mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-05 13:09:10 +00:00
f95670f6fc
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@27713 91177308-0d34-0410-b5e6-96231b3b80d8
1309 lines
47 KiB
C++
1309 lines
47 KiB
C++
//===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements all of the non-inline methods for the LLVM instruction
|
|
// classes.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/BasicBlock.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Support/CallSite.h"
|
|
using namespace llvm;
|
|
|
|
unsigned CallSite::getCallingConv() const {
|
|
if (CallInst *CI = dyn_cast<CallInst>(I))
|
|
return CI->getCallingConv();
|
|
else
|
|
return cast<InvokeInst>(I)->getCallingConv();
|
|
}
|
|
void CallSite::setCallingConv(unsigned CC) {
|
|
if (CallInst *CI = dyn_cast<CallInst>(I))
|
|
CI->setCallingConv(CC);
|
|
else
|
|
cast<InvokeInst>(I)->setCallingConv(CC);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TerminatorInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
TerminatorInst::TerminatorInst(Instruction::TermOps iType,
|
|
Use *Ops, unsigned NumOps, Instruction *IB)
|
|
: Instruction(Type::VoidTy, iType, Ops, NumOps, "", IB) {
|
|
}
|
|
|
|
TerminatorInst::TerminatorInst(Instruction::TermOps iType,
|
|
Use *Ops, unsigned NumOps, BasicBlock *IAE)
|
|
: Instruction(Type::VoidTy, iType, Ops, NumOps, "", IAE) {
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PHINode Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
PHINode::PHINode(const PHINode &PN)
|
|
: Instruction(PN.getType(), Instruction::PHI,
|
|
new Use[PN.getNumOperands()], PN.getNumOperands()),
|
|
ReservedSpace(PN.getNumOperands()) {
|
|
Use *OL = OperandList;
|
|
for (unsigned i = 0, e = PN.getNumOperands(); i != e; i+=2) {
|
|
OL[i].init(PN.getOperand(i), this);
|
|
OL[i+1].init(PN.getOperand(i+1), this);
|
|
}
|
|
}
|
|
|
|
PHINode::~PHINode() {
|
|
delete [] OperandList;
|
|
}
|
|
|
|
// removeIncomingValue - Remove an incoming value. This is useful if a
|
|
// predecessor basic block is deleted.
|
|
Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
|
|
unsigned NumOps = getNumOperands();
|
|
Use *OL = OperandList;
|
|
assert(Idx*2 < NumOps && "BB not in PHI node!");
|
|
Value *Removed = OL[Idx*2];
|
|
|
|
// Move everything after this operand down.
|
|
//
|
|
// FIXME: we could just swap with the end of the list, then erase. However,
|
|
// client might not expect this to happen. The code as it is thrashes the
|
|
// use/def lists, which is kinda lame.
|
|
for (unsigned i = (Idx+1)*2; i != NumOps; i += 2) {
|
|
OL[i-2] = OL[i];
|
|
OL[i-2+1] = OL[i+1];
|
|
}
|
|
|
|
// Nuke the last value.
|
|
OL[NumOps-2].set(0);
|
|
OL[NumOps-2+1].set(0);
|
|
NumOperands = NumOps-2;
|
|
|
|
// If the PHI node is dead, because it has zero entries, nuke it now.
|
|
if (NumOps == 2 && DeletePHIIfEmpty) {
|
|
// If anyone is using this PHI, make them use a dummy value instead...
|
|
replaceAllUsesWith(UndefValue::get(getType()));
|
|
eraseFromParent();
|
|
}
|
|
return Removed;
|
|
}
|
|
|
|
/// resizeOperands - resize operands - This adjusts the length of the operands
|
|
/// list according to the following behavior:
|
|
/// 1. If NumOps == 0, grow the operand list in response to a push_back style
|
|
/// of operation. This grows the number of ops by 1.5 times.
|
|
/// 2. If NumOps > NumOperands, reserve space for NumOps operands.
|
|
/// 3. If NumOps == NumOperands, trim the reserved space.
|
|
///
|
|
void PHINode::resizeOperands(unsigned NumOps) {
|
|
if (NumOps == 0) {
|
|
NumOps = (getNumOperands())*3/2;
|
|
if (NumOps < 4) NumOps = 4; // 4 op PHI nodes are VERY common.
|
|
} else if (NumOps*2 > NumOperands) {
|
|
// No resize needed.
|
|
if (ReservedSpace >= NumOps) return;
|
|
} else if (NumOps == NumOperands) {
|
|
if (ReservedSpace == NumOps) return;
|
|
} else {
|
|
return;
|
|
}
|
|
|
|
ReservedSpace = NumOps;
|
|
Use *NewOps = new Use[NumOps];
|
|
Use *OldOps = OperandList;
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
NewOps[i].init(OldOps[i], this);
|
|
OldOps[i].set(0);
|
|
}
|
|
delete [] OldOps;
|
|
OperandList = NewOps;
|
|
}
|
|
|
|
/// hasConstantValue - If the specified PHI node always merges together the same
|
|
/// value, return the value, otherwise return null.
|
|
///
|
|
Value *PHINode::hasConstantValue(bool AllowNonDominatingInstruction) const {
|
|
// If the PHI node only has one incoming value, eliminate the PHI node...
|
|
if (getNumIncomingValues() == 1)
|
|
if (getIncomingValue(0) != this) // not X = phi X
|
|
return getIncomingValue(0);
|
|
else
|
|
return UndefValue::get(getType()); // Self cycle is dead.
|
|
|
|
// Otherwise if all of the incoming values are the same for the PHI, replace
|
|
// the PHI node with the incoming value.
|
|
//
|
|
Value *InVal = 0;
|
|
bool HasUndefInput = false;
|
|
for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i)
|
|
if (isa<UndefValue>(getIncomingValue(i)))
|
|
HasUndefInput = true;
|
|
else if (getIncomingValue(i) != this) // Not the PHI node itself...
|
|
if (InVal && getIncomingValue(i) != InVal)
|
|
return 0; // Not the same, bail out.
|
|
else
|
|
InVal = getIncomingValue(i);
|
|
|
|
// The only case that could cause InVal to be null is if we have a PHI node
|
|
// that only has entries for itself. In this case, there is no entry into the
|
|
// loop, so kill the PHI.
|
|
//
|
|
if (InVal == 0) InVal = UndefValue::get(getType());
|
|
|
|
// If we have a PHI node like phi(X, undef, X), where X is defined by some
|
|
// instruction, we cannot always return X as the result of the PHI node. Only
|
|
// do this if X is not an instruction (thus it must dominate the PHI block),
|
|
// or if the client is prepared to deal with this possibility.
