mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	Swapping DenseMap A with DenseMap B invalidates iterators pointing into both A and B. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233890 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1083 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1083 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the DenseMap class.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_ADT_DENSEMAP_H
 | 
						|
#define LLVM_ADT_DENSEMAP_H
 | 
						|
 | 
						|
#include "llvm/ADT/DenseMapInfo.h"
 | 
						|
#include "llvm/ADT/EpochTracker.h"
 | 
						|
#include "llvm/Support/AlignOf.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/PointerLikeTypeTraits.h"
 | 
						|
#include "llvm/Support/type_traits.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <climits>
 | 
						|
#include <cstddef>
 | 
						|
#include <cstring>
 | 
						|
#include <iterator>
 | 
						|
#include <new>
 | 
						|
#include <utility>
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
namespace detail {
 | 
						|
// We extend a pair to allow users to override the bucket type with their own
 | 
						|
// implementation without requiring two members.
 | 
						|
template <typename KeyT, typename ValueT>
 | 
						|
struct DenseMapPair : public std::pair<KeyT, ValueT> {
 | 
						|
  KeyT &getFirst() { return std::pair<KeyT, ValueT>::first; }
 | 
						|
  const KeyT &getFirst() const { return std::pair<KeyT, ValueT>::first; }
 | 
						|
  ValueT &getSecond() { return std::pair<KeyT, ValueT>::second; }
 | 
						|
  const ValueT &getSecond() const { return std::pair<KeyT, ValueT>::second; }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
template <
 | 
						|
    typename KeyT, typename ValueT, typename KeyInfoT = DenseMapInfo<KeyT>,
 | 
						|
    typename Bucket = detail::DenseMapPair<KeyT, ValueT>, bool IsConst = false>
 | 
						|
class DenseMapIterator;
 | 
						|
 | 
						|
template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
 | 
						|
          typename BucketT>
 | 
						|
class DenseMapBase : public DebugEpochBase {
 | 
						|
public:
 | 
						|
  typedef unsigned size_type;
 | 
						|
  typedef KeyT key_type;
 | 
						|
  typedef ValueT mapped_type;
 | 
						|
  typedef BucketT value_type;
 | 
						|
 | 
						|
  typedef DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT> iterator;
 | 
						|
  typedef DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT, true>
 | 
						|
      const_iterator;
 | 
						|
  inline iterator begin() {
 | 
						|
    // When the map is empty, avoid the overhead of AdvancePastEmptyBuckets().
 | 
						|
    return empty() ? end() : iterator(getBuckets(), getBucketsEnd(), *this);
 | 
						|
  }
 | 
						|
  inline iterator end() {
 | 
						|
    return iterator(getBucketsEnd(), getBucketsEnd(), *this, true);
 | 
						|
  }
 | 
						|
  inline const_iterator begin() const {
 | 
						|
    return empty() ? end()
 | 
						|
                   : const_iterator(getBuckets(), getBucketsEnd(), *this);
 | 
						|
  }
 | 
						|
  inline const_iterator end() const {
 | 
						|
    return const_iterator(getBucketsEnd(), getBucketsEnd(), *this, true);
 | 
						|
  }
 | 
						|
 | 
						|
  bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const {
 | 
						|
    return getNumEntries() == 0;
 | 
						|
  }
 | 
						|
  unsigned size() const { return getNumEntries(); }
 | 
						|
 | 
						|
  /// Grow the densemap so that it has at least Size buckets. Does not shrink
 | 
						|
  void resize(size_type Size) {
 | 
						|
    incrementEpoch();
 | 
						|
    if (Size > getNumBuckets())
 | 
						|
      grow(Size);
 | 
						|
  }
 | 
						|
 | 
						|
  void clear() {
 | 
						|
    incrementEpoch();
 | 
						|
    if (getNumEntries() == 0 && getNumTombstones() == 0) return;
 | 
						|
 | 
						|
    // If the capacity of the array is huge, and the # elements used is small,
 | 
						|
    // shrink the array.
 | 
						|
    if (getNumEntries() * 4 < getNumBuckets() && getNumBuckets() > 64) {
 | 
						|
      shrink_and_clear();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
 | 
						|
    for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
 | 
						|
      if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey)) {
 | 
						|
        if (!KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) {
 | 
						|
          P->getSecond().~ValueT();
 | 
						|
          decrementNumEntries();
 | 
						|
        }
 | 
						|
        P->getFirst() = EmptyKey;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    assert(getNumEntries() == 0 && "Node count imbalance!");
 | 
						|
    setNumTombstones(0);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Return 1 if the specified key is in the map, 0 otherwise.
 | 
						|
  size_type count(const KeyT &Val) const {
 | 
						|
    const BucketT *TheBucket;
 | 
						|
    return LookupBucketFor(Val, TheBucket) ? 1 : 0;
 | 
						|
  }
 | 
						|
 | 
						|
  iterator find(const KeyT &Val) {
 | 
						|
    BucketT *TheBucket;
 | 
						|
    if (LookupBucketFor(Val, TheBucket))
 | 
						|
      return iterator(TheBucket, getBucketsEnd(), *this, true);
 | 
						|
    return end();
 | 
						|
  }
 | 
						|
  const_iterator find(const KeyT &Val) const {
 | 
						|
    const BucketT *TheBucket;
 | 
						|
    if (LookupBucketFor(Val, TheBucket))
 | 
						|
      return const_iterator(TheBucket, getBucketsEnd(), *this, true);
 | 
						|
    return end();
 | 
						|
  }
 | 
						|
 | 
						|
  /// Alternate version of find() which allows a different, and possibly
 | 
						|
  /// less expensive, key type.
 | 
						|
  /// The DenseMapInfo is responsible for supplying methods
 | 
						|
  /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
 | 
						|
  /// type used.
 | 
						|
  template<class LookupKeyT>
 | 
						|
  iterator find_as(const LookupKeyT &Val) {
 | 
						|
    BucketT *TheBucket;
 | 
						|
    if (LookupBucketFor(Val, TheBucket))
 | 
						|
      return iterator(TheBucket, getBucketsEnd(), *this, true);
 | 
						|
    return end();
 | 
						|
  }
 | 
						|
  template<class LookupKeyT>
 | 
						|
  const_iterator find_as(const LookupKeyT &Val) const {
 | 
						|
    const BucketT *TheBucket;
 | 
						|
    if (LookupBucketFor(Val, TheBucket))
 | 
						|
      return const_iterator(TheBucket, getBucketsEnd(), *this, true);
 | 
						|
    return end();
 | 
						|
  }
 | 
						|
 | 
						|
  /// lookup - Return the entry for the specified key, or a default
 | 
						|
  /// constructed value if no such entry exists.
