mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178915 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1118 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1118 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- InstCombineMulDivRem.cpp -------------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
 | |
| // srem, urem, frem.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "InstCombine.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/Support/PatternMatch.h"
 | |
| using namespace llvm;
 | |
| using namespace PatternMatch;
 | |
| 
 | |
| 
 | |
| /// simplifyValueKnownNonZero - The specific integer value is used in a context
 | |
| /// where it is known to be non-zero.  If this allows us to simplify the
 | |
| /// computation, do so and return the new operand, otherwise return null.
 | |
| static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC) {
 | |
|   // If V has multiple uses, then we would have to do more analysis to determine
 | |
|   // if this is safe.  For example, the use could be in dynamically unreached
 | |
|   // code.
 | |
|   if (!V->hasOneUse()) return 0;
 | |
| 
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   // ((1 << A) >>u B) --> (1 << (A-B))
 | |
|   // Because V cannot be zero, we know that B is less than A.
 | |
|   Value *A = 0, *B = 0, *PowerOf2 = 0;
 | |
|   if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(PowerOf2), m_Value(A))),
 | |
|                       m_Value(B))) &&
 | |
|       // The "1" can be any value known to be a power of 2.
 | |
|       isKnownToBeAPowerOfTwo(PowerOf2)) {
 | |
|     A = IC.Builder->CreateSub(A, B);
 | |
|     return IC.Builder->CreateShl(PowerOf2, A);
 | |
|   }
 | |
| 
 | |
|   // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
 | |
|   // inexact.  Similarly for <<.
 | |
|   if (BinaryOperator *I = dyn_cast<BinaryOperator>(V))
 | |
|     if (I->isLogicalShift() && isKnownToBeAPowerOfTwo(I->getOperand(0))) {
 | |
|       // We know that this is an exact/nuw shift and that the input is a
 | |
|       // non-zero context as well.
 | |
|       if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC)) {
 | |
|         I->setOperand(0, V2);
 | |
|         MadeChange = true;
 | |
|       }
 | |
| 
 | |
|       if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
 | |
|         I->setIsExact();
 | |
|         MadeChange = true;
 | |
|       }
 | |
| 
 | |
|       if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
 | |
|         I->setHasNoUnsignedWrap();
 | |
|         MadeChange = true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // TODO: Lots more we could do here:
 | |
|   //    If V is a phi node, we can call this on each of its operands.
 | |
|   //    "select cond, X, 0" can simplify to "X".
 | |
| 
 | |
|   return MadeChange ? V : 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// MultiplyOverflows - True if the multiply can not be expressed in an int
 | |
| /// this size.
 | |
| static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
 | |
|   uint32_t W = C1->getBitWidth();
 | |
|   APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
 | |
|   if (sign) {
 | |
|     LHSExt = LHSExt.sext(W * 2);
 | |
|     RHSExt = RHSExt.sext(W * 2);
 | |
|   } else {
 | |
|     LHSExt = LHSExt.zext(W * 2);
 | |
|     RHSExt = RHSExt.zext(W * 2);
 | |
|   }
 | |
| 
 | |
|   APInt MulExt = LHSExt * RHSExt;
 | |
| 
 | |
|   if (!sign)
 | |
|     return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
 | |
| 
 | |
|   APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
 | |
|   APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
 | |
|   return MulExt.slt(Min) || MulExt.sgt(Max);
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitMul(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyAssociativeOrCommutative(I);
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (Value *V = SimplifyMulInst(Op0, Op1, TD))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|   if (Value *V = SimplifyUsingDistributiveLaws(I))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|   if (match(Op1, m_AllOnes()))  // X * -1 == 0 - X
 | |
|     return BinaryOperator::CreateNeg(Op0, I.getName());
 | |
| 
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | |
| 
 | |
|     // ((X << C1)*C2) == (X * (C2 << C1))
 | |
|     if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
 | |
|       if (SI->getOpcode() == Instruction::Shl)
 | |
|         if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
 | |
|           return BinaryOperator::CreateMul(SI->getOperand(0),
 | |
|                                            ConstantExpr::getShl(CI, ShOp));
 | |
| 
 | |
|     const APInt &Val = CI->getValue();
 | |
|     if (Val.isPowerOf2()) {          // Replace X*(2^C) with X << C
 | |
|       Constant *NewCst = ConstantInt::get(Op0->getType(), Val.logBase2());
 | |
|       BinaryOperator *Shl = BinaryOperator::CreateShl(Op0, NewCst);
 | |
|       if (I.hasNoSignedWrap()) Shl->setHasNoSignedWrap();
 | |
|       if (I.hasNoUnsignedWrap()) Shl->setHasNoUnsignedWrap();
 | |
|       return Shl;
 | |
|     }
 | |
| 
 | |
|     // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
 | |
|     { Value *X; ConstantInt *C1;
 | |
|       if (Op0->hasOneUse() &&
 | |
|           match(Op0, m_Add(m_Value(X), m_ConstantInt(C1)))) {
 | |
|         Value *Add = Builder->CreateMul(X, CI);
 | |
|         return BinaryOperator::CreateAdd(Add, Builder->CreateMul(C1, CI));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
 | |
|     // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
 | |
|     // The "* (2**n)" thus becomes a potential shifting opportunity.
 | |
|     {
 | |
|       const APInt &   Val = CI->getValue();
 | |
|       const APInt &PosVal = Val.abs();
 | |
|       if (Val.isNegative() && PosVal.isPowerOf2()) {
 | |
|         Value *X = 0, *Y = 0;
 | |
|         if (Op0->hasOneUse()) {
 | |
|           ConstantInt *C1;
 | |
|           Value *Sub = 0;
 | |
|           if (match(Op0, m_Sub(m_Value(Y), m_Value(X))))
 | |
|             Sub = Builder->CreateSub(X, Y, "suba");
 | |
|           else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1))))
 | |
|             Sub = Builder->CreateSub(Builder->CreateNeg(C1), Y, "subc");
 | |
|           if (Sub)
 | |
|             return
 | |
|               BinaryOperator::CreateMul(Sub,
 | |
|                                         ConstantInt::get(Y->getType(), PosVal));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Simplify mul instructions with a constant RHS.
 | |
|   if (isa<Constant>(Op1)) {
 | |
|     // Try to fold constant mul into select arguments.
