mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210442 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			347 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			347 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===----- llvm/unittest/ADT/SCCIteratorTest.cpp - SCCIterator tests ------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ADT/SCCIterator.h"
 | |
| #include "llvm/ADT/GraphTraits.h"
 | |
| #include "gtest/gtest.h"
 | |
| #include <limits.h>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| /// Graph<N> - A graph with N nodes.  Note that N can be at most 8.
 | |
| template <unsigned N>
 | |
| class Graph {
 | |
| private:
 | |
|   // Disable copying.
 | |
|   Graph(const Graph&);
 | |
|   Graph& operator=(const Graph&);
 | |
| 
 | |
|   static void ValidateIndex(unsigned Idx) {
 | |
|     assert(Idx < N && "Invalid node index!");
 | |
|   }
 | |
| public:
 | |
| 
 | |
|   /// NodeSubset - A subset of the graph's nodes.
 | |
|   class NodeSubset {
 | |
|     typedef unsigned char BitVector; // Where the limitation N <= 8 comes from.
 | |
|     BitVector Elements;
 | |
|     NodeSubset(BitVector e) : Elements(e) {}
 | |
|   public:
 | |
|     /// NodeSubset - Default constructor, creates an empty subset.
 | |
|     NodeSubset() : Elements(0) {
 | |
|       assert(N <= sizeof(BitVector)*CHAR_BIT && "Graph too big!");
 | |
|     }
 | |
|     /// NodeSubset - Copy constructor.
 | |
|     NodeSubset(const NodeSubset &other) : Elements(other.Elements) {}
 | |
| 
 | |
|     /// Comparison operators.
 | |
|     bool operator==(const NodeSubset &other) const {
 | |
|       return other.Elements == this->Elements;
 | |
|     }
 | |
|     bool operator!=(const NodeSubset &other) const {
 | |
|       return !(*this == other);
 | |
|     }
 | |
| 
 | |
|     /// AddNode - Add the node with the given index to the subset.
 | |
|     void AddNode(unsigned Idx) {
 | |
|       ValidateIndex(Idx);
 | |
|       Elements |= 1U << Idx;
 | |
|     }
 | |
| 
 | |
|     /// DeleteNode - Remove the node with the given index from the subset.
 | |
|     void DeleteNode(unsigned Idx) {
 | |
|       ValidateIndex(Idx);
 | |
|       Elements &= ~(1U << Idx);
 | |
|     }
 | |
| 
 | |
|     /// count - Return true if the node with the given index is in the subset.
 | |
|     bool count(unsigned Idx) {
 | |
|       ValidateIndex(Idx);
 | |
|       return (Elements & (1U << Idx)) != 0;
 | |
|     }
 | |
| 
 | |
|     /// isEmpty - Return true if this is the empty set.
 | |
|     bool isEmpty() const {
 | |
|       return Elements == 0;
 | |
|     }
 | |
| 
 | |
|     /// isSubsetOf - Return true if this set is a subset of the given one.
 | |
|     bool isSubsetOf(const NodeSubset &other) const {
 | |
|       return (this->Elements | other.Elements) == other.Elements;
 | |
|     }
 | |
| 
 | |
|     /// Complement - Return the complement of this subset.
 | |
|     NodeSubset Complement() const {
 | |
|       return ~(unsigned)this->Elements & ((1U << N) - 1);
 | |
|     }
 | |
| 
 | |
|     /// Join - Return the union of this subset and the given one.
 | |
|     NodeSubset Join(const NodeSubset &other) const {
 | |
|       return this->Elements | other.Elements;
 | |
|     }
 | |
| 
 | |
|     /// Meet - Return the intersection of this subset and the given one.
 | |
|     NodeSubset Meet(const NodeSubset &other) const {
 | |
|       return this->Elements & other.Elements;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// NodeType - Node index and set of children of the node.
 | |
|   typedef std::pair<unsigned, NodeSubset> NodeType;
 | |
| 
 | |
| private:
 | |
|   /// Nodes - The list of nodes for this graph.
