llvm-6502/lib/Target/X86/X86AsmPrinter.cpp
Chris Lattner 1d53ce4067 Handle cmp Reg, 0 correctly
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@4819 91177308-0d34-0410-b5e6-96231b3b80d8
2002-11-21 23:30:00 +00:00

508 lines
17 KiB
C++

//===-- X86/Printer.cpp - Convert X86 code to human readable rep. ---------===//
//
// This file contains a printer that converts from our internal representation
// of LLVM code to a nice human readable form that is suitable for debuggging.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrInfo.h"
#include "llvm/Pass.h"
#include "llvm/Function.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "Support/Statistic.h"
namespace {
struct Printer : public FunctionPass {
TargetMachine &TM;
std::ostream &O;
Printer(TargetMachine &tm, std::ostream &o) : TM(tm), O(o) {}
bool runOnFunction(Function &F);
};
}
/// createX86CodePrinterPass - Print out the specified machine code function to
/// the specified stream. This function should work regardless of whether or
/// not the function is in SSA form or not.
///
Pass *createX86CodePrinterPass(TargetMachine &TM, std::ostream &O) {
return new Printer(TM, O);
}
/// runOnFunction - This uses the X86InstructionInfo::print method
/// to print assembly for each instruction.
bool Printer::runOnFunction (Function & F)
{
static unsigned bbnumber = 0;
MachineFunction & MF = MachineFunction::get (&F);
const MachineInstrInfo & MII = TM.getInstrInfo ();
O << "; x86 printing only sorta implemented so far!\n";
// Print out labels for the function.
O << "\t.globl\t" << F.getName () << "\n";
O << "\t.type\t" << F.getName () << ", @function\n";
O << F.getName () << ":\n";
// Print out code for the function.
for (MachineFunction::const_iterator bb_i = MF.begin (), bb_e = MF.end ();
bb_i != bb_e; ++bb_i)
{
// Print a label for the basic block.
O << ".BB" << bbnumber++ << ":\n";
for (MachineBasicBlock::const_iterator i_i = bb_i->begin (), i_e =
bb_i->end (); i_i != i_e; ++i_i)
{
// Print the assembly for the instruction.
O << "\t";
MII.print(*i_i, O, TM);
}
}
// We didn't modify anything.
return false;
}
static bool isReg(const MachineOperand &MO) {
return MO.getType() == MachineOperand::MO_VirtualRegister ||
MO.getType() == MachineOperand::MO_MachineRegister;
}
static bool isImmediate(const MachineOperand &MO) {
return MO.getType() == MachineOperand::MO_SignExtendedImmed ||
MO.getType() == MachineOperand::MO_UnextendedImmed;
}
static bool isScale(const MachineOperand &MO) {
return isImmediate(MO) &&
(MO.getImmedValue() == 1 || MO.getImmedValue() == 2 ||
MO.getImmedValue() == 4 || MO.getImmedValue() == 8);
}
static bool isMem(const MachineInstr *MI, unsigned Op) {
return Op+4 <= MI->getNumOperands() &&
isReg(MI->getOperand(Op )) && isScale(MI->getOperand(Op+1)) &&
isReg(MI->getOperand(Op+2)) && isImmediate(MI->getOperand(Op+3));
}
static void printOp(std::ostream &O, const MachineOperand &MO,
const MRegisterInfo &RI) {
switch (MO.getType()) {
case MachineOperand::MO_VirtualRegister:
case MachineOperand::MO_MachineRegister:
if (MO.getReg() < MRegisterInfo::FirstVirtualRegister)
O << RI.get(MO.getReg()).Name;
else
O << "%reg" << MO.getReg();
return;
case MachineOperand::MO_SignExtendedImmed:
case MachineOperand::MO_UnextendedImmed:
O << (int)MO.getImmedValue();
return;
default:
O << "<unknown op ty>"; return;
}
}
static void printMemReference(std::ostream &O, const MachineInstr *MI,
unsigned Op, const MRegisterInfo &RI) {
assert(isMem(MI, Op) && "Invalid memory reference!");
const MachineOperand &BaseReg = MI->getOperand(Op);
const MachineOperand &Scale = MI->getOperand(Op+1);
const MachineOperand &IndexReg = MI->getOperand(Op+2);
const MachineOperand &Disp = MI->getOperand(Op+3);
O << "[";
bool NeedPlus = false;
if (BaseReg.getReg()) {
printOp(O, BaseReg, RI);
NeedPlus = true;
}
if (IndexReg.getReg()) {
if (NeedPlus) O << " + ";
if (IndexReg.getImmedValue() != 1)
O << IndexReg.getImmedValue() << "*";
printOp(O, IndexReg, RI);
NeedPlus = true;
}
if (Disp.getImmedValue()) {
if (NeedPlus) O << " + ";
printOp(O, Disp, RI);
}
O << "]";
}
static inline void toHexDigit(std::ostream &O, unsigned char V) {
if (V >= 10)
O << (char)('A'+V-10);
else
O << (char)('0'+V);
}
static std::ostream &toHex(std::ostream &O, unsigned char V) {
toHexDigit(O, V >> 4);
toHexDigit(O, V & 0xF);
return O;
}
static std::ostream &emitConstant(std::ostream &O, unsigned Val, unsigned Size){
// Output the constant in little endian byte order...