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | |
|       if (Instruction *R = FoldOpIntoSelect(I, SI))
 | |
|         return R;
 | |
| 
 | |
|     if (isa<PHINode>(Op0))
 | |
|       if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|         return NV;
 | |
|   }
 | |
| 
 | |
|   if (Value *Op0v = dyn_castNegVal(Op0))     // -X * -Y = X*Y
 | |
|     if (Value *Op1v = dyn_castNegVal(Op1))
 | |
|       return BinaryOperator::CreateMul(Op0v, Op1v);
 | |
| 
 | |
|   // (X / Y) *  Y = X - (X % Y)
 | |
|   // (X / Y) * -Y = (X % Y) - X
 | |
|   {
 | |
|     Value *Op1C = Op1;
 | |
|     BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
 | |
|     if (!BO ||
 | |
|         (BO->getOpcode() != Instruction::UDiv &&
 | |
|          BO->getOpcode() != Instruction::SDiv)) {
 | |
|       Op1C = Op0;
 | |
|       BO = dyn_cast<BinaryOperator>(Op1);
 | |
|     }
 | |
|     Value *Neg = dyn_castNegVal(Op1C);
 | |
|     if (BO && BO->hasOneUse() &&
 | |
|         (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) &&
 | |
|         (BO->getOpcode() == Instruction::UDiv ||
 | |
|          BO->getOpcode() == Instruction::SDiv)) {
 | |
|       Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
 | |
| 
 | |
|       // If the division is exact, X % Y is zero, so we end up with X or -X.
 | |
|       if (PossiblyExactOperator *SDiv = dyn_cast<PossiblyExactOperator>(BO))
 | |
|         if (SDiv->isExact()) {
 | |
|           if (Op1BO == Op1C)
 | |
|             return ReplaceInstUsesWith(I, Op0BO);
 | |
|           return BinaryOperator::CreateNeg(Op0BO);
 | |
|         }
 | |
| 
 | |
|       Value *Rem;
 | |
|       if (BO->getOpcode() == Instruction::UDiv)
 | |
|         Rem = Builder->CreateURem(Op0BO, Op1BO);
 | |
|       else
 | |
|         Rem = Builder->CreateSRem(Op0BO, Op1BO);
 | |
|       Rem->takeName(BO);
 | |
| 
 | |
|       if (Op1BO == Op1C)
 | |
|         return BinaryOperator::CreateSub(Op0BO, Rem);
 | |
|       return BinaryOperator::CreateSub(Rem, Op0BO);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// i1 mul -> i1 and.
 | |
|   if (I.getType()->isIntegerTy(1))
 | |
|     return BinaryOperator::CreateAnd(Op0, Op1);
 | |
| 
 | |
|   // X*(1 << Y) --> X << Y
 | |
|   // (1 << Y)*X --> X << Y
 | |
|   {
 | |
|     Value *Y;
 | |
|     if (match(Op0, m_Shl(m_One(), m_Value(Y))))
 | |
|       return BinaryOperator::CreateShl(Op1, Y);
 | |
|     if (match(Op1, m_Shl(m_One(), m_Value(Y))))
 | |
|       return BinaryOperator::CreateShl(Op0, Y);
 | |
|   }
 | |
| 
 | |
|   // If one of the operands of the multiply is a cast from a boolean value, then
 | |
|   // we know the bool is either zero or one, so this is a 'masking' multiply.
 | |
|   //   X * Y (where Y is 0 or 1) -> X & (0-Y)
 | |
|   if (!I.getType()->isVectorTy()) {
 | |
|     // -2 is "-1 << 1" so it is all bits set except the low one.
 | |
|     APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true);
 | |
| 
 | |
|     Value *BoolCast = 0, *OtherOp = 0;
 | |
|     if (MaskedValueIsZero(Op0, Negative2))
 | |
|       BoolCast = Op0, OtherOp = Op1;
 | |
|     else if (MaskedValueIsZero(Op1, Negative2))
 | |
|       BoolCast = Op1, OtherOp = Op0;
 | |
| 
 | |
|     if (BoolCast) {
 | |
|       Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()),
 | |
|                                     BoolCast);
 | |
|       return BinaryOperator::CreateAnd(V, OtherOp);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed ? &I : 0;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Detect pattern:
 | |
| //
 | |
| // log2(Y*0.5)
 | |
| //
 | |
| // And check for corresponding fast math flags
 | |
| //
 | |
| 
 | |
| static void detectLog2OfHalf(Value *&Op, Value *&Y, IntrinsicInst *&Log2) {
 | |
| 
 | |
|    if (!Op->hasOneUse())
 | |
|      return;
 | |
| 
 | |
|    IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op);
 | |
|    if (!II)
 | |
|      return;
 | |
|    if (II->getIntrinsicID() != Intrinsic::log2 || !II->hasUnsafeAlgebra())
 | |
|      return;
 | |
|    Log2 = II;
 | |
| 
 | |
|    Value *OpLog2Of = II->getArgOperand(0);
 | |
|    if (!OpLog2Of->hasOneUse())
 | |
|      return;
 | |
| 
 | |
|    Instruction *I = dyn_cast<Instruction>(OpLog2Of);
 | |
|    if (!I)
 | |
|      return;
 | |
|    if (I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra())
 | |
|      return;
 | |
| 
 | |
|    ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(0));
 | |
|    if (CFP && CFP->isExactlyValue(0.5)) {
 | |
|      Y = I->getOperand(1);
 | |
|      return;
 | |
|    }
 | |
|    CFP = dyn_cast<ConstantFP>(I->getOperand(1));
 | |
|    if (CFP && CFP->isExactlyValue(0.5))
 | |
|      Y = I->getOperand(0);
 | |
| }
 | |
| 
 | |
| /// Helper function of InstCombiner::visitFMul(BinaryOperator(). It returns
 | |
| /// true iff the given value is FMul or FDiv with one and only one operand
 | |
| /// being a normal constant (i.e. not Zero/NaN/Infinity).
