mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	Implement the "part_set" intrinsic. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@35938 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1123 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1123 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the function verifier interface, that can be used for some
 | 
						|
// sanity checking of input to the system.
 | 
						|
//
 | 
						|
// Note that this does not provide full `Java style' security and verifications,
 | 
						|
// instead it just tries to ensure that code is well-formed.
 | 
						|
//
 | 
						|
//  * Both of a binary operator's parameters are of the same type
 | 
						|
//  * Verify that the indices of mem access instructions match other operands
 | 
						|
//  * Verify that arithmetic and other things are only performed on first-class
 | 
						|
//    types.  Verify that shifts & logicals only happen on integrals f.e.
 | 
						|
//  * All of the constants in a switch statement are of the correct type
 | 
						|
//  * The code is in valid SSA form
 | 
						|
//  * It should be illegal to put a label into any other type (like a structure)
 | 
						|
//    or to return one. [except constant arrays!]
 | 
						|
//  * Only phi nodes can be self referential: 'add int %0, %0 ; <int>:0' is bad
 | 
						|
//  * PHI nodes must have an entry for each predecessor, with no extras.
 | 
						|
//  * PHI nodes must be the first thing in a basic block, all grouped together
 | 
						|
//  * PHI nodes must have at least one entry
 | 
						|
//  * All basic blocks should only end with terminator insts, not contain them
 | 
						|
//  * The entry node to a function must not have predecessors
 | 
						|
//  * All Instructions must be embedded into a basic block
 | 
						|
//  * Functions cannot take a void-typed parameter
 | 
						|
//  * Verify that a function's argument list agrees with it's declared type.
 | 
						|
//  * It is illegal to specify a name for a void value.
 | 
						|
//  * It is illegal to have a internal global value with no initializer
 | 
						|
//  * It is illegal to have a ret instruction that returns a value that does not
 | 
						|
//    agree with the function return value type.
 | 
						|
//  * Function call argument types match the function prototype
 | 
						|
//  * All other things that are tested by asserts spread about the code...
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/Verifier.h"
 | 
						|
#include "llvm/Assembly/Writer.h"
 | 
						|
#include "llvm/CallingConv.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/ModuleProvider.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/InlineAsm.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Intrinsics.h"
 | 
						|
#include "llvm/PassManager.h"
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Support/InstVisitor.h"
 | 
						|
#include "llvm/Support/Streams.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <sstream>
 | 
						|
#include <cstdarg>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {  // Anonymous namespace for class
 | 
						|
 | 
						|
  struct VISIBILITY_HIDDEN
 | 
						|
     Verifier : public FunctionPass, InstVisitor<Verifier> {
 | 
						|
    bool Broken;          // Is this module found to be broken?
 | 
						|
    bool RealPass;        // Are we not being run by a PassManager?
 | 
						|
    VerifierFailureAction action;
 | 
						|
                          // What to do if verification fails.
 | 
						|
    Module *Mod;          // Module we are verifying right now
 | 
						|
    ETForest *EF;     // ET-Forest, caution can be null!
 | 
						|
    std::stringstream msgs;  // A stringstream to collect messages
 | 
						|
 | 
						|
    /// InstInThisBlock - when verifying a basic block, keep track of all of the
 | 
						|
    /// instructions we have seen so far.  This allows us to do efficient
 | 
						|
    /// dominance checks for the case when an instruction has an operand that is
 | 
						|
    /// an instruction in the same block.
 | 
						|
    SmallPtrSet<Instruction*, 16> InstsInThisBlock;
 | 
						|
 | 
						|
    Verifier()
 | 
						|
        : Broken(false), RealPass(true), action(AbortProcessAction),
 | 
						|
          EF(0), msgs( std::ios::app | std::ios::out ) {}
 | 
						|
    Verifier( VerifierFailureAction ctn )
 | 
						|
        : Broken(false), RealPass(true), action(ctn), EF(0),
 | 
						|
          msgs( std::ios::app | std::ios::out ) {}
 | 
						|
    Verifier(bool AB )
 | 
						|
        : Broken(false), RealPass(true),
 | 
						|
          action( AB ? AbortProcessAction : PrintMessageAction), EF(0),
 | 
						|
          msgs( std::ios::app | std::ios::out ) {}
 | 
						|
    Verifier(ETForest &ef)
 | 
						|
      : Broken(false), RealPass(false), action(PrintMessageAction),
 | 
						|
        EF(&ef), msgs( std::ios::app | std::ios::out ) {}
 | 
						|
 | 
						|
 | 
						|
    bool doInitialization(Module &M) {
 | 
						|
      Mod = &M;
 | 
						|
      verifyTypeSymbolTable(M.getTypeSymbolTable());
 | 
						|
 | 
						|
      // If this is a real pass, in a pass manager, we must abort before
 | 
						|
      // returning back to the pass manager, or else the pass manager may try to
 | 
						|
      // run other passes on the broken module.
