mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179542 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2013 lines
		
	
	
		
			72 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2013 lines
		
	
	
		
			72 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass munges the code in the input function to better prepare it for
 | |
| // SelectionDAG-based code generation. This works around limitations in it's
 | |
| // basic-block-at-a-time approach. It should eventually be removed.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "codegenprepare"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/DominatorInternals.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/ProfileInfo.h"
 | |
| #include "llvm/Assembly/Writer.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/InlineAsm.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/CallSite.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/Support/PatternMatch.h"
 | |
| #include "llvm/Support/ValueHandle.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetLibraryInfo.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/BuildLibCalls.h"
 | |
| #include "llvm/Transforms/Utils/BypassSlowDivision.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| using namespace llvm;
 | |
| using namespace llvm::PatternMatch;
 | |
| 
 | |
| STATISTIC(NumBlocksElim, "Number of blocks eliminated");
 | |
| STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
 | |
| STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
 | |
| STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
 | |
|                       "sunken Cmps");
 | |
| STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
 | |
|                        "of sunken Casts");
 | |
| STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
 | |
|                           "computations were sunk");
 | |
| STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
 | |
| STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
 | |
| STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
 | |
| STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
 | |
| STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
 | |
| 
 | |
| static cl::opt<bool> DisableBranchOpts(
 | |
|   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
 | |
|   cl::desc("Disable branch optimizations in CodeGenPrepare"));
 | |
| 
 | |
| static cl::opt<bool> DisableSelectToBranch(
 | |
|   "disable-cgp-select2branch", cl::Hidden, cl::init(false),
 | |
|   cl::desc("Disable select to branch conversion."));
 | |
| 
 | |
| namespace {
 | |
|   class CodeGenPrepare : public FunctionPass {
 | |
|     /// TLI - Keep a pointer of a TargetLowering to consult for determining
 | |
|     /// transformation profitability.
 | |
|     const TargetLowering *TLI;
 | |
|     const TargetLibraryInfo *TLInfo;
 | |
|     DominatorTree *DT;
 | |
|     ProfileInfo *PFI;
 | |
| 
 | |
|     /// CurInstIterator - As we scan instructions optimizing them, this is the
 | |
|     /// next instruction to optimize.  Xforms that can invalidate this should
 | |
|     /// update it.
 | |
|     BasicBlock::iterator CurInstIterator;
 | |
| 
 | |
|     /// Keeps track of non-local addresses that have been sunk into a block.
 | |
|     /// This allows us to avoid inserting duplicate code for blocks with
 | |
|     /// multiple load/stores of the same address.
 | |
|     DenseMap<Value*, Value*> SunkAddrs;
 | |
| 
 | |
|     /// ModifiedDT - If CFG is modified in anyway, dominator tree may need to
 | |
|     /// be updated.
 | |
|     bool ModifiedDT;
 | |
| 
 | |
|     /// OptSize - True if optimizing for size.
 | |
|     bool OptSize;
 | |
| 
 | |
|   public:
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     explicit CodeGenPrepare(const TargetLowering *tli = 0)
 | |
|       : FunctionPass(ID), TLI(tli) {
 | |
|         initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
 | |
|       }
 | |
|     bool runOnFunction(Function &F);
 | |
| 
 | |
|     const char *getPassName() const { return "CodeGen Prepare"; }
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addPreserved<DominatorTree>();
 | |
|       AU.addPreserved<ProfileInfo>();
 | |
|       AU.addRequired<TargetLibraryInfo>();
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     bool EliminateFallThrough(Function &F);
 | |
|     bool EliminateMostlyEmptyBlocks(Function &F);
 | |
|     bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
 | |
|     void EliminateMostlyEmptyBlock(BasicBlock *BB);
 | |
|     bool OptimizeBlock(BasicBlock &BB);
 | |
|     bool OptimizeInst(Instruction *I);
 | |
|     bool OptimizeMemoryInst(Instruction *I, Value *Addr, Type *AccessTy);
 | |
|     bool OptimizeInlineAsmInst(CallInst *CS);
 | |
|     bool OptimizeCallInst(CallInst *CI);
 | |
|     bool MoveExtToFormExtLoad(Instruction *I);
 | |
|     bool OptimizeExtUses(Instruction *I);
 | |
|     bool OptimizeSelectInst(SelectInst *SI);
 | |
|     bool DupRetToEnableTailCallOpts(BasicBlock *BB);
 | |
|     bool PlaceDbgValues(Function &F);
 | |
|   };
 | |
| }
 | |
| 
 | |
| char CodeGenPrepare::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(CodeGenPrepare, "codegenprepare",
 | |
|                 "Optimize for code generation", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
 | |
| INITIALIZE_PASS_END(CodeGenPrepare, "codegenprepare",
 | |
|                 "Optimize for code generation", false, false)
 | |
| 
 | |
| FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) {
 | |
|   return new CodeGenPrepare(TLI);
 | |
| }
 | |
| 
 | |
| bool CodeGenPrepare::runOnFunction(Function &F) {
 | |
|   bool EverMadeChange = false;
 | |
| 
 | |
|   ModifiedDT = false;
 | |
|   TLInfo = &getAnalysis<TargetLibraryInfo>();
 | |
|   DT = getAnalysisIfAvailable<DominatorTree>();
 | |
|   PFI = getAnalysisIfAvailable<ProfileInfo>();
 | |
|   OptSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
 | |
|                                            Attribute::OptimizeForSize);
 | |
| 
 | |
|   /// This optimization identifies DIV instructions that can be
 | |
|   /// profitably bypassed and carried out with a shorter, faster divide.
 | |
|   if (!OptSize && TLI && TLI->isSlowDivBypassed()) {
 | |
|     const DenseMap<unsigned int, unsigned int> &BypassWidths =
 | |
|        TLI->getBypassSlowDivWidths();
 | |
|     for (Function::iterator I = F.begin(); I != F.end(); I++)
 | |
|       EverMadeChange |= bypassSlowDivision(F, I, BypassWidths);
 | |
|   }
 | |
| 
 | |
|   // Eliminate blocks that contain only PHI nodes and an
 | |
|   // unconditional branch.
 | |
|   EverMadeChange |= EliminateMostlyEmptyBlocks(F);
 | |
| 
 | |
|   // llvm.dbg.value is far away from the value then iSel may not be able
 | |
|   // handle it properly. iSel will drop llvm.dbg.value if it can not
 | |
|   // find a node corresponding to the value.
 | |
|   EverMadeChange |= PlaceDbgValues(F);
 | |
| 
 | |
|   bool MadeChange = true;
 | |
|   while (MadeChange) {
 | |
|     MadeChange = false;
 | |
|     for (Function::iterator I = F.begin(); I != F.end(); ) {
 | |
|       BasicBlock *BB = I++;
 | |
|       MadeChange |= OptimizeBlock(*BB);
 | |
|     }
 | |
|     EverMadeChange |= MadeChange;
 | |
|   }
 | |
| 
 | |
|   SunkAddrs.clear();
 | |
| 
 | |
|   if (!DisableBranchOpts) {
 | |
|     MadeChange = false;
 | |
|     SmallPtrSet<BasicBlock*, 8> WorkList;
 | |
|     for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
 | |
|       SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
 | |
|       MadeChange |= ConstantFoldTerminator(BB, true);
 | |
|       if (!MadeChange) continue;
 | |
| 
 | |
|       for (SmallVectorImpl<BasicBlock*>::iterator
 | |
|              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
 | |
|         if (pred_begin(*II) == pred_end(*II))
 | |
|           WorkList.insert(*II);
 | |
|     }
 | |
| 
 | |
|     // Delete the dead blocks and any of their dead successors.
 | |
|     MadeChange |= !WorkList.empty();
 | |
|     while (!WorkList.empty()) {
 | |
|       BasicBlock *BB = *WorkList.begin();
 | |
|       WorkList.erase(BB);
 | |
|       SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
 | |
| 
 | |
|       DeleteDeadBlock(BB);
 | |
|       
 | |
|       for (SmallVectorImpl<BasicBlock*>::iterator
 | |
|              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
 | |
|         if (pred_begin(*II) == pred_end(*II))
 | |
|           WorkList.insert(*II);
 | |
|     }
 | |
| 
 | |
|     // Merge pairs of basic blocks with unconditional branches, connected by
 | |
|     // a single edge.
 | |
|     if (EverMadeChange || MadeChange)
 | |
|       MadeChange |= EliminateFallThrough(F);
 | |
| 
 | |
|     if (MadeChange)
 | |
|       ModifiedDT = true;
 | |
|     EverMadeChange |= MadeChange;
 | |
|   }
 | |
| 
 | |
|   if (ModifiedDT && DT)
 | |
|     DT->DT->recalculate(F);
 | |
| 
 | |
|   return EverMadeChange;
 | |
| }
 | |
| 
 | |
| /// EliminateFallThrough - Merge basic blocks which are connected
 | |
| /// by a single edge, where one of the basic blocks has a single successor
 | |
| /// pointing to the other basic block, which has a single predecessor.
 | |
| bool CodeGenPrepare::EliminateFallThrough(Function &F) {
 | |
|   bool Changed = false;
 | |
|   // Scan all of the blocks in the function, except for the entry block.
 | |
|   for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) {
 | |
|     BasicBlock *BB = I++;
 | |
|     // If the destination block has a single pred, then this is a trivial
 | |
|     // edge, just collapse it.
 | |
|     BasicBlock *SinglePred = BB->getSinglePredecessor();
 | |
| 
 | |
|     // Don't merge if BB's address is taken.
 | |
|     if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
 | |
| 
 | |
|     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
 | |
|     if (Term && !Term->isConditional()) {
 | |
|       Changed = true;
 | |
|       DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n");
 | |
|       // Remember if SinglePred was the entry block of the function.
 | |
|       // If so, we will need to move BB back to the entry position.