 | |
| static bool isFMulOrFDivWithConstant(Value *V) {
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I || (I->getOpcode() != Instruction::FMul &&
 | |
|              I->getOpcode() != Instruction::FDiv))
 | |
|     return false;
 | |
| 
 | |
|   ConstantFP *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
 | |
|   ConstantFP *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
 | |
| 
 | |
|   if (C0 && C1)
 | |
|     return false;
 | |
| 
 | |
|   return (C0 && C0->getValueAPF().isNormal()) ||
 | |
|          (C1 && C1->getValueAPF().isNormal());
 | |
| }
 | |
| 
 | |
| static bool isNormalFp(const ConstantFP *C) {
 | |
|   const APFloat &Flt = C->getValueAPF();
 | |
|   return Flt.isNormal() && !Flt.isDenormal();
 | |
| }
 | |
| 
 | |
| /// foldFMulConst() is a helper routine of InstCombiner::visitFMul().
 | |
| /// The input \p FMulOrDiv is a FMul/FDiv with one and only one operand
 | |
| /// being a constant (i.e. isFMulOrFDivWithConstant(FMulOrDiv) == true).
 | |
| /// This function is to simplify "FMulOrDiv * C" and returns the
 | |
| /// resulting expression. Note that this function could return NULL in
 | |
| /// case the constants cannot be folded into a normal floating-point.
 | |
| ///
 | |
| Value *InstCombiner::foldFMulConst(Instruction *FMulOrDiv, ConstantFP *C,
 | |
|                                    Instruction *InsertBefore) {
 | |
|   assert(isFMulOrFDivWithConstant(FMulOrDiv) && "V is invalid");
 | |
| 
 | |
|   Value *Opnd0 = FMulOrDiv->getOperand(0);
 | |
|   Value *Opnd1 = FMulOrDiv->getOperand(1);
 | |
| 
 | |
|   ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0);
 | |
|   ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1);
 | |
| 
 | |
|   BinaryOperator *R = 0;
 | |
| 
 | |
|   // (X * C0) * C => X * (C0*C)
 | |
|   if (FMulOrDiv->getOpcode() == Instruction::FMul) {
 | |
|     Constant *F = ConstantExpr::getFMul(C1 ? C1 : C0, C);
 | |
|     if (isNormalFp(cast<ConstantFP>(F)))
 | |
|       R = BinaryOperator::CreateFMul(C1 ? Opnd0 : Opnd1, F);
 | |
|   } else {
 | |
|     if (C0) {
 | |
|       // (C0 / X) * C => (C0 * C) / X
 | |
|       ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFMul(C0, C));
 | |
|       if (isNormalFp(F))
 | |
|         R = BinaryOperator::CreateFDiv(F, Opnd1);
 | |
|     } else {
 | |
|       // (X / C1) * C => X * (C/C1) if C/C1 is not a denormal
 | |
|       ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFDiv(C, C1));
 | |
|       if (isNormalFp(F)) {
 | |
|         R = BinaryOperator::CreateFMul(Opnd0, F);
 | |
|       } else {
 | |
|         // (X / C1) * C => X / (C1/C)
 | |
|         Constant *F = ConstantExpr::getFDiv(C1, C);
 | |
|         if (isNormalFp(cast<ConstantFP>(F)))
 | |
|           R = BinaryOperator::CreateFDiv(Opnd0, F);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (R) {
 | |
|     R->setHasUnsafeAlgebra(true);
 | |
|     InsertNewInstWith(R, *InsertBefore);
 | |
|   }
 | |
| 
 | |
|   return R;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyAssociativeOrCommutative(I);
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (isa<Constant>(Op0))
 | |
|     std::swap(Op0, Op1);
 | |
| 
 | |
|   if (Value *V = SimplifyFMulInst(Op0, Op1, I.getFastMathFlags(), TD))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|   bool AllowReassociate = I.hasUnsafeAlgebra();
 | |
| 
 | |
|   // Simplify mul instructions with a constant RHS.
 | |
|   if (isa<Constant>(Op1)) {
 | |
|     // Try to fold constant mul into select arguments.
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | |
|       if (Instruction *R = FoldOpIntoSelect(I, SI))
 | |
|         return R;
 | |
| 
 | |
|     if (isa<PHINode>(Op0))
 | |
|       if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|         return NV;
 | |
| 
 | |
|     ConstantFP *C = dyn_cast<ConstantFP>(Op1);
 | |
|     if (C && AllowReassociate && C->getValueAPF().isNormal()) {
 | |
|       // Let MDC denote an expression in one of these forms:
 | |
|       // X * C, C/X, X/C, where C is a constant.
