return 'l';
case Type::FloatTyID: return 'F';
case Type::DoubleTyID: return 'D';
case Type::PointerTyID: return 'P';
case Type::FunctionTyID: return 'M';
case Type::StructTyID: return 'T';
case Type::ArrayTyID: return 'A';
case Type::OpaqueTyID: return 'O';
default: return 'U';
}
}
static ExFunc lookupFunction(const Function *M) {
// Function not found, look it up... start by figuring out what the
// composite function name should be.
std::string ExtName = "lle_";
const FunctionType *MT = M->getFunctionType();
for (unsigned i = 0; const Type *Ty = MT->getContainedType(i); ++i)
ExtName += getTypeID(Ty);
ExtName += "_" + M->getName();
//cout << "Tried: '" << ExtName << "'\n";
ExFunc FnPtr = FuncNames[ExtName];
if (FnPtr == 0)
FnPtr = (ExFunc)dlsym(RTLD_DEFAULT, ExtName.c_str());
if (FnPtr == 0)
FnPtr = FuncNames["lle_X_"+M->getName()];
if (FnPtr == 0) // Try calling a generic function... if it exists...
FnPtr = (ExFunc)dlsym(RTLD_DEFAULT, ("lle_X_"+M->getName()).c_str());
if (FnPtr != 0)
Functions.insert(std::make_pair(M, FnPtr)); // Cache for later
return FnPtr;
}
GenericValue Interpreter::callExternalMethod(Function *M,
const vector<GenericValue> &ArgVals) {
TheInterpreter = this;
// Do a lookup to see if the function is in our cache... this should just be a
// defered annotation!
std::map<const Function *, ExFunc>::iterator FI = Functions.find(M);
ExFunc Fn = (FI == Functions.end()) ? lookupFunction(M) : FI->second;
if (Fn == 0) {
cout << "Tried to execute an unknown external function: "
<< M->getType()->getDescription() << " " << M->getName() << "\n";
return GenericValue();
}
// TODO: FIXME when types are not const!
GenericValue Result = Fn(const_cast<FunctionType*>(M->getFunctionType()),
ArgVals);
return Result;
}
//===----------------------------------------------------------------------===//
// Functions "exported" to the running application...
//
extern "C" { // Don't add C++ manglings to llvm mangling :)
// Implement void printstr([ubyte {x N}] *)
GenericValue lle_VP_printstr(FunctionType *M, const vector<GenericValue> &ArgVal){
assert(ArgVal.size() == 1 && "printstr only takes one argument!");
cout << (char*)ArgVal[0].PointerVal;
return GenericValue();
}
// Implement 'void print(X)' for every type...
GenericValue lle_X_print(FunctionType *M, const vector<GenericValue> &ArgVals) {
assert(ArgVals.size() == 1 && "generic print only takes one argument!");
Interpreter::print(M->getParamTypes()[0], ArgVals[0]);
return GenericValue();
}
// Implement 'void printVal(X)' for every type...