 | 
						|
      if (RealPass)
 | 
						|
        return abortIfBroken();
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnFunction(Function &F) {
 | 
						|
      // Get dominator information if we are being run by PassManager
 | 
						|
      if (RealPass) EF = &getAnalysis<ETForest>();
 | 
						|
      
 | 
						|
      visit(F);
 | 
						|
      InstsInThisBlock.clear();
 | 
						|
 | 
						|
      // If this is a real pass, in a pass manager, we must abort before
 | 
						|
      // returning back to the pass manager, or else the pass manager may try to
 | 
						|
      // run other passes on the broken module.
 | 
						|
      if (RealPass)
 | 
						|
        return abortIfBroken();
 | 
						|
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    bool doFinalization(Module &M) {
 | 
						|
      // Scan through, checking all of the external function's linkage now...
 | 
						|
      for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
 | 
						|
        visitGlobalValue(*I);
 | 
						|
 | 
						|
        // Check to make sure function prototypes are okay.
 | 
						|
        if (I->isDeclaration()) visitFunction(*I);
 | 
						|
      }
 | 
						|
 | 
						|
      for (Module::global_iterator I = M.global_begin(), E = M.global_end(); 
 | 
						|
           I != E; ++I)
 | 
						|
        visitGlobalVariable(*I);
 | 
						|
 | 
						|
      // If the module is broken, abort at this time.
 | 
						|
      return abortIfBroken();
 | 
						|
    }
 | 
						|
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.setPreservesAll();
 | 
						|
      if (RealPass)
 | 
						|
        AU.addRequired<ETForest>();
 | 
						|
    }
 | 
						|
 | 
						|
    /// abortIfBroken - If the module is broken and we are supposed to abort on
 | 
						|
    /// this condition, do so.
 | 
						|
    ///
 | 
						|
    bool abortIfBroken() {
 | 
						|
      if (Broken) {
 | 
						|
        msgs << "Broken module found, ";
 | 
						|
        switch (action) {
 | 
						|
          case AbortProcessAction:
 | 
						|
            msgs << "compilation aborted!\n";
 | 
						|
            cerr << msgs.str();
 | 
						|
            abort();
 | 
						|
          case PrintMessageAction:
 | 
						|
            msgs << "verification continues.\n";
 | 
						|
            cerr << msgs.str();
 | 
						|
            return false;
 | 
						|
          case ReturnStatusAction:
 | 
						|
            msgs << "compilation terminated.\n";
 | 
						|
            return Broken;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    // Verification methods...
 | 
						|
    void verifyTypeSymbolTable(TypeSymbolTable &ST);
 | 
						|
    void visitGlobalValue(GlobalValue &GV);
 | 
						|
    void visitGlobalVariable(GlobalVariable &GV);
 | 
						|
    void visitFunction(Function &F);
 | 
						|
    void visitBasicBlock(BasicBlock &BB);
 | 
						|
    void visitTruncInst(TruncInst &I);
 | 
						|
    void visitZExtInst(ZExtInst &I);
 | 
						|
    void visitSExtInst(SExtInst &I);
 | 
						|
    void visitFPTruncInst(FPTruncInst &I);
 | 
						|
    void visitFPExtInst(FPExtInst &I);
 | 
						|
    void visitFPToUIInst(FPToUIInst &I);
 | 
						|
    void visitFPToSIInst(FPToSIInst &I);
 | 
						|
    void visitUIToFPInst(UIToFPInst &I);
 | 
						|
    void visitSIToFPInst(SIToFPInst &I);
 | 
						|
    void visitIntToPtrInst(IntToPtrInst &I);
 | 
						|
    void visitPtrToIntInst(PtrToIntInst &I);
 | 
						|
    void visitBitCastInst(BitCastInst &I);
 | 
						|
    void visitPHINode(PHINode &PN);
 | 
						|
    void visitBinaryOperator(BinaryOperator &B);
 | 
						|
    void visitICmpInst(ICmpInst &IC);
 | 
						|
    void visitFCmpInst(FCmpInst &FC);
 | 
						|
    void visitExtractElementInst(ExtractElementInst &EI);
 | 
						|
    void visitInsertElementInst(InsertElementInst &EI);
 | 
						|
    void visitShuffleVectorInst(ShuffleVectorInst &EI);
 | 
						|
    void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
 | 
						|
    void visitCallInst(CallInst &CI);
 | 
						|
    void visitGetElementPtrInst(GetElementPtrInst &GEP);
 | 
						|
    void visitLoadInst(LoadInst &LI);
 | 
						|
    void visitStoreInst(StoreInst &SI);
 | 
						|
    void visitInstruction(Instruction &I);
 | 
						|
    void visitTerminatorInst(TerminatorInst &I);
 | 
						|
    void visitReturnInst(ReturnInst &RI);
 | 
						|
    void visitSwitchInst(SwitchInst &SI);
 | 
						|
    void visitSelectInst(SelectInst &SI);
 | 
						|
    void visitUserOp1(Instruction &I);
 | 
						|
    void visitUserOp2(Instruction &I) { visitUserOp1(I); }
 | 
						|
    void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
 | 
						|
 | 
						|
    void VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F, ...);
 | 
						|
 | 
						|
    void WriteValue(const Value *V) {
 | 
						|
      if (!V) return;
 | 
						|
      if (isa<Instruction>(V)) {
 | 
						|
        msgs << *V;
 | 
						|
      } else {
 | 
						|
        WriteAsOperand(msgs, V, true, Mod);
 | 
						|
        msgs << "\n";
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    void WriteType(const Type* T ) {
 | 
						|
      if ( !T ) return;
 | 
						|
      WriteTypeSymbolic(msgs, T, Mod );
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    // CheckFailed - A check failed, so print out the condition and the message
 | 
						|
    // that failed.  This provides a nice place to put a breakpoint if you want
 | 
						|
    // to see why something is not correct.