 | |
|       //
 | |
|       // Try to simplify "MDC * Constant"
 | |
|       if (isFMulOrFDivWithConstant(Op0)) {
 | |
|         Value *V = foldFMulConst(cast<Instruction>(Op0), C, &I);
 | |
|         if (V)
 | |
|           return ReplaceInstUsesWith(I, V);
 | |
|       }
 | |
| 
 | |
|       // (MDC +/- C1) * C => (MDC * C) +/- (C1 * C)
 | |
|       Instruction *FAddSub = dyn_cast<Instruction>(Op0);
 | |
|       if (FAddSub &&
 | |
|           (FAddSub->getOpcode() == Instruction::FAdd ||
 | |
|            FAddSub->getOpcode() == Instruction::FSub)) {
 | |
|         Value *Opnd0 = FAddSub->getOperand(0);
 | |
|         Value *Opnd1 = FAddSub->getOperand(1);
 | |
|         ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0);
 | |
|         ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1);
 | |
|         bool Swap = false;
 | |
|         if (C0) {
 | |
|           std::swap(C0, C1);
 | |
|           std::swap(Opnd0, Opnd1);
 | |
|           Swap = true;
 | |
|         }
 | |
| 
 | |
|         if (C1 && C1->getValueAPF().isNormal() &&
 | |
|             isFMulOrFDivWithConstant(Opnd0)) {
 | |
|           Value *M1 = ConstantExpr::getFMul(C1, C);
 | |
|           Value *M0 = isNormalFp(cast<ConstantFP>(M1)) ?
 | |
|                       foldFMulConst(cast<Instruction>(Opnd0), C, &I) :
 | |
|                       0;
 | |
|           if (M0 && M1) {
 | |
|             if (Swap && FAddSub->getOpcode() == Instruction::FSub)
 | |
|               std::swap(M0, M1);
 | |
| 
 | |
|             Value *R = (FAddSub->getOpcode() == Instruction::FAdd) ?
 | |
|                         BinaryOperator::CreateFAdd(M0, M1) :
 | |
|                         BinaryOperator::CreateFSub(M0, M1);
 | |
|             Instruction *RI = cast<Instruction>(R);
 | |
|             RI->copyFastMathFlags(&I);
 | |
|             return RI;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // Under unsafe algebra do:
 | |
|   // X * log2(0.5*Y) = X*log2(Y) - X
 | |
|   if (I.hasUnsafeAlgebra()) {
 | |
|     Value *OpX = NULL;
 | |
|     Value *OpY = NULL;
 | |
|     IntrinsicInst *Log2;
 | |
|     detectLog2OfHalf(Op0, OpY, Log2);
 | |
|     if (OpY) {
 | |
|       OpX = Op1;
 | |
|     } else {
 | |
|       detectLog2OfHalf(Op1, OpY, Log2);
 | |
|       if (OpY) {
 | |
|         OpX = Op0;
 | |
|       }
 | |
|     }
 | |
|     // if pattern detected emit alternate sequence
 | |
|     if (OpX && OpY) {
 | |
|       Log2->setArgOperand(0, OpY);
 | |
|       Value *FMulVal = Builder->CreateFMul(OpX, Log2);
 | |
|       Instruction *FMul = cast<Instruction>(FMulVal);
 | |
|       FMul->copyFastMathFlags(Log2);
 | |
|       Instruction *FSub = BinaryOperator::CreateFSub(FMulVal, OpX);
 | |
|       FSub->copyFastMathFlags(Log2);
 | |
|       return FSub;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Handle symmetric situation in a 2-iteration loop
 | |
|   Value *Opnd0 = Op0;
 | |
|   Value *Opnd1 = Op1;
 | |
|   for (int i = 0; i < 2; i++) {
 | |
|     bool IgnoreZeroSign = I.hasNoSignedZeros();
 | |
|     if (BinaryOperator::isFNeg(Opnd0, IgnoreZeroSign)) {
 | |
|       Value *N0 = dyn_castFNegVal(Opnd0, IgnoreZeroSign);
 | |
|       Value *N1 = dyn_castFNegVal(Opnd1, IgnoreZeroSign);
 | |
| 
 | |
|       // -X * -Y => X*Y
 | |
|       if (N1)
 | |
|         return BinaryOperator::CreateFMul(N0, N1);
 | |
| 
 | |
|       if (Opnd0->hasOneUse()) {
 | |
|         // -X * Y => -(X*Y) (Promote negation as high as possible)
 | |
|         Value *T = Builder->CreateFMul(N0, Opnd1);
 | |
|         cast<Instruction>(T)->setDebugLoc(I.getDebugLoc());
 | |
|         Instruction *Neg = BinaryOperator::CreateFNeg(T);
 | |
|         if (I.getFastMathFlags().any()) {
 | |
|           cast<Instruction>(T)->copyFastMathFlags(&I);
 | |
|           Neg->copyFastMathFlags(&I);
 | |
|         }
 | |
|         return Neg;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // (X*Y) * X => (X*X) * Y where Y != X
 | |
|     //  The purpose is two-fold:
 | |
|     //   1) to form a power expression (of X).
 | |
|     //   2) potentially shorten the critical path: After transformation, the
 | |
|     //  latency of the instruction Y is amortized by the expression of X*X,
 | |
|     //  and therefore Y is in a "less critical" position compared to what it
 | |
|     //  was before the transformation.
 | |
|     //
 | |
|     if (AllowReassociate) {
 | |
|       Value *Opnd0_0, *Opnd0_1;
 | |
|       if (Opnd0->hasOneUse() &&
 | |
|           match(Opnd0, m_FMul(m_Value(Opnd0_0), m_Value(Opnd0_1)))) {
 | |
|         Value *Y = 0;
 | |
|         if (Opnd0_0 == Opnd1 && Opnd0_1 != Opnd1)
 | |
|           Y = Opnd0_1;
 | |
|         else if (Opnd0_1 == Opnd1 && Opnd0_0 != Opnd1)
 | |
|           Y = Opnd0_0;
 | |
| 
 | |
|         if (Y) {
 | |
|           Instruction *T = cast<Instruction>(Builder->CreateFMul(Opnd1, Opnd1));
 | |
|           T->copyFastMathFlags(&I);
 | |
|           T->setDebugLoc(I.getDebugLoc());
 | |
| 
 | |
|           Instruction *R = BinaryOperator::CreateFMul(T, Y);
 | |
|           R->copyFastMathFlags(&I);
 | |
|           return R;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!isa<Constant>(Op1))
 | |
|       std::swap(Opnd0, Opnd1);
 | |
|     else
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   return Changed ? &I : 0;
 | |
| }
 | |
| 
 | |
| /// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
 | |
| /// instruction.