|
|
if (HasUndefInput && !AllowNonDominatingInstruction)
|
|
if (Instruction *IV = dyn_cast<Instruction>(InVal))
|
|
// If it's in the entry block, it dominates everything.
|
|
if (IV->getParent() != &IV->getParent()->getParent()->front() ||
|
|
isa<InvokeInst>(IV))
|
|
return 0; // Cannot guarantee that InVal dominates this PHINode.
|
|
|
|
// All of the incoming values are the same, return the value now.
|
|
return InVal;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CallInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
CallInst::~CallInst() {
|
|
delete [] OperandList;
|
|
}
|
|
|
|
void CallInst::init(Value *Func, const std::vector<Value*> &Params) {
|
|
NumOperands = Params.size()+1;
|
|
Use *OL = OperandList = new Use[Params.size()+1];
|
|
OL[0].init(Func, this);
|
|
|
|
const FunctionType *FTy =
|
|
cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
|
|
|
|
assert((Params.size() == FTy->getNumParams() ||
|
|
(FTy->isVarArg() && Params.size() > FTy->getNumParams())) &&
|
|
"Calling a function with bad signature");
|
|
for (unsigned i = 0, e = Params.size(); i != e; ++i)
|
|
OL[i+1].init(Params[i], this);
|
|
}
|
|
|
|
void CallInst::init(Value *Func, Value *Actual1, Value *Actual2) {
|
|
NumOperands = 3;
|
|
Use *OL = OperandList = new Use[3];
|
|
OL[0].init(Func, this);
|
|
OL[1].init(Actual1, this);
|
|
OL[2].init(Actual2, this);
|
|
|
|
const FunctionType *FTy =
|
|
cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
|
|
|
|
assert((FTy->getNumParams() == 2 ||
|
|
(FTy->isVarArg() && FTy->getNumParams() == 0)) &&
|
|
"Calling a function with bad signature");
|
|
}
|
|
|
|
void CallInst::init(Value *Func, Value *Actual) {
|
|
NumOperands = 2;
|
|
Use *OL = OperandList = new Use[2];
|
|
OL[0].init(Func, this);
|
|
OL[1].init(Actual, this);
|
|
|
|
const FunctionType *FTy =
|
|
cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
|
|
|
|
assert((FTy->getNumParams() == 1 ||
|
|
(FTy->isVarArg() && FTy->getNumParams() == 0)) &&
|
|
"Calling a function with bad signature");
|
|
}
|
|
|
|
void CallInst::init(Value *Func) {
|
|
NumOperands = 1;
|
|
Use *OL = OperandList = new Use[1];
|
|
OL[0].init(Func, this);
|
|
|
|
const FunctionType *MTy =
|
|
cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
|
|
|
|
assert(MTy->getNumParams() == 0 && "Calling a function with bad signature");
|
|
}
|
|
|
|
CallInst::CallInst(Value *Func, const std::vector<Value*> &Params,
|
|
const std::string &Name, Instruction *InsertBefore)
|
|
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
|
|
->getElementType())->getReturnType(),
|
|
Instruction::Call, 0, 0, Name, InsertBefore) {
|
|
init(Func, Params);
|
|
}
|
|
|
|
CallInst::CallInst(Value *Func, const std::vector<Value*> &Params,
|
|
const std::string &Name, BasicBlock *InsertAtEnd)
|
|
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
|
|
->getElementType())->getReturnType(),
|
|
Instruction::Call, 0, 0, Name, InsertAtEnd) {
|
|
init(Func, Params);
|
|
}
|
|
|
|
CallInst::CallInst(Value *Func, Value *Actual1, Value *Actual2,
|
|
const std::string &Name, Instruction *InsertBefore)
|
|
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
|
|
->getElementType())->getReturnType(),
|
|
Instruction::Call, 0, 0, Name, InsertBefore) {
|
|
init(Func, Actual1, Actual2);
|
|
}
|
|
|
|
CallInst::CallInst(Value *Func, Value *Actual1, Value *Actual2,
|
|
const std::string &Name, BasicBlock *InsertAtEnd)
|
|
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
|
|
->getElementType())->getReturnType(),
|
|
Instruction::Call, 0, 0, Name, InsertAtEnd) {
|
|
init(Func, Actual1, Actual2);
|
|
}
|
|
|
|
CallInst::CallInst(Value *Func, Value* Actual, const std::string &Name,
|
|
Instruction *InsertBefore)
|
|
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
|
|
->getElementType())->getReturnType(),
|
|
Instruction::Call, 0, 0, Name, InsertBefore) {
|
|
init(Func, Actual);
|
|
}
|
|
|
|
CallInst::CallInst(Value *Func, Value* Actual, const std::string &Name,
|
|
BasicBlock *InsertAtEnd)
|
|
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
|
|
->getElementType())->getReturnType(),
|
|
Instruction::Call, 0, 0, Name, InsertAtEnd) {
|
|
init(Func, Actual);
|
|
}
|
|
|
|
CallInst::CallInst(Value *Func, const std::string &Name,
|
|
Instruction *InsertBefore)
|
|
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
|
|
->getElementType())->getReturnType(),
|
|
Instruction::Call, 0, 0, Name, InsertBefore) {
|
|
init(Func);
|
|
}
|
|
|
|
CallInst::CallInst(Value *Func, const std::string &Name,
|
|
BasicBlock *InsertAtEnd)
|
|
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
|
|
->getElementType())->getReturnType(),
|
|
Instruction::Call, 0, 0, Name, InsertAtEnd) {
|
|
init(Func);
|
|
}
|
|
|
|
CallInst::CallInst(const CallInst &CI)
|
|
: Instruction(CI.getType(), Instruction::Call, new Use[CI.getNumOperands()],
|
|
CI.getNumOperands()) {
|
|
SubclassData = CI.SubclassData;
|
|
Use *OL = OperandList;
|
|
Use *InOL = CI.OperandList;
|
|
for (unsigned i = 0, e = CI.getNumOperands(); i != e; ++i)
|
|
OL[i].init(InOL[i], this);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// InvokeInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
InvokeInst::~InvokeInst() {
|
|
delete [] OperandList;
|
|
}
|
|
|
|
void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
|
|
const std::vector<Value*> &Params) {
|
|
NumOperands = 3+Params.size();
|
|
Use *OL = OperandList = new Use[3+Params.size()];
|
|
OL[0].init(Fn, this);
|
|
OL[1].init(IfNormal, this);
|
|
OL[2].init(IfException, this);
|
|
const FunctionType *FTy =
|
|
cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
|
|
|
|
assert((Params.size() == FTy->getNumParams()) ||
|
|
(FTy->isVarArg() && Params.size() > FTy->getNumParams()) &&
|
|
"Calling a function with bad signature");
|
|
|
|
for (unsigned i = 0, e = Params.size(); i != e; i++)
|
|
OL[i+3].init(Params[i], this);
|
|
}
|
|
|
|
InvokeInst::InvokeInst(Value *Fn, BasicBlock *IfNormal,