GenericValue lle_X_printVal(FunctionType *M, const vector<GenericValue> &ArgVal) {
assert(ArgVal.size() == 1 && "generic print only takes one argument!");
// Specialize print([ubyte {x N} ] *) and print(sbyte *)
if (const PointerType *PTy =
dyn_cast<PointerType>(M->getParamTypes()[0].get()))
if (PTy->getElementType() == Type::SByteTy ||
isa<ArrayType>(PTy->getElementType())) {
return lle_VP_printstr(M, ArgVal);
}
Interpreter::printValue(M->getParamTypes()[0], ArgVal[0]);
return GenericValue();
}
// Implement 'void printString(X)'
// Argument must be [ubyte {x N} ] * or sbyte *
GenericValue lle_X_printString(FunctionType *M, const vector<GenericValue> &ArgVal) {
assert(ArgVal.size() == 1 && "generic print only takes one argument!");
return lle_VP_printstr(M, ArgVal);
}
// Implement 'void print<TYPE>(X)' for each primitive type or pointer type
#define PRINT_TYPE_FUNC(TYPENAME,TYPEID) \
GenericValue lle_X_print##TYPENAME(FunctionType *M,\
const vector<GenericValue> &ArgVal) {\
assert(ArgVal.size() == 1 && "generic print only takes one argument!");\
assert(M->getParamTypes()[0].get()->getPrimitiveID() == Type::TYPEID);\
Interpreter::printValue(M->getParamTypes()[0], ArgVal[0]);\
return GenericValue();\
}
PRINT_TYPE_FUNC(SByte, SByteTyID)
PRINT_TYPE_FUNC(UByte, UByteTyID)
PRINT_TYPE_FUNC(Short, ShortTyID)
PRINT_TYPE_FUNC(UShort, UShortTyID)
PRINT_TYPE_FUNC(Int, IntTyID)
PRINT_TYPE_FUNC(UInt, UIntTyID)
PRINT_TYPE_FUNC(Long, LongTyID)
PRINT_TYPE_FUNC(ULong, ULongTyID)
PRINT_TYPE_FUNC(Float, FloatTyID)
PRINT_TYPE_FUNC(Double, DoubleTyID)
PRINT_TYPE_FUNC(Pointer, PointerTyID)
// void putchar(sbyte)
GenericValue lle_Vb_putchar(FunctionType *M, const vector<GenericValue> &Args) {
cout << Args[0].SByteVal;
return GenericValue();
}
// int putchar(int)
GenericValue lle_ii_putchar(FunctionType *M, const vector<GenericValue> &Args) {
cout << ((char)Args[0].IntVal) << std::flush;
return Args[0];
}
// void putchar(ubyte)
GenericValue lle_VB_putchar(FunctionType *M, const vector<GenericValue> &Args) {
cout << Args[0].SByteVal << std::flush;
return Args[0];
}
// void __main()
GenericValue lle_V___main(FunctionType *M, const vector<GenericValue> &Args) {
return GenericValue();
}
// void exit(int)
GenericValue lle_X_exit(FunctionType *M, const vector<GenericValue> &Args) {
TheInterpreter->exitCalled(Args[0]);
return GenericValue();
}
// void abort(void)
GenericValue lle_X_abort(FunctionType *M, const vector<GenericValue> &Args) {
std::cerr << "***PROGRAM ABORTED***!\n";
GenericValue GV;
GV.IntVal = 1;
TheInterpreter->exitCalled(GV);
return GenericValue();
}
// void *malloc(uint)
GenericValue lle_X_malloc(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 1 && "Malloc expects one argument!");
GenericValue GV;
GV.PointerVal = (PointerTy)malloc(Args[0].UIntVal);
return GV;
}
// void free(void *)
GenericValue lle_X_free(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
free((void*)Args[0].PointerVal);
return GenericValue();
}
// int atoi(char *)
GenericValue lle_X_atoi(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
GenericValue GV;
GV.IntVal = atoi((char*)Args[0].PointerVal);
return GV;
}
// double pow(double, double)
GenericValue lle_X_pow(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 2);
GenericValue GV;
GV.DoubleVal = pow(Args[0].DoubleVal, Args[1].DoubleVal);
return GV;
}
// double exp(double)
GenericValue lle_X_exp(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
GenericValue GV;
GV.DoubleVal = exp(Args[0].DoubleVal);
return GV;
}
// double sqrt(double)
GenericValue lle_X_sqrt(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
GenericValue GV;
GV.DoubleVal = sqrt(Args[0].DoubleVal);
return GV;
}
// double log(double)
GenericValue lle_X_log(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
GenericValue GV;
GV.DoubleVal = log(Args[0].DoubleVal);
return GV;
}
// double floor(double)
GenericValue lle_X_floor(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
GenericValue GV;
GV.DoubleVal = floor(Args[0].DoubleVal);
return GV;
}
// double drand48()
GenericValue lle_X_drand48(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 0);
GenericValue GV;
GV.DoubleVal = drand48();
return GV;
}
// long lrand48()
GenericValue lle_X_lrand48(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 0);
GenericValue GV;
GV.IntVal = lrand48();
return GV;
}
// void srand48(long)
GenericValue lle_X_srand48(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
srand48(Args[0].IntVal);
return GenericValue();
}
// void srand(uint)
GenericValue lle_X_srand(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
srand(Args[0].UIntVal);
return GenericValue();
}
// int sprintf(sbyte *, sbyte *, ...) - a very rough implementation to make
// output useful.