 | |
| bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
 | |
|   SelectInst *SI = cast<SelectInst>(I.getOperand(1));
 | |
| 
 | |
|   // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
 | |
|   int NonNullOperand = -1;
 | |
|   if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
 | |
|     if (ST->isNullValue())
 | |
|       NonNullOperand = 2;
 | |
|   // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
 | |
|   if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
 | |
|     if (ST->isNullValue())
 | |
|       NonNullOperand = 1;
 | |
| 
 | |
|   if (NonNullOperand == -1)
 | |
|     return false;
 | |
| 
 | |
|   Value *SelectCond = SI->getOperand(0);
 | |
| 
 | |
|   // Change the div/rem to use 'Y' instead of the select.
 | |
|   I.setOperand(1, SI->getOperand(NonNullOperand));
 | |
| 
 | |
|   // Okay, we know we replace the operand of the div/rem with 'Y' with no
 | |
|   // problem.  However, the select, or the condition of the select may have
 | |
|   // multiple uses.  Based on our knowledge that the operand must be non-zero,
 | |
|   // propagate the known value for the select into other uses of it, and
 | |
|   // propagate a known value of the condition into its other users.
 | |
| 
 | |
|   // If the select and condition only have a single use, don't bother with this,
 | |
|   // early exit.
 | |
|   if (SI->use_empty() && SelectCond->hasOneUse())
 | |
|     return true;
 | |
| 
 | |
|   // Scan the current block backward, looking for other uses of SI.
 | |
|   BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
 | |
| 
 | |
|   while (BBI != BBFront) {
 | |
|     --BBI;
 | |
|     // If we found a call to a function, we can't assume it will return, so
 | |
|     // information from below it cannot be propagated above it.
 | |
|     if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
 | |
|       break;
 | |
| 
 | |
|     // Replace uses of the select or its condition with the known values.
 | |
|     for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
 | |
|          I != E; ++I) {
 | |
|       if (*I == SI) {
 | |
|         *I = SI->getOperand(NonNullOperand);
 | |
|         Worklist.Add(BBI);
 | |
|       } else if (*I == SelectCond) {
 | |
|         *I = NonNullOperand == 1 ? ConstantInt::getTrue(BBI->getContext()) :
 | |
|                                    ConstantInt::getFalse(BBI->getContext());
 | |
|         Worklist.Add(BBI);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If we past the instruction, quit looking for it.
 | |
|     if (&*BBI == SI)
 | |
|       SI = 0;
 | |
|     if (&*BBI == SelectCond)
 | |
|       SelectCond = 0;
 | |
| 
 | |
|     // If we ran out of things to eliminate, break out of the loop.
 | |
|     if (SelectCond == 0 && SI == 0)
 | |
|       break;
 | |
| 
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// This function implements the transforms common to both integer division
 | |
| /// instructions (udiv and sdiv). It is called by the visitors to those integer
 | |
| /// division instructions.
 | |
| /// @brief Common integer divide transforms
 | |
| Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   // The RHS is known non-zero.
 | |
|   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
 | |
|     I.setOperand(1, V);
 | |
|     return &I;
 | |
|   }
 | |
| 
 | |
|   // Handle cases involving: [su]div X, (select Cond, Y, Z)
 | |
|   // This does not apply for fdiv.
 | |
|   if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
 | |
|     return &I;
 | |
| 
 | |
|   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
 | |
|     // (X / C1) / C2  -> X / (C1*C2)
 | |
|     if (Instruction *LHS = dyn_cast<Instruction>(Op0))
 | |
|       if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
 | |
|         if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
 | |
|           if (MultiplyOverflows(RHS, LHSRHS,
 | |
|                                 I.getOpcode()==Instruction::SDiv))
 | |
|             return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
|           return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
 | |
|                                         ConstantExpr::getMul(RHS, LHSRHS));
 | |
|         }
 | |
| 
 | |
|     if (!RHS->isZero()) { // avoid X udiv 0
 | |
|       if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | |
|         if (Instruction *R = FoldOpIntoSelect(I, SI))
 | |
|           return R;
 | |
|       if (isa<PHINode>(Op0))
 | |
|         if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|           return NV;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // See if we can fold away this div instruction.
 | |
|   if (SimplifyDemandedInstructionBits(I))
 | |
|     return &I;
 | |
| 
 | |
|   // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
 | |
|   Value *X = 0, *Z = 0;
 | |
|   if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1
 | |
|     bool isSigned = I.getOpcode() == Instruction::SDiv;
 | |
|     if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
 | |
|         (!isSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
 | |
|       return BinaryOperator::Create(I.getOpcode(), X, Op1);
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// dyn_castZExtVal - Checks if V is a zext or constant that can
 | |
| /// be truncated to Ty without losing bits.
 | |
| static Value *dyn_castZExtVal(Value *V, Type *Ty) {
 | |
|   if (ZExtInst *Z = dyn_cast<ZExtInst>(V)) {
 | |
|     if (Z->getSrcTy() == Ty)
 | |
|       return Z->getOperand(0);
 | |
|   } else if (ConstantInt *C = dyn_cast<ConstantInt>(V)) {
 | |
|     if (C->getValue().getActiveBits() <= cast<IntegerType>(Ty)->getBitWidth())
 | |
|       return ConstantExpr::getTrunc(C, Ty);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (Value *V = SimplifyUDivInst(Op0, Op1, TD))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|   // Handle the integer div common cases
 | |
|   if (Instruction *Common = commonIDivTransforms(I))
 | |
|     return Common;
 | |
| 
 | |
|   {
 | |
|     // X udiv 2^C -> X >> C
 | |
|     // Check to see if this is an unsigned division with an exact power of 2,
 | |
|     // if so, convert to a right shift.