 | |
|   NodeType Nodes[N];
 | |
| public:
 | |
| 
 | |
|   /// Graph - Default constructor.  Creates an empty graph.
 | |
|   Graph() {
 | |
|     // Let each node know which node it is.  This allows us to find the start of
 | |
|     // the Nodes array given a pointer to any element of it.
 | |
|     for (unsigned i = 0; i != N; ++i)
 | |
|       Nodes[i].first = i;
 | |
|   }
 | |
| 
 | |
|   /// AddEdge - Add an edge from the node with index FromIdx to the node with
 | |
|   /// index ToIdx.
 | |
|   void AddEdge(unsigned FromIdx, unsigned ToIdx) {
 | |
|     ValidateIndex(FromIdx);
 | |
|     Nodes[FromIdx].second.AddNode(ToIdx);
 | |
|   }
 | |
| 
 | |
|   /// DeleteEdge - Remove the edge (if any) from the node with index FromIdx to
 | |
|   /// the node with index ToIdx.
 | |
|   void DeleteEdge(unsigned FromIdx, unsigned ToIdx) {
 | |
|     ValidateIndex(FromIdx);
 | |
|     Nodes[FromIdx].second.DeleteNode(ToIdx);
 | |
|   }
 | |
| 
 | |
|   /// AccessNode - Get a pointer to the node with the given index.
 | |
|   NodeType *AccessNode(unsigned Idx) const {
 | |
|     ValidateIndex(Idx);
 | |
|     // The constant cast is needed when working with GraphTraits, which insists
 | |
|     // on taking a constant Graph.
 | |
|     return const_cast<NodeType *>(&Nodes[Idx]);
 | |
|   }
 | |
| 
 | |
|   /// NodesReachableFrom - Return the set of all nodes reachable from the given
 | |
|   /// node.
 | |
|   NodeSubset NodesReachableFrom(unsigned Idx) const {
 | |
|     // This algorithm doesn't scale, but that doesn't matter given the small
 | |
|     // size of our graphs.
 | |
|     NodeSubset Reachable;
 | |
| 
 | |
|     // The initial node is reachable.
 | |
|     Reachable.AddNode(Idx);
 | |
|     do {
 | |
|       NodeSubset Previous(Reachable);
 | |
| 
 | |
|       // Add in all nodes which are children of a reachable node.
 | |
|       for (unsigned i = 0; i != N; ++i)
 | |
|         if (Previous.count(i))
 | |
|           Reachable = Reachable.Join(Nodes[i].second);
 | |
| 
 | |
|       // If nothing changed then we have found all reachable nodes.
 | |
|       if (Reachable == Previous)
 | |
|         return Reachable;
 | |
| 
 | |
|       // Rinse and repeat.
 | |
|     } while (1);
 | |
|   }
 | |
| 
 | |
|   /// ChildIterator - Visit all children of a node.
 | |
|   class ChildIterator {
 | |
|     friend class Graph;
 | |
| 
 | |
|     /// FirstNode - Pointer to first node in the graph's Nodes array.
 | |
|     NodeType *FirstNode;
 | |
|     /// Children - Set of nodes which are children of this one and that haven't
 | |
|     /// yet been visited.
 | |
|     NodeSubset Children;
 | |
| 
 | |
|     ChildIterator(); // Disable default constructor.
 | |
|   protected:
 | |
|     ChildIterator(NodeType *F, NodeSubset C) : FirstNode(F), Children(C) {}
 | |
| 
 | |
|   public:
 | |
|     /// ChildIterator - Copy constructor.
 | |
|     ChildIterator(const ChildIterator& other) : FirstNode(other.FirstNode),
 | |
|       Children(other.Children) {}
 | |
| 
 | |
|     /// Comparison operators.
 | |
|     bool operator==(const ChildIterator &other) const {
 | |
|       return other.FirstNode == this->FirstNode &&
 | |
|         other.Children == this->Children;
 | |
|     }
 | |
|     bool operator!=(const ChildIterator &other) const {
 | |
|       return !(*this == other);
 | |
|     }
 | |
| 
 | |
|     /// Prefix increment operator.