 | |
|       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
 | |
|       MergeBasicBlockIntoOnlyPred(BB, this);
 | |
| 
 | |
|       if (isEntry && BB != &BB->getParent()->getEntryBlock())
 | |
|         BB->moveBefore(&BB->getParent()->getEntryBlock());
 | |
| 
 | |
|       // We have erased a block. Update the iterator.
 | |
|       I = BB;
 | |
|     }
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes,
 | |
| /// debug info directives, and an unconditional branch.  Passes before isel
 | |
| /// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for
 | |
| /// isel.  Start by eliminating these blocks so we can split them the way we
 | |
| /// want them.
 | |
| bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
 | |
|   bool MadeChange = false;
 | |
|   // Note that this intentionally skips the entry block.
 | |
|   for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) {
 | |
|     BasicBlock *BB = I++;
 | |
| 
 | |
|     // If this block doesn't end with an uncond branch, ignore it.
 | |
|     BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
 | |
|     if (!BI || !BI->isUnconditional())
 | |
|       continue;
 | |
| 
 | |
|     // If the instruction before the branch (skipping debug info) isn't a phi
 | |
|     // node, then other stuff is happening here.
 | |
|     BasicBlock::iterator BBI = BI;
 | |
|     if (BBI != BB->begin()) {
 | |
|       --BBI;
 | |
|       while (isa<DbgInfoIntrinsic>(BBI)) {
 | |
|         if (BBI == BB->begin())
 | |
|           break;
 | |
|         --BBI;
 | |
|       }
 | |
|       if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
 | |
|         continue;
 | |
|     }
 | |
| 
 | |
|     // Do not break infinite loops.
 | |
|     BasicBlock *DestBB = BI->getSuccessor(0);
 | |
|     if (DestBB == BB)
 | |
|       continue;
 | |
| 
 | |
|     if (!CanMergeBlocks(BB, DestBB))
 | |
|       continue;
 | |
| 
 | |
|     EliminateMostlyEmptyBlock(BB);
 | |
|     MadeChange = true;
 | |
|   }
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
 | |
| /// single uncond branch between them, and BB contains no other non-phi
 | |
| /// instructions.
 | |
| bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
 | |
|                                     const BasicBlock *DestBB) const {
 | |
|   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
 | |
|   // the successor.  If there are more complex condition (e.g. preheaders),
 | |
|   // don't mess around with them.
 | |
|   BasicBlock::const_iterator BBI = BB->begin();
 | |
|   while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
 | |
|     for (Value::const_use_iterator UI = PN->use_begin(), E = PN->use_end();
 | |
|          UI != E; ++UI) {
 | |
|       const Instruction *User = cast<Instruction>(*UI);
 | |
|       if (User->getParent() != DestBB || !isa<PHINode>(User))
 | |
|         return false;
 | |
|       // If User is inside DestBB block and it is a PHINode then check
 | |
|       // incoming value. If incoming value is not from BB then this is
 | |
|       // a complex condition (e.g. preheaders) we want to avoid here.
 | |
|       if (User->getParent() == DestBB) {
 | |
|         if (const PHINode *UPN = dyn_cast<PHINode>(User))
 | |
|           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
 | |
|             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
 | |
|             if (Insn && Insn->getParent() == BB &&
 | |
|                 Insn->getParent() != UPN->getIncomingBlock(I))
 | |
|               return false;
 | |
|           }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
 | |
|   // and DestBB may have conflicting incoming values for the block.  If so, we
 | |
|   // can't merge the block.
 | |
|   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
 | |
|   if (!DestBBPN) return true;  // no conflict.
 | |
| 
 | |
|   // Collect the preds of BB.
 | |
|   SmallPtrSet<const BasicBlock*, 16> BBPreds;
 | |
|   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
 | |
|     // It is faster to get preds from a PHI than with pred_iterator.
 | |
|     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
 | |
|       BBPreds.insert(BBPN->getIncomingBlock(i));
 | |
|   } else {
 | |
|     BBPreds.insert(pred_begin(BB), pred_end(BB));
 | |
|   }
 | |
| 
 | |
|   // Walk the preds of DestBB.
 | |
|   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
 | |
|     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
 | |
|     if (BBPreds.count(Pred)) {   // Common predecessor?
 | |
|       BBI = DestBB->begin();
 | |
|       while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
 | |
|         const Value *V1 = PN->getIncomingValueForBlock(Pred);
 | |
|         const Value *V2 = PN->getIncomingValueForBlock(BB);
 | |
| 
 | |
|         // If V2 is a phi node in BB, look up what the mapped value will be.
 | |
|         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
 | |
|           if (V2PN->getParent() == BB)
 | |
|             V2 = V2PN->getIncomingValueForBlock(Pred);
 | |
| 
 | |
|         // If there is a conflict, bail out.
 | |
|         if (V1 != V2) return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
 | |
| /// an unconditional branch in it.
 | |
| void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
 | |
|   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
 | |
|   BasicBlock *DestBB = BI->getSuccessor(0);
 | |
| 
 | |
|   DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
 | |
| 
 | |
|   // If the destination block has a single pred, then this is a trivial edge,
 | |
|   // just collapse it.
 | |
|   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
 | |
|     if (SinglePred != DestBB) {
 | |
|       // Remember if SinglePred was the entry block of the function.  If so, we
 | |
|       // will need to move BB back to the entry position.
 | |
|       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
 | |
|       MergeBasicBlockIntoOnlyPred(DestBB, this);
 | |
| 
 | |
|       if (isEntry && BB != &BB->getParent()->getEntryBlock())
 | |
|         BB->moveBefore(&BB->getParent()->getEntryBlock());
 | |
| 
 | |
|       DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
 | |
|   // to handle the new incoming edges it is about to have.
 | |
|   PHINode *PN;
 | |
|   for (BasicBlock::iterator BBI = DestBB->begin();
 | |
|        (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
 | |
|     // Remove the incoming value for BB, and remember it.
 | |
|     Value *InVal = PN->removeIncomingValue(BB, false);
 | |
| 
 | |
|     // Two options: either the InVal is a phi node defined in BB or it is some
 | |
|     // value that dominates BB.
 | |
|     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
 | |
|     if (InValPhi && InValPhi->getParent() == BB) {
 | |
|       // Add all of the input values of the input PHI as inputs of this phi.
 | |
|       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
 | |
|         PN->addIncoming(InValPhi->getIncomingValue(i),
 | |
|                         InValPhi->getIncomingBlock(i));
 | |
|     } else {
 | |
|       // Otherwise, add one instance of the dominating value for each edge that
 | |
|       // we will be adding.
 | |
|       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
 | |
|         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
 | |
|           PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
 | |
|       } else {
 | |
|         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
 | |
|           PN->addIncoming(InVal, *PI);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The PHIs are now updated, change everything that refers to BB to use
 | |
|   // DestBB and remove BB.
 | |
|   BB->replaceAllUsesWith(DestBB);
 | |
|   if (DT && !ModifiedDT) {
 | |
|     BasicBlock *BBIDom  = DT->getNode(BB)->getIDom()->getBlock();
 | |
|     BasicBlock *DestBBIDom = DT->getNode(DestBB)->getIDom()->getBlock();
 | |
|     BasicBlock *NewIDom = DT->findNearestCommonDominator(BBIDom, DestBBIDom);
 | |
|     DT->changeImmediateDominator(DestBB, NewIDom);
 | |
|     DT->eraseNode(BB);
 | |
|   }
 | |
|   if (PFI) {
 | |
|     PFI->replaceAllUses(BB, DestBB);
 | |
|     PFI->removeEdge(ProfileInfo::getEdge(BB, DestBB));
 | |
|   }
 | |
|   BB->eraseFromParent();
 | |
|   ++NumBlocksElim;
 | |
| 
 | |
|   DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
 | |
| }
 | |
| 
 | |
| /// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
 | |
| /// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC),
 | |
| /// sink it into user blocks to reduce the number of virtual
 | |
| /// registers that must be created and coalesced.
 | |
| ///
 | |
| /// Return true if any changes are made.
 | |
| ///
 | |
| static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
 | |
|   // If this is a noop copy,
 | |
|   EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
 | |
|   EVT DstVT = TLI.getValueType(CI->getType());
 | |
| 
 | |
|   // This is an fp<->int conversion?
 | |
|   if (SrcVT.isInteger() != DstVT.isInteger())
 | |
|     return false;
 | |
| 
 | |
|   // If this is an extension, it will be a zero or sign extension, which
 | |
|   // isn't a noop.
 | |
|   if (SrcVT.bitsLT(DstVT)) return false;
 | |
| 
 | |
|   // If these values will be promoted, find out what they will be promoted
 | |
|   // to.  This helps us consider truncates on PPC as noop copies when they
 | |
|   // are.
 | |
|   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
 | |
|       TargetLowering::TypePromoteInteger)
 | |
|     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
 | |
|   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
 | |
|       TargetLowering::TypePromoteInteger)
 | |
|     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
 | |
| 
 | |
|   // If, after promotion, these are the same types, this is a noop copy.
 | |
|   if (SrcVT != DstVT)
 | |
|     return false;
 | |
| 
 | |
|   BasicBlock *DefBB = CI->getParent();
 | |
| 
 | |
|   /// InsertedCasts - Only insert a cast in each block once.
 | |
|   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
 | |
| 
 | |
|   bool MadeChange = false;
 | |
|   for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
 | |
|        UI != E; ) {
 | |
|     Use &TheUse = UI.getUse();
 | |
|     Instruction *User = cast<Instruction>(*UI);
 | |
| 
 | |
|     // Figure out which BB this cast is used in.  For PHI's this is the
 | |
|     // appropriate predecessor block.
 | |
|     BasicBlock *UserBB = User->getParent();
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(User)) {
 | |
|       UserBB = PN->getIncomingBlock(UI);
 | |
|     }
 | |
| 
 | |
|     // Preincrement use iterator so we don't invalidate it.
 | |
|     ++UI;
 | |
| 
 | |
|     // If this user is in the same block as the cast, don't change the cast.
 | |
|     if (UserBB == DefBB) continue;
 | |
| 
 | |
|     // If we have already inserted a cast into this block, use it.