 | 
						|
    void CheckFailed(const std::string &Message,
 | 
						|
                     const Value *V1 = 0, const Value *V2 = 0,
 | 
						|
                     const Value *V3 = 0, const Value *V4 = 0) {
 | 
						|
      msgs << Message << "\n";
 | 
						|
      WriteValue(V1);
 | 
						|
      WriteValue(V2);
 | 
						|
      WriteValue(V3);
 | 
						|
      WriteValue(V4);
 | 
						|
      Broken = true;
 | 
						|
    }
 | 
						|
 | 
						|
    void CheckFailed( const std::string& Message, const Value* V1,
 | 
						|
                      const Type* T2, const Value* V3 = 0 ) {
 | 
						|
      msgs << Message << "\n";
 | 
						|
      WriteValue(V1);
 | 
						|
      WriteType(T2);
 | 
						|
      WriteValue(V3);
 | 
						|
      Broken = true;
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  RegisterPass<Verifier> X("verify", "Module Verifier");
 | 
						|
} // End anonymous namespace
 | 
						|
 | 
						|
 | 
						|
// Assert - We know that cond should be true, if not print an error message.
 | 
						|
#define Assert(C, M) \
 | 
						|
  do { if (!(C)) { CheckFailed(M); return; } } while (0)
 | 
						|
#define Assert1(C, M, V1) \
 | 
						|
  do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
 | 
						|
#define Assert2(C, M, V1, V2) \
 | 
						|
  do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
 | 
						|
#define Assert3(C, M, V1, V2, V3) \
 | 
						|
  do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
 | 
						|
#define Assert4(C, M, V1, V2, V3, V4) \
 | 
						|
  do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
 | 
						|
 | 
						|
 | 
						|
void Verifier::visitGlobalValue(GlobalValue &GV) {
 | 
						|
  Assert1(!GV.isDeclaration() ||
 | 
						|
          GV.hasExternalLinkage() ||
 | 
						|
          GV.hasDLLImportLinkage() ||
 | 
						|
          GV.hasExternalWeakLinkage(),
 | 
						|
  "Global is external, but doesn't have external or dllimport or weak linkage!",
 | 
						|
          &GV);
 | 
						|
 | 
						|
  Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(),
 | 
						|
          "Global is marked as dllimport, but not external", &GV);
 | 
						|
  
 | 
						|
  Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
 | 
						|
          "Only global variables can have appending linkage!", &GV);
 | 
						|
 | 
						|
  if (GV.hasAppendingLinkage()) {
 | 
						|
    GlobalVariable &GVar = cast<GlobalVariable>(GV);
 | 
						|
    Assert1(isa<ArrayType>(GVar.getType()->getElementType()),
 | 
						|
            "Only global arrays can have appending linkage!", &GV);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitGlobalVariable(GlobalVariable &GV) {
 | 
						|
  if (GV.hasInitializer())
 | 
						|
    Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
 | 
						|
            "Global variable initializer type does not match global "
 | 
						|
            "variable type!", &GV);
 | 
						|
 | 
						|
  visitGlobalValue(GV);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::verifyTypeSymbolTable(TypeSymbolTable &ST) {
 | 
						|
}
 | 
						|
 | 
						|
// visitFunction - Verify that a function is ok.
 | 
						|
//
 | 
						|
void Verifier::visitFunction(Function &F) {
 | 
						|
  // Check function arguments.
 | 
						|
  const FunctionType *FT = F.getFunctionType();
 | 
						|
  unsigned NumArgs = F.getArgumentList().size();
 | 
						|
 | 
						|
  Assert2(FT->getNumParams() == NumArgs,
 | 
						|
          "# formal arguments must match # of arguments for function type!",
 | 
						|
          &F, FT);
 | 
						|
  Assert1(F.getReturnType()->isFirstClassType() ||
 | 
						|
          F.getReturnType() == Type::VoidTy,
 | 
						|
          "Functions cannot return aggregate values!", &F);
 | 
						|
 | 
						|
  Assert1(!FT->isStructReturn() ||
 | 
						|
          (FT->getReturnType() == Type::VoidTy && 
 | 
						|
           FT->getNumParams() > 0 && isa<PointerType>(FT->getParamType(0))),
 | 
						|
          "Invalid struct-return function!", &F);
 | 
						|
 | 
						|
  // Check that this function meets the restrictions on this calling convention.