for (unsigned i = 0; i != Size; ++i) {
toHex(O, Val) << " ";
Val >>= 8;
}
return O;
}
namespace N86 { // Native X86 Register numbers...
enum {
EAX = 0, ECX = 1, EDX = 2, EBX = 3, ESP = 4, EBP = 5, ESI = 6, EDI = 7
};
}
// getX86RegNum - This function maps LLVM register identifiers to their X86
// specific numbering, which is used in various places encoding instructions.
//
static unsigned getX86RegNum(unsigned RegNo) {
switch(RegNo) {
case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
case X86::ESP: case X86::SP: case X86::AH: return N86::ESP;
case X86::EBP: case X86::BP: case X86::CH: return N86::EBP;
case X86::ESI: case X86::SI: case X86::DH: return N86::ESI;
case X86::EDI: case X86::DI: case X86::BH: return N86::EDI;
default:
assert(RegNo >= MRegisterInfo::FirstVirtualRegister &&
"Unknown physical register!");
DEBUG(std::cerr << "Register allocator hasn't allocated " << RegNo
<< " correctly yet!\n");
return 0;
}
}
inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
unsigned RM) {
assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
return RM | (RegOpcode << 3) | (Mod << 6);
}
static void emitRegModRMByte(std::ostream &O, unsigned ModRMReg,
unsigned RegOpcodeField) {
toHex(O, ModRMByte(3, RegOpcodeField, getX86RegNum(ModRMReg))) << " ";
}
inline static void emitSIBByte(std::ostream &O, unsigned SS, unsigned Index,
unsigned Base) {
// SIB byte is in the same format as the ModRMByte...
toHex(O, ModRMByte(SS, Index, Base));
}
static bool isDisp8(int Value) {
return Value == (signed char)Value;
}
static void emitMemModRMByte(std::ostream &O, const MachineInstr *MI,
unsigned Op, unsigned RegOpcodeField) {
assert(isMem(MI, Op) && "Invalid memory reference!");
const MachineOperand &BaseReg = MI->getOperand(Op);
const MachineOperand &Scale = MI->getOperand(Op+1);
const MachineOperand &IndexReg = MI->getOperand(Op+2);
const MachineOperand &Disp = MI->getOperand(Op+3);
// Is a SIB byte needed?
if (IndexReg.getReg() == 0 && BaseReg.getReg() != X86::ESP) {
if (BaseReg.getReg() == 0) { // Just a displacement?
// Emit special case [disp32] encoding
toHex(O, ModRMByte(0, RegOpcodeField, 5));
emitConstant(O, Disp.getImmedValue(), 4);
} else {
unsigned BaseRegNo = getX86RegNum(BaseReg.getReg());
if (Disp.getImmedValue() == 0 && BaseRegNo != N86::EBP) {
// Emit simple indirect register encoding... [EAX] f.e.
toHex(O, ModRMByte(0, RegOpcodeField, BaseRegNo));
} else if (isDisp8(Disp.getImmedValue())) {
// Emit the disp8 encoding... [REG+disp8]
toHex(O, ModRMByte(1, RegOpcodeField, BaseRegNo));
emitConstant(O, Disp.getImmedValue(), 1);
} else {
// Emit the most general non-SIB encoding: [REG+disp32]
toHex(O, ModRMByte(1, RegOpcodeField, BaseRegNo));
emitConstant(O, Disp.getImmedValue(), 4);
}
}
} else { // We need a SIB byte, so start by outputting the ModR/M byte first
assert(IndexReg.getReg() != X86::ESP && "Cannot use ESP as index reg!");
bool ForceDisp32 = false;
if (BaseReg.getReg() == 0) {
// If there is no base register, we emit the special case SIB byte with
// MOD=0, BASE=5, to JUST get the index, scale, and displacement.
toHex(O, ModRMByte(0, RegOpcodeField, 4));
ForceDisp32 = true;
} else if (Disp.getImmedValue() == 0) {
// Emit no displacement ModR/M byte
toHex(O, ModRMByte(0, RegOpcodeField, 4));
} else if (isDisp8(Disp.getImmedValue())) {
// Emit the disp8 encoding...
toHex(O, ModRMByte(1, RegOpcodeField, 4));
} else {
// Emit the normal disp32 encoding...