GenericValue lle_X_sprintf(FunctionType *M, const vector<GenericValue> &Args) {
char *OutputBuffer = (char *)Args[0].PointerVal;
const char *FmtStr = (const char *)Args[1].PointerVal;
unsigned ArgNo = 2;
// printf should return # chars printed. This is completely incorrect, but
// close enough for now.
GenericValue GV; GV.IntVal = strlen(FmtStr);
while (1) {
switch (*FmtStr) {
case 0: return GV; // Null terminator...
default: // Normal nonspecial character
sprintf(OutputBuffer++, "%c", *FmtStr++);
break;
case '\\': { // Handle escape codes
sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1));
FmtStr += 2; OutputBuffer += 2;
break;
}
case '%': { // Handle format specifiers
char FmtBuf[100] = "", Buffer[1000] = "";
char *FB = FmtBuf;
*FB++ = *FmtStr++;
char Last = *FB++ = *FmtStr++;
unsigned HowLong = 0;
while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' &&
Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' &&
Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' &&
Last != 'p' && Last != 's' && Last != '%') {
if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's
Last = *FB++ = *FmtStr++;
}
*FB = 0;
switch (Last) {
case '%':
sprintf(Buffer, FmtBuf); break;
case 'c':
sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal); break;
case 'd': case 'i':
case 'u': case 'o':
case 'x': case 'X':
if (HowLong >= 1) {
if (HowLong == 1) {
// Make sure we use %lld with a 64 bit argument because we might be
// compiling LLI on a 32 bit compiler.
unsigned Size = strlen(FmtBuf);
FmtBuf[Size] = FmtBuf[Size-1];
FmtBuf[Size+1] = 0;
FmtBuf[Size-1] = 'l';
}
sprintf(Buffer, FmtBuf, Args[ArgNo++].ULongVal);
} else
sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal); break;
case 'e': case 'E': case 'g': case 'G': case 'f':
sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break;
case 'p':
sprintf(Buffer, FmtBuf, (void*)Args[ArgNo++].PointerVal); break;
case 's':
sprintf(Buffer, FmtBuf, (char*)Args[ArgNo++].PointerVal); break;
default: cout << "<unknown printf code '" << *FmtStr << "'!>";
ArgNo++; break;
}
strcpy(OutputBuffer, Buffer);
OutputBuffer += strlen(Buffer);
}
break;
}
}
}
// int printf(sbyte *, ...) - a very rough implementation to make output useful.
GenericValue lle_X_printf(FunctionType *M, const vector<GenericValue> &Args) {
char Buffer[10000];
vector<GenericValue> NewArgs;
GenericValue GV; GV.PointerVal = (PointerTy)Buffer;
NewArgs.push_back(GV);
NewArgs.insert(NewArgs.end(), Args.begin(), Args.end());
GV = lle_X_sprintf(M, NewArgs);
cout << Buffer;
return GV;
}
// int sscanf(const char *format, ...);
GenericValue lle_X_sscanf(FunctionType *M, const vector<GenericValue> &args) {
assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!");
const char *Args[10];
for (unsigned i = 0; i < args.size(); ++i)
Args[i] = (const char*)args[i].PointerVal;
GenericValue GV;
GV.IntVal = sscanf(Args[0], Args[1], Args[2], Args[3], Args[4],
Args[5], Args[6], Args[7], Args[8], Args[9]);
return GV;
}
// int clock(void) - Profiling implementation
GenericValue lle_i_clock(FunctionType *M, const vector<GenericValue> &Args) {
extern int clock(void);
GenericValue GV; GV.IntVal = clock();
return GV;
}
//===----------------------------------------------------------------------===//
// IO Functions...
//===----------------------------------------------------------------------===//
// getFILE - Turn a pointer in the host address space into a legit pointer in
// the interpreter address space. For the most part, this is an identity
// transformation, but if the program refers to stdio, stderr, stdin then they
// have pointers that are relative to the __iob array. If this is the case,
// change the FILE into the REAL stdio stream.