|
|
BasicBlock *IfException,
|
|
const std::vector<Value*> &Params,
|
|
const std::string &Name, Instruction *InsertBefore)
|
|
: TerminatorInst(cast<FunctionType>(cast<PointerType>(Fn->getType())
|
|
->getElementType())->getReturnType(),
|
|
Instruction::Invoke, 0, 0, Name, InsertBefore) {
|
|
init(Fn, IfNormal, IfException, Params);
|
|
}
|
|
|
|
InvokeInst::InvokeInst(Value *Fn, BasicBlock *IfNormal,
|
|
BasicBlock *IfException,
|
|
const std::vector<Value*> &Params,
|
|
const std::string &Name, BasicBlock *InsertAtEnd)
|
|
: TerminatorInst(cast<FunctionType>(cast<PointerType>(Fn->getType())
|
|
->getElementType())->getReturnType(),
|
|
Instruction::Invoke, 0, 0, Name, InsertAtEnd) {
|
|
init(Fn, IfNormal, IfException, Params);
|
|
}
|
|
|
|
InvokeInst::InvokeInst(const InvokeInst &II)
|
|
: TerminatorInst(II.getType(), Instruction::Invoke,
|
|
new Use[II.getNumOperands()], II.getNumOperands()) {
|
|
SubclassData = II.SubclassData;
|
|
Use *OL = OperandList, *InOL = II.OperandList;
|
|
for (unsigned i = 0, e = II.getNumOperands(); i != e; ++i)
|
|
OL[i].init(InOL[i], this);
|
|
}
|
|
|
|
BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
|
|
return getSuccessor(idx);
|
|
}
|
|
unsigned InvokeInst::getNumSuccessorsV() const {
|
|
return getNumSuccessors();
|
|
}
|
|
void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
|
|
return setSuccessor(idx, B);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ReturnInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ReturnInst::init(Value *retVal) {
|
|
if (retVal && retVal->getType() != Type::VoidTy) {
|
|
assert(!isa<BasicBlock>(retVal) &&
|
|
"Cannot return basic block. Probably using the incorrect ctor");
|
|
NumOperands = 1;
|
|
RetVal.init(retVal, this);
|
|
}
|
|
}
|
|
|
|
unsigned ReturnInst::getNumSuccessorsV() const {
|
|
return getNumSuccessors();
|
|
}
|
|
|
|
// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
|
|
// emit the vtable for the class in this translation unit.
|
|
void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
|
|
assert(0 && "ReturnInst has no successors!");
|
|
}
|
|
|
|
BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
|
|
assert(0 && "ReturnInst has no successors!");
|
|
abort();
|
|
return 0;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// UnwindInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
unsigned UnwindInst::getNumSuccessorsV() const {
|
|
return getNumSuccessors();
|
|
}
|
|
|
|
void UnwindInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
|
|
assert(0 && "UnwindInst has no successors!");
|
|
}
|
|
|
|
BasicBlock *UnwindInst::getSuccessorV(unsigned idx) const {
|
|
assert(0 && "UnwindInst has no successors!");
|
|
abort();
|
|
return 0;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// UnreachableInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
unsigned UnreachableInst::getNumSuccessorsV() const {
|
|
return getNumSuccessors();
|
|
}
|
|
|
|
void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
|
|
assert(0 && "UnwindInst has no successors!");
|
|
}
|
|
|
|
BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
|
|
assert(0 && "UnwindInst has no successors!");
|
|
abort();
|
|
return 0;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BranchInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void BranchInst::AssertOK() {
|
|
if (isConditional())
|
|
assert(getCondition()->getType() == Type::BoolTy &&
|
|
"May only branch on boolean predicates!");
|
|
}
|
|
|
|
BranchInst::BranchInst(const BranchInst &BI) :
|
|
TerminatorInst(Instruction::Br, Ops, BI.getNumOperands()) {
|
|
OperandList[0].init(BI.getOperand(0), this);
|
|
if (BI.getNumOperands() != 1) {
|
|
assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
|
|
OperandList[1].init(BI.getOperand(1), this);
|
|
OperandList[2].init(BI.getOperand(2), this);
|
|
}
|
|
}
|
|
|
|
BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
|
|
return getSuccessor(idx);
|
|
}
|
|
unsigned BranchInst::getNumSuccessorsV() const {
|
|
return getNumSuccessors();
|
|
}
|
|
void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
|
|
setSuccessor(idx, B);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AllocationInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static Value *getAISize(Value *Amt) {
|
|
if (!Amt)
|
|
Amt = ConstantUInt::get(Type::UIntTy, 1);
|
|
else
|
|
assert(Amt->getType() == Type::UIntTy &&
|
|
"Malloc/Allocation array size != UIntTy!");
|
|
return Amt;
|
|
}
|
|
|
|
AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy,
|
|
unsigned Align, const std::string &Name,
|
|
Instruction *InsertBefore)
|
|
: UnaryInstruction(PointerType::get(Ty), iTy, getAISize(ArraySize),
|
|
Name, InsertBefore), Alignment(Align) {
|
|
assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
|
|
assert(Ty != Type::VoidTy && "Cannot allocate void!");
|
|
}
|
|
|
|
AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy,
|
|
unsigned Align, const std::string &Name,
|
|
BasicBlock *InsertAtEnd)
|
|
: UnaryInstruction(PointerType::get(Ty), iTy, getAISize(ArraySize),
|
|
Name, InsertAtEnd), Alignment(Align) {
|
|
assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
|
|
assert(Ty != Type::VoidTy && "Cannot allocate void!");
|
|
}
|
|
|
|
bool AllocationInst::isArrayAllocation() const {
|
|
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(getOperand(0)))
|
|
return CUI->getValue() != 1;
|
|
return true;
|
|
}
|
|
|
|
const Type *AllocationInst::getAllocatedType() const {
|
|
return getType()->getElementType();
|
|
}
|
|
|
|
AllocaInst::AllocaInst(const AllocaInst &AI)
|
|
: AllocationInst(AI.getType()->getElementType(), (Value*)AI.getOperand(0),
|
|
Instruction::Alloca, AI.getAlignment()) {
|
|
}
|
|
|
|
MallocInst::MallocInst(const MallocInst &MI)
|
|
: AllocationInst(MI.getType()->getElementType(), (Value*)MI.getOperand(0),
|
|
Instruction::Malloc, MI.getAlignment()) {