 | 
						|
  switch (F.getCallingConv()) {
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  case CallingConv::C:
 | 
						|
    break;
 | 
						|
  case CallingConv::Fast:
 | 
						|
  case CallingConv::Cold:
 | 
						|
  case CallingConv::X86_FastCall:
 | 
						|
    Assert1(!F.isVarArg(),
 | 
						|
            "Varargs functions must have C calling conventions!", &F);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Check that the argument values match the function type for this function...
 | 
						|
  unsigned i = 0;
 | 
						|
  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
 | 
						|
       I != E; ++I, ++i) {
 | 
						|
    Assert2(I->getType() == FT->getParamType(i),
 | 
						|
            "Argument value does not match function argument type!",
 | 
						|
            I, FT->getParamType(i));
 | 
						|
    // Make sure no aggregates are passed by value.
 | 
						|
    Assert1(I->getType()->isFirstClassType(),
 | 
						|
            "Functions cannot take aggregates as arguments by value!", I);
 | 
						|
   }
 | 
						|
 | 
						|
  if (!F.isDeclaration()) {
 | 
						|
    // Verify that this function (which has a body) is not named "llvm.*".  It
 | 
						|
    // is not legal to define intrinsics.
 | 
						|
    if (F.getName().size() >= 5)
 | 
						|
      Assert1(F.getName().substr(0, 5) != "llvm.",
 | 
						|
              "llvm intrinsics cannot be defined!", &F);
 | 
						|
    
 | 
						|
    // Check the entry node
 | 
						|
    BasicBlock *Entry = &F.getEntryBlock();
 | 
						|
    Assert1(pred_begin(Entry) == pred_end(Entry),
 | 
						|
            "Entry block to function must not have predecessors!", Entry);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// verifyBasicBlock - Verify that a basic block is well formed...
 | 
						|
//
 | 
						|
void Verifier::visitBasicBlock(BasicBlock &BB) {
 | 
						|
  InstsInThisBlock.clear();
 | 
						|
 | 
						|
  // Ensure that basic blocks have terminators!
 | 
						|
  Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
 | 
						|
 | 
						|
  // Check constraints that this basic block imposes on all of the PHI nodes in
 | 
						|
  // it.
 | 
						|
  if (isa<PHINode>(BB.front())) {
 | 
						|
    SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
 | 
						|
    SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
 | 
						|
    std::sort(Preds.begin(), Preds.end());
 | 
						|
    PHINode *PN;
 | 
						|
    for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
 | 
						|
 | 
						|
      // Ensure that PHI nodes have at least one entry!
 | 
						|
      Assert1(PN->getNumIncomingValues() != 0,
 | 
						|
              "PHI nodes must have at least one entry.  If the block is dead, "
 | 
						|
              "the PHI should be removed!", PN);
 | 
						|
      Assert1(PN->getNumIncomingValues() == Preds.size(),
 | 
						|
              "PHINode should have one entry for each predecessor of its "
 | 
						|
              "parent basic block!", PN);
 | 
						|
 | 
						|
      // Get and sort all incoming values in the PHI node...
 | 
						|
      Values.clear();
 | 
						|
      Values.reserve(PN->getNumIncomingValues());
 | 
						|
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | 
						|
        Values.push_back(std::make_pair(PN->getIncomingBlock(i),
 | 
						|
                                        PN->getIncomingValue(i)));
 | 
						|
      std::sort(Values.begin(), Values.end());
 | 
						|
 | 
						|
      for (unsigned i = 0, e = Values.size(); i != e; ++i) {
 | 
						|
        // Check to make sure that if there is more than one entry for a
 | 
						|
        // particular basic block in this PHI node, that the incoming values are
 | 
						|
        // all identical.
 | 
						|
        //
 | 
						|
        Assert4(i == 0 || Values[i].first  != Values[i-1].first ||
 | 
						|
                Values[i].second == Values[i-1].second,
 | 
						|
                "PHI node has multiple entries for the same basic block with "
 | 
						|
                "different incoming values!", PN, Values[i].first,
 | 
						|
                Values[i].second, Values[i-1].second);
 | 
						|
 | 
						|
        // Check to make sure that the predecessors and PHI node entries are
 | 
						|
        // matched up.
 | 
						|
        Assert3(Values[i].first == Preds[i],
 | 
						|
                "PHI node entries do not match predecessors!", PN,
 | 
						|
                Values[i].first, Preds[i]);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitTerminatorInst(TerminatorInst &I) {
 | 
						|
  // Ensure that terminators only exist at the end of the basic block.