 | 
						|
  ValueT lookup(const KeyT &Val) const {
 | 
						|
    const BucketT *TheBucket;
 | 
						|
    if (LookupBucketFor(Val, TheBucket))
 | 
						|
      return TheBucket->getSecond();
 | 
						|
    return ValueT();
 | 
						|
  }
 | 
						|
 | 
						|
  // Inserts key,value pair into the map if the key isn't already in the map.
 | 
						|
  // If the key is already in the map, it returns false and doesn't update the
 | 
						|
  // value.
 | 
						|
  std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
 | 
						|
    BucketT *TheBucket;
 | 
						|
    if (LookupBucketFor(KV.first, TheBucket))
 | 
						|
      return std::make_pair(iterator(TheBucket, getBucketsEnd(), *this, true),
 | 
						|
                            false); // Already in map.
 | 
						|
 | 
						|
    // Otherwise, insert the new element.
 | 
						|
    TheBucket = InsertIntoBucket(KV.first, KV.second, TheBucket);
 | 
						|
    return std::make_pair(iterator(TheBucket, getBucketsEnd(), *this, true),
 | 
						|
                          true);
 | 
						|
  }
 | 
						|
 | 
						|
  // Inserts key,value pair into the map if the key isn't already in the map.
 | 
						|
  // If the key is already in the map, it returns false and doesn't update the
 | 
						|
  // value.
 | 
						|
  std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) {
 | 
						|
    BucketT *TheBucket;
 | 
						|
    if (LookupBucketFor(KV.first, TheBucket))
 | 
						|
      return std::make_pair(iterator(TheBucket, getBucketsEnd(), *this, true),
 | 
						|
                            false); // Already in map.
 | 
						|
 | 
						|
    // Otherwise, insert the new element.
 | 
						|
    TheBucket = InsertIntoBucket(std::move(KV.first),
 | 
						|
                                 std::move(KV.second),
 | 
						|
                                 TheBucket);
 | 
						|
    return std::make_pair(iterator(TheBucket, getBucketsEnd(), *this, true),
 | 
						|
                          true);
 | 
						|
  }
 | 
						|
 | 
						|
  /// insert - Range insertion of pairs.
 | 
						|
  template<typename InputIt>
 | 
						|
  void insert(InputIt I, InputIt E) {
 | 
						|
    for (; I != E; ++I)
 | 
						|
      insert(*I);
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  bool erase(const KeyT &Val) {
 | 
						|
    BucketT *TheBucket;
 | 
						|
    if (!LookupBucketFor(Val, TheBucket))
 | 
						|
      return false; // not in map.
 | 
						|
 | 
						|
    TheBucket->getSecond().~ValueT();
 | 
						|
    TheBucket->getFirst() = getTombstoneKey();
 | 
						|
    decrementNumEntries();
 | 
						|
    incrementNumTombstones();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  void erase(iterator I) {
 | 
						|
    BucketT *TheBucket = &*I;
 | 
						|
    TheBucket->getSecond().~ValueT();
 | 
						|
    TheBucket->getFirst() = getTombstoneKey();
 | 
						|
    decrementNumEntries();
 | 
						|
    incrementNumTombstones();
 | 
						|
  }
 | 
						|
 | 
						|
  value_type& FindAndConstruct(const KeyT &Key) {
 | 
						|
    BucketT *TheBucket;
 | 
						|
    if (LookupBucketFor(Key, TheBucket))
 | 
						|
      return *TheBucket;
 | 
						|
 | 
						|
    return *InsertIntoBucket(Key, ValueT(), TheBucket);
 | 
						|
  }
 | 
						|
 | 
						|
  ValueT &operator[](const KeyT &Key) {
 | 
						|
    return FindAndConstruct(Key).second;
 | 
						|
  }
 | 
						|
 | 
						|
  value_type& FindAndConstruct(KeyT &&Key) {
 | 
						|
    BucketT *TheBucket;
 | 
						|
    if (LookupBucketFor(Key, TheBucket))
 | 
						|
      return *TheBucket;
 | 
						|
 | 
						|
    return *InsertIntoBucket(std::move(Key), ValueT(), TheBucket);
 | 
						|
  }
 | 
						|
 | 
						|
  ValueT &operator[](KeyT &&Key) {
 | 
						|
    return FindAndConstruct(std::move(Key)).second;
 | 
						|
  }
 | 
						|
 | 
						|
  /// isPointerIntoBucketsArray - Return true if the specified pointer points
 | 
						|
  /// somewhere into the DenseMap's array of buckets (i.e. either to a key or
 | 
						|
  /// value in the DenseMap).
 | 
						|
  bool isPointerIntoBucketsArray(const void *Ptr) const {
 | 
						|
    return Ptr >= getBuckets() && Ptr < getBucketsEnd();
 | 
						|
  }
 | 
						|
 | 
						|
  /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
 | 
						|
  /// array.  In conjunction with the previous method, this can be used to
 | 
						|
  /// determine whether an insertion caused the DenseMap to reallocate.
 | 
						|
  const void *getPointerIntoBucketsArray() const { return getBuckets(); }
 | 
						|
 | 
						|
protected:
 | 
						|
  DenseMapBase() {}
 | 
						|
 | 
						|
  void destroyAll() {
 | 
						|
    if (getNumBuckets() == 0) // Nothing to do.
 | 
						|
      return;
 | 
						|
 | 
						|
    const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
 | 
						|
    for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
 | 
						|
      if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) &&
 | 
						|
          !KeyInfoT::isEqual(P->getFirst(), TombstoneKey))
 | 
						|
        P->getSecond().~ValueT();
 | 
						|
      P->getFirst().~KeyT();
 | 
						|
    }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
    memset((void*)getBuckets(), 0x5a, sizeof(BucketT)*getNumBuckets());
 | 
						|
#endif
 | 
						|
  }
 | 
						|
 | 
						|
  void initEmpty() {
 | 
						|
    setNumEntries(0);
 | 
						|
    setNumTombstones(0);
 | 
						|
 | 
						|
    assert((getNumBuckets() & (getNumBuckets()-1)) == 0 &&
 | 
						|
           "# initial buckets must be a power of two!");
 | 
						|
    const KeyT EmptyKey = getEmptyKey();
 | 
						|
    for (BucketT *B = getBuckets(), *E = getBucketsEnd(); B != E; ++B)
 | 
						|
      new (&B->getFirst()) KeyT(EmptyKey);
 | 
						|
  }
 | 
						|
 | 
						|
  void moveFromOldBuckets(BucketT *OldBucketsBegin, BucketT *OldBucketsEnd) {
 | 
						|
    initEmpty();
 | 
						|
 | 
						|
    // Insert all the old elements.