//
static FILE *getFILE(PointerTy Ptr) {
static Module *LastMod = 0;
static PointerTy IOBBase = 0;
static unsigned FILESize;
if (LastMod != TheInterpreter->getModule()) { // Module change or initialize?
Module *M = LastMod = TheInterpreter->getModule();
// Check to see if the currently loaded module contains an __iob symbol...
GlobalVariable *IOB = 0;
if (SymbolTable *ST = M->getSymbolTable()) {
for (SymbolTable::iterator I = ST->begin(), E = ST->end(); I != E; ++I) {
SymbolTable::VarMap &M = I->second;
for (SymbolTable::VarMap::iterator J = M.begin(), E = M.end();
J != E; ++J)
if (J->first == "__iob")
if ((IOB = dyn_cast<GlobalVariable>(J->second)))
break;
if (IOB) break;
}
}
// If we found an __iob symbol now, find out what the actual address it's
// held in is...
if (IOB) {
// Get the address the array lives in...
GlobalAddress *Address =
(GlobalAddress*)IOB->getOrCreateAnnotation(GlobalAddressAID);
IOBBase = (PointerTy)(GenericValue*)Address->Ptr;
// Figure out how big each element of the array is...
const ArrayType *AT =
dyn_cast<ArrayType>(IOB->getType()->getElementType());
if (AT)
FILESize = TD.getTypeSize(AT->getElementType());
else
FILESize = 16*8; // Default size
}
}
// Check to see if this is a reference to __iob...
if (IOBBase) {
unsigned FDNum = (Ptr-IOBBase)/FILESize;
if (FDNum == 0)
return stdin;
else if (FDNum == 1)
return stdout;
else if (FDNum == 2)
return stderr;
}
return (FILE*)Ptr;
}
// FILE *fopen(const char *filename, const char *mode);
GenericValue lle_X_fopen(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 2);
GenericValue GV;
GV.PointerVal = (PointerTy)fopen((const char *)Args[0].PointerVal,
(const char *)Args[1].PointerVal);
return GV;
}
// int fclose(FILE *F);
GenericValue lle_X_fclose(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
GenericValue GV;
GV.IntVal = fclose(getFILE(Args[0].PointerVal));
return GV;
}
// size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream);
GenericValue lle_X_fread(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 4);
GenericValue GV;
GV.UIntVal = fread((void*)Args[0].PointerVal, Args[1].UIntVal,
Args[2].UIntVal, getFILE(Args[3].PointerVal));
return GV;
}
// size_t fwrite(const void *ptr, size_t size, size_t nitems, FILE *stream);
GenericValue lle_X_fwrite(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 4);
GenericValue GV;
GV.UIntVal = fwrite((void*)Args[0].PointerVal, Args[1].UIntVal,
Args[2].UIntVal, getFILE(Args[3].PointerVal));
return GV;
}
// char *fgets(char *s, int n, FILE *stream);
GenericValue lle_X_fgets(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 3);
GenericValue GV;
GV.PointerVal = (PointerTy)fgets((char*)Args[0].PointerVal, Args[1].IntVal,
getFILE(Args[2].PointerVal));
return GV;
}
// FILE *freopen(const char *path, const char *mode, FILE *stream);
GenericValue lle_X_freopen(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 3);
GenericValue GV;
GV.PointerVal = (PointerTy)freopen((char*)Args[0].PointerVal,
(char*)Args[1].PointerVal,
getFILE(Args[2].PointerVal));
return GV;
}
// int fflush(FILE *stream);
GenericValue lle_X_fflush(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
GenericValue GV;
GV.IntVal = fflush(getFILE(Args[0].PointerVal));
return GV;
}
// int getc(FILE *stream);
GenericValue lle_X_getc(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 1);
GenericValue GV;
GV.IntVal = getc(getFILE(Args[0].PointerVal));
return GV;
}
// int fputc(int C, FILE *stream);
GenericValue lle_X_fputc(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 2);
GenericValue GV;
GV.IntVal = fputc(Args[0].IntVal, getFILE(Args[1].PointerVal));
return GV;
}
// int ungetc(int C, FILE *stream);
GenericValue lle_X_ungetc(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() == 2);
GenericValue GV;
GV.IntVal = ungetc(Args[0].IntVal, getFILE(Args[1].PointerVal));
return GV;
}
// int fprintf(FILE *,sbyte *, ...) - a very rough implementation to make output
// useful.