 | |
|     CastInst *&InsertedCast = InsertedCasts[UserBB];
 | |
| 
 | |
|     if (!InsertedCast) {
 | |
|       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
 | |
|       InsertedCast =
 | |
|         CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
 | |
|                          InsertPt);
 | |
|       MadeChange = true;
 | |
|     }
 | |
| 
 | |
|     // Replace a use of the cast with a use of the new cast.
 | |
|     TheUse = InsertedCast;
 | |
|     ++NumCastUses;
 | |
|   }
 | |
| 
 | |
|   // If we removed all uses, nuke the cast.
 | |
|   if (CI->use_empty()) {
 | |
|     CI->eraseFromParent();
 | |
|     MadeChange = true;
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce
 | |
| /// the number of virtual registers that must be created and coalesced.  This is
 | |
| /// a clear win except on targets with multiple condition code registers
 | |
| ///  (PowerPC), where it might lose; some adjustment may be wanted there.
 | |
| ///
 | |
| /// Return true if any changes are made.
 | |
| static bool OptimizeCmpExpression(CmpInst *CI) {
 | |
|   BasicBlock *DefBB = CI->getParent();
 | |
| 
 | |
|   /// InsertedCmp - Only insert a cmp in each block once.
 | |
|   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
 | |
| 
 | |
|   bool MadeChange = false;
 | |
|   for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
 | |
|        UI != E; ) {
 | |
|     Use &TheUse = UI.getUse();
 | |
|     Instruction *User = cast<Instruction>(*UI);
 | |
| 
 | |
|     // Preincrement use iterator so we don't invalidate it.
 | |
|     ++UI;
 | |
| 
 | |
|     // Don't bother for PHI nodes.
 | |
|     if (isa<PHINode>(User))
 | |
|       continue;
 | |
| 
 | |
|     // Figure out which BB this cmp is used in.
 | |
|     BasicBlock *UserBB = User->getParent();
 | |
| 
 | |
|     // If this user is in the same block as the cmp, don't change the cmp.
 | |
|     if (UserBB == DefBB) continue;
 | |
| 
 | |
|     // If we have already inserted a cmp into this block, use it.
 | |
|     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
 | |
| 
 | |
|     if (!InsertedCmp) {
 | |
|       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
 | |
|       InsertedCmp =
 | |
|         CmpInst::Create(CI->getOpcode(),
 | |
|                         CI->getPredicate(),  CI->getOperand(0),
 | |
|                         CI->getOperand(1), "", InsertPt);
 | |
|       MadeChange = true;
 | |
|     }
 | |
| 
 | |
|     // Replace a use of the cmp with a use of the new cmp.
 | |
|     TheUse = InsertedCmp;
 | |
|     ++NumCmpUses;
 | |
|   }
 | |
| 
 | |
|   // If we removed all uses, nuke the cmp.
 | |
|   if (CI->use_empty())
 | |
|     CI->eraseFromParent();
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| class CodeGenPrepareFortifiedLibCalls : public SimplifyFortifiedLibCalls {
 | |
| protected:
 | |
|   void replaceCall(Value *With) {
 | |
|     CI->replaceAllUsesWith(With);
 | |
|     CI->eraseFromParent();
 | |
|   }
 | |
|   bool isFoldable(unsigned SizeCIOp, unsigned, bool) const {
 | |
|       if (ConstantInt *SizeCI =
 | |
|                              dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp)))
 | |
|         return SizeCI->isAllOnesValue();
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) {
 | |
|   BasicBlock *BB = CI->getParent();
 | |
| 
 | |
|   // Lower inline assembly if we can.
 | |
|   // If we found an inline asm expession, and if the target knows how to
 | |
|   // lower it to normal LLVM code, do so now.
 | |
|   if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
 | |
|     if (TLI->ExpandInlineAsm(CI)) {
 | |
|       // Avoid invalidating the iterator.
 | |
|       CurInstIterator = BB->begin();
 | |
|       // Avoid processing instructions out of order, which could cause
 | |
|       // reuse before a value is defined.
 | |
|       SunkAddrs.clear();
 | |
|       return true;
 | |
|     }
 | |
|     // Sink address computing for memory operands into the block.
 | |
|     if (OptimizeInlineAsmInst(CI))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   // Lower all uses of llvm.objectsize.*
 | |
|   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
 | |
|   if (II && II->getIntrinsicID() == Intrinsic::objectsize) {
 | |
|     bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1);
 | |
|     Type *ReturnTy = CI->getType();
 | |
|     Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
 | |
| 
 | |
|     // Substituting this can cause recursive simplifications, which can
 | |
|     // invalidate our iterator.  Use a WeakVH to hold onto it in case this
 | |
|     // happens.
 | |
|     WeakVH IterHandle(CurInstIterator);
 | |
| 
 | |
|     replaceAndRecursivelySimplify(CI, RetVal, TLI ? TLI->getDataLayout() : 0,
 | |
|                                   TLInfo, ModifiedDT ? 0 : DT);
 | |
| 
 | |
|     // If the iterator instruction was recursively deleted, start over at the
 | |
|     // start of the block.
 | |
|     if (IterHandle != CurInstIterator) {
 | |
|       CurInstIterator = BB->begin();
 | |
|       SunkAddrs.clear();
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (II && TLI) {
 | |
|     SmallVector<Value*, 2> PtrOps;
 | |
|     Type *AccessTy;
 | |
|     if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy))
 | |
|       while (!PtrOps.empty())
 | |
|         if (OptimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy))
 | |
|           return true;
 | |
|   }
 | |
| 
 | |
|   // From here on out we're working with named functions.
 | |
|   if (CI->getCalledFunction() == 0) return false;
 | |
| 
 | |
|   // We'll need DataLayout from here on out.
 | |
|   const DataLayout *TD = TLI ? TLI->getDataLayout() : 0;
 | |
|   if (!TD) return false;
 | |
| 
 | |
|   // Lower all default uses of _chk calls.  This is very similar
 | |
|   // to what InstCombineCalls does, but here we are only lowering calls
 | |
|   // that have the default "don't know" as the objectsize.  Anything else
 | |
|   // should be left alone.
 | |
|   CodeGenPrepareFortifiedLibCalls Simplifier;
 | |
|   return Simplifier.fold(CI, TD, TLInfo);
 | |
| }
 | |
| 
 | |
| /// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return
 | |
| /// instructions to the predecessor to enable tail call optimizations. The
 | |
| /// case it is currently looking for is:
 | |
| /// @code
 | |
| /// bb0:
 | |
| ///   %tmp0 = tail call i32 @f0()
 | |
| ///   br label %return
 | |
| /// bb1:
 | |
| ///   %tmp1 = tail call i32 @f1()
 | |
| ///   br label %return
 | |
| /// bb2:
 | |
| ///   %tmp2 = tail call i32 @f2()
 | |
| ///   br label %return
 | |
| /// return:
 | |
| ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
 | |
| ///   ret i32 %retval
 | |
| /// @endcode
 | |
| ///
 | |
| /// =>
 | |
| ///
 | |
| /// @code
 | |
| /// bb0:
 | |
| ///   %tmp0 = tail call i32 @f0()
 | |
| ///   ret i32 %tmp0
 | |
| /// bb1:
 | |
| ///   %tmp1 = tail call i32 @f1()
 | |
| ///   ret i32 %tmp1
 | |
| /// bb2:
 | |
| ///   %tmp2 = tail call i32 @f2()
 | |
| ///   ret i32 %tmp2
 | |
| /// @endcode
 | |
| bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) {
 | |
|   if (!TLI)
 | |
|     return false;
 | |
| 
 | |
|   ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
 | |
|   if (!RI)
 | |
|     return false;
 | |
| 
 | |
|   PHINode *PN = 0;
 | |
|   BitCastInst *BCI = 0;
 | |
|   Value *V = RI->getReturnValue();
 | |
|   if (V) {
 | |
|     BCI = dyn_cast<BitCastInst>(V);
 | |
|     if (BCI)
 | |
|       V = BCI->getOperand(0);
 | |
| 
 | |
|     PN = dyn_cast<PHINode>(V);
 | |
|     if (!PN)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   if (PN && PN->getParent() != BB)
 | |
|     return false;
 | |
| 
 | |
|   // It's not safe to eliminate the sign / zero extension of the return value.
 | |
|   // See llvm::isInTailCallPosition().
 | |
|   const Function *F = BB->getParent();
 | |
|   AttributeSet CallerAttrs = F->getAttributes();
 | |
|   if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
 | |
|       CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
 | |
|     return false;
 | |
| 
 | |
|   // Make sure there are no instructions between the PHI and return, or that the
 | |
|   // return is the first instruction in the block.
 | |
|   if (PN) {
 | |
|     BasicBlock::iterator BI = BB->begin();
 | |
|     do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
 | |
|     if (&*BI == BCI)
 | |
|       // Also skip over the bitcast.
 | |
|       ++BI;
 | |
|     if (&*BI != RI)
 | |
|       return false;
 | |
|   } else {
 | |
|     BasicBlock::iterator BI = BB->begin();
 | |
|     while (isa<DbgInfoIntrinsic>(BI)) ++BI;
 | |
|     if (&*BI != RI)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
 | |
|   /// call.
 | |
|   SmallVector<CallInst*, 4> TailCalls;
 | |
|   if (PN) {
 | |
|     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
 | |
|       CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
 | |
|       // Make sure the phi value is indeed produced by the tail call.
 | |
|       if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
 | |
|           TLI->mayBeEmittedAsTailCall(CI))
 | |
|         TailCalls.push_back(CI);
 | |
|     }
 | |
|   } else {
 | |
|     SmallPtrSet<BasicBlock*, 4> VisitedBBs;
 | |
|     for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
 | |
|       if (!VisitedBBs.insert(*PI))
 | |
|         continue;
 | |
| 
 | |
|       BasicBlock::InstListType &InstList = (*PI)->getInstList();
 | |
|       BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
 | |
|       BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
 | |
|       do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
 | |
|       if (RI == RE)
 | |
|         continue;
 | |
| 
 | |
|       CallInst *CI = dyn_cast<CallInst>(&*RI);
 | |
|       if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI))
 | |
|         TailCalls.push_back(CI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool Changed = false;
 | |
|   for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
 | |
|     CallInst *CI = TailCalls[i];
 | |
|     CallSite CS(CI);
 | |
| 
 | |
|     // Conservatively require the attributes of the call to match those of the
 | |
|     // return. Ignore noalias because it doesn't affect the call sequence.