 | 
						|
    const KeyT EmptyKey = getEmptyKey();
 | 
						|
    const KeyT TombstoneKey = getTombstoneKey();
 | 
						|
    for (BucketT *B = OldBucketsBegin, *E = OldBucketsEnd; B != E; ++B) {
 | 
						|
      if (!KeyInfoT::isEqual(B->getFirst(), EmptyKey) &&
 | 
						|
          !KeyInfoT::isEqual(B->getFirst(), TombstoneKey)) {
 | 
						|
        // Insert the key/value into the new table.
 | 
						|
        BucketT *DestBucket;
 | 
						|
        bool FoundVal = LookupBucketFor(B->getFirst(), DestBucket);
 | 
						|
        (void)FoundVal; // silence warning.
 | 
						|
        assert(!FoundVal && "Key already in new map?");
 | 
						|
        DestBucket->getFirst() = std::move(B->getFirst());
 | 
						|
        new (&DestBucket->getSecond()) ValueT(std::move(B->getSecond()));
 | 
						|
        incrementNumEntries();
 | 
						|
 | 
						|
        // Free the value.
 | 
						|
        B->getSecond().~ValueT();
 | 
						|
      }
 | 
						|
      B->getFirst().~KeyT();
 | 
						|
    }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
    if (OldBucketsBegin != OldBucketsEnd)
 | 
						|
      memset((void*)OldBucketsBegin, 0x5a,
 | 
						|
             sizeof(BucketT) * (OldBucketsEnd - OldBucketsBegin));
 | 
						|
#endif
 | 
						|
  }
 | 
						|
 | 
						|
  template <typename OtherBaseT>
 | 
						|
  void copyFrom(
 | 
						|
      const DenseMapBase<OtherBaseT, KeyT, ValueT, KeyInfoT, BucketT> &other) {
 | 
						|
    assert(&other != this);
 | 
						|
    assert(getNumBuckets() == other.getNumBuckets());
 | 
						|
 | 
						|
    setNumEntries(other.getNumEntries());
 | 
						|
    setNumTombstones(other.getNumTombstones());
 | 
						|
 | 
						|
    if (isPodLike<KeyT>::value && isPodLike<ValueT>::value)
 | 
						|
      memcpy(getBuckets(), other.getBuckets(),
 | 
						|
             getNumBuckets() * sizeof(BucketT));
 | 
						|
    else
 | 
						|
      for (size_t i = 0; i < getNumBuckets(); ++i) {
 | 
						|
        new (&getBuckets()[i].getFirst())
 | 
						|
            KeyT(other.getBuckets()[i].getFirst());
 | 
						|
        if (!KeyInfoT::isEqual(getBuckets()[i].getFirst(), getEmptyKey()) &&
 | 
						|
            !KeyInfoT::isEqual(getBuckets()[i].getFirst(), getTombstoneKey()))
 | 
						|
          new (&getBuckets()[i].getSecond())
 | 
						|
              ValueT(other.getBuckets()[i].getSecond());
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  static unsigned getHashValue(const KeyT &Val) {
 | 
						|
    return KeyInfoT::getHashValue(Val);
 | 
						|
  }
 | 
						|
  template<typename LookupKeyT>
 | 
						|
  static unsigned getHashValue(const LookupKeyT &Val) {
 | 
						|
    return KeyInfoT::getHashValue(Val);
 | 
						|
  }
 | 
						|
  static const KeyT getEmptyKey() {
 | 
						|
    return KeyInfoT::getEmptyKey();
 | 
						|
  }
 | 
						|
  static const KeyT getTombstoneKey() {
 | 
						|
    return KeyInfoT::getTombstoneKey();
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  unsigned getNumEntries() const {
 | 
						|
    return static_cast<const DerivedT *>(this)->getNumEntries();
 | 
						|
  }
 | 
						|
  void setNumEntries(unsigned Num) {
 | 
						|
    static_cast<DerivedT *>(this)->setNumEntries(Num);
 | 
						|
  }
 | 
						|
  void incrementNumEntries() {
 | 
						|
    setNumEntries(getNumEntries() + 1);
 | 
						|
  }
 | 
						|
  void decrementNumEntries() {
 | 
						|
    setNumEntries(getNumEntries() - 1);
 | 
						|
  }
 | 
						|
  unsigned getNumTombstones() const {
 | 
						|
    return static_cast<const DerivedT *>(this)->getNumTombstones();
 | 
						|
  }
 | 
						|
  void setNumTombstones(unsigned Num) {
 | 
						|
    static_cast<DerivedT *>(this)->setNumTombstones(Num);
 | 
						|
  }
 | 
						|
  void incrementNumTombstones() {
 | 
						|
    setNumTombstones(getNumTombstones() + 1);
 | 
						|
  }
 | 
						|
  void decrementNumTombstones() {
 | 
						|
    setNumTombstones(getNumTombstones() - 1);
 | 
						|
  }
 | 
						|
  const BucketT *getBuckets() const {
 | 
						|
    return static_cast<const DerivedT *>(this)->getBuckets();
 | 
						|
  }
 | 
						|
  BucketT *getBuckets() {
 | 
						|
    return static_cast<DerivedT *>(this)->getBuckets();
 | 
						|
  }
 | 
						|
  unsigned getNumBuckets() const {
 | 
						|
    return static_cast<const DerivedT *>(this)->getNumBuckets();
 | 
						|
  }
 | 
						|
  BucketT *getBucketsEnd() {
 | 
						|
    return getBuckets() + getNumBuckets();
 | 
						|
  }
 | 
						|
  const BucketT *getBucketsEnd() const {
 | 
						|
    return getBuckets() + getNumBuckets();
 | 
						|
  }
 | 
						|
 | 
						|
  void grow(unsigned AtLeast) {
 | 
						|
    static_cast<DerivedT *>(this)->grow(AtLeast);
 | 
						|
  }
 | 
						|
 | 
						|
  void shrink_and_clear() {
 | 
						|
    static_cast<DerivedT *>(this)->shrink_and_clear();
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  BucketT *InsertIntoBucket(const KeyT &Key, const ValueT &Value,
 | 
						|
                            BucketT *TheBucket) {
 | 
						|
    TheBucket = InsertIntoBucketImpl(Key, TheBucket);
 | 
						|
 | 
						|
    TheBucket->getFirst() = Key;
 | 
						|
    new (&TheBucket->getSecond()) ValueT(Value);
 | 
						|
    return TheBucket;
 | 
						|
  }
 | 
						|
 | 
						|
  BucketT *InsertIntoBucket(const KeyT &Key, ValueT &&Value,
 | 
						|
                            BucketT *TheBucket) {
 | 
						|
    TheBucket = InsertIntoBucketImpl(Key, TheBucket);
 | 
						|
 | 
						|
    TheBucket->getFirst() = Key;
 | 
						|
    new (&TheBucket->getSecond()) ValueT(std::move(Value));
 | 
						|
    return TheBucket;
 | 
						|
  }
 | 
						|
 | 
						|
  BucketT *InsertIntoBucket(KeyT &&Key, ValueT &&Value, BucketT *TheBucket) {
 | 
						|
    TheBucket = InsertIntoBucketImpl(Key, TheBucket);
 | 
						|
 | 
						|
    TheBucket->getFirst() = std::move(Key);
 | 
						|
    new (&TheBucket->getSecond()) ValueT(std::move(Value));
 | 
						|
    return TheBucket;
 | 
						|
  }
 | 
						|
 | 
						|
  BucketT *InsertIntoBucketImpl(const KeyT &Key, BucketT *TheBucket) {
 | 
						|
    incrementEpoch();
 | 
						|
 | 
						|
    // If the load of the hash table is more than 3/4, or if fewer than 1/8 of
 | 
						|
    // the buckets are empty (meaning that many are filled with tombstones),
 | 
						|
    // grow the table.