 | 
						|
  Assert1(&I == I.getParent()->getTerminator(),
 | 
						|
          "Terminator found in the middle of a basic block!", I.getParent());
 | 
						|
  visitInstruction(I);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitReturnInst(ReturnInst &RI) {
 | 
						|
  Function *F = RI.getParent()->getParent();
 | 
						|
  if (RI.getNumOperands() == 0)
 | 
						|
    Assert2(F->getReturnType() == Type::VoidTy,
 | 
						|
            "Found return instr that returns void in Function of non-void "
 | 
						|
            "return type!", &RI, F->getReturnType());
 | 
						|
  else
 | 
						|
    Assert2(F->getReturnType() == RI.getOperand(0)->getType(),
 | 
						|
            "Function return type does not match operand "
 | 
						|
            "type of return inst!", &RI, F->getReturnType());
 | 
						|
 | 
						|
  // Check to make sure that the return value has necessary properties for
 | 
						|
  // terminators...
 | 
						|
  visitTerminatorInst(RI);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitSwitchInst(SwitchInst &SI) {
 | 
						|
  // Check to make sure that all of the constants in the switch instruction
 | 
						|
  // have the same type as the switched-on value.
 | 
						|
  const Type *SwitchTy = SI.getCondition()->getType();
 | 
						|
  for (unsigned i = 1, e = SI.getNumCases(); i != e; ++i)
 | 
						|
    Assert1(SI.getCaseValue(i)->getType() == SwitchTy,
 | 
						|
            "Switch constants must all be same type as switch value!", &SI);
 | 
						|
 | 
						|
  visitTerminatorInst(SI);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitSelectInst(SelectInst &SI) {
 | 
						|
  Assert1(SI.getCondition()->getType() == Type::Int1Ty,
 | 
						|
          "Select condition type must be bool!", &SI);
 | 
						|
  Assert1(SI.getTrueValue()->getType() == SI.getFalseValue()->getType(),
 | 
						|
          "Select values must have identical types!", &SI);
 | 
						|
  Assert1(SI.getTrueValue()->getType() == SI.getType(),
 | 
						|
          "Select values must have same type as select instruction!", &SI);
 | 
						|
  visitInstruction(SI);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
 | 
						|
/// a pass, if any exist, it's an error.
 | 
						|
///
 | 
						|
void Verifier::visitUserOp1(Instruction &I) {
 | 
						|
  Assert1(0, "User-defined operators should not live outside of a pass!", &I);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitTruncInst(TruncInst &I) {
 | 
						|
  // Get the source and destination types
 | 
						|
  const Type *SrcTy = I.getOperand(0)->getType();
 | 
						|
  const Type *DestTy = I.getType();
 | 
						|
 | 
						|
  // Get the size of the types in bits, we'll need this later
 | 
						|
  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
 | 
						|
  unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
 | 
						|
 | 
						|
  Assert1(SrcTy->isInteger(), "Trunc only operates on integer", &I);
 | 
						|
  Assert1(DestTy->isInteger(), "Trunc only produces integer", &I);
 | 
						|
  Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
 | 
						|
 | 
						|
  visitInstruction(I);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitZExtInst(ZExtInst &I) {
 | 
						|
  // Get the source and destination types
 | 
						|
  const Type *SrcTy = I.getOperand(0)->getType();
 | 
						|
  const Type *DestTy = I.getType();
 | 
						|
 | 
						|
  // Get the size of the types in bits, we'll need this later
 | 
						|
  Assert1(SrcTy->isInteger(), "ZExt only operates on integer", &I);
 | 
						|
  Assert1(DestTy->isInteger(), "ZExt only produces an integer", &I);
 | 
						|
  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
 | 
						|
  unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
 | 
						|
 | 
						|
  Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
 | 
						|
 | 
						|
  visitInstruction(I);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitSExtInst(SExtInst &I) {
 | 
						|
  // Get the source and destination types
 | 
						|
  const Type *SrcTy = I.getOperand(0)->getType();
 | 
						|
  const Type *DestTy = I.getType();
 | 
						|
 | 
						|
  // Get the size of the types in bits, we'll need this later
 | 
						|
  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
 | 
						|
  unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
 | 
						|
 | 
						|
  Assert1(SrcTy->isInteger(), "SExt only operates on integer", &I);
 | 
						|
  Assert1(DestTy->isInteger(), "SExt only produces an integer", &I);
 | 
						|
  Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
 | 
						|
 | 
						|
  visitInstruction(I);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitFPTruncInst(FPTruncInst &I) {
 | 
						|
  // Get the source and destination types
 | 
						|
  const Type *SrcTy = I.getOperand(0)->getType();
 | 
						|
  const Type *DestTy = I.getType();
 | 
						|
  // Get the size of the types in bits, we'll need this later
 | 
						|
  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
 | 
						|
  unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
 | 
						|
 | 
						|
  Assert1(SrcTy->isFloatingPoint(),"FPTrunc only operates on FP", &I);