 | |
|     const APInt *C;
 | |
|     if (match(Op1, m_Power2(C))) {
 | |
|       BinaryOperator *LShr =
 | |
|       BinaryOperator::CreateLShr(Op0,
 | |
|                                  ConstantInt::get(Op0->getType(),
 | |
|                                                   C->logBase2()));
 | |
|       if (I.isExact()) LShr->setIsExact();
 | |
|       return LShr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
 | |
|     // X udiv C, where C >= signbit
 | |
|     if (C->getValue().isNegative()) {
 | |
|       Value *IC = Builder->CreateICmpULT(Op0, C);
 | |
|       return SelectInst::Create(IC, Constant::getNullValue(I.getType()),
 | |
|                                 ConstantInt::get(I.getType(), 1));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // (x lshr C1) udiv C2 --> x udiv (C2 << C1)
 | |
|   if (ConstantInt *C2 = dyn_cast<ConstantInt>(Op1)) {
 | |
|     Value *X;
 | |
|     ConstantInt *C1;
 | |
|     if (match(Op0, m_LShr(m_Value(X), m_ConstantInt(C1)))) {
 | |
|       APInt NC = C2->getValue().shl(C1->getLimitedValue(C1->getBitWidth()-1));
 | |
|       return BinaryOperator::CreateUDiv(X, Builder->getInt(NC));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
 | |
|   { const APInt *CI; Value *N;
 | |
|     if (match(Op1, m_Shl(m_Power2(CI), m_Value(N))) ||
 | |
|         match(Op1, m_ZExt(m_Shl(m_Power2(CI), m_Value(N))))) {
 | |
|       if (*CI != 1)
 | |
|         N = Builder->CreateAdd(N,
 | |
|                                ConstantInt::get(N->getType(), CI->logBase2()));
 | |
|       if (ZExtInst *Z = dyn_cast<ZExtInst>(Op1))
 | |
|         N = Builder->CreateZExt(N, Z->getDestTy());
 | |
|       if (I.isExact())
 | |
|         return BinaryOperator::CreateExactLShr(Op0, N);
 | |
|       return BinaryOperator::CreateLShr(Op0, N);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
 | |
|   // where C1&C2 are powers of two.
 | |
|   { Value *Cond; const APInt *C1, *C2;
 | |
|     if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) {
 | |
|       // Construct the "on true" case of the select
 | |
|       Value *TSI = Builder->CreateLShr(Op0, C1->logBase2(), Op1->getName()+".t",
 | |
|                                        I.isExact());
 | |
| 
 | |
|       // Construct the "on false" case of the select
 | |
|       Value *FSI = Builder->CreateLShr(Op0, C2->logBase2(), Op1->getName()+".f",
 | |
|                                        I.isExact());
 | |
| 
 | |
|       // construct the select instruction and return it.
 | |
|       return SelectInst::Create(Cond, TSI, FSI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // (zext A) udiv (zext B) --> zext (A udiv B)
 | |
|   if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
 | |
|     if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
 | |
|       return new ZExtInst(Builder->CreateUDiv(ZOp0->getOperand(0), ZOp1, "div",
 | |
|                                               I.isExact()),
 | |
|                           I.getType());
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (Value *V = SimplifySDivInst(Op0, Op1, TD))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|   // Handle the integer div common cases
 | |
|   if (Instruction *Common = commonIDivTransforms(I))
 | |
|     return Common;
 | |
| 
 | |
|   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
 | |
|     // sdiv X, -1 == -X
 | |
|     if (RHS->isAllOnesValue())
 | |
|       return BinaryOperator::CreateNeg(Op0);
 | |
| 
 | |
|     // sdiv X, C  -->  ashr exact X, log2(C)
 | |
|     if (I.isExact() && RHS->getValue().isNonNegative() &&
 | |
|         RHS->getValue().isPowerOf2()) {
 | |
|       Value *ShAmt = llvm::ConstantInt::get(RHS->getType(),
 | |
|                                             RHS->getValue().exactLogBase2());
 | |
|       return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
 | |
|     }
 | |
| 
 | |
|     // -X/C  -->  X/-C  provided the negation doesn't overflow.
 | |
|     if (SubOperator *Sub = dyn_cast<SubOperator>(Op0))
 | |
|       if (match(Sub->getOperand(0), m_Zero()) && Sub->hasNoSignedWrap())
 | |
|         return BinaryOperator::CreateSDiv(Sub->getOperand(1),
 | |
|                                           ConstantExpr::getNeg(RHS));
 | |
|   }
 | |
| 
 | |
|   // If the sign bits of both operands are zero (i.e. we can prove they are
 | |
|   // unsigned inputs), turn this into a udiv.
 | |
|   if (I.getType()->isIntegerTy()) {
 | |
|     APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
 | |
|     if (MaskedValueIsZero(Op0, Mask)) {
 | |
|       if (MaskedValueIsZero(Op1, Mask)) {
 | |
|         // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
 | |
|         return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
 | |
|       }
 | |
| 
 | |
|       if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
 | |
|         // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
 | |
|         // Safe because the only negative value (1 << Y) can take on is
 | |
|         // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
 | |
|         // the sign bit set.
 | |
|         return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// CvtFDivConstToReciprocal tries to convert X/C into X*1/C if C not a special
 | |
| /// FP value and:
 | |
| ///    1) 1/C is exact, or
 | |
| ///    2) reciprocal is allowed.
 | |
| /// If the convertion was successful, the simplified expression "X * 1/C" is
 | |
| /// returned; otherwise, NULL is returned.