 | 
						|
    //
 | 
						|
    // The later case is tricky.  For example, if we had one empty bucket with
 | 
						|
    // tons of tombstones, failing lookups (e.g. for insertion) would have to
 | 
						|
    // probe almost the entire table until it found the empty bucket.  If the
 | 
						|
    // table completely filled with tombstones, no lookup would ever succeed,
 | 
						|
    // causing infinite loops in lookup.
 | 
						|
    unsigned NewNumEntries = getNumEntries() + 1;
 | 
						|
    unsigned NumBuckets = getNumBuckets();
 | 
						|
    if (LLVM_UNLIKELY(NewNumEntries * 4 >= NumBuckets * 3)) {
 | 
						|
      this->grow(NumBuckets * 2);
 | 
						|
      LookupBucketFor(Key, TheBucket);
 | 
						|
      NumBuckets = getNumBuckets();
 | 
						|
    } else if (LLVM_UNLIKELY(NumBuckets-(NewNumEntries+getNumTombstones()) <=
 | 
						|
                             NumBuckets/8)) {
 | 
						|
      this->grow(NumBuckets);
 | 
						|
      LookupBucketFor(Key, TheBucket);
 | 
						|
    }
 | 
						|
    assert(TheBucket);
 | 
						|
 | 
						|
    // Only update the state after we've grown our bucket space appropriately
 | 
						|
    // so that when growing buckets we have self-consistent entry count.
 | 
						|
    incrementNumEntries();
 | 
						|
 | 
						|
    // If we are writing over a tombstone, remember this.
 | 
						|
    const KeyT EmptyKey = getEmptyKey();
 | 
						|
    if (!KeyInfoT::isEqual(TheBucket->getFirst(), EmptyKey))
 | 
						|
      decrementNumTombstones();
 | 
						|
 | 
						|
    return TheBucket;
 | 
						|
  }
 | 
						|
 | 
						|
  /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
 | 
						|
  /// FoundBucket.  If the bucket contains the key and a value, this returns
 | 
						|
  /// true, otherwise it returns a bucket with an empty marker or tombstone and
 | 
						|
  /// returns false.
 | 
						|
  template<typename LookupKeyT>
 | 
						|
  bool LookupBucketFor(const LookupKeyT &Val,
 | 
						|
                       const BucketT *&FoundBucket) const {
 | 
						|
    const BucketT *BucketsPtr = getBuckets();
 | 
						|
    const unsigned NumBuckets = getNumBuckets();
 | 
						|
 | 
						|
    if (NumBuckets == 0) {
 | 
						|
      FoundBucket = nullptr;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // FoundTombstone - Keep track of whether we find a tombstone while probing.
 | 
						|
    const BucketT *FoundTombstone = nullptr;
 | 
						|
    const KeyT EmptyKey = getEmptyKey();
 | 
						|
    const KeyT TombstoneKey = getTombstoneKey();
 | 
						|
    assert(!KeyInfoT::isEqual(Val, EmptyKey) &&
 | 
						|
           !KeyInfoT::isEqual(Val, TombstoneKey) &&
 | 
						|
           "Empty/Tombstone value shouldn't be inserted into map!");
 | 
						|
 | 
						|
    unsigned BucketNo = getHashValue(Val) & (NumBuckets-1);
 | 
						|
    unsigned ProbeAmt = 1;
 | 
						|
    while (1) {
 | 
						|
      const BucketT *ThisBucket = BucketsPtr + BucketNo;
 | 
						|
      // Found Val's bucket?  If so, return it.
 | 
						|
      if (LLVM_LIKELY(KeyInfoT::isEqual(Val, ThisBucket->getFirst()))) {
 | 
						|
        FoundBucket = ThisBucket;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      // If we found an empty bucket, the key doesn't exist in the set.
 | 
						|
      // Insert it and return the default value.
 | 
						|
      if (LLVM_LIKELY(KeyInfoT::isEqual(ThisBucket->getFirst(), EmptyKey))) {
 | 
						|
        // If we've already seen a tombstone while probing, fill it in instead
 | 
						|
        // of the empty bucket we eventually probed to.
 | 
						|
        FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket;
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      // If this is a tombstone, remember it.  If Val ends up not in the map, we
 | 
						|
      // prefer to return it than something that would require more probing.
 | 
						|
      if (KeyInfoT::isEqual(ThisBucket->getFirst(), TombstoneKey) &&
 | 
						|
          !FoundTombstone)
 | 
						|
        FoundTombstone = ThisBucket;  // Remember the first tombstone found.
 | 
						|
 | 
						|
      // Otherwise, it's a hash collision or a tombstone, continue quadratic
 | 
						|
      // probing.