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FreeInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void FreeInst::AssertOK() {
|
|
assert(isa<PointerType>(getOperand(0)->getType()) &&
|
|
"Can not free something of nonpointer type!");
|
|
}
|
|
|
|
FreeInst::FreeInst(Value *Ptr, Instruction *InsertBefore)
|
|
: UnaryInstruction(Type::VoidTy, Free, Ptr, "", InsertBefore) {
|
|
AssertOK();
|
|
}
|
|
|
|
FreeInst::FreeInst(Value *Ptr, BasicBlock *InsertAtEnd)
|
|
: UnaryInstruction(Type::VoidTy, Free, Ptr, "", InsertAtEnd) {
|
|
AssertOK();
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LoadInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void LoadInst::AssertOK() {
|
|
assert(isa<PointerType>(getOperand(0)->getType()) &&
|
|
"Ptr must have pointer type.");
|
|
}
|
|
|
|
LoadInst::LoadInst(Value *Ptr, const std::string &Name, Instruction *InsertBef)
|
|
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
|
|
Load, Ptr, Name, InsertBef) {
|
|
setVolatile(false);
|
|
AssertOK();
|
|
}
|
|
|
|
LoadInst::LoadInst(Value *Ptr, const std::string &Name, BasicBlock *InsertAE)
|
|
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
|
|
Load, Ptr, Name, InsertAE) {
|
|
setVolatile(false);
|
|
AssertOK();
|
|
}
|
|
|
|
LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
|
|
Instruction *InsertBef)
|
|
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
|
|
Load, Ptr, Name, InsertBef) {
|
|
setVolatile(isVolatile);
|
|
AssertOK();
|
|
}
|
|
|
|
LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
|
|
BasicBlock *InsertAE)
|
|
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
|
|
Load, Ptr, Name, InsertAE) {
|
|
setVolatile(isVolatile);
|
|
AssertOK();
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// StoreInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void StoreInst::AssertOK() {
|
|
assert(isa<PointerType>(getOperand(1)->getType()) &&
|
|
"Ptr must have pointer type!");
|
|
assert(getOperand(0)->getType() ==
|
|
cast<PointerType>(getOperand(1)->getType())->getElementType()
|
|
&& "Ptr must be a pointer to Val type!");
|
|
}
|
|
|
|
|
|
StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
|
|
: Instruction(Type::VoidTy, Store, Ops, 2, "", InsertBefore) {
|
|
Ops[0].init(val, this);
|
|
Ops[1].init(addr, this);
|
|
setVolatile(false);
|
|
AssertOK();
|
|
}
|
|
|
|
StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
|
|
: Instruction(Type::VoidTy, Store, Ops, 2, "", InsertAtEnd) {
|
|
Ops[0].init(val, this);
|
|
Ops[1].init(addr, this);
|
|
setVolatile(false);
|
|
AssertOK();
|
|
}
|
|
|
|
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
|
|
Instruction *InsertBefore)
|
|
: Instruction(Type::VoidTy, Store, Ops, 2, "", InsertBefore) {
|
|
Ops[0].init(val, this);
|
|
Ops[1].init(addr, this);
|
|
setVolatile(isVolatile);
|
|
AssertOK();
|
|
}
|
|
|
|
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
|
|
BasicBlock *InsertAtEnd)
|
|
: Instruction(Type::VoidTy, Store, Ops, 2, "", InsertAtEnd) {
|
|
Ops[0].init(val, this);
|
|
Ops[1].init(addr, this);
|
|
setVolatile(isVolatile);
|
|
AssertOK();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GetElementPtrInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// checkType - Simple wrapper function to give a better assertion failure
|
|
// message on bad indexes for a gep instruction.
|
|
//
|
|
static inline const Type *checkType(const Type *Ty) {
|
|
assert(Ty && "Invalid indices for type!");
|
|
return Ty;
|
|
}
|
|
|
|
void GetElementPtrInst::init(Value *Ptr, const std::vector<Value*> &Idx) {
|
|
NumOperands = 1+Idx.size();
|
|
Use *OL = OperandList = new Use[NumOperands];
|
|
OL[0].init(Ptr, this);
|
|
|
|
for (unsigned i = 0, e = Idx.size(); i != e; ++i)
|
|
OL[i+1].init(Idx[i], this);
|
|
}
|
|
|
|
void GetElementPtrInst::init(Value *Ptr, Value *Idx0, Value *Idx1) {
|
|
NumOperands = 3;
|
|
Use *OL = OperandList = new Use[3];
|
|
OL[0].init(Ptr, this);
|
|
OL[1].init(Idx0, this);
|
|
OL[2].init(Idx1, this);
|
|
}
|
|
|
|
void GetElementPtrInst::init(Value *Ptr, Value *Idx) {
|
|
NumOperands = 2;
|
|
Use *OL = OperandList = new Use[2];
|
|
OL[0].init(Ptr, this);
|
|
OL[1].init(Idx, this);
|
|
}
|
|
|
|
GetElementPtrInst::GetElementPtrInst(Value *Ptr, const std::vector<Value*> &Idx,
|
|
const std::string &Name, Instruction *InBe)
|
|
: Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),
|
|
Idx, true))),
|
|
GetElementPtr, 0, 0, Name, InBe) {
|
|
init(Ptr, Idx);
|
|
}
|
|
|
|
GetElementPtrInst::GetElementPtrInst(Value *Ptr, const std::vector<Value*> &Idx,
|
|
const std::string &Name, BasicBlock *IAE)
|
|
: Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),
|
|
Idx, true))),
|
|
GetElementPtr, 0, 0, Name, IAE) {
|
|
init(Ptr, Idx);
|
|
}
|
|
|
|
GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
|
|
const std::string &Name, Instruction *InBe)
|
|
: Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),Idx))),
|
|
GetElementPtr, 0, 0, Name, InBe) {
|
|
init(Ptr, Idx);
|
|
}
|
|
|
|
GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
|
|
const std::string &Name, BasicBlock *IAE)
|
|
: Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),Idx))),
|
|
GetElementPtr, 0, 0, Name, IAE) {
|
|
init(Ptr, Idx);
|
|
}
|
|
|
|
GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx0, Value *Idx1,
|
|
const std::string &Name, Instruction *InBe)
|
|
: Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),
|
|
Idx0, Idx1, true))),
|
|
GetElementPtr, 0, 0, Name, InBe) {
|
|
init(Ptr, Idx0, Idx1);
|
|
}
|
|
|
|
GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx0, Value *Idx1,
|
|
const std::string &Name, BasicBlock *IAE)
|
|
: Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),
|
|
Idx0, Idx1, true))),
|
|
GetElementPtr, 0, 0, Name, IAE) {
|
|
init(Ptr, Idx0, Idx1);
|
|
}
|
|
|
|
GetElementPtrInst::~GetElementPtrInst() {
|
|
delete[] OperandList;
|
|
}
|
|
|
|
// getIndexedType - Returns the type of the element that would be loaded with
|
|
// a load instruction with the specified parameters.