 | |
|     AttributeSet CalleeAttrs = CS.getAttributes();
 | |
|     if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
 | |
|           removeAttribute(Attribute::NoAlias) !=
 | |
|         AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
 | |
|           removeAttribute(Attribute::NoAlias))
 | |
|       continue;
 | |
| 
 | |
|     // Make sure the call instruction is followed by an unconditional branch to
 | |
|     // the return block.
 | |
|     BasicBlock *CallBB = CI->getParent();
 | |
|     BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
 | |
|     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
 | |
|       continue;
 | |
| 
 | |
|     // Duplicate the return into CallBB.
 | |
|     (void)FoldReturnIntoUncondBranch(RI, BB, CallBB);
 | |
|     ModifiedDT = Changed = true;
 | |
|     ++NumRetsDup;
 | |
|   }
 | |
| 
 | |
|   // If we eliminated all predecessors of the block, delete the block now.
 | |
|   if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
 | |
|     BB->eraseFromParent();
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Memory Optimization
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// ExtAddrMode - This is an extended version of TargetLowering::AddrMode
 | |
| /// which holds actual Value*'s for register values.
 | |
| struct ExtAddrMode : public TargetLowering::AddrMode {
 | |
|   Value *BaseReg;
 | |
|   Value *ScaledReg;
 | |
|   ExtAddrMode() : BaseReg(0), ScaledReg(0) {}
 | |
|   void print(raw_ostream &OS) const;
 | |
|   void dump() const;
 | |
|   
 | |
|   bool operator==(const ExtAddrMode& O) const {
 | |
|     return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) &&
 | |
|            (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) &&
 | |
|            (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale);
 | |
|   }
 | |
| };
 | |
| 
 | |
| static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
 | |
|   AM.print(OS);
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| void ExtAddrMode::print(raw_ostream &OS) const {
 | |
|   bool NeedPlus = false;
 | |
|   OS << "[";
 | |
|   if (BaseGV) {
 | |
|     OS << (NeedPlus ? " + " : "")
 | |
|        << "GV:";
 | |
|     WriteAsOperand(OS, BaseGV, /*PrintType=*/false);
 | |
|     NeedPlus = true;
 | |
|   }
 | |
| 
 | |
|   if (BaseOffs)
 | |
|     OS << (NeedPlus ? " + " : "") << BaseOffs, NeedPlus = true;
 | |
| 
 | |
|   if (BaseReg) {
 | |
|     OS << (NeedPlus ? " + " : "")
 | |
|        << "Base:";
 | |
|     WriteAsOperand(OS, BaseReg, /*PrintType=*/false);
 | |
|     NeedPlus = true;
 | |
|   }
 | |
|   if (Scale) {
 | |
|     OS << (NeedPlus ? " + " : "")
 | |
|        << Scale << "*";
 | |
|     WriteAsOperand(OS, ScaledReg, /*PrintType=*/false);
 | |
|     NeedPlus = true;
 | |
|   }
 | |
| 
 | |
|   OS << ']';
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| void ExtAddrMode::dump() const {
 | |
|   print(dbgs());
 | |
|   dbgs() << '\n';
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /// \brief A helper class for matching addressing modes.
 | |
| ///
 | |
| /// This encapsulates the logic for matching the target-legal addressing modes.
 | |
| class AddressingModeMatcher {
 | |
|   SmallVectorImpl<Instruction*> &AddrModeInsts;
 | |
|   const TargetLowering &TLI;
 | |
| 
 | |
|   /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
 | |
|   /// the memory instruction that we're computing this address for.
 | |
|   Type *AccessTy;
 | |
|   Instruction *MemoryInst;
 | |
|   
 | |
|   /// AddrMode - This is the addressing mode that we're building up.  This is
 | |
|   /// part of the return value of this addressing mode matching stuff.
 | |
|   ExtAddrMode &AddrMode;
 | |
|   
 | |
|   /// IgnoreProfitability - This is set to true when we should not do
 | |
|   /// profitability checks.  When true, IsProfitableToFoldIntoAddressingMode
 | |
|   /// always returns true.
 | |
|   bool IgnoreProfitability;
 | |
|   
 | |
|   AddressingModeMatcher(SmallVectorImpl<Instruction*> &AMI,
 | |
|                         const TargetLowering &T, Type *AT,
 | |
|                         Instruction *MI, ExtAddrMode &AM)
 | |
|     : AddrModeInsts(AMI), TLI(T), AccessTy(AT), MemoryInst(MI), AddrMode(AM) {
 | |
|     IgnoreProfitability = false;
 | |
|   }
 | |
| public:
 | |
|   
 | |
|   /// Match - Find the maximal addressing mode that a load/store of V can fold,
 | |
|   /// give an access type of AccessTy.  This returns a list of involved
 | |
|   /// instructions in AddrModeInsts.
 | |
|   static ExtAddrMode Match(Value *V, Type *AccessTy,
 | |
|                            Instruction *MemoryInst,
 | |
|                            SmallVectorImpl<Instruction*> &AddrModeInsts,
 | |
|                            const TargetLowering &TLI) {
 | |
|     ExtAddrMode Result;
 | |
| 
 | |
|     bool Success = 
 | |
|       AddressingModeMatcher(AddrModeInsts, TLI, AccessTy,
 | |
|                             MemoryInst, Result).MatchAddr(V, 0);
 | |
|     (void)Success; assert(Success && "Couldn't select *anything*?");
 | |
|     return Result;
 | |
|   }
 | |
| private:
 | |
|   bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
 | |
|   bool MatchAddr(Value *V, unsigned Depth);
 | |
|   bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth);
 | |
|   bool IsProfitableToFoldIntoAddressingMode(Instruction *I,
 | |
|                                             ExtAddrMode &AMBefore,
 | |
|                                             ExtAddrMode &AMAfter);
 | |
|   bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
 | |
| };
 | |
| 
 | |
| /// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode.
 | |
| /// Return true and update AddrMode if this addr mode is legal for the target,
 | |
| /// false if not.
 | |
| bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale,
 | |
|                                              unsigned Depth) {
 | |
|   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
 | |
|   // mode.  Just process that directly.
 | |
|   if (Scale == 1)
 | |
|     return MatchAddr(ScaleReg, Depth);
 | |
|   
 | |
|   // If the scale is 0, it takes nothing to add this.
 | |
|   if (Scale == 0)
 | |
|     return true;
 | |
|   
 | |
|   // If we already have a scale of this value, we can add to it, otherwise, we
 | |
|   // need an available scale field.
 | |
|   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
 | |
|     return false;
 | |
| 
 | |
|   ExtAddrMode TestAddrMode = AddrMode;
 | |
| 
 | |
|   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
 | |
|   // [A+B + A*7] -> [B+A*8].
 | |
|   TestAddrMode.Scale += Scale;
 | |
|   TestAddrMode.ScaledReg = ScaleReg;
 | |
| 
 | |
|   // If the new address isn't legal, bail out.
 | |
|   if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy))
 | |
|     return false;
 | |
| 
 | |
|   // It was legal, so commit it.
 | |
|   AddrMode = TestAddrMode;
 | |
|   
 | |
|   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
 | |
|   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
 | |
|   // X*Scale + C*Scale to addr mode.
 | |
|   ConstantInt *CI = 0; Value *AddLHS = 0;
 | |
|   if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
 | |
|       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
 | |
|     TestAddrMode.ScaledReg = AddLHS;
 | |
|     TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
 | |
|       
 | |
|     // If this addressing mode is legal, commit it and remember that we folded
 | |
|     // this instruction.
 | |
|     if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) {
 | |
|       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
 | |
|       AddrMode = TestAddrMode;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise, not (x+c)*scale, just return what we have.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// MightBeFoldableInst - This is a little filter, which returns true if an
 | |
| /// addressing computation involving I might be folded into a load/store
 | |
| /// accessing it.  This doesn't need to be perfect, but needs to accept at least
 | |
| /// the set of instructions that MatchOperationAddr can.
 | |
| static bool MightBeFoldableInst(Instruction *I) {
 | |
|   switch (I->getOpcode()) {
 | |
|   case Instruction::BitCast:
 | |
|     // Don't touch identity bitcasts.
 | |
|     if (I->getType() == I->getOperand(0)->getType())
 | |
|       return false;
 | |
|     return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
 | |
|   case Instruction::PtrToInt:
 | |
|     // PtrToInt is always a noop, as we know that the int type is pointer sized.
 | |
|     return true;
 | |
|   case Instruction::IntToPtr:
 | |
|     // We know the input is intptr_t, so this is foldable.
 | |
|     return true;
 | |
|   case Instruction::Add:
 | |
|     return true;
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::Shl:
 | |
|     // Can only handle X*C and X << C.
 | |
|     return isa<ConstantInt>(I->getOperand(1));
 | |
|   case Instruction::GetElementPtr:
 | |
|     return true;
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// MatchOperationAddr - Given an instruction or constant expr, see if we can
 | |
| /// fold the operation into the addressing mode.  If so, update the addressing
 | |
| /// mode and return true, otherwise return false without modifying AddrMode.
 | |
| bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode,
 | |
|                                                unsigned Depth) {
 | |
|   // Avoid exponential behavior on extremely deep expression trees.
 | |
|   if (Depth >= 5) return false;
 | |
|   
 | |
|   switch (Opcode) {
 | |
|   case Instruction::PtrToInt:
 | |
|     // PtrToInt is always a noop, as we know that the int type is pointer sized.