 | 
						|
  Assert1(DestTy->isFloatingPoint(),"FPTrunc only produces an FP", &I);
 | 
						|
  Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
 | 
						|
 | 
						|
  visitInstruction(I);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitFPExtInst(FPExtInst &I) {
 | 
						|
  // Get the source and destination types
 | 
						|
  const Type *SrcTy = I.getOperand(0)->getType();
 | 
						|
  const Type *DestTy = I.getType();
 | 
						|
 | 
						|
  // Get the size of the types in bits, we'll need this later
 | 
						|
  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
 | 
						|
  unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
 | 
						|
 | 
						|
  Assert1(SrcTy->isFloatingPoint(),"FPExt only operates on FP", &I);
 | 
						|
  Assert1(DestTy->isFloatingPoint(),"FPExt only produces an FP", &I);
 | 
						|
  Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
 | 
						|
 | 
						|
  visitInstruction(I);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitUIToFPInst(UIToFPInst &I) {
 | 
						|
  // Get the source and destination types
 | 
						|
  const Type *SrcTy = I.getOperand(0)->getType();
 | 
						|
  const Type *DestTy = I.getType();
 | 
						|
 | 
						|
  Assert1(SrcTy->isInteger(),"UInt2FP source must be integral", &I);
 | 
						|
  Assert1(DestTy->isFloatingPoint(),"UInt2FP result must be FP", &I);
 | 
						|
 | 
						|
  visitInstruction(I);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitSIToFPInst(SIToFPInst &I) {
 | 
						|
  // Get the source and destination types
 | 
						|
  const Type *SrcTy = I.getOperand(0)->getType();
 | 
						|
  const Type *DestTy = I.getType();
 | 
						|
 | 
						|
  Assert1(SrcTy->isInteger(),"SInt2FP source must be integral", &I);
 | 
						|
  Assert1(DestTy->isFloatingPoint(),"SInt2FP result must be FP", &I);
 | 
						|
 | 
						|
  visitInstruction(I);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitFPToUIInst(FPToUIInst &I) {
 | 
						|
  // Get the source and destination types
 | 
						|
  const Type *SrcTy = I.getOperand(0)->getType();
 | 
						|
  const Type *DestTy = I.getType();
 | 
						|
 | 
						|
  Assert1(SrcTy->isFloatingPoint(),"FP2UInt source must be FP", &I);
 | 
						|
  Assert1(DestTy->isInteger(),"FP2UInt result must be integral", &I);
 | 
						|
 | 
						|
  visitInstruction(I);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitFPToSIInst(FPToSIInst &I) {
 | 
						|
  // Get the source and destination types
 | 
						|
  const Type *SrcTy = I.getOperand(0)->getType();
 | 
						|
  const Type *DestTy = I.getType();
 | 
						|
 | 
						|
  Assert1(SrcTy->isFloatingPoint(),"FPToSI source must be FP", &I);
 | 
						|
  Assert1(DestTy->isInteger(),"FP2ToI result must be integral", &I);
 | 
						|
 | 
						|
  visitInstruction(I);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
 | 
						|
  // Get the source and destination types
 | 
						|
  const Type *SrcTy = I.getOperand(0)->getType();
 | 
						|
  const Type *DestTy = I.getType();
 | 
						|
 | 
						|
  Assert1(isa<PointerType>(SrcTy), "PtrToInt source must be pointer", &I);
 | 
						|
  Assert1(DestTy->isInteger(), "PtrToInt result must be integral", &I);
 | 
						|
 | 
						|
  visitInstruction(I);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
 | 
						|
  // Get the source and destination types
 | 
						|
  const Type *SrcTy = I.getOperand(0)->getType();
 | 
						|
  const Type *DestTy = I.getType();
 | 
						|
 | 
						|
  Assert1(SrcTy->isInteger(), "IntToPtr source must be an integral", &I);
 | 
						|
  Assert1(isa<PointerType>(DestTy), "IntToPtr result must be a pointer",&I);
 | 
						|
 | 
						|
  visitInstruction(I);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitBitCastInst(BitCastInst &I) {
 | 
						|
  // Get the source and destination types
 | 
						|
  const Type *SrcTy = I.getOperand(0)->getType();
 | 
						|
  const Type *DestTy = I.getType();
 | 
						|
 | 
						|
  // Get the size of the types in bits, we'll need this later
 | 
						|
  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
 | 
						|
  unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
 | 
						|
 | 
						|
  // BitCast implies a no-op cast of type only. No bits change.
 | 
						|
  // However, you can't cast pointers to anything but pointers.
 | 
						|
  Assert1(isa<PointerType>(DestTy) == isa<PointerType>(DestTy),
 | 
						|
          "Bitcast requires both operands to be pointer or neither", &I);
 | 
						|
  Assert1(SrcBitSize == DestBitSize, "Bitcast requies types of same width", &I);
 | 
						|
 | 
						|
  visitInstruction(I);
 | 
						|
}
 | 
						|
 | 
						|
/// visitPHINode - Ensure that a PHI node is well formed.
 | 
						|
///
 | 
						|
void Verifier::visitPHINode(PHINode &PN) {
 | 
						|
  // Ensure that the PHI nodes are all grouped together at the top of the block.
 | 
						|
  // This can be tested by checking whether the instruction before this is
 | 
						|
  // either nonexistent (because this is begin()) or is a PHI node.  If not,
 | 
						|
  // then there is some other instruction before a PHI.