|
|
//
|
|
// A null type is returned if the indices are invalid for the specified
|
|
// pointer type.
|
|
//
|
|
const Type* GetElementPtrInst::getIndexedType(const Type *Ptr,
|
|
const std::vector<Value*> &Idx,
|
|
bool AllowCompositeLeaf) {
|
|
if (!isa<PointerType>(Ptr)) return 0; // Type isn't a pointer type!
|
|
|
|
// Handle the special case of the empty set index set...
|
|
if (Idx.empty())
|
|
if (AllowCompositeLeaf ||
|
|
cast<PointerType>(Ptr)->getElementType()->isFirstClassType())
|
|
return cast<PointerType>(Ptr)->getElementType();
|
|
else
|
|
return 0;
|
|
|
|
unsigned CurIdx = 0;
|
|
while (const CompositeType *CT = dyn_cast<CompositeType>(Ptr)) {
|
|
if (Idx.size() == CurIdx) {
|
|
if (AllowCompositeLeaf || CT->isFirstClassType()) return Ptr;
|
|
return 0; // Can't load a whole structure or array!?!?
|
|
}
|
|
|
|
Value *Index = Idx[CurIdx++];
|
|
if (isa<PointerType>(CT) && CurIdx != 1)
|
|
return 0; // Can only index into pointer types at the first index!
|
|
if (!CT->indexValid(Index)) return 0;
|
|
Ptr = CT->getTypeAtIndex(Index);
|
|
|
|
// If the new type forwards to another type, then it is in the middle
|
|
// of being refined to another type (and hence, may have dropped all
|
|
// references to what it was using before). So, use the new forwarded
|
|
// type.
|
|
if (const Type * Ty = Ptr->getForwardedType()) {
|
|
Ptr = Ty;
|
|
}
|
|
}
|
|
return CurIdx == Idx.size() ? Ptr : 0;
|
|
}
|
|
|
|
const Type* GetElementPtrInst::getIndexedType(const Type *Ptr,
|
|
Value *Idx0, Value *Idx1,
|
|
bool AllowCompositeLeaf) {
|
|
const PointerType *PTy = dyn_cast<PointerType>(Ptr);
|
|
if (!PTy) return 0; // Type isn't a pointer type!
|
|
|
|
// Check the pointer index.
|
|
if (!PTy->indexValid(Idx0)) return 0;
|
|
|
|
const CompositeType *CT = dyn_cast<CompositeType>(PTy->getElementType());
|
|
if (!CT || !CT->indexValid(Idx1)) return 0;
|
|
|
|
const Type *ElTy = CT->getTypeAtIndex(Idx1);
|
|
if (AllowCompositeLeaf || ElTy->isFirstClassType())
|
|
return ElTy;
|
|
return 0;
|
|
}
|
|
|
|
const Type* GetElementPtrInst::getIndexedType(const Type *Ptr, Value *Idx) {
|
|
const PointerType *PTy = dyn_cast<PointerType>(Ptr);
|
|
if (!PTy) return 0; // Type isn't a pointer type!
|
|
|
|
// Check the pointer index.
|
|
if (!PTy->indexValid(Idx)) return 0;
|
|
|
|
return PTy->getElementType();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ExtractElementInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
|
|
const std::string &Name,
|
|
Instruction *InsertBef)
|
|
: Instruction(cast<PackedType>(Val->getType())->getElementType(),
|
|
ExtractElement, Ops, 2, Name, InsertBef) {
|
|
assert(isValidOperands(Val, Index) &&
|
|
"Invalid extractelement instruction operands!");
|
|
Ops[0].init(Val, this);
|
|
Ops[1].init(Index, this);
|
|
}
|
|
|
|
ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
|
|
const std::string &Name,
|
|
BasicBlock *InsertAE)
|
|
: Instruction(cast<PackedType>(Val->getType())->getElementType(),
|
|
ExtractElement, Ops, 2, Name, InsertAE) {
|
|
assert(isValidOperands(Val, Index) &&
|
|
"Invalid extractelement instruction operands!");
|
|
|
|
Ops[0].init(Val, this);
|
|
Ops[1].init(Index, this);
|
|
}
|
|
|
|
bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
|
|
if (!isa<PackedType>(Val->getType()) || Index->getType() != Type::UIntTy)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// InsertElementInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
InsertElementInst::InsertElementInst(const InsertElementInst &IE)
|
|
: Instruction(IE.getType(), InsertElement, Ops, 3) {
|
|
Ops[0].init(IE.Ops[0], this);
|
|
Ops[1].init(IE.Ops[1], this);
|
|
Ops[2].init(IE.Ops[2], this);
|
|
}
|
|
InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
|
|
const std::string &Name,
|
|
Instruction *InsertBef)
|
|
: Instruction(Vec->getType(), InsertElement, Ops, 3, Name, InsertBef) {
|
|
assert(isValidOperands(Vec, Elt, Index) &&
|
|
"Invalid insertelement instruction operands!");
|
|
Ops[0].init(Vec, this);
|
|
Ops[1].init(Elt, this);
|
|
Ops[2].init(Index, this);
|
|
}
|
|
|
|
InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
|
|
const std::string &Name,
|
|
BasicBlock *InsertAE)
|
|
: Instruction(Vec->getType(), InsertElement, Ops, 3, Name, InsertAE) {
|
|
assert(isValidOperands(Vec, Elt, Index) &&
|
|
"Invalid insertelement instruction operands!");
|
|
|
|
Ops[0].init(Vec, this);
|
|
Ops[1].init(Elt, this);
|
|
Ops[2].init(Index, this);
|
|
}
|
|
|
|
bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
|
|
const Value *Index) {
|
|
if (!isa<PackedType>(Vec->getType()))
|
|
return false; // First operand of insertelement must be packed type.