 | |
|     ChildIterator& operator++() {
 | |
|       // Find the next unvisited child node.
 | |
|       for (unsigned i = 0; i != N; ++i)
 | |
|         if (Children.count(i)) {
 | |
|           // Remove that child - it has been visited.  This is the increment!
 | |
|           Children.DeleteNode(i);
 | |
|           return *this;
 | |
|         }
 | |
|       assert(false && "Incrementing end iterator!");
 | |
|       return *this; // Avoid compiler warnings.
 | |
|     }
 | |
| 
 | |
|     /// Postfix increment operator.
 | |
|     ChildIterator operator++(int) {
 | |
|       ChildIterator Result(*this);
 | |
|       ++(*this);
 | |
|       return Result;
 | |
|     }
 | |
| 
 | |
|     /// Dereference operator.
 | |
|     NodeType *operator*() {
 | |
|       // Find the next unvisited child node.
 | |
|       for (unsigned i = 0; i != N; ++i)
 | |
|         if (Children.count(i))
 | |
|           // Return a pointer to it.
 | |
|           return FirstNode + i;
 | |
|       assert(false && "Dereferencing end iterator!");
 | |
|       return nullptr; // Avoid compiler warning.
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// child_begin - Return an iterator pointing to the first child of the given
 | |
|   /// node.
 | |
|   static ChildIterator child_begin(NodeType *Parent) {
 | |
|     return ChildIterator(Parent - Parent->first, Parent->second);
 | |
|   }
 | |
| 
 | |
|   /// child_end - Return the end iterator for children of the given node.
 | |
|   static ChildIterator child_end(NodeType *Parent) {
 | |
|     return ChildIterator(Parent - Parent->first, NodeSubset());
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <unsigned N>
 | |
| struct GraphTraits<Graph<N> > {
 | |
|   typedef typename Graph<N>::NodeType NodeType;
 | |
|   typedef typename Graph<N>::ChildIterator ChildIteratorType;
 | |
| 
 | |
|  static inline NodeType *getEntryNode(const Graph<N> &G) { return G.AccessNode(0); }
 | |
|  static inline ChildIteratorType child_begin(NodeType *Node) {
 | |
|    return Graph<N>::child_begin(Node);
 | |
|  }
 | |
|  static inline ChildIteratorType child_end(NodeType *Node) {
 | |
|    return Graph<N>::child_end(Node);
 | |
|  }
 | |
| };
 | |
| 
 | |
| TEST(SCCIteratorTest, AllSmallGraphs) {
 | |
|   // Test SCC computation against every graph with NUM_NODES nodes or less.
 | |
|   // Since SCC considers every node to have an implicit self-edge, we only
 | |
|   // create graphs for which every node has a self-edge.
 | |
| #define NUM_NODES 4
 | |
| #define NUM_GRAPHS (NUM_NODES * (NUM_NODES - 1))
 | |
|   typedef Graph<NUM_NODES> GT;
 | |
| 
 | |
|   /// Enumerate all graphs using NUM_GRAPHS bits.
 | |
|   assert(NUM_GRAPHS < sizeof(unsigned) * CHAR_BIT && "Too many graphs!");
 | |
|   for (unsigned GraphDescriptor = 0; GraphDescriptor < (1U << NUM_GRAPHS);
 | |
|        ++GraphDescriptor) {
 | |
|     GT G;
 | |
| 
 | |
|     // Add edges as specified by the descriptor.
 | |
|     unsigned DescriptorCopy = GraphDescriptor;
 | |
|     for (unsigned i = 0; i != NUM_NODES; ++i)
 | |
|       for (unsigned j = 0; j != NUM_NODES; ++j) {
 | |
|         // Always add a self-edge.
 | |
|         if (i == j) {
 | |
|           G.AddEdge(i, j);
 | |
|           continue;
 | |
|         }
 | |
|         if (DescriptorCopy & 1)
 | |
|           G.AddEdge(i, j);
 | |
|         DescriptorCopy >>= 1;
 | |
|       }
 | |
| 
 | |
|     // Test the SCC logic on this graph.