 | 
						|
  Assert2(&PN.getParent()->front() == &PN || isa<PHINode>(PN.getPrev()),
 | 
						|
          "PHI nodes not grouped at top of basic block!",
 | 
						|
          &PN, PN.getParent());
 | 
						|
 | 
						|
  // Check that all of the operands of the PHI node have the same type as the
 | 
						|
  // result.
 | 
						|
  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
 | 
						|
    Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
 | 
						|
            "PHI node operands are not the same type as the result!", &PN);
 | 
						|
 | 
						|
  // All other PHI node constraints are checked in the visitBasicBlock method.
 | 
						|
 | 
						|
  visitInstruction(PN);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitCallInst(CallInst &CI) {
 | 
						|
  Assert1(isa<PointerType>(CI.getOperand(0)->getType()),
 | 
						|
          "Called function must be a pointer!", &CI);
 | 
						|
  const PointerType *FPTy = cast<PointerType>(CI.getOperand(0)->getType());
 | 
						|
  Assert1(isa<FunctionType>(FPTy->getElementType()),
 | 
						|
          "Called function is not pointer to function type!", &CI);
 | 
						|
 | 
						|
  const FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
 | 
						|
 | 
						|
  // Verify that the correct number of arguments are being passed
 | 
						|
  if (FTy->isVarArg())
 | 
						|
    Assert1(CI.getNumOperands()-1 >= FTy->getNumParams(),
 | 
						|
            "Called function requires more parameters than were provided!",&CI);
 | 
						|
  else
 | 
						|
    Assert1(CI.getNumOperands()-1 == FTy->getNumParams(),
 | 
						|
            "Incorrect number of arguments passed to called function!", &CI);
 | 
						|
 | 
						|
  // Verify that all arguments to the call match the function type...
 | 
						|
  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
 | 
						|
    Assert3(CI.getOperand(i+1)->getType() == FTy->getParamType(i),
 | 
						|
            "Call parameter type does not match function signature!",
 | 
						|
            CI.getOperand(i+1), FTy->getParamType(i), &CI);
 | 
						|
 | 
						|
  if (Function *F = CI.getCalledFunction())
 | 
						|
    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
 | 
						|
      visitIntrinsicFunctionCall(ID, CI);
 | 
						|
 | 
						|
  visitInstruction(CI);
 | 
						|
}
 | 
						|
 | 
						|
/// visitBinaryOperator - Check that both arguments to the binary operator are
 | 
						|
/// of the same type!
 | 
						|
///
 | 
						|
void Verifier::visitBinaryOperator(BinaryOperator &B) {
 | 
						|
  Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
 | 
						|
          "Both operands to a binary operator are not of the same type!", &B);
 | 
						|
 | 
						|
  switch (B.getOpcode()) {
 | 
						|
  // Check that logical operators are only used with integral operands.
 | 
						|
  case Instruction::And:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
    Assert1(B.getType()->isInteger() ||
 | 
						|
            (isa<VectorType>(B.getType()) && 
 | 
						|
             cast<VectorType>(B.getType())->getElementType()->isInteger()),
 | 
						|
            "Logical operators only work with integral types!", &B);
 | 
						|
    Assert1(B.getType() == B.getOperand(0)->getType(),
 | 
						|
            "Logical operators must have same type for operands and result!",
 | 
						|
            &B);
 | 
						|
    break;
 | 
						|
  case Instruction::Shl:
 | 
						|
  case Instruction::LShr:
 | 
						|
  case Instruction::AShr:
 | 
						|
    Assert1(B.getType()->isInteger(),
 | 
						|
            "Shift must return an integer result!", &B);
 | 
						|
    Assert1(B.getType() == B.getOperand(0)->getType(),
 | 
						|
            "Shift return type must be same as operands!", &B);
 | 
						|
    /* FALL THROUGH */
 | 
						|
  default:
 | 
						|
    // Arithmetic operators only work on integer or fp values
 | 
						|
    Assert1(B.getType() == B.getOperand(0)->getType(),
 | 
						|
            "Arithmetic operators must have same type for operands and result!",
 | 
						|
            &B);
 | 
						|
    Assert1(B.getType()->isInteger() || B.getType()->isFloatingPoint() ||
 | 
						|
            isa<VectorType>(B.getType()),
 | 
						|
            "Arithmetic operators must have integer, fp, or vector type!", &B);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  visitInstruction(B);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitICmpInst(ICmpInst& IC) {
 | 
						|
  // Check that the operands are the same type
 | 
						|
  const Type* Op0Ty = IC.getOperand(0)->getType();
 | 
						|
  const Type* Op1Ty = IC.getOperand(1)->getType();
 | 
						|
  Assert1(Op0Ty == Op1Ty,
 | 
						|
          "Both operands to ICmp instruction are not of the same type!", &IC);
 | 
						|
  // Check that the operands are the right type
 | 
						|
  Assert1(Op0Ty->isInteger() || isa<PointerType>(Op0Ty),
 | 
						|
          "Invalid operand types for ICmp instruction", &IC);
 | 
						|