toHex(O, ModRMByte(2, RegOpcodeField, 4));
}
// Calculate what the SS field value should be...
static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
unsigned SS = SSTable[Scale.getImmedValue()];
if (BaseReg.getReg() == 0) {
// Handle the SIB byte for the case where there is no base. The
// displacement has already been output.
assert(IndexReg.getReg() && "Index register must be specified!");
emitSIBByte(O, SS, getX86RegNum(IndexReg.getReg()), 5);
} else {
unsigned BaseRegNo = getX86RegNum(BaseReg.getReg());
unsigned IndexRegNo = getX86RegNum(IndexReg.getReg());
emitSIBByte(O, SS, IndexRegNo, BaseRegNo);
}
// Do we need to output a displacement?
if (Disp.getImmedValue() != 0 || ForceDisp32) {
if (!ForceDisp32 && isDisp8(Disp.getImmedValue()))
emitConstant(O, Disp.getImmedValue(), 1);
else
emitConstant(O, Disp.getImmedValue(), 4);
}
}
}
// print - Print out an x86 instruction in intel syntax
void X86InstrInfo::print(const MachineInstr *MI, std::ostream &O,
const TargetMachine &TM) const {
unsigned Opcode = MI->getOpcode();
const MachineInstrDescriptor &Desc = get(Opcode);
// Print instruction prefixes if neccesary
if (Desc.TSFlags & X86II::OpSize) O << "66 "; // Operand size...
if (Desc.TSFlags & X86II::TB) O << "0F "; // Two-byte opcode prefix
switch (Desc.TSFlags & X86II::FormMask) {
case X86II::OtherFrm:
O << "\t\t\t";
O << "-"; MI->print(O, TM);
break;
case X86II::RawFrm:
toHex(O, getBaseOpcodeFor(Opcode));
O << "\n\t\t\t\t";
O << getName(MI->getOpCode()) << " ";
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
if (i) O << ", ";
printOp(O, MI->getOperand(i), RI);
}
O << "\n";
return;
case X86II::AddRegFrm: {
// There are currently two forms of acceptable AddRegFrm instructions.
// Either the instruction JUST takes a single register (like inc, dec, etc),
// or it takes a register and an immediate of the same size as the register
// (move immediate f.e.).
//
assert(isReg(MI->getOperand(0)) &&
(MI->getNumOperands() == 1 ||
(MI->getNumOperands() == 2 && isImmediate(MI->getOperand(1)))) &&
"Illegal form for AddRegFrm instruction!");
unsigned Reg = MI->getOperand(0).getReg();
toHex(O, getBaseOpcodeFor(Opcode) + getX86RegNum(Reg)) << " ";
if (MI->getNumOperands() == 2) {
unsigned Size = 4;
emitConstant(O, MI->getOperand(1).getImmedValue(), Size);
}
O << "\n\t\t\t\t";
O << getName(MI->getOpCode()) << " ";
printOp(O, MI->getOperand(0), RI);
if (MI->getNumOperands() == 2) {
O << ", ";
printOp(O, MI->getOperand(1), RI);
}
O << "\n";
return;
}
case X86II::MRMDestReg: {
// There are two acceptable forms of MRMDestReg instructions, those with 3
// and 2 operands:
//
// 3 Operands: in this form, the first two registers (the destination, and
// the first operand) should be the same, post register allocation. The 3rd
// operand is an additional input. This should be for things like add
// instructions.
//
// 2 Operands: this is for things like mov that do not read a second input
//
assert(isReg(MI->getOperand(0)) &&
(MI->getNumOperands() == 2 ||
(MI->getNumOperands() == 3 && isReg(MI->getOperand(1)))) &&
isReg(MI->getOperand(MI->getNumOperands()-1))
&& "Bad format for MRMDestReg!");
if (MI->getNumOperands() == 3 &&
MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
O << "**";
toHex(O, getBaseOpcodeFor(Opcode)) << " ";
unsigned ModRMReg = MI->getOperand(0).getReg();
unsigned ExtraReg = MI->getOperand(MI->getNumOperands()-1).getReg();
emitRegModRMByte(O, ModRMReg, getX86RegNum(ExtraReg));
O << "\n\t\t\t\t";
O << getName(MI->getOpCode()) << " ";
printOp(O, MI->getOperand(0), RI);
O << ", ";
printOp(O, MI->getOperand(MI->getNumOperands()-1), RI);
O << "\n";
return;
}
case X86II::MRMDestMem: {
// These instructions are the same as MRMDestReg, but instead of having a
// register reference for the mod/rm field, it's a memory reference.