 | |
|     return MatchAddr(AddrInst->getOperand(0), Depth);
 | |
|   case Instruction::IntToPtr:
 | |
|     // This inttoptr is a no-op if the integer type is pointer sized.
 | |
|     if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
 | |
|         TLI.getPointerTy())
 | |
|       return MatchAddr(AddrInst->getOperand(0), Depth);
 | |
|     return false;
 | |
|   case Instruction::BitCast:
 | |
|     // BitCast is always a noop, and we can handle it as long as it is
 | |
|     // int->int or pointer->pointer (we don't want int<->fp or something).
 | |
|     if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
 | |
|          AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
 | |
|         // Don't touch identity bitcasts.  These were probably put here by LSR,
 | |
|         // and we don't want to mess around with them.  Assume it knows what it
 | |
|         // is doing.
 | |
|         AddrInst->getOperand(0)->getType() != AddrInst->getType())
 | |
|       return MatchAddr(AddrInst->getOperand(0), Depth);
 | |
|     return false;
 | |
|   case Instruction::Add: {
 | |
|     // Check to see if we can merge in the RHS then the LHS.  If so, we win.
 | |
|     ExtAddrMode BackupAddrMode = AddrMode;
 | |
|     unsigned OldSize = AddrModeInsts.size();
 | |
|     if (MatchAddr(AddrInst->getOperand(1), Depth+1) &&
 | |
|         MatchAddr(AddrInst->getOperand(0), Depth+1))
 | |
|       return true;
 | |
|     
 | |
|     // Restore the old addr mode info.
 | |
|     AddrMode = BackupAddrMode;
 | |
|     AddrModeInsts.resize(OldSize);
 | |
|     
 | |
|     // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
 | |
|     if (MatchAddr(AddrInst->getOperand(0), Depth+1) &&
 | |
|         MatchAddr(AddrInst->getOperand(1), Depth+1))
 | |
|       return true;
 | |
|     
 | |
|     // Otherwise we definitely can't merge the ADD in.
 | |
|     AddrMode = BackupAddrMode;
 | |
|     AddrModeInsts.resize(OldSize);
 | |
|     break;
 | |
|   }
 | |
|   //case Instruction::Or:
 | |
|   // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
 | |
|   //break;
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::Shl: {
 | |
|     // Can only handle X*C and X << C.
 | |
|     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
 | |
|     if (!RHS) return false;
 | |
|     int64_t Scale = RHS->getSExtValue();
 | |
|     if (Opcode == Instruction::Shl)
 | |
|       Scale = 1LL << Scale;
 | |
|     
 | |
|     return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth);
 | |
|   }
 | |
|   case Instruction::GetElementPtr: {
 | |
|     // Scan the GEP.  We check it if it contains constant offsets and at most
 | |
|     // one variable offset.
 | |
|     int VariableOperand = -1;
 | |
|     unsigned VariableScale = 0;
 | |
|     
 | |
|     int64_t ConstantOffset = 0;
 | |
|     const DataLayout *TD = TLI.getDataLayout();
 | |
|     gep_type_iterator GTI = gep_type_begin(AddrInst);
 | |
|     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
 | |
|       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
 | |
|         const StructLayout *SL = TD->getStructLayout(STy);
 | |
|         unsigned Idx =
 | |
|           cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
 | |
|         ConstantOffset += SL->getElementOffset(Idx);
 | |
|       } else {
 | |
|         uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType());
 | |
|         if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
 | |
|           ConstantOffset += CI->getSExtValue()*TypeSize;
 | |
|         } else if (TypeSize) {  // Scales of zero don't do anything.
 | |
|           // We only allow one variable index at the moment.
 | |
|           if (VariableOperand != -1)
 | |
|             return false;
 | |
|           
 | |
|           // Remember the variable index.
 | |
|           VariableOperand = i;
 | |
|           VariableScale = TypeSize;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // A common case is for the GEP to only do a constant offset.  In this case,
 | |
|     // just add it to the disp field and check validity.
 | |
|     if (VariableOperand == -1) {
 | |
|       AddrMode.BaseOffs += ConstantOffset;
 | |
|       if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
 | |
|         // Check to see if we can fold the base pointer in too.
 | |
|         if (MatchAddr(AddrInst->getOperand(0), Depth+1))
 | |
|           return true;
 | |
|       }
 | |
|       AddrMode.BaseOffs -= ConstantOffset;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Save the valid addressing mode in case we can't match.
 | |
|     ExtAddrMode BackupAddrMode = AddrMode;
 | |
|     unsigned OldSize = AddrModeInsts.size();
 | |
| 
 | |
|     // See if the scale and offset amount is valid for this target.
 | |
|     AddrMode.BaseOffs += ConstantOffset;
 | |
| 
 | |
|     // Match the base operand of the GEP.
 | |
|     if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) {
 | |
|       // If it couldn't be matched, just stuff the value in a register.
 | |
|       if (AddrMode.HasBaseReg) {
 | |
|         AddrMode = BackupAddrMode;
 | |
|         AddrModeInsts.resize(OldSize);
 | |
|         return false;
 | |
|       }
 | |
|       AddrMode.HasBaseReg = true;
 | |
|       AddrMode.BaseReg = AddrInst->getOperand(0);
 | |
|     }
 | |
| 
 | |
|     // Match the remaining variable portion of the GEP.
 | |
|     if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
 | |
|                           Depth)) {
 | |
|       // If it couldn't be matched, try stuffing the base into a register
 | |
|       // instead of matching it, and retrying the match of the scale.
 | |
|       AddrMode = BackupAddrMode;
 | |
|       AddrModeInsts.resize(OldSize);
 | |
|       if (AddrMode.HasBaseReg)
 | |
|         return false;
 | |
|       AddrMode.HasBaseReg = true;
 | |
|       AddrMode.BaseReg = AddrInst->getOperand(0);
 | |
|       AddrMode.BaseOffs += ConstantOffset;
 | |
|       if (!MatchScaledValue(AddrInst->getOperand(VariableOperand),
 | |
|                             VariableScale, Depth)) {
 | |
|         // If even that didn't work, bail.
 | |
|         AddrMode = BackupAddrMode;
 | |
|         AddrModeInsts.resize(OldSize);
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// MatchAddr - If we can, try to add the value of 'Addr' into the current
 | |
| /// addressing mode.  If Addr can't be added to AddrMode this returns false and
 | |
| /// leaves AddrMode unmodified.  This assumes that Addr is either a pointer type
 | |
| /// or intptr_t for the target.
 | |
| ///
 | |
| bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) {
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
 | |
|     // Fold in immediates if legal for the target.
 | |
|     AddrMode.BaseOffs += CI->getSExtValue();
 | |
|     if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
 | |
|       return true;
 | |
|     AddrMode.BaseOffs -= CI->getSExtValue();
 | |
|   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
 | |
|     // If this is a global variable, try to fold it into the addressing mode.
 | |
|     if (AddrMode.BaseGV == 0) {
 | |
|       AddrMode.BaseGV = GV;
 | |
|       if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
 | |
|         return true;
 | |
|       AddrMode.BaseGV = 0;
 | |
|     }
 | |
|   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
 | |
|     ExtAddrMode BackupAddrMode = AddrMode;
 | |
|     unsigned OldSize = AddrModeInsts.size();
 | |
| 
 | |
|     // Check to see if it is possible to fold this operation.
 | |
|     if (MatchOperationAddr(I, I->getOpcode(), Depth)) {
 | |
|       // Okay, it's possible to fold this.  Check to see if it is actually
 | |
|       // *profitable* to do so.  We use a simple cost model to avoid increasing
 | |
|       // register pressure too much.
 | |
|       if (I->hasOneUse() ||
 | |
|           IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
 | |
|         AddrModeInsts.push_back(I);
 | |
|         return true;
 | |
|       }
 | |
|       
 | |
|       // It isn't profitable to do this, roll back.
 | |
|       //cerr << "NOT FOLDING: " << *I;
 | |
|       AddrMode = BackupAddrMode;
 | |
|       AddrModeInsts.resize(OldSize);
 | |
|     }
 | |
|   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
 | |
|     if (MatchOperationAddr(CE, CE->getOpcode(), Depth))
 | |
|       return true;
 | |
|   } else if (isa<ConstantPointerNull>(Addr)) {
 | |
|     // Null pointer gets folded without affecting the addressing mode.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Worse case, the target should support [reg] addressing modes. :)
 | |
|   if (!AddrMode.HasBaseReg) {
 | |
|     AddrMode.HasBaseReg = true;
 | |
|     AddrMode.BaseReg = Addr;
 | |
|     // Still check for legality in case the target supports [imm] but not [i+r].
 | |
|     if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
 | |
|       return true;
 | |
|     AddrMode.HasBaseReg = false;
 | |
|     AddrMode.BaseReg = 0;
 | |
|   }
 | |
| 
 | |
|   // If the base register is already taken, see if we can do [r+r].
 | |
|   if (AddrMode.Scale == 0) {
 | |
|     AddrMode.Scale = 1;
 | |
|     AddrMode.ScaledReg = Addr;
 | |
|     if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
 | |
|       return true;
 | |
|     AddrMode.Scale = 0;
 | |
|     AddrMode.ScaledReg = 0;
 | |
|   }
 | |
|   // Couldn't match.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified
 | |
| /// inline asm call are due to memory operands.  If so, return true, otherwise
 | |
| /// return false.
 | |
| static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
 | |
|                                     const TargetLowering &TLI) {
 | |
|   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(ImmutableCallSite(CI));
 | |
|   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
 | |
|     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
 | |
|     
 | |
|     // Compute the constraint code and ConstraintType to use.
 | |
|     TLI.ComputeConstraintToUse(OpInfo, SDValue());
 | |
| 
 | |
|     // If this asm operand is our Value*, and if it isn't an indirect memory
 | |
|     // operand, we can't fold it!
 | |
|     if (OpInfo.CallOperandVal == OpVal &&
 | |
|         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
 | |
|          !OpInfo.isIndirect))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// FindAllMemoryUses - Recursively walk all the uses of I until we find a
 | |
| /// memory use.  If we find an obviously non-foldable instruction, return true.