|
|
|
|
if (Elt->getType() != cast<PackedType>(Vec->getType())->getElementType())
|
|
return false;// Second operand of insertelement must be packed element type.
|
|
|
|
if (Index->getType() != Type::UIntTy)
|
|
return false; // Third operand of insertelement must be uint.
|
|
return true;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ShuffleVectorInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ShuffleVectorInst::ShuffleVectorInst(const ShuffleVectorInst &SV)
|
|
: Instruction(SV.getType(), ShuffleVector, Ops, 3) {
|
|
Ops[0].init(SV.Ops[0], this);
|
|
Ops[1].init(SV.Ops[1], this);
|
|
Ops[2].init(SV.Ops[2], this);
|
|
}
|
|
|
|
ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
|
|
const std::string &Name,
|
|
Instruction *InsertBefore)
|
|
: Instruction(V1->getType(), ShuffleVector, Ops, 3, Name, InsertBefore) {
|
|
assert(isValidOperands(V1, V2, Mask) &&
|
|
"Invalid shuffle vector instruction operands!");
|
|
Ops[0].init(V1, this);
|
|
Ops[1].init(V2, this);
|
|
Ops[2].init(Mask, this);
|
|
}
|
|
|
|
ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
|
|
const std::string &Name,
|
|
BasicBlock *InsertAtEnd)
|
|
: Instruction(V1->getType(), ShuffleVector, Ops, 3, Name, InsertAtEnd) {
|
|
assert(isValidOperands(V1, V2, Mask) &&
|
|
"Invalid shuffle vector instruction operands!");
|
|
|
|
Ops[0].init(V1, this);
|
|
Ops[1].init(V2, this);
|
|
Ops[2].init(Mask, this);
|
|
}
|
|
|
|
bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
|
|
const Value *Mask) {
|
|
if (!isa<PackedType>(V1->getType())) return false;
|
|
if (V1->getType() != V2->getType()) return false;
|
|
if (!isa<PackedType>(Mask->getType()) ||
|
|
cast<PackedType>(Mask->getType())->getElementType() != Type::UIntTy ||
|
|
cast<PackedType>(Mask->getType())->getNumElements() !=
|
|
cast<PackedType>(V1->getType())->getNumElements())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BinaryOperator Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void BinaryOperator::init(BinaryOps iType)
|
|
{
|
|
Value *LHS = getOperand(0), *RHS = getOperand(1);
|
|
assert(LHS->getType() == RHS->getType() &&
|
|
"Binary operator operand types must match!");
|
|
#ifndef NDEBUG
|
|
switch (iType) {
|
|
case Add: case Sub:
|
|
case Mul: case Div:
|
|
case Rem:
|
|
assert(getType() == LHS->getType() &&
|
|
"Arithmetic operation should return same type as operands!");
|
|
assert((getType()->isInteger() || getType()->isFloatingPoint() ||
|
|
isa<PackedType>(getType())) &&
|
|
"Tried to create an arithmetic operation on a non-arithmetic type!");
|
|
break;
|
|
case And: case Or:
|
|
case Xor:
|
|
assert(getType() == LHS->getType() &&
|
|
"Logical operation should return same type as operands!");
|
|
assert((getType()->isIntegral() ||
|
|
(isa<PackedType>(getType()) &&
|
|
cast<PackedType>(getType())->getElementType()->isIntegral())) &&
|
|
"Tried to create a logical operation on a non-integral type!");
|
|
break;
|
|
case SetLT: case SetGT: case SetLE:
|
|
case SetGE: case SetEQ: case SetNE:
|
|
assert(getType() == Type::BoolTy && "Setcc must return bool!");
|
|
default:
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
BinaryOperator *BinaryOperator::create(BinaryOps Op, Value *S1, Value *S2,
|
|
const std::string &Name,
|
|
Instruction *InsertBefore) {
|
|
assert(S1->getType() == S2->getType() &&
|
|
"Cannot create binary operator with two operands of differing type!");
|
|
switch (Op) {
|
|
// Binary comparison operators...
|
|
case SetLT: case SetGT: case SetLE:
|
|
case SetGE: case SetEQ: case SetNE:
|
|
return new SetCondInst(Op, S1, S2, Name, InsertBefore);
|
|
|
|
default:
|
|
return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
|
|
}
|
|
}
|
|
|
|
BinaryOperator *BinaryOperator::create(BinaryOps Op, Value *S1, Value *S2,
|
|
const std::string &Name,
|
|
BasicBlock *InsertAtEnd) {
|
|
BinaryOperator *Res = create(Op, S1, S2, Name);
|
|
InsertAtEnd->getInstList().push_back(Res);
|
|
return Res;
|
|
}
|
|
|
|
BinaryOperator *BinaryOperator::createNeg(Value *Op, const std::string &Name,
|
|
Instruction *InsertBefore) {
|
|
if (!Op->getType()->isFloatingPoint())
|
|
return new BinaryOperator(Instruction::Sub,
|
|
Constant::getNullValue(Op->getType()), Op,
|
|
Op->getType(), Name, InsertBefore);
|
|
else
|
|
return new BinaryOperator(Instruction::Sub,
|
|
ConstantFP::get(Op->getType(), -0.0), Op,
|
|
Op->getType(), Name, InsertBefore);
|
|
}
|
|
|
|
BinaryOperator *BinaryOperator::createNeg(Value *Op, const std::string &Name,
|
|
BasicBlock *InsertAtEnd) {
|
|
if (!Op->getType()->isFloatingPoint())
|
|
return new BinaryOperator(Instruction::Sub,
|
|
Constant::getNullValue(Op->getType()), Op,
|
|
Op->getType(), Name, InsertAtEnd);
|
|
else
|
|
return new BinaryOperator(Instruction::Sub,
|
|
ConstantFP::get(Op->getType(), -0.0), Op,
|
|
Op->getType(), Name, InsertAtEnd);
|
|
}
|
|
|
|
BinaryOperator *BinaryOperator::createNot(Value *Op, const std::string &Name,
|
|
Instruction *InsertBefore) {
|
|
Constant *C;
|
|
if (const PackedType *PTy = dyn_cast<PackedType>(Op->getType())) {
|
|
C = ConstantIntegral::getAllOnesValue(PTy->getElementType());
|
|
C = ConstantPacked::get(std::vector<Constant*>(PTy->getNumElements(), C));
|
|
} else {
|
|
C = ConstantIntegral::getAllOnesValue(Op->getType());
|
|
}
|
|
|
|
return new BinaryOperator(Instruction::Xor, Op, C,
|
|
Op->getType(), Name, InsertBefore);
|
|
}
|
|
|
|
BinaryOperator *BinaryOperator::createNot(Value *Op, const std::string &Name,
|
|
BasicBlock *InsertAtEnd) {
|
|
Constant *AllOnes;
|
|
if (const PackedType *PTy = dyn_cast<PackedType>(Op->getType())) {
|
|
// Create a vector of all ones values.