 | 
						|
      BucketNo += ProbeAmt++;
 | 
						|
      BucketNo &= (NumBuckets-1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  template <typename LookupKeyT>
 | 
						|
  bool LookupBucketFor(const LookupKeyT &Val, BucketT *&FoundBucket) {
 | 
						|
    const BucketT *ConstFoundBucket;
 | 
						|
    bool Result = const_cast<const DenseMapBase *>(this)
 | 
						|
      ->LookupBucketFor(Val, ConstFoundBucket);
 | 
						|
    FoundBucket = const_cast<BucketT *>(ConstFoundBucket);
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  /// Return the approximate size (in bytes) of the actual map.
 | 
						|
  /// This is just the raw memory used by DenseMap.
 | 
						|
  /// If entries are pointers to objects, the size of the referenced objects
 | 
						|
  /// are not included.
 | 
						|
  size_t getMemorySize() const {
 | 
						|
    return getNumBuckets() * sizeof(BucketT);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <typename KeyT, typename ValueT,
 | 
						|
          typename KeyInfoT = DenseMapInfo<KeyT>,
 | 
						|
          typename BucketT = detail::DenseMapPair<KeyT, ValueT>>
 | 
						|
class DenseMap : public DenseMapBase<DenseMap<KeyT, ValueT, KeyInfoT, BucketT>,
 | 
						|
                                     KeyT, ValueT, KeyInfoT, BucketT> {
 | 
						|
  // Lift some types from the dependent base class into this class for
 | 
						|
  // simplicity of referring to them.
 | 
						|
  typedef DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT> BaseT;
 | 
						|
  friend class DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
 | 
						|
 | 
						|
  BucketT *Buckets;
 | 
						|
  unsigned NumEntries;
 | 
						|
  unsigned NumTombstones;
 | 
						|
  unsigned NumBuckets;
 | 
						|
 | 
						|
public:
 | 
						|
  explicit DenseMap(unsigned NumInitBuckets = 0) {
 | 
						|
    init(NumInitBuckets);
 | 
						|
  }
 | 
						|
 | 
						|
  DenseMap(const DenseMap &other) : BaseT() {
 | 
						|
    init(0);
 | 
						|
    copyFrom(other);
 | 
						|
  }
 | 
						|
 | 
						|
  DenseMap(DenseMap &&other) : BaseT() {
 | 
						|
    init(0);
 | 
						|
    swap(other);
 | 
						|
  }
 | 
						|
 | 
						|
  template<typename InputIt>
 | 
						|
  DenseMap(const InputIt &I, const InputIt &E) {
 | 
						|
    init(NextPowerOf2(std::distance(I, E)));
 | 
						|
    this->insert(I, E);
 | 
						|
  }
 | 
						|
 | 
						|
  ~DenseMap() {
 | 
						|
    this->destroyAll();
 | 
						|
    operator delete(Buckets);
 | 
						|
  }
 | 
						|
 | 
						|
  void swap(DenseMap& RHS) {
 | 
						|
    this->incrementEpoch();
 | 
						|
    RHS.incrementEpoch();
 | 
						|
    std::swap(Buckets, RHS.Buckets);
 | 
						|
    std::swap(NumEntries, RHS.NumEntries);
 | 
						|
    std::swap(NumTombstones, RHS.NumTombstones);
 | 
						|
    std::swap(NumBuckets, RHS.NumBuckets);
 | 
						|
  }
 | 
						|
 | 
						|
  DenseMap& operator=(const DenseMap& other) {
 | 
						|
    if (&other != this)
 | 
						|
      copyFrom(other);
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  DenseMap& operator=(DenseMap &&other) {
 | 
						|
    this->destroyAll();
 | 
						|
    operator delete(Buckets);
 | 
						|
    init(0);
 | 
						|
    swap(other);
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  void copyFrom(const DenseMap& other) {
 | 
						|
    this->destroyAll();
 | 
						|
    operator delete(Buckets);
 | 
						|
    if (allocateBuckets(other.NumBuckets)) {
 | 
						|
      this->BaseT::copyFrom(other);
 | 
						|
    } else {
 | 
						|
      NumEntries = 0;
 | 
						|
      NumTombstones = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void init(unsigned InitBuckets) {
 | 
						|
    if (allocateBuckets(InitBuckets)) {
 | 
						|
      this->BaseT::initEmpty();
 | 
						|
    } else {
 | 
						|
      NumEntries = 0;
 | 
						|
      NumTombstones = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void grow(unsigned AtLeast) {
 | 
						|
    unsigned OldNumBuckets = NumBuckets;
 | 
						|
    BucketT *OldBuckets = Buckets;
 | 
						|
 | 
						|
    allocateBuckets(std::max<unsigned>(64, static_cast<unsigned>(NextPowerOf2(AtLeast-1))));
 | 
						|
    assert(Buckets);
 | 
						|
    if (!OldBuckets) {
 | 
						|
      this->BaseT::initEmpty();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    this->moveFromOldBuckets(OldBuckets, OldBuckets+OldNumBuckets);
 | 
						|
 | 
						|
    // Free the old table.
 | 
						|
    operator delete(OldBuckets);
 | 
						|
  }
 | 
						|
 | 
						|
  void shrink_and_clear() {
 | 
						|
    unsigned OldNumEntries = NumEntries;
 | 
						|
    this->destroyAll();
 | 
						|
 | 
						|
    // Reduce the number of buckets.
 | 
						|
    unsigned NewNumBuckets = 0;
 | 
						|
    if (OldNumEntries)
 | 
						|
      NewNumBuckets = std::max(64, 1 << (Log2_32_Ceil(OldNumEntries) + 1));
 | 
						|
    if (NewNumBuckets == NumBuckets) {
 | 
						|
      this->BaseT::initEmpty();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    operator delete(Buckets);
 | 
						|
    init(NewNumBuckets);
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  unsigned getNumEntries() const {
 | 
						|
    return NumEntries;
 | 
						|
  }
 | 
						|
  void setNumEntries(unsigned Num) {
 | 
						|
    NumEntries = Num;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned getNumTombstones() const {
 | 
						|
    return NumTombstones;
 | 
						|
  }
 | 
						|
  void setNumTombstones(unsigned Num) {
 | 
						|
    NumTombstones = Num;
 | 
						|
  }
 | 
						|
 | 
						|
  BucketT *getBuckets() const {
 | 
						|
    return Buckets;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned getNumBuckets() const {
 | 
						|
    return NumBuckets;
 | 
						|
  }
 | 
						|
 | 
						|
  bool allocateBuckets(unsigned Num) {
 | 
						|
    NumBuckets = Num;
 | 
						|
    if (NumBuckets == 0) {
 | 
						|
      Buckets = nullptr;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT) * NumBuckets));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <typename KeyT, typename ValueT, unsigned InlineBuckets = 4,
 | 
						|
          typename KeyInfoT = DenseMapInfo<KeyT>,
 | 
						|
          typename BucketT = detail::DenseMapPair<KeyT, ValueT>>
 | 
						|
class SmallDenseMap
 | 
						|
    : public DenseMapBase<
 | 
						|
          SmallDenseMap<KeyT, ValueT, InlineBuckets, KeyInfoT, BucketT>, KeyT,
 | 
						|
          ValueT, KeyInfoT, BucketT> {
 | 
						|
  // Lift some types from the dependent base class into this class for
 | 
						|
  // simplicity of referring to them.