 | |
| ///
 | |
| static Instruction *CvtFDivConstToReciprocal(Value *Dividend,
 | |
|                                              ConstantFP *Divisor,
 | |
|                                              bool AllowReciprocal) {
 | |
|   const APFloat &FpVal = Divisor->getValueAPF();
 | |
|   APFloat Reciprocal(FpVal.getSemantics());
 | |
|   bool Cvt = FpVal.getExactInverse(&Reciprocal);
 | |
| 
 | |
|   if (!Cvt && AllowReciprocal && FpVal.isNormal()) {
 | |
|     Reciprocal = APFloat(FpVal.getSemantics(), 1.0f);
 | |
|     (void)Reciprocal.divide(FpVal, APFloat::rmNearestTiesToEven);
 | |
|     Cvt = !Reciprocal.isDenormal();
 | |
|   }
 | |
| 
 | |
|   if (!Cvt)
 | |
|     return 0;
 | |
| 
 | |
|   ConstantFP *R;
 | |
|   R = ConstantFP::get(Dividend->getType()->getContext(), Reciprocal);
 | |
|   return BinaryOperator::CreateFMul(Dividend, R);
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (Value *V = SimplifyFDivInst(Op0, Op1, TD))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|   bool AllowReassociate = I.hasUnsafeAlgebra();
 | |
|   bool AllowReciprocal = I.hasAllowReciprocal();
 | |
| 
 | |
|   if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
 | |
|     if (AllowReassociate) {
 | |
|       ConstantFP *C1 = 0;
 | |
|       ConstantFP *C2 = Op1C;
 | |
|       Value *X;
 | |
|       Instruction *Res = 0;
 | |
| 
 | |
|       if (match(Op0, m_FMul(m_Value(X), m_ConstantFP(C1)))) {
 | |
|         // (X*C1)/C2 => X * (C1/C2)
 | |
|         //
 | |
|         Constant *C = ConstantExpr::getFDiv(C1, C2);
 | |
|         const APFloat &F = cast<ConstantFP>(C)->getValueAPF();
 | |
|         if (F.isNormal() && !F.isDenormal())
 | |
|           Res = BinaryOperator::CreateFMul(X, C);
 | |
|       } else if (match(Op0, m_FDiv(m_Value(X), m_ConstantFP(C1)))) {
 | |
|         // (X/C1)/C2 => X /(C2*C1) [=> X * 1/(C2*C1) if reciprocal is allowed]
 | |
|         //
 | |
|         Constant *C = ConstantExpr::getFMul(C1, C2);
 | |
|         const APFloat &F = cast<ConstantFP>(C)->getValueAPF();
 | |
|         if (F.isNormal() && !F.isDenormal()) {
 | |
|           Res = CvtFDivConstToReciprocal(X, cast<ConstantFP>(C),
 | |
|                                          AllowReciprocal);
 | |
|           if (!Res)
 | |
|             Res = BinaryOperator::CreateFDiv(X, C);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (Res) {
 | |
|         Res->setFastMathFlags(I.getFastMathFlags());
 | |
|         return Res;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // X / C => X * 1/C
 | |
|     if (Instruction *T = CvtFDivConstToReciprocal(Op0, Op1C, AllowReciprocal))
 | |
|       return T;
 | |
| 
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   if (AllowReassociate && isa<ConstantFP>(Op0)) {
 | |
|     ConstantFP *C1 = cast<ConstantFP>(Op0), *C2;
 | |
|     Constant *Fold = 0;
 | |
|     Value *X;
 | |
|     bool CreateDiv = true;
 | |
| 
 | |
|     // C1 / (X*C2) => (C1/C2) / X
 | |
|     if (match(Op1, m_FMul(m_Value(X), m_ConstantFP(C2))))
 | |
|       Fold = ConstantExpr::getFDiv(C1, C2);
 | |
|     else if (match(Op1, m_FDiv(m_Value(X), m_ConstantFP(C2)))) {
 | |
|       // C1 / (X/C2) => (C1*C2) / X
 | |
|       Fold = ConstantExpr::getFMul(C1, C2);
 | |
|     } else if (match(Op1, m_FDiv(m_ConstantFP(C2), m_Value(X)))) {
 | |
|       // C1 / (C2/X) => (C1/C2) * X
 | |
|       Fold = ConstantExpr::getFDiv(C1, C2);
 | |
|       CreateDiv = false;
 | |
|     }
 | |
| 
 | |
|     if (Fold) {
 | |
|       const APFloat &FoldC = cast<ConstantFP>(Fold)->getValueAPF();
 | |
|       if (FoldC.isNormal() && !FoldC.isDenormal()) {
 | |
|         Instruction *R = CreateDiv ?
 | |
|                          BinaryOperator::CreateFDiv(Fold, X) :
 | |
|                          BinaryOperator::CreateFMul(X, Fold);
 | |
|         R->setFastMathFlags(I.getFastMathFlags());
 | |
|         return R;
 | |
|       }
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   if (AllowReassociate) {
 | |
|     Value *X, *Y;
 | |
|     Value *NewInst = 0;
 | |
|     Instruction *SimpR = 0;
 | |
| 
 | |
|     if (Op0->hasOneUse() && match(Op0, m_FDiv(m_Value(X), m_Value(Y)))) {
 | |
|       // (X/Y) / Z => X / (Y*Z)
 | |
|       //
 | |
|       if (!isa<ConstantFP>(Y) || !isa<ConstantFP>(Op1)) {
 | |
|         NewInst = Builder->CreateFMul(Y, Op1);
 | |
|         SimpR = BinaryOperator::CreateFDiv(X, NewInst);
 | |
|       }
 | |
|     } else if (Op1->hasOneUse() && match(Op1, m_FDiv(m_Value(X), m_Value(Y)))) {
 | |
|       // Z / (X/Y) => Z*Y / X
 | |
|       //
 | |
|       if (!isa<ConstantFP>(Y) || !isa<ConstantFP>(Op0)) {
 | |
|         NewInst = Builder->CreateFMul(Op0, Y);
 | |
|         SimpR = BinaryOperator::CreateFDiv(NewInst, X);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (NewInst) {
 | |
|       if (Instruction *T = dyn_cast<Instruction>(NewInst))
 | |
|         T->setDebugLoc(I.getDebugLoc());
 | |
|       SimpR->setFastMathFlags(I.getFastMathFlags());
 | |
|       return SimpR;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// This function implements the transforms common to both integer remainder
 | |
| /// instructions (urem and srem). It is called by the visitors to those integer
 | |
| /// remainder instructions.