|
|
Constant *Elt = ConstantIntegral::getAllOnesValue(PTy->getElementType());
|
|
AllOnes =
|
|
ConstantPacked::get(std::vector<Constant*>(PTy->getNumElements(), Elt));
|
|
} else {
|
|
AllOnes = ConstantIntegral::getAllOnesValue(Op->getType());
|
|
}
|
|
|
|
return new BinaryOperator(Instruction::Xor, Op, AllOnes,
|
|
Op->getType(), Name, InsertAtEnd);
|
|
}
|
|
|
|
|
|
// isConstantAllOnes - Helper function for several functions below
|
|
static inline bool isConstantAllOnes(const Value *V) {
|
|
return isa<ConstantIntegral>(V) &&cast<ConstantIntegral>(V)->isAllOnesValue();
|
|
}
|
|
|
|
bool BinaryOperator::isNeg(const Value *V) {
|
|
if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
|
|
if (Bop->getOpcode() == Instruction::Sub)
|
|
if (!V->getType()->isFloatingPoint())
|
|
return Bop->getOperand(0) == Constant::getNullValue(Bop->getType());
|
|
else
|
|
return Bop->getOperand(0) == ConstantFP::get(Bop->getType(), -0.0);
|
|
return false;
|
|
}
|
|
|
|
bool BinaryOperator::isNot(const Value *V) {
|
|
if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
|
|
return (Bop->getOpcode() == Instruction::Xor &&
|
|
(isConstantAllOnes(Bop->getOperand(1)) ||
|
|
isConstantAllOnes(Bop->getOperand(0))));
|
|
return false;
|
|
}
|
|
|
|
Value *BinaryOperator::getNegArgument(Value *BinOp) {
|
|
assert(isNeg(BinOp) && "getNegArgument from non-'neg' instruction!");
|
|
return cast<BinaryOperator>(BinOp)->getOperand(1);
|
|
}
|
|
|
|
const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
|
|
return getNegArgument(const_cast<Value*>(BinOp));
|
|
}
|
|
|
|
Value *BinaryOperator::getNotArgument(Value *BinOp) {
|
|
assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
|
|
BinaryOperator *BO = cast<BinaryOperator>(BinOp);
|
|
Value *Op0 = BO->getOperand(0);
|
|
Value *Op1 = BO->getOperand(1);
|
|
if (isConstantAllOnes(Op0)) return Op1;
|
|
|
|
assert(isConstantAllOnes(Op1));
|
|
return Op0;
|
|
}
|
|
|
|
const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
|
|
return getNotArgument(const_cast<Value*>(BinOp));
|
|
}
|
|
|
|
|
|
// swapOperands - Exchange the two operands to this instruction. This
|
|
// instruction is safe to use on any binary instruction and does not
|
|
// modify the semantics of the instruction. If the instruction is
|
|
// order dependent (SetLT f.e.) the opcode is changed.
|
|
//
|
|
bool BinaryOperator::swapOperands() {
|
|
if (isCommutative())
|
|
; // If the instruction is commutative, it is safe to swap the operands
|
|
else if (SetCondInst *SCI = dyn_cast<SetCondInst>(this))
|
|
/// FIXME: SetCC instructions shouldn't all have different opcodes.
|
|
setOpcode(SCI->getSwappedCondition());
|
|
else
|
|
return true; // Can't commute operands
|
|
|
|
std::swap(Ops[0], Ops[1]);
|
|
return false;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SetCondInst Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SetCondInst::SetCondInst(BinaryOps Opcode, Value *S1, Value *S2,
|
|
const std::string &Name, Instruction *InsertBefore)
|
|
: BinaryOperator(Opcode, S1, S2, Type::BoolTy, Name, InsertBefore) {
|
|
|
|
// Make sure it's a valid type... getInverseCondition will assert out if not.
|
|
assert(getInverseCondition(Opcode));
|
|
}
|
|
|
|
SetCondInst::SetCondInst(BinaryOps Opcode, Value *S1, Value *S2,
|
|
const std::string &Name, BasicBlock *InsertAtEnd)
|
|
: BinaryOperator(Opcode, S1, S2, Type::BoolTy, Name, InsertAtEnd) {
|
|
|
|
// Make sure it's a valid type... getInverseCondition will assert out if not.
|
|
assert(getInverseCondition(Opcode));
|
|
}
|
|
|
|
// getInverseCondition - Return the inverse of the current condition opcode.
|
|
// For example seteq -> setne, setgt -> setle, setlt -> setge, etc...
|
|
//
|
|
Instruction::BinaryOps SetCondInst::getInverseCondition(BinaryOps Opcode) {
|
|
switch (Opcode) {
|
|
default:
|
|
assert(0 && "Unknown setcc opcode!");
|
|
case SetEQ: return SetNE;
|
|
case SetNE: return SetEQ;
|
|
case SetGT: return SetLE;
|
|
case SetLT: return SetGE;
|
|
case SetGE: return SetLT;
|
|
case SetLE: return SetGT;
|
|
}
|
|
}
|
|
|
|
// getSwappedCondition - Return the condition opcode that would be the result
|
|
// of exchanging the two operands of the setcc instruction without changing
|
|
// the result produced. Thus, seteq->seteq, setle->setge, setlt->setgt, etc.