 | |
| /// Add the ultimately found memory instructions to MemoryUses.
 | |
| static bool FindAllMemoryUses(Instruction *I,
 | |
|                 SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses,
 | |
|                               SmallPtrSet<Instruction*, 16> &ConsideredInsts,
 | |
|                               const TargetLowering &TLI) {
 | |
|   // If we already considered this instruction, we're done.
 | |
|   if (!ConsideredInsts.insert(I))
 | |
|     return false;
 | |
|   
 | |
|   // If this is an obviously unfoldable instruction, bail out.
 | |
|   if (!MightBeFoldableInst(I))
 | |
|     return true;
 | |
| 
 | |
|   // Loop over all the uses, recursively processing them.
 | |
|   for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
 | |
|        UI != E; ++UI) {
 | |
|     User *U = *UI;
 | |
| 
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
 | |
|       MemoryUses.push_back(std::make_pair(LI, UI.getOperandNo()));
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
 | |
|       unsigned opNo = UI.getOperandNo();
 | |
|       if (opNo == 0) return true; // Storing addr, not into addr.
 | |
|       MemoryUses.push_back(std::make_pair(SI, opNo));
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     if (CallInst *CI = dyn_cast<CallInst>(U)) {
 | |
|       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
 | |
|       if (!IA) return true;
 | |
|       
 | |
|       // If this is a memory operand, we're cool, otherwise bail out.
 | |
|       if (!IsOperandAMemoryOperand(CI, IA, I, TLI))
 | |
|         return true;
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     if (FindAllMemoryUses(cast<Instruction>(U), MemoryUses, ConsideredInsts,
 | |
|                           TLI))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at
 | |
| /// the use site that we're folding it into.  If so, there is no cost to
 | |
| /// include it in the addressing mode.  KnownLive1 and KnownLive2 are two values
 | |
| /// that we know are live at the instruction already.
 | |
| bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
 | |
|                                                    Value *KnownLive2) {
 | |
|   // If Val is either of the known-live values, we know it is live!
 | |
|   if (Val == 0 || Val == KnownLive1 || Val == KnownLive2)
 | |
|     return true;
 | |
|   
 | |
|   // All values other than instructions and arguments (e.g. constants) are live.
 | |
|   if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
 | |
|   
 | |
|   // If Val is a constant sized alloca in the entry block, it is live, this is
 | |
|   // true because it is just a reference to the stack/frame pointer, which is
 | |
|   // live for the whole function.
 | |
|   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
 | |
|     if (AI->isStaticAlloca())
 | |
|       return true;
 | |
|   
 | |
|   // Check to see if this value is already used in the memory instruction's
 | |
|   // block.  If so, it's already live into the block at the very least, so we
 | |
|   // can reasonably fold it.
 | |
|   return Val->isUsedInBasicBlock(MemoryInst->getParent());
 | |
| }
 | |
| 
 | |
| /// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing
 | |
| /// mode of the machine to fold the specified instruction into a load or store
 | |
| /// that ultimately uses it.  However, the specified instruction has multiple
 | |
| /// uses.  Given this, it may actually increase register pressure to fold it
 | |
| /// into the load.  For example, consider this code:
 | |
| ///
 | |
| ///     X = ...
 | |
| ///     Y = X+1
 | |
| ///     use(Y)   -> nonload/store
 | |
| ///     Z = Y+1
 | |
| ///     load Z
 | |
| ///
 | |
| /// In this case, Y has multiple uses, and can be folded into the load of Z
 | |
| /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
 | |
| /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
 | |
| /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
 | |
| /// number of computations either.
 | |
| ///
 | |
| /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
 | |
| /// X was live across 'load Z' for other reasons, we actually *would* want to
 | |
| /// fold the addressing mode in the Z case.  This would make Y die earlier.
 | |
| bool AddressingModeMatcher::
 | |
| IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
 | |
|                                      ExtAddrMode &AMAfter) {
 | |
|   if (IgnoreProfitability) return true;
 | |
|   
 | |
|   // AMBefore is the addressing mode before this instruction was folded into it,
 | |
|   // and AMAfter is the addressing mode after the instruction was folded.  Get
 | |
|   // the set of registers referenced by AMAfter and subtract out those
 | |
|   // referenced by AMBefore: this is the set of values which folding in this
 | |
|   // address extends the lifetime of.
 | |
|   //
 | |
|   // Note that there are only two potential values being referenced here,
 | |
|   // BaseReg and ScaleReg (global addresses are always available, as are any
 | |
|   // folded immediates).
 | |
|   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
 | |
|   
 | |
|   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
 | |
|   // lifetime wasn't extended by adding this instruction.
 | |
|   if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
 | |
|     BaseReg = 0;
 | |
|   if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
 | |
|     ScaledReg = 0;
 | |
| 
 | |
|   // If folding this instruction (and it's subexprs) didn't extend any live
 | |
|   // ranges, we're ok with it.
 | |
|   if (BaseReg == 0 && ScaledReg == 0)
 | |
|     return true;
 | |
| 
 | |
|   // If all uses of this instruction are ultimately load/store/inlineasm's,
 | |
|   // check to see if their addressing modes will include this instruction.  If
 | |
|   // so, we can fold it into all uses, so it doesn't matter if it has multiple
 | |
|   // uses.
 | |
|   SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
 | |
|   SmallPtrSet<Instruction*, 16> ConsideredInsts;
 | |
|   if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI))
 | |
|     return false;  // Has a non-memory, non-foldable use!
 | |
|   
 | |
|   // Now that we know that all uses of this instruction are part of a chain of
 | |
|   // computation involving only operations that could theoretically be folded
 | |
|   // into a memory use, loop over each of these uses and see if they could
 | |
|   // *actually* fold the instruction.
 | |
|   SmallVector<Instruction*, 32> MatchedAddrModeInsts;
 | |
|   for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
 | |
|     Instruction *User = MemoryUses[i].first;
 | |
|     unsigned OpNo = MemoryUses[i].second;
 | |
|     
 | |
|     // Get the access type of this use.  If the use isn't a pointer, we don't
 | |
|     // know what it accesses.
 | |
|     Value *Address = User->getOperand(OpNo);
 | |
|     if (!Address->getType()->isPointerTy())
 | |
|       return false;
 | |
|     Type *AddressAccessTy =
 | |
|       cast<PointerType>(Address->getType())->getElementType();
 | |
|     
 | |
|     // Do a match against the root of this address, ignoring profitability. This
 | |
|     // will tell us if the addressing mode for the memory operation will
 | |
|     // *actually* cover the shared instruction.
 | |
|     ExtAddrMode Result;
 | |
|     AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy,
 | |
|                                   MemoryInst, Result);
 | |
|     Matcher.IgnoreProfitability = true;
 | |
|     bool Success = Matcher.MatchAddr(Address, 0);
 | |
|     (void)Success; assert(Success && "Couldn't select *anything*?");
 | |
| 
 | |
|     // If the match didn't cover I, then it won't be shared by it.
 | |
|     if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
 | |
|                   I) == MatchedAddrModeInsts.end())
 | |
|       return false;
 | |
|     
 | |
|     MatchedAddrModeInsts.clear();
 | |
|   }
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// IsNonLocalValue - Return true if the specified values are defined in a
 | |
| /// different basic block than BB.
 | |
| static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|     return I->getParent() != BB;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// OptimizeMemoryInst - Load and Store Instructions often have
 | |
| /// addressing modes that can do significant amounts of computation.  As such,
 | |
| /// instruction selection will try to get the load or store to do as much
 | |
| /// computation as possible for the program.  The problem is that isel can only
 | |
| /// see within a single block.  As such, we sink as much legal addressing mode
 | |
| /// stuff into the block as possible.
 | |
| ///
 | |
| /// This method is used to optimize both load/store and inline asms with memory
 | |
| /// operands.
 | |
| bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
 | |
|                                         Type *AccessTy) {
 | |
|   Value *Repl = Addr;
 | |
| 
 | |
|   // Try to collapse single-value PHI nodes.  This is necessary to undo
 | |
|   // unprofitable PRE transformations.
 | |
|   SmallVector<Value*, 8> worklist;
 | |
|   SmallPtrSet<Value*, 16> Visited;
 | |
|   worklist.push_back(Addr);
 | |
| 
 | |
|   // Use a worklist to iteratively look through PHI nodes, and ensure that
 | |
|   // the addressing mode obtained from the non-PHI roots of the graph
 | |
|   // are equivalent.
 | |
|   Value *Consensus = 0;
 | |
|   unsigned NumUsesConsensus = 0;
 | |
|   bool IsNumUsesConsensusValid = false;
 | |
|   SmallVector<Instruction*, 16> AddrModeInsts;
 | |
|   ExtAddrMode AddrMode;
 | |
|   while (!worklist.empty()) {
 | |
|     Value *V = worklist.back();
 | |
|     worklist.pop_back();
 | |
| 
 | |
|     // Break use-def graph loops.
 | |
|     if (!Visited.insert(V)) {
 | |
|       Consensus = 0;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // For a PHI node, push all of its incoming values.
 | |
|     if (PHINode *P = dyn_cast<PHINode>(V)) {
 | |
|       for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i)
 | |
|         worklist.push_back(P->getIncomingValue(i));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // For non-PHIs, determine the addressing mode being computed.
 | |
|     SmallVector<Instruction*, 16> NewAddrModeInsts;
 | |
|     ExtAddrMode NewAddrMode =
 | |
|       AddressingModeMatcher::Match(V, AccessTy, MemoryInst,
 | |
|                                    NewAddrModeInsts, *TLI);
 | |
| 
 | |
|     // This check is broken into two cases with very similar code to avoid using
 | |
|     // getNumUses() as much as possible. Some values have a lot of uses, so
 | |
|     // calling getNumUses() unconditionally caused a significant compile-time
 | |
|     // regression.