//
assert(isMem(MI, 0) && MI->getNumOperands() == 4+1 &&
isReg(MI->getOperand(4)) && "Bad format for MRMDestMem!");
toHex(O, getBaseOpcodeFor(Opcode)) << " ";
emitMemModRMByte(O, MI, 0, getX86RegNum(MI->getOperand(4).getReg()));
O << "\n\t\t\t\t";
O << getName(MI->getOpCode()) << " <SIZE> PTR ";
printMemReference(O, MI, 0, RI);
O << ", ";
printOp(O, MI->getOperand(4), RI);
O << "\n";
return;
}
case X86II::MRMSrcReg: {
// There is a two forms that are acceptable for MRMSrcReg instructions,
// those with 3 and 2 operands:
//
// 3 Operands: in this form, the last register (the second input) is the
// ModR/M input. The first two operands should be the same, post register
// allocation. This is for things like: add r32, r/m32
//
// 2 Operands: this is for things like mov that do not read a second input
//
assert(isReg(MI->getOperand(0)) &&
isReg(MI->getOperand(1)) &&
(MI->getNumOperands() == 2 ||
(MI->getNumOperands() == 3 && isReg(MI->getOperand(2))))
&& "Bad format for MRMDestReg!");
if (MI->getNumOperands() == 3 &&
MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
O << "**";
toHex(O, getBaseOpcodeFor(Opcode)) << " ";
unsigned ModRMReg = MI->getOperand(MI->getNumOperands()-1).getReg();
unsigned ExtraReg = MI->getOperand(0).getReg();
emitRegModRMByte(O, ModRMReg, getX86RegNum(ExtraReg));
O << "\n\t\t\t\t";
O << getName(MI->getOpCode()) << " ";
printOp(O, MI->getOperand(0), RI);
O << ", ";
printOp(O, MI->getOperand(MI->getNumOperands()-1), RI);
O << "\n";
return;
}
case X86II::MRMSrcMem: {
// These instructions are the same as MRMSrcReg, but instead of having a
// register reference for the mod/rm field, it's a memory reference.
//
assert(isReg(MI->getOperand(0)) &&
(MI->getNumOperands() == 1+4 && isMem(MI, 1)) ||
(MI->getNumOperands() == 2+4 && isReg(MI->getOperand(1)) &&
isMem(MI, 2))
&& "Bad format for MRMDestReg!");
if (MI->getNumOperands() == 2+4 &&
MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
O << "**";
toHex(O, getBaseOpcodeFor(Opcode)) << " ";
unsigned ExtraReg = MI->getOperand(0).getReg();
emitMemModRMByte(O, MI, MI->getNumOperands()-4, getX86RegNum(ExtraReg));
O << "\n\t\t\t\t";
O << getName(MI->getOpCode()) << " ";
printOp(O, MI->getOperand(0), RI);
O << ", <SIZE> PTR ";
printMemReference(O, MI, MI->getNumOperands()-4, RI);
O << "\n";
return;
}
case X86II::MRMS0r: case X86II::MRMS1r:
case X86II::MRMS2r: case X86II::MRMS3r:
case X86II::MRMS4r: case X86II::MRMS5r:
case X86II::MRMS6r: case X86II::MRMS7r: {
// In this form, the following are valid formats:
// 1. sete r
// 2. cmp reg, immediate
// 2. shl rdest, rinput <implicit CL or 1>
// 3. sbb rdest, rinput, immediate [rdest = rinput]
//
assert(MI->getNumOperands() > 0 && MI->getNumOperands() < 4 &&
isReg(MI->getOperand(0)) && "Bad MRMSxR format!");
assert((MI->getNumOperands() != 2 ||
isReg(MI->getOperand(1)) || isImmediate(MI->getOperand(1))) &&
"Bad MRMSxR format!");
assert((MI->getNumOperands() < 3 ||
(isReg(MI->getOperand(1)) && isImmediate(MI->getOperand(2)))) &&
"Bad MRMSxR format!");
if (MI->getNumOperands() > 1 && isReg(MI->getOperand(1)) &&
MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
O << "**";
toHex(O, getBaseOpcodeFor(Opcode)) << " ";
unsigned ExtraField = (Desc.TSFlags & X86II::FormMask)-X86II::MRMS0r;
emitRegModRMByte(O, MI->getOperand(0).getReg(), ExtraField);
if (isImmediate(MI->getOperand(MI->getNumOperands()-1))) {
unsigned Size = 4;
emitConstant(O, MI->getOperand(MI->getNumOperands()-1).getImmedValue(),
Size);
}
O << "\n\t\t\t\t";
O << getName(MI->getOpCode()) << " ";
printOp(O, MI->getOperand(0), RI);
if (isImmediate(MI->getOperand(MI->getNumOperands()-1))) {
O << ", ";
printOp(O, MI->getOperand(MI->getNumOperands()-1), RI);
}
O << "\n";
return;
}
default:
O << "\t\t\t-"; MI->print(O, TM); break;
}
}