 | 
						|
  typedef DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT> BaseT;
 | 
						|
  friend class DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
 | 
						|
 | 
						|
  unsigned Small : 1;
 | 
						|
  unsigned NumEntries : 31;
 | 
						|
  unsigned NumTombstones;
 | 
						|
 | 
						|
  struct LargeRep {
 | 
						|
    BucketT *Buckets;
 | 
						|
    unsigned NumBuckets;
 | 
						|
  };
 | 
						|
 | 
						|
  /// A "union" of an inline bucket array and the struct representing
 | 
						|
  /// a large bucket. This union will be discriminated by the 'Small' bit.
 | 
						|
  AlignedCharArrayUnion<BucketT[InlineBuckets], LargeRep> storage;
 | 
						|
 | 
						|
public:
 | 
						|
  explicit SmallDenseMap(unsigned NumInitBuckets = 0) {
 | 
						|
    init(NumInitBuckets);
 | 
						|
  }
 | 
						|
 | 
						|
  SmallDenseMap(const SmallDenseMap &other) : BaseT() {
 | 
						|
    init(0);
 | 
						|
    copyFrom(other);
 | 
						|
  }
 | 
						|
 | 
						|
  SmallDenseMap(SmallDenseMap &&other) : BaseT() {
 | 
						|
    init(0);
 | 
						|
    swap(other);
 | 
						|
  }
 | 
						|
 | 
						|
  template<typename InputIt>
 | 
						|
  SmallDenseMap(const InputIt &I, const InputIt &E) {
 | 
						|
    init(NextPowerOf2(std::distance(I, E)));
 | 
						|
    this->insert(I, E);
 | 
						|
  }
 | 
						|
 | 
						|
  ~SmallDenseMap() {
 | 
						|
    this->destroyAll();
 | 
						|
    deallocateBuckets();
 | 
						|
  }
 | 
						|
 | 
						|
  void swap(SmallDenseMap& RHS) {
 | 
						|
    unsigned TmpNumEntries = RHS.NumEntries;
 | 
						|
    RHS.NumEntries = NumEntries;
 | 
						|
    NumEntries = TmpNumEntries;
 | 
						|
    std::swap(NumTombstones, RHS.NumTombstones);
 | 
						|
 | 
						|
    const KeyT EmptyKey = this->getEmptyKey();
 | 
						|
    const KeyT TombstoneKey = this->getTombstoneKey();
 | 
						|
    if (Small && RHS.Small) {
 | 
						|
      // If we're swapping inline bucket arrays, we have to cope with some of
 | 
						|
      // the tricky bits of DenseMap's storage system: the buckets are not
 | 
						|
      // fully initialized. Thus we swap every key, but we may have
 | 
						|
      // a one-directional move of the value.
 | 
						|
      for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
 | 
						|
        BucketT *LHSB = &getInlineBuckets()[i],
 | 
						|
                *RHSB = &RHS.getInlineBuckets()[i];
 | 
						|
        bool hasLHSValue = (!KeyInfoT::isEqual(LHSB->getFirst(), EmptyKey) &&
 | 
						|
                            !KeyInfoT::isEqual(LHSB->getFirst(), TombstoneKey));
 | 
						|
        bool hasRHSValue = (!KeyInfoT::isEqual(RHSB->getFirst(), EmptyKey) &&
 | 
						|
                            !KeyInfoT::isEqual(RHSB->getFirst(), TombstoneKey));
 | 
						|
        if (hasLHSValue && hasRHSValue) {
 | 
						|
          // Swap together if we can...
 | 
						|
          std::swap(*LHSB, *RHSB);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        // Swap separately and handle any assymetry.
 | 
						|
        std::swap(LHSB->getFirst(), RHSB->getFirst());
 | 
						|
        if (hasLHSValue) {
 | 
						|
          new (&RHSB->getSecond()) ValueT(std::move(LHSB->getSecond()));
 | 
						|
          LHSB->getSecond().~ValueT();
 | 
						|
        } else if (hasRHSValue) {
 | 
						|
          new (&LHSB->getSecond()) ValueT(std::move(RHSB->getSecond()));
 | 
						|
          RHSB->getSecond().~ValueT();
 | 
						|
        }
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    if (!Small && !RHS.Small) {
 | 
						|
      std::swap(getLargeRep()->Buckets, RHS.getLargeRep()->Buckets);
 | 
						|
      std::swap(getLargeRep()->NumBuckets, RHS.getLargeRep()->NumBuckets);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    SmallDenseMap &SmallSide = Small ? *this : RHS;
 | 
						|
    SmallDenseMap &LargeSide = Small ? RHS : *this;
 | 
						|
 | 
						|
    // First stash the large side's rep and move the small side across.
 | 
						|
    LargeRep TmpRep = std::move(*LargeSide.getLargeRep());
 | 
						|
    LargeSide.getLargeRep()->~LargeRep();
 | 
						|
    LargeSide.Small = true;
 | 
						|
    // This is similar to the standard move-from-old-buckets, but the bucket
 | 
						|
    // count hasn't actually rotated in this case. So we have to carefully
 | 
						|
    // move construct the keys and values into their new locations, but there
 | 
						|
    // is no need to re-hash things.
 | 
						|
    for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
 | 
						|
      BucketT *NewB = &LargeSide.getInlineBuckets()[i],
 | 
						|
              *OldB = &SmallSide.getInlineBuckets()[i];
 | 
						|
      new (&NewB->getFirst()) KeyT(std::move(OldB->getFirst()));
 | 
						|
      OldB->getFirst().~KeyT();
 | 
						|
      if (!KeyInfoT::isEqual(NewB->getFirst(), EmptyKey) &&
 | 
						|
          !KeyInfoT::isEqual(NewB->getFirst(), TombstoneKey)) {
 | 
						|
        new (&NewB->getSecond()) ValueT(std::move(OldB->getSecond()));
 | 
						|
        OldB->getSecond().~ValueT();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // The hard part of moving the small buckets across is done, just move
 | 
						|
    // the TmpRep into its new home.