GenericValue lle_X_fprintf(FunctionType *M, const vector<GenericValue> &Args) {
assert(Args.size() > 2);
char Buffer[10000];
vector<GenericValue> NewArgs;
GenericValue GV; GV.PointerVal = (PointerTy)Buffer;
NewArgs.push_back(GV);
NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end());
GV = lle_X_sprintf(M, NewArgs);
fputs(Buffer, getFILE(Args[0].PointerVal));
return GV;
}
} // End extern "C"
void Interpreter::initializeExternalMethods() {
FuncNames["lle_VP_printstr"] = lle_VP_printstr;
FuncNames["lle_X_print"] = lle_X_print;
FuncNames["lle_X_printVal"] = lle_X_printVal;
FuncNames["lle_X_printString"] = lle_X_printString;
FuncNames["lle_X_printUByte"] = lle_X_printUByte;
FuncNames["lle_X_printSByte"] = lle_X_printSByte;
FuncNames["lle_X_printUShort"] = lle_X_printUShort;
FuncNames["lle_X_printShort"] = lle_X_printShort;
FuncNames["lle_X_printInt"] = lle_X_printInt;
FuncNames["lle_X_printUInt"] = lle_X_printUInt;
FuncNames["lle_X_printLong"] = lle_X_printLong;
FuncNames["lle_X_printULong"] = lle_X_printULong;
FuncNames["lle_X_printFloat"] = lle_X_printFloat;
FuncNames["lle_X_printDouble"] = lle_X_printDouble;
FuncNames["lle_X_printPointer"] = lle_X_printPointer;
FuncNames["lle_Vb_putchar"] = lle_Vb_putchar;
FuncNames["lle_ii_putchar"] = lle_ii_putchar;
FuncNames["lle_VB_putchar"] = lle_VB_putchar;
FuncNames["lle_V___main"] = lle_V___main;
FuncNames["lle_X_exit"] = lle_X_exit;
FuncNames["lle_X_abort"] = lle_X_abort;
FuncNames["lle_X_malloc"] = lle_X_malloc;
FuncNames["lle_X_free"] = lle_X_free;
FuncNames["lle_X_atoi"] = lle_X_atoi;
FuncNames["lle_X_pow"] = lle_X_pow;
FuncNames["lle_X_exp"] = lle_X_exp;
FuncNames["lle_X_log"] = lle_X_log;
FuncNames["lle_X_floor"] = lle_X_floor;
FuncNames["lle_X_srand"] = lle_X_srand;
FuncNames["lle_X_drand48"] = lle_X_drand48;
FuncNames["lle_X_srand48"] = lle_X_srand48;
FuncNames["lle_X_lrand48"] = lle_X_lrand48;
FuncNames["lle_X_sqrt"] = lle_X_sqrt;
FuncNames["lle_X_printf"] = lle_X_printf;
FuncNames["lle_X_sprintf"] = lle_X_sprintf;
FuncNames["lle_X_sscanf"] = lle_X_sscanf;
FuncNames["lle_i_clock"] = lle_i_clock;
FuncNames["lle_X_fopen"] = lle_X_fopen;
FuncNames["lle_X_fclose"] = lle_X_fclose;
FuncNames["lle_X_fread"] = lle_X_fread;
FuncNames["lle_X_fwrite"] = lle_X_fwrite;
FuncNames["lle_X_fgets"] = lle_X_fgets;
FuncNames["lle_X_fflush"] = lle_X_fflush;
FuncNames["lle_X_fgetc"] = lle_X_getc;
FuncNames["lle_X_getc"] = lle_X_getc;
FuncNames["lle_X_fputc"] = lle_X_fputc;
FuncNames["lle_X_ungetc"] = lle_X_ungetc;
FuncNames["lle_X_fprintf"] = lle_X_fprintf;
FuncNames["lle_X_freopen"] = lle_X_freopen;
}