 | |
| 
 | |
|     /// NodesInSomeSCC - Those nodes which are in some SCC.
 | |
|     GT::NodeSubset NodesInSomeSCC;
 | |
| 
 | |
|     for (scc_iterator<GT> I = scc_begin(G), E = scc_end(G); I != E; ++I) {
 | |
|       const std::vector<GT::NodeType *> &SCC = *I;
 | |
| 
 | |
|       // Get the nodes in this SCC as a NodeSubset rather than a vector.
 | |
|       GT::NodeSubset NodesInThisSCC;
 | |
|       for (unsigned i = 0, e = SCC.size(); i != e; ++i)
 | |
|         NodesInThisSCC.AddNode(SCC[i]->first);
 | |
| 
 | |
|       // There should be at least one node in every SCC.
 | |
|       EXPECT_FALSE(NodesInThisSCC.isEmpty());
 | |
| 
 | |
|       // Check that every node in the SCC is reachable from every other node in
 | |
|       // the SCC.
 | |
|       for (unsigned i = 0; i != NUM_NODES; ++i)
 | |
|         if (NodesInThisSCC.count(i))
 | |
|           EXPECT_TRUE(NodesInThisSCC.isSubsetOf(G.NodesReachableFrom(i)));
 | |
| 
 | |
|       // OK, now that we now that every node in the SCC is reachable from every
 | |
|       // other, this means that the set of nodes reachable from any node in the
 | |
|       // SCC is the same as the set of nodes reachable from every node in the
 | |
|       // SCC.  Check that for every node N not in the SCC but reachable from the
 | |
|       // SCC, no element of the SCC is reachable from N.
 | |
|       for (unsigned i = 0; i != NUM_NODES; ++i)
 | |
|         if (NodesInThisSCC.count(i)) {
 | |
|           GT::NodeSubset NodesReachableFromSCC = G.NodesReachableFrom(i);
 | |
|           GT::NodeSubset ReachableButNotInSCC =
 | |
|             NodesReachableFromSCC.Meet(NodesInThisSCC.Complement());
 | |
| 
 | |
|           for (unsigned j = 0; j != NUM_NODES; ++j)
 | |
|             if (ReachableButNotInSCC.count(j))
 | |
|               EXPECT_TRUE(G.NodesReachableFrom(j).Meet(NodesInThisSCC).isEmpty());
 | |
| 
 | |
|           // The result must be the same for all other nodes in this SCC, so
 | |
|           // there is no point in checking them.
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|       // This is indeed a SCC: a maximal set of nodes for which each node is
 | |
|       // reachable from every other.
 | |
| 
 | |
|       // Check that we didn't already see this SCC.
 | |
|       EXPECT_TRUE(NodesInSomeSCC.Meet(NodesInThisSCC).isEmpty());
 | |
| 
 | |
|       NodesInSomeSCC = NodesInSomeSCC.Join(NodesInThisSCC);
 | |
| 
 | |
|       // Check a property that is specific to the LLVM SCC iterator and
 | |
|       // guaranteed by it: if a node in SCC S1 has an edge to a node in
 | |
|       // SCC S2, then S1 is visited *after* S2.  This means that the set
 | |
|       // of nodes reachable from this SCC must be contained either in the
 | |
|       // union of this SCC and all previously visited SCC's.
 | |
| 
 | |
|       for (unsigned i = 0; i != NUM_NODES; ++i)
 | |
|         if (NodesInThisSCC.count(i)) {
 | |
|           GT::NodeSubset NodesReachableFromSCC = G.NodesReachableFrom(i);
 | |
|           EXPECT_TRUE(NodesReachableFromSCC.isSubsetOf(NodesInSomeSCC));
 | |
|           // The result must be the same for all other nodes in this SCC, so
 | |
|           // there is no point in checking them.
 | |
|           break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Finally, check that the nodes in some SCC are exactly those that are
 | |
|     // reachable from the initial node.
 | |
|     EXPECT_EQ(NodesInSomeSCC, G.NodesReachableFrom(0));
 | |
|   }
 | |
| }
 | |
| 
 | |
| }
 |