 | 
						|
    SmallSide.Small = false;
 | 
						|
    new (SmallSide.getLargeRep()) LargeRep(std::move(TmpRep));
 | 
						|
  }
 | 
						|
 | 
						|
  SmallDenseMap& operator=(const SmallDenseMap& other) {
 | 
						|
    if (&other != this)
 | 
						|
      copyFrom(other);
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  SmallDenseMap& operator=(SmallDenseMap &&other) {
 | 
						|
    this->destroyAll();
 | 
						|
    deallocateBuckets();
 | 
						|
    init(0);
 | 
						|
    swap(other);
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  void copyFrom(const SmallDenseMap& other) {
 | 
						|
    this->destroyAll();
 | 
						|
    deallocateBuckets();
 | 
						|
    Small = true;
 | 
						|
    if (other.getNumBuckets() > InlineBuckets) {
 | 
						|
      Small = false;
 | 
						|
      new (getLargeRep()) LargeRep(allocateBuckets(other.getNumBuckets()));
 | 
						|
    }
 | 
						|
    this->BaseT::copyFrom(other);
 | 
						|
  }
 | 
						|
 | 
						|
  void init(unsigned InitBuckets) {
 | 
						|
    Small = true;
 | 
						|
    if (InitBuckets > InlineBuckets) {
 | 
						|
      Small = false;
 | 
						|
      new (getLargeRep()) LargeRep(allocateBuckets(InitBuckets));
 | 
						|
    }
 | 
						|
    this->BaseT::initEmpty();
 | 
						|
  }
 | 
						|
 | 
						|
  void grow(unsigned AtLeast) {
 | 
						|
    if (AtLeast >= InlineBuckets)
 | 
						|
      AtLeast = std::max<unsigned>(64, NextPowerOf2(AtLeast-1));
 | 
						|
 | 
						|
    if (Small) {
 | 
						|
      if (AtLeast < InlineBuckets)
 | 
						|
        return; // Nothing to do.
 | 
						|
 | 
						|
      // First move the inline buckets into a temporary storage.
 | 
						|
      AlignedCharArrayUnion<BucketT[InlineBuckets]> TmpStorage;
 | 
						|
      BucketT *TmpBegin = reinterpret_cast<BucketT *>(TmpStorage.buffer);
 | 
						|
      BucketT *TmpEnd = TmpBegin;
 | 
						|
 | 
						|
      // Loop over the buckets, moving non-empty, non-tombstones into the
 | 
						|
      // temporary storage. Have the loop move the TmpEnd forward as it goes.
 | 
						|
      const KeyT EmptyKey = this->getEmptyKey();
 | 
						|
      const KeyT TombstoneKey = this->getTombstoneKey();
 | 
						|
      for (BucketT *P = getBuckets(), *E = P + InlineBuckets; P != E; ++P) {
 | 
						|
        if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) &&
 | 
						|
            !KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) {
 | 
						|
          assert(size_t(TmpEnd - TmpBegin) < InlineBuckets &&
 | 
						|
                 "Too many inline buckets!");
 | 
						|
          new (&TmpEnd->getFirst()) KeyT(std::move(P->getFirst()));
 | 
						|
          new (&TmpEnd->getSecond()) ValueT(std::move(P->getSecond()));
 | 
						|
          ++TmpEnd;
 | 
						|
          P->getSecond().~ValueT();
 | 
						|
        }
 | 
						|
        P->getFirst().~KeyT();
 | 
						|
      }
 | 
						|
 | 
						|
      // Now make this map use the large rep, and move all the entries back
 | 
						|
      // into it.
 | 
						|
      Small = false;
 | 
						|
      new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
 | 
						|
      this->moveFromOldBuckets(TmpBegin, TmpEnd);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    LargeRep OldRep = std::move(*getLargeRep());
 | 
						|
    getLargeRep()->~LargeRep();
 | 
						|
    if (AtLeast <= InlineBuckets) {
 | 
						|
      Small = true;
 | 
						|
    } else {
 | 
						|
      new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
 | 
						|
    }
 | 
						|
 | 
						|
    this->moveFromOldBuckets(OldRep.Buckets, OldRep.Buckets+OldRep.NumBuckets);
 | 
						|
 | 
						|
    // Free the old table.
 | 
						|
    operator delete(OldRep.Buckets);
 | 
						|
  }
 | 
						|
 | 
						|
  void shrink_and_clear() {
 | 
						|
    unsigned OldSize = this->size();
 | 
						|
    this->destroyAll();
 | 
						|
 | 
						|
    // Reduce the number of buckets.
 | 
						|
    unsigned NewNumBuckets = 0;
 | 
						|
    if (OldSize) {
 | 
						|
      NewNumBuckets = 1 << (Log2_32_Ceil(OldSize) + 1);
 | 
						|
      if (NewNumBuckets > InlineBuckets && NewNumBuckets < 64u)
 | 
						|
        NewNumBuckets = 64;
 | 
						|
    }
 | 
						|
    if ((Small && NewNumBuckets <= InlineBuckets) ||
 | 
						|
        (!Small && NewNumBuckets == getLargeRep()->NumBuckets)) {
 | 
						|
      this->BaseT::initEmpty();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    deallocateBuckets();
 | 
						|
    init(NewNumBuckets);
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  unsigned getNumEntries() const {
 | 
						|
    return NumEntries;
 | 
						|
  }
 | 
						|
  void setNumEntries(unsigned Num) {
 | 
						|
    assert(Num < INT_MAX && "Cannot support more than INT_MAX entries");
 | 
						|
    NumEntries = Num;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned getNumTombstones() const {
 | 
						|
    return NumTombstones;
 | 
						|
  }
 | 
						|
  void setNumTombstones(unsigned Num) {
 | 
						|
    NumTombstones = Num;
 | 
						|
  }
 | 
						|
 | 
						|
  const BucketT *getInlineBuckets() const {
 | 
						|
    assert(Small);
 | 
						|
    // Note that this cast does not violate aliasing rules as we assert that
 | 
						|
    // the memory's dynamic type is the small, inline bucket buffer, and the
 | 
						|
    // 'storage.buffer' static type is 'char *'.
 | 
						|
    return reinterpret_cast<const BucketT *>(storage.buffer);
 | 
						|
  }
 | 
						|
  BucketT *getInlineBuckets() {
 | 
						|
    return const_cast<BucketT *>(
 | 
						|
      const_cast<const SmallDenseMap *>(this)->getInlineBuckets());
 | 
						|
  }
 | 
						|
  const LargeRep *getLargeRep() const {
 | 
						|
    assert(!Small);
 | 
						|
    // Note, same rule about aliasing as with getInlineBuckets.