|
|
//
|
|
Instruction::BinaryOps SetCondInst::getSwappedCondition(BinaryOps Opcode) {
|
|
switch (Opcode) {
|
|
default: assert(0 && "Unknown setcc instruction!");
|
|
case SetEQ: case SetNE: return Opcode;
|
|
case SetGT: return SetLT;
|
|
case SetLT: return SetGT;
|
|
case SetGE: return SetLE;
|
|
case SetLE: return SetGE;
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SwitchInst Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumCases) {
|
|
assert(Value && Default);
|
|
ReservedSpace = 2+NumCases*2;
|
|
NumOperands = 2;
|
|
OperandList = new Use[ReservedSpace];
|
|
|
|
OperandList[0].init(Value, this);
|
|
OperandList[1].init(Default, this);
|
|
}
|
|
|
|
SwitchInst::SwitchInst(const SwitchInst &SI)
|
|
: TerminatorInst(Instruction::Switch, new Use[SI.getNumOperands()],
|
|
SI.getNumOperands()) {
|
|
Use *OL = OperandList, *InOL = SI.OperandList;
|
|
for (unsigned i = 0, E = SI.getNumOperands(); i != E; i+=2) {
|
|
OL[i].init(InOL[i], this);
|
|
OL[i+1].init(InOL[i+1], this);
|
|
}
|
|
}
|
|
|
|
SwitchInst::~SwitchInst() {
|
|
delete [] OperandList;
|
|
}
|
|
|
|
|
|
/// addCase - Add an entry to the switch instruction...
|
|
///
|
|
void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
|
|
unsigned OpNo = NumOperands;
|
|
if (OpNo+2 > ReservedSpace)
|
|
resizeOperands(0); // Get more space!
|
|
// Initialize some new operands.
|
|
assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
|
|
NumOperands = OpNo+2;
|
|
OperandList[OpNo].init(OnVal, this);
|
|
OperandList[OpNo+1].init(Dest, this);
|
|
}
|
|
|
|
/// removeCase - This method removes the specified successor from the switch
|
|
/// instruction. Note that this cannot be used to remove the default
|
|
/// destination (successor #0).
|
|
///
|
|
void SwitchInst::removeCase(unsigned idx) {
|
|
assert(idx != 0 && "Cannot remove the default case!");
|
|
assert(idx*2 < getNumOperands() && "Successor index out of range!!!");
|
|
|
|
unsigned NumOps = getNumOperands();
|
|
Use *OL = OperandList;
|
|
|
|
// Move everything after this operand down.
|
|
//
|
|
// FIXME: we could just swap with the end of the list, then erase. However,
|
|
// client might not expect this to happen. The code as it is thrashes the
|
|
// use/def lists, which is kinda lame.
|
|
for (unsigned i = (idx+1)*2; i != NumOps; i += 2) {
|
|
OL[i-2] = OL[i];
|
|
OL[i-2+1] = OL[i+1];
|
|
}
|
|
|
|
// Nuke the last value.
|
|
OL[NumOps-2].set(0);
|
|
OL[NumOps-2+1].set(0);
|
|
NumOperands = NumOps-2;
|
|
}
|
|
|
|
/// resizeOperands - resize operands - This adjusts the length of the operands
|
|
/// list according to the following behavior:
|
|
/// 1. If NumOps == 0, grow the operand list in response to a push_back style
|
|
/// of operation. This grows the number of ops by 1.5 times.
|
|
/// 2. If NumOps > NumOperands, reserve space for NumOps operands.
|
|
/// 3. If NumOps == NumOperands, trim the reserved space.
|
|
///
|
|
void SwitchInst::resizeOperands(unsigned NumOps) {
|
|
if (NumOps == 0) {
|
|
NumOps = getNumOperands()/2*6;
|
|
} else if (NumOps*2 > NumOperands) {
|
|
// No resize needed.
|
|
if (ReservedSpace >= NumOps) return;
|
|
} else if (NumOps == NumOperands) {
|
|
if (ReservedSpace == NumOps) return;
|
|
} else {
|
|
return;
|
|
}
|
|
|
|
ReservedSpace = NumOps;
|
|
Use *NewOps = new Use[NumOps];
|
|
Use *OldOps = OperandList;
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
NewOps[i].init(OldOps[i], this);
|
|
OldOps[i].set(0);
|
|
}
|
|
delete [] OldOps;
|
|
OperandList = NewOps;
|
|
}
|
|
|
|
|
|
BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
|
|
return getSuccessor(idx);
|
|
}
|
|
unsigned SwitchInst::getNumSuccessorsV() const {
|
|
return getNumSuccessors();
|
|
}
|
|
void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
|
|
setSuccessor(idx, B);
|
|
}
|
|
|
|
|
|
// Define these methods here so vtables don't get emitted into every translation
|
|
// unit that uses these classes.
|
|
|
|
GetElementPtrInst *GetElementPtrInst::clone() const {
|
|
return new GetElementPtrInst(*this);
|
|
}
|
|
|
|
BinaryOperator *BinaryOperator::clone() const {
|
|
return create(getOpcode(), Ops[0], Ops[1]);
|
|
}
|
|
|
|
MallocInst *MallocInst::clone() const { return new MallocInst(*this); }
|
|
AllocaInst *AllocaInst::clone() const { return new AllocaInst(*this); }
|
|
FreeInst *FreeInst::clone() const { return new FreeInst(getOperand(0)); }
|
|
LoadInst *LoadInst::clone() const { return new LoadInst(*this); }
|
|
StoreInst *StoreInst::clone() const { return new StoreInst(*this); }
|
|
CastInst *CastInst::clone() const { return new CastInst(*this); }
|
|
CallInst *CallInst::clone() const { return new CallInst(*this); }
|
|
ShiftInst *ShiftInst::clone() const { return new ShiftInst(*this); }
|
|
SelectInst *SelectInst::clone() const { return new SelectInst(*this); }
|
|
VAArgInst *VAArgInst::clone() const { return new VAArgInst(*this); }
|
|
ExtractElementInst *ExtractElementInst::clone() const {
|
|
return new ExtractElementInst(*this);
|
|
}
|
|
InsertElementInst *InsertElementInst::clone() const {
|
|
return new InsertElementInst(*this);
|
|
}
|
|
ShuffleVectorInst *ShuffleVectorInst::clone() const {
|
|
return new ShuffleVectorInst(*this);
|
|
}
|
|
PHINode *PHINode::clone() const { return new PHINode(*this); }
|
|
ReturnInst *ReturnInst::clone() const { return new ReturnInst(*this); }
|
|
BranchInst *BranchInst::clone() const { return new BranchInst(*this); }
|
|
SwitchInst *SwitchInst::clone() const { return new SwitchInst(*this); }
|
|
InvokeInst *InvokeInst::clone() const { return new InvokeInst(*this); }
|
|
UnwindInst *UnwindInst::clone() const { return new UnwindInst(); }
|
|
UnreachableInst *UnreachableInst::clone() const { return new UnreachableInst();}
|