 | |
| /// @brief Common integer remainder transforms
 | |
| Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   // The RHS is known non-zero.
 | |
|   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
 | |
|     I.setOperand(1, V);
 | |
|     return &I;
 | |
|   }
 | |
| 
 | |
|   // Handle cases involving: rem X, (select Cond, Y, Z)
 | |
|   if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
 | |
|     return &I;
 | |
| 
 | |
|   if (isa<ConstantInt>(Op1)) {
 | |
|     if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
 | |
|       if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
 | |
|         if (Instruction *R = FoldOpIntoSelect(I, SI))
 | |
|           return R;
 | |
|       } else if (isa<PHINode>(Op0I)) {
 | |
|         if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|           return NV;
 | |
|       }
 | |
| 
 | |
|       // See if we can fold away this rem instruction.
 | |
|       if (SimplifyDemandedInstructionBits(I))
 | |
|         return &I;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitURem(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (Value *V = SimplifyURemInst(Op0, Op1, TD))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|   if (Instruction *common = commonIRemTransforms(I))
 | |
|     return common;
 | |
| 
 | |
|   // X urem C^2 -> X and C-1
 | |
|   { const APInt *C;
 | |
|     if (match(Op1, m_Power2(C)))
 | |
|       return BinaryOperator::CreateAnd(Op0,
 | |
|                                        ConstantInt::get(I.getType(), *C-1));
 | |
|   }
 | |
| 
 | |
|   // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
 | |
|   if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
 | |
|     Constant *N1 = Constant::getAllOnesValue(I.getType());
 | |
|     Value *Add = Builder->CreateAdd(Op1, N1);
 | |
|     return BinaryOperator::CreateAnd(Op0, Add);
 | |
|   }
 | |
| 
 | |
|   // urem X, (select Cond, 2^C1, 2^C2) -->
 | |
|   //    select Cond, (and X, C1-1), (and X, C2-1)
 | |
|   // when C1&C2 are powers of two.
 | |
|   { Value *Cond; const APInt *C1, *C2;
 | |
|     if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) {
 | |
|       Value *TrueAnd = Builder->CreateAnd(Op0, *C1-1, Op1->getName()+".t");
 | |
|       Value *FalseAnd = Builder->CreateAnd(Op0, *C2-1, Op1->getName()+".f");
 | |
|       return SelectInst::Create(Cond, TrueAnd, FalseAnd);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // (zext A) urem (zext B) --> zext (A urem B)
 | |
|   if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
 | |
|     if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
 | |
|       return new ZExtInst(Builder->CreateURem(ZOp0->getOperand(0), ZOp1),
 | |
|                           I.getType());
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (Value *V = SimplifySRemInst(Op0, Op1, TD))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|   // Handle the integer rem common cases
 | |
|   if (Instruction *Common = commonIRemTransforms(I))
 | |
|     return Common;
 | |
| 
 | |
|   if (Value *RHSNeg = dyn_castNegVal(Op1))
 | |
|     if (!isa<Constant>(RHSNeg) ||
 | |
|         (isa<ConstantInt>(RHSNeg) &&
 | |
|          cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
 | |
|       // X % -Y -> X % Y
 | |
|       Worklist.AddValue(I.getOperand(1));
 | |
|       I.setOperand(1, RHSNeg);
 | |
|       return &I;
 | |
|     }
 | |
| 
 | |
|   // If the sign bits of both operands are zero (i.e. we can prove they are
 | |
|   // unsigned inputs), turn this into a urem.
 | |
|   if (I.getType()->isIntegerTy()) {
 | |
|     APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
 | |
|     if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
 | |
|       // X srem Y -> X urem Y, iff X and Y don't have sign bit set
 | |
|       return BinaryOperator::CreateURem(Op0, Op1, I.getName());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If it's a constant vector, flip any negative values positive.
 | |
|   if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
 | |
|     Constant *C = cast<Constant>(Op1);
 | |
|     unsigned VWidth = C->getType()->getVectorNumElements();
 | |
| 
 | |
|     bool hasNegative = false;
 | |
|     bool hasMissing = false;
 | |
|     for (unsigned i = 0; i != VWidth; ++i) {
 | |
|       Constant *Elt = C->getAggregateElement(i);
 | |
|       if (Elt == 0) {
 | |
|         hasMissing = true;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
 | |
|         if (RHS->isNegative())
 | |
|           hasNegative = true;
 | |
|     }
 | |
| 
 | |
|     if (hasNegative && !hasMissing) {
 | |
|       SmallVector<Constant *, 16> Elts(VWidth);
 | |
|       for (unsigned i = 0; i != VWidth; ++i) {
 | |
|         Elts[i] = C->getAggregateElement(i);  // Handle undef, etc.
 | |
|         if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
 | |
|           if (RHS->isNegative())
 | |
|             Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       Constant *NewRHSV = ConstantVector::get(Elts);
 | |
|       if (NewRHSV != C) {  // Don't loop on -MININT
 | |
|         Worklist.AddValue(I.getOperand(1));
 | |
|         I.setOperand(1, NewRHSV);
 | |
|         return &I;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (Value *V = SimplifyFRemInst(Op0, Op1, TD))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|   // Handle cases involving: rem X, (select Cond, Y, Z)
 | |
|   if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
 | |
|     return &I;
 | |
| 
 | |
|   return 0;
 | |
| }
 |