 | 
						|
    return reinterpret_cast<const LargeRep *>(storage.buffer);
 | 
						|
  }
 | 
						|
  LargeRep *getLargeRep() {
 | 
						|
    return const_cast<LargeRep *>(
 | 
						|
      const_cast<const SmallDenseMap *>(this)->getLargeRep());
 | 
						|
  }
 | 
						|
 | 
						|
  const BucketT *getBuckets() const {
 | 
						|
    return Small ? getInlineBuckets() : getLargeRep()->Buckets;
 | 
						|
  }
 | 
						|
  BucketT *getBuckets() {
 | 
						|
    return const_cast<BucketT *>(
 | 
						|
      const_cast<const SmallDenseMap *>(this)->getBuckets());
 | 
						|
  }
 | 
						|
  unsigned getNumBuckets() const {
 | 
						|
    return Small ? InlineBuckets : getLargeRep()->NumBuckets;
 | 
						|
  }
 | 
						|
 | 
						|
  void deallocateBuckets() {
 | 
						|
    if (Small)
 | 
						|
      return;
 | 
						|
 | 
						|
    operator delete(getLargeRep()->Buckets);
 | 
						|
    getLargeRep()->~LargeRep();
 | 
						|
  }
 | 
						|
 | 
						|
  LargeRep allocateBuckets(unsigned Num) {
 | 
						|
    assert(Num > InlineBuckets && "Must allocate more buckets than are inline");
 | 
						|
    LargeRep Rep = {
 | 
						|
      static_cast<BucketT*>(operator new(sizeof(BucketT) * Num)), Num
 | 
						|
    };
 | 
						|
    return Rep;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <typename KeyT, typename ValueT, typename KeyInfoT, typename Bucket,
 | 
						|
          bool IsConst>
 | 
						|
class DenseMapIterator : DebugEpochBase::HandleBase {
 | 
						|
  typedef DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true> ConstIterator;
 | 
						|
  friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true>;
 | 
						|
  friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, false>;
 | 
						|
 | 
						|
public:
 | 
						|
  typedef ptrdiff_t difference_type;
 | 
						|
  typedef typename std::conditional<IsConst, const Bucket, Bucket>::type
 | 
						|
  value_type;
 | 
						|
  typedef value_type *pointer;
 | 
						|
  typedef value_type &reference;
 | 
						|
  typedef std::forward_iterator_tag iterator_category;
 | 
						|
private:
 | 
						|
  pointer Ptr, End;
 | 
						|
public:
 | 
						|
  DenseMapIterator() : Ptr(nullptr), End(nullptr) {}
 | 
						|
 | 
						|
  DenseMapIterator(pointer Pos, pointer E, const DebugEpochBase &Epoch,
 | 
						|
                   bool NoAdvance = false)
 | 
						|
      : DebugEpochBase::HandleBase(&Epoch), Ptr(Pos), End(E) {
 | 
						|
    assert(isHandleInSync() && "invalid construction!");
 | 
						|
    if (!NoAdvance) AdvancePastEmptyBuckets();
 | 
						|
  }
 | 
						|
 | 
						|
  // Converting ctor from non-const iterators to const iterators. SFINAE'd out
 | 
						|
  // for const iterator destinations so it doesn't end up as a user defined copy
 | 
						|
  // constructor.
 | 
						|
  template <bool IsConstSrc,
 | 
						|
            typename = typename std::enable_if<!IsConstSrc && IsConst>::type>
 | 
						|
  DenseMapIterator(
 | 
						|
      const DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, IsConstSrc> &I)
 | 
						|
      : DebugEpochBase::HandleBase(I), Ptr(I.Ptr), End(I.End) {}
 | 
						|
 | 
						|
  reference operator*() const {
 | 
						|
    assert(isHandleInSync() && "invalid iterator access!");
 | 
						|
    return *Ptr;
 | 
						|
  }
 | 
						|
  pointer operator->() const {
 | 
						|
    assert(isHandleInSync() && "invalid iterator access!");
 | 
						|
    return Ptr;
 | 
						|
  }
 | 
						|
 | 
						|
  bool operator==(const ConstIterator &RHS) const {
 | 
						|
    assert((!Ptr || isHandleInSync()) && "handle not in sync!");
 | 
						|
    assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!");
 | 
						|
    assert(getEpochAddress() == RHS.getEpochAddress() &&
 | 
						|
           "comparing incomparable iterators!");
 | 
						|
    return Ptr == RHS.Ptr;
 | 
						|
  }
 | 
						|
  bool operator!=(const ConstIterator &RHS) const {
 | 
						|
    assert((!Ptr || isHandleInSync()) && "handle not in sync!");
 | 
						|
    assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!");
 | 
						|
    assert(getEpochAddress() == RHS.getEpochAddress() &&
 | 
						|
           "comparing incomparable iterators!");
 | 
						|
    return Ptr != RHS.Ptr;
 | 
						|
  }
 | 
						|
 | 
						|
  inline DenseMapIterator& operator++() {  // Preincrement
 | 
						|
    assert(isHandleInSync() && "invalid iterator access!");
 | 
						|
    ++Ptr;
 | 
						|
    AdvancePastEmptyBuckets();
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
  DenseMapIterator operator++(int) {  // Postincrement
 | 
						|
    assert(isHandleInSync() && "invalid iterator access!");
 | 
						|
    DenseMapIterator tmp = *this; ++*this; return tmp;
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  void AdvancePastEmptyBuckets() {
 | 
						|
    const KeyT Empty = KeyInfoT::getEmptyKey();
 | 
						|
    const KeyT Tombstone = KeyInfoT::getTombstoneKey();
 | 
						|
 | 
						|
    while (Ptr != End && (KeyInfoT::isEqual(Ptr->getFirst(), Empty) ||
 | 
						|
                          KeyInfoT::isEqual(Ptr->getFirst(), Tombstone)))
 | 
						|
      ++Ptr;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template<typename KeyT, typename ValueT, typename KeyInfoT>
 | 
						|
static inline size_t
 | 
						|
capacity_in_bytes(const DenseMap<KeyT, ValueT, KeyInfoT> &X) {
 | 
						|
  return X.getMemorySize();
 | 
						|
}
 | 
						|
 | 
						|
} // end namespace llvm
 | 
						|
 | 
						|
#endif
 |