 | |
|     if (!Consensus) {
 | |
|       Consensus = V;
 | |
|       AddrMode = NewAddrMode;
 | |
|       AddrModeInsts = NewAddrModeInsts;
 | |
|       continue;
 | |
|     } else if (NewAddrMode == AddrMode) {
 | |
|       if (!IsNumUsesConsensusValid) {
 | |
|         NumUsesConsensus = Consensus->getNumUses();
 | |
|         IsNumUsesConsensusValid = true;
 | |
|       }
 | |
| 
 | |
|       // Ensure that the obtained addressing mode is equivalent to that obtained
 | |
|       // for all other roots of the PHI traversal.  Also, when choosing one
 | |
|       // such root as representative, select the one with the most uses in order
 | |
|       // to keep the cost modeling heuristics in AddressingModeMatcher
 | |
|       // applicable.
 | |
|       unsigned NumUses = V->getNumUses();
 | |
|       if (NumUses > NumUsesConsensus) {
 | |
|         Consensus = V;
 | |
|         NumUsesConsensus = NumUses;
 | |
|         AddrModeInsts = NewAddrModeInsts;
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     Consensus = 0;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // If the addressing mode couldn't be determined, or if multiple different
 | |
|   // ones were determined, bail out now.
 | |
|   if (!Consensus) return false;
 | |
| 
 | |
|   // Check to see if any of the instructions supersumed by this addr mode are
 | |
|   // non-local to I's BB.
 | |
|   bool AnyNonLocal = false;
 | |
|   for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
 | |
|     if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
 | |
|       AnyNonLocal = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If all the instructions matched are already in this BB, don't do anything.
 | |
|   if (!AnyNonLocal) {
 | |
|     DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode << "\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Insert this computation right after this user.  Since our caller is
 | |
|   // scanning from the top of the BB to the bottom, reuse of the expr are
 | |
|   // guaranteed to happen later.
 | |
|   IRBuilder<> Builder(MemoryInst);
 | |
| 
 | |
|   // Now that we determined the addressing expression we want to use and know
 | |
|   // that we have to sink it into this block.  Check to see if we have already
 | |
|   // done this for some other load/store instr in this block.  If so, reuse the
 | |
|   // computation.
 | |
|   Value *&SunkAddr = SunkAddrs[Addr];
 | |
|   if (SunkAddr) {
 | |
|     DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
 | |
|                  << *MemoryInst);
 | |
|     if (SunkAddr->getType() != Addr->getType())
 | |
|       SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
 | |
|   } else {
 | |
|     DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
 | |
|                  << *MemoryInst);
 | |
|     Type *IntPtrTy =
 | |
|           TLI->getDataLayout()->getIntPtrType(AccessTy->getContext());
 | |
| 
 | |
|     Value *Result = 0;
 | |
| 
 | |
|     // Start with the base register. Do this first so that subsequent address
 | |
|     // matching finds it last, which will prevent it from trying to match it
 | |
|     // as the scaled value in case it happens to be a mul. That would be
 | |
|     // problematic if we've sunk a different mul for the scale, because then
 | |
|     // we'd end up sinking both muls.
 | |
|     if (AddrMode.BaseReg) {
 | |
|       Value *V = AddrMode.BaseReg;
 | |
|       if (V->getType()->isPointerTy())
 | |
|         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
 | |
|       if (V->getType() != IntPtrTy)
 | |
|         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
 | |
|       Result = V;
 | |
|     }
 | |
| 
 | |
|     // Add the scale value.
 | |
|     if (AddrMode.Scale) {
 | |
|       Value *V = AddrMode.ScaledReg;
 | |
|       if (V->getType() == IntPtrTy) {
 | |
|         // done.
 | |
|       } else if (V->getType()->isPointerTy()) {
 | |
|         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
 | |
|       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
 | |
|                  cast<IntegerType>(V->getType())->getBitWidth()) {
 | |
|         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
 | |
|       } else {
 | |
|         V = Builder.CreateSExt(V, IntPtrTy, "sunkaddr");
 | |
|       }
 | |
|       if (AddrMode.Scale != 1)
 | |
|         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
 | |
|                               "sunkaddr");
 | |
|       if (Result)
 | |
|         Result = Builder.CreateAdd(Result, V, "sunkaddr");
 | |
|       else
 | |
|         Result = V;
 | |
|     }
 | |
| 
 | |
|     // Add in the BaseGV if present.
 | |
|     if (AddrMode.BaseGV) {
 | |
|       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
 | |
|       if (Result)
 | |
|         Result = Builder.CreateAdd(Result, V, "sunkaddr");
 | |
|       else
 | |
|         Result = V;
 | |
|     }
 | |
| 
 | |
|     // Add in the Base Offset if present.
 | |
|     if (AddrMode.BaseOffs) {
 | |
|       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
 | |
|       if (Result)
 | |
|         Result = Builder.CreateAdd(Result, V, "sunkaddr");
 | |
|       else
 | |
|         Result = V;
 | |
|     }
 | |
| 
 | |
|     if (Result == 0)
 | |
|       SunkAddr = Constant::getNullValue(Addr->getType());
 | |
|     else
 | |
|       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
 | |
|   }
 | |
| 
 | |
|   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
 | |
| 
 | |
|   // If we have no uses, recursively delete the value and all dead instructions
 | |
|   // using it.
 | |
|   if (Repl->use_empty()) {
 | |
|     // This can cause recursive deletion, which can invalidate our iterator.
 | |
|     // Use a WeakVH to hold onto it in case this happens.
 | |
|     WeakVH IterHandle(CurInstIterator);
 | |
|     BasicBlock *BB = CurInstIterator->getParent();
 | |
| 
 | |
|     RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
 | |
| 
 | |
|     if (IterHandle != CurInstIterator) {
 | |
|       // If the iterator instruction was recursively deleted, start over at the
 | |
|       // start of the block.
 | |
|       CurInstIterator = BB->begin();
 | |
|       SunkAddrs.clear();
 | |
|     } else {
 | |
|       // This address is now available for reassignment, so erase the table
 | |
|       // entry; we don't want to match some completely different instruction.
 | |
|       SunkAddrs[Addr] = 0;
 | |
|     }
 | |
|   }
 | |
|   ++NumMemoryInsts;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// OptimizeInlineAsmInst - If there are any memory operands, use
 | |
| /// OptimizeMemoryInst to sink their address computing into the block when
 | |
| /// possible / profitable.
 | |
| bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) {
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   TargetLowering::AsmOperandInfoVector
 | |
|     TargetConstraints = TLI->ParseConstraints(CS);
 | |
|   unsigned ArgNo = 0;
 | |
|   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
 | |
|     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
 | |
| 
 | |
|     // Compute the constraint code and ConstraintType to use.
 | |
|     TLI->ComputeConstraintToUse(OpInfo, SDValue());
 | |
| 
 | |
|     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
 | |
|         OpInfo.isIndirect) {
 | |
|       Value *OpVal = CS->getArgOperand(ArgNo++);
 | |
|       MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType());
 | |
|     } else if (OpInfo.Type == InlineAsm::isInput)
 | |
|       ArgNo++;
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same
 | |
| /// basic block as the load, unless conditions are unfavorable. This allows
 | |
| /// SelectionDAG to fold the extend into the load.
 | |
| ///
 | |
| bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *I) {
 | |
|   // Look for a load being extended.
 | |
|   LoadInst *LI = dyn_cast<LoadInst>(I->getOperand(0));
 | |
|   if (!LI) return false;
 | |
| 
 | |
|   // If they're already in the same block, there's nothing to do.
 | |
|   if (LI->getParent() == I->getParent())
 | |
|     return false;
 | |
| 
 | |
|   // If the load has other users and the truncate is not free, this probably
 | |
|   // isn't worthwhile.
 | |
|   if (!LI->hasOneUse() &&
 | |
|       TLI && (TLI->isTypeLegal(TLI->getValueType(LI->getType())) ||
 | |
|               !TLI->isTypeLegal(TLI->getValueType(I->getType()))) &&
 | |
|       !TLI->isTruncateFree(I->getType(), LI->getType()))
 | |
|     return false;
 | |
| 
 | |
|   // Check whether the target supports casts folded into loads.
 | |
|   unsigned LType;
 | |
|   if (isa<ZExtInst>(I))
 | |
|     LType = ISD::ZEXTLOAD;
 | |
|   else {
 | |
|     assert(isa<SExtInst>(I) && "Unexpected ext type!");
 | |
|     LType = ISD::SEXTLOAD;
 | |
|   }
 | |
|   if (TLI && !TLI->isLoadExtLegal(LType, TLI->getValueType(LI->getType())))
 | |
|     return false;
 | |
| 
 | |
|   // Move the extend into the same block as the load, so that SelectionDAG
 | |
|   // can fold it.
 | |
|   I->removeFromParent();
 | |
|   I->insertAfter(LI);
 | |
|   ++NumExtsMoved;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool CodeGenPrepare::OptimizeExtUses(Instruction *I) {
 | |
|   BasicBlock *DefBB = I->getParent();
 | |
| 
 | |
|   // If the result of a {s|z}ext and its source are both live out, rewrite all
 | |
|   // other uses of the source with result of extension.
 | |
|   Value *Src = I->getOperand(0);
 | |
|   if (Src->hasOneUse())
 | |
|     return false;
 | |
| 
 | |
|   // Only do this xform if truncating is free.
 | |
|   if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
 | |
|     return false;
 | |
| 
 | |
|   // Only safe to perform the optimization if the source is also defined in
 | |
|   // this block.
 | |
|   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
 | |
|     return false;
 | |
| 
 | |
|   bool DefIsLiveOut = false;
 | |
|   for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
 | |
|        UI != E; ++UI) {
 | |
|     Instruction *User = cast<Instruction>(*UI);
 | |
| 
 | |
|     // Figure out which BB this ext is used in.
 | |
|     BasicBlock *UserBB = User->getParent();
 | |
|     if (UserBB == DefBB) continue;
 | |
|     DefIsLiveOut = true;
 | |
|     break;
 | |
|   }
 | |
|   if (!DefIsLiveOut)
 | |
|     return false;
 | |
| 
 | |
|   // Make sure none of the uses are PHI nodes.
 | |
|   for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
 | |
|        UI != E; ++UI) {
 | |
|     Instruction *User = cast<Instruction>(*UI);
 | |
|     BasicBlock *UserBB = User->getParent();
 | |
|     if (UserBB == DefBB) continue;
 | |
|     // Be conservative. We don't want this xform to end up introducing
 | |
|     // reloads just before load / store instructions.
 | |
|     if (isa<PHINode>(User) || isa<LoadInst>(User) || isa<StoreInst>(User))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // InsertedTruncs - Only insert one trunc in each block once.
 | |
|   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
 | |
| 
 | |
|   bool MadeChange = false;
 | |
|   for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
 | |
|        UI != E; ++UI) {
 | |
|     Use &TheUse = UI.getUse();
 | |
|     Instruction *User = cast<Instruction>(*UI);
 | |
| 
 | |
|     // Figure out which BB this ext is used in.
 | |
|     BasicBlock *UserBB = User->getParent();
 | |
|     if (UserBB == DefBB) continue;
 | |
| 
 | |
|     // Both src and def are live in this block. Rewrite the use.
 | |
|     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
 | |
| 
 | |
|     if (!InsertedTrunc) {
 | |
|       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
 | |
|       InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt);
 | |
|     }
 | |
| 
 | |
|     // Replace a use of the {s|z}ext source with a use of the result.
 | |
|     TheUse = InsertedTrunc;
 | |
|     ++NumExtUses;
 | |
|     MadeChange = true;
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// isFormingBranchFromSelectProfitable - Returns true if a SelectInst should be
 | |
| /// turned into an explicit branch.
 | |
| static bool isFormingBranchFromSelectProfitable(SelectInst *SI) {
 | |
|   // FIXME: This should use the same heuristics as IfConversion to determine
 | |
|   // whether a select is better represented as a branch.  This requires that
 | |
|   // branch probability metadata is preserved for the select, which is not the
 | |
|   // case currently.
 | |
| 
 | |
|   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
 | |
| 
 | |
|   // If the branch is predicted right, an out of order CPU can avoid blocking on
 | |
|   // the compare.  Emit cmovs on compares with a memory operand as branches to
 | |
|   // avoid stalls on the load from memory.  If the compare has more than one use
 | |
|   // there's probably another cmov or setcc around so it's not worth emitting a
 | |
|   // branch.
 | |
|   if (!Cmp)
 | |
|     return false;
 | |
| 
 | |
|   Value *CmpOp0 = Cmp->getOperand(0);
 | |
|   Value *CmpOp1 = Cmp->getOperand(1);
 | |
| 
 | |
|   // We check that the memory operand has one use to avoid uses of the loaded
 | |
|   // value directly after the compare, making branches unprofitable.
 | |
|   return Cmp->hasOneUse() &&
 | |
|          ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) ||
 | |
|           (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse()));
 | |
| }
 | |
| 
 | |
| 
 | |
| /// If we have a SelectInst that will likely profit from branch prediction,
 | |
| /// turn it into a branch.
 | |
| bool CodeGenPrepare::OptimizeSelectInst(SelectInst *SI) {
 | |
|   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
 | |
| 
 | |
|   // Can we convert the 'select' to CF ?
 | |
|   if (DisableSelectToBranch || OptSize || !TLI || VectorCond)
 | |
|     return false;
 | |
| 
 | |
|   TargetLowering::SelectSupportKind SelectKind;
 | |
|   if (VectorCond)
 | |
|     SelectKind = TargetLowering::VectorMaskSelect;
 | |
|   else if (SI->getType()->isVectorTy())
 | |
|     SelectKind = TargetLowering::ScalarCondVectorVal;
 | |
|   else
 | |
|     SelectKind = TargetLowering::ScalarValSelect;
 | |
| 
 | |
|   // Do we have efficient codegen support for this kind of 'selects' ?
 | |
|   if (TLI->isSelectSupported(SelectKind)) {
 | |
|     // We have efficient codegen support for the select instruction.
 | |
|     // Check if it is profitable to keep this 'select'.
 | |
|     if (!TLI->isPredictableSelectExpensive() ||
 | |
|         !isFormingBranchFromSelectProfitable(SI))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   ModifiedDT = true;
 | |
| 
 | |
|   // First, we split the block containing the select into 2 blocks.
 | |
|   BasicBlock *StartBlock = SI->getParent();
 | |
|   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI));
 | |
|   BasicBlock *NextBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
 | |
| 
 | |
|   // Create a new block serving as the landing pad for the branch.
 | |
|   BasicBlock *SmallBlock = BasicBlock::Create(SI->getContext(), "select.mid",
 | |
|                                              NextBlock->getParent(), NextBlock);
 | |
| 
 | |
|   // Move the unconditional branch from the block with the select in it into our
 | |
|   // landing pad block.
 | |
|   StartBlock->getTerminator()->eraseFromParent();
 | |
|   BranchInst::Create(NextBlock, SmallBlock);
 | |
| 
 | |
|   // Insert the real conditional branch based on the original condition.
 | |
|   BranchInst::Create(NextBlock, SmallBlock, SI->getCondition(), SI);
 | |
| 
 | |
|   // The select itself is replaced with a PHI Node.
 | |
|   PHINode *PN = PHINode::Create(SI->getType(), 2, "", NextBlock->begin());
 | |
|   PN->takeName(SI);
 | |
|   PN->addIncoming(SI->getTrueValue(), StartBlock);
 | |
|   PN->addIncoming(SI->getFalseValue(), SmallBlock);
 | |
|   SI->replaceAllUsesWith(PN);
 | |
|   SI->eraseFromParent();
 | |
| 
 | |
|   // Instruct OptimizeBlock to skip to the next block.
 | |
|   CurInstIterator = StartBlock->end();
 | |
|   ++NumSelectsExpanded;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool CodeGenPrepare::OptimizeInst(Instruction *I) {
 | |
|   if (PHINode *P = dyn_cast<PHINode>(I)) {
 | |
|     // It is possible for very late stage optimizations (such as SimplifyCFG)
 | |
|     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
 | |
|     // trivial PHI, go ahead and zap it here.
 | |
|     if (Value *V = SimplifyInstruction(P)) {
 | |
|       P->replaceAllUsesWith(V);
 | |
|       P->eraseFromParent();
 | |
|       ++NumPHIsElim;
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (CastInst *CI = dyn_cast<CastInst>(I)) {
 | |
|     // If the source of the cast is a constant, then this should have
 | |
|     // already been constant folded.  The only reason NOT to constant fold
 | |
|     // it is if something (e.g. LSR) was careful to place the constant
 | |
|     // evaluation in a block other than then one that uses it (e.g. to hoist
 | |
|     // the address of globals out of a loop).  If this is the case, we don't
 | |
|     // want to forward-subst the cast.
 | |
|     if (isa<Constant>(CI->getOperand(0)))
 | |
|       return false;
 | |
| 
 | |
|     if (TLI && OptimizeNoopCopyExpression(CI, *TLI))
 | |
|       return true;
 | |
| 
 | |
|     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
 | |
|       bool MadeChange = MoveExtToFormExtLoad(I);
 | |
|       return MadeChange | OptimizeExtUses(I);
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (CmpInst *CI = dyn_cast<CmpInst>(I))
 | |
|     return OptimizeCmpExpression(CI);
 | |
| 
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | |
|     if (TLI)
 | |
|       return OptimizeMemoryInst(I, I->getOperand(0), LI->getType());
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
 | |
|     if (TLI)
 | |
|       return OptimizeMemoryInst(I, SI->getOperand(1),
 | |
|                                 SI->getOperand(0)->getType());
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
 | |
|     if (GEPI->hasAllZeroIndices()) {
 | |
|       /// The GEP operand must be a pointer, so must its result -> BitCast
 | |
|       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
 | |
|                                         GEPI->getName(), GEPI);
 | |
|       GEPI->replaceAllUsesWith(NC);
 | |
|       GEPI->eraseFromParent();
 | |
|       ++NumGEPsElim;
 | |
|       OptimizeInst(NC);
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (CallInst *CI = dyn_cast<CallInst>(I))
 | |
|     return OptimizeCallInst(CI);
 | |
| 
 | |
|   if (SelectInst *SI = dyn_cast<SelectInst>(I))
 | |
|     return OptimizeSelectInst(SI);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // In this pass we look for GEP and cast instructions that are used
 | |
| // across basic blocks and rewrite them to improve basic-block-at-a-time
 | |
| // selection.
 | |
| bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
 | |
|   SunkAddrs.clear();
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   CurInstIterator = BB.begin();
 | |
|   while (CurInstIterator != BB.end())
 | |
|     MadeChange |= OptimizeInst(CurInstIterator++);
 | |
| 
 | |
|   MadeChange |= DupRetToEnableTailCallOpts(&BB);
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| // llvm.dbg.value is far away from the value then iSel may not be able
 | |
| // handle it properly. iSel will drop llvm.dbg.value if it can not
 | |
| // find a node corresponding to the value.
 | |
| bool CodeGenPrepare::PlaceDbgValues(Function &F) {
 | |
|   bool MadeChange = false;
 | |
|   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
 | |
|     Instruction *PrevNonDbgInst = NULL;
 | |
|     for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE;) {
 | |
|       Instruction *Insn = BI; ++BI;
 | |
|       DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
 | |
|       if (!DVI) {
 | |
|         PrevNonDbgInst = Insn;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
 | |
|       if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
 | |
|         DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI);
 | |
|         DVI->removeFromParent();
 | |
|         if (isa<PHINode>(VI))
 | |
|           DVI->insertBefore(VI->getParent()->getFirstInsertionPt());
 | |
|         else
 | |
|           DVI->insertAfter(VI);
 | |
|         MadeChange = true;
 | |
|         ++NumDbgValueMoved;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return MadeChange;
 | |
| }
 |