  visitInstruction(IC);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitFCmpInst(FCmpInst& FC) {
 | 
						|
  // Check that the operands are the same type
 | 
						|
  const Type* Op0Ty = FC.getOperand(0)->getType();
 | 
						|
  const Type* Op1Ty = FC.getOperand(1)->getType();
 | 
						|
  Assert1(Op0Ty == Op1Ty,
 | 
						|
          "Both operands to FCmp instruction are not of the same type!", &FC);
 | 
						|
  // Check that the operands are the right type
 | 
						|
  Assert1(Op0Ty->isFloatingPoint(),
 | 
						|
          "Invalid operand types for FCmp instruction", &FC);
 | 
						|
  visitInstruction(FC);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
 | 
						|
  Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
 | 
						|
                                              EI.getOperand(1)),
 | 
						|
          "Invalid extractelement operands!", &EI);
 | 
						|
  visitInstruction(EI);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitInsertElementInst(InsertElementInst &IE) {
 | 
						|
  Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
 | 
						|
                                             IE.getOperand(1),
 | 
						|
                                             IE.getOperand(2)),
 | 
						|
          "Invalid insertelement operands!", &IE);
 | 
						|
  visitInstruction(IE);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
 | 
						|
  Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
 | 
						|
                                             SV.getOperand(2)),
 | 
						|
          "Invalid shufflevector operands!", &SV);
 | 
						|
  Assert1(SV.getType() == SV.getOperand(0)->getType(),
 | 
						|
          "Result of shufflevector must match first operand type!", &SV);
 | 
						|
  
 | 
						|
  // Check to see if Mask is valid.
 | 
						|
  if (const ConstantVector *MV = dyn_cast<ConstantVector>(SV.getOperand(2))) {
 | 
						|
    for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) {
 | 
						|
      Assert1(isa<ConstantInt>(MV->getOperand(i)) ||
 | 
						|
              isa<UndefValue>(MV->getOperand(i)),
 | 
						|
              "Invalid shufflevector shuffle mask!", &SV);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    Assert1(isa<UndefValue>(SV.getOperand(2)) || 
 | 
						|
            isa<ConstantAggregateZero>(SV.getOperand(2)),
 | 
						|
            "Invalid shufflevector shuffle mask!", &SV);
 | 
						|
  }
 | 
						|
  
 | 
						|
  visitInstruction(SV);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
 | 
						|
  SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
 | 
						|
  const Type *ElTy =
 | 
						|
    GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(),
 | 
						|
                                      &Idxs[0], Idxs.size(), true);
 | 
						|
  Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
 | 
						|
  Assert2(isa<PointerType>(GEP.getType()) &&
 | 
						|
          cast<PointerType>(GEP.getType())->getElementType() == ElTy,
 | 
						|
          "GEP is not of right type for indices!", &GEP, ElTy);
 | 
						|
  visitInstruction(GEP);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitLoadInst(LoadInst &LI) {
 | 
						|
  const Type *ElTy =
 | 
						|
    cast<PointerType>(LI.getOperand(0)->getType())->getElementType();
 | 
						|
  Assert2(ElTy == LI.getType(),
 | 
						|
          "Load result type does not match pointer operand type!", &LI, ElTy);
 | 
						|
  visitInstruction(LI);
 | 
						|
}
 | 
						|
 | 
						|
void Verifier::visitStoreInst(StoreInst &SI) {
 | 
						|
  const Type *ElTy =
 | 
						|
    cast<PointerType>(SI.getOperand(1)->getType())->getElementType();
 | 
						|
  Assert2(ElTy == SI.getOperand(0)->getType(),
 | 
						|
          "Stored value type does not match pointer operand type!", &SI, ElTy);
 | 
						|
  visitInstruction(SI);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// verifyInstruction - Verify that an instruction is well formed.
 | 
						|
///
 | 
						|
void Verifier::visitInstruction(Instruction &I) {
 | 
						|
  BasicBlock *BB = I.getParent();
 | 
						|
  Assert1(BB, "Instruction not embedded in basic block!", &I);
 | 
						|
 | 
						|
  if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
 | 
						|
    for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
 | 
						|
         UI != UE; ++UI)
 | 
						|
      Assert1(*UI != (User*)&I ||
 | 
						|
              !EF->dominates(&BB->getParent()->getEntryBlock(), BB),
 | 
						|
              "Only PHI nodes may reference their own value!", &I);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that void typed values don't have names
 | 
						|
  Assert1(I.getType() != Type::VoidTy || !I.hasName(),
 | 
						|
          "Instruction has a name, but provides a void value!", &I);
 | 
						|
 | 
						|
  // Check that the return value of the instruction is either void or a legal
 | 
						|
  // value type.
 | 
						|
  Assert1(I.getType() == Type::VoidTy || I.getType()->isFirstClassType(),
 | 
						|
          "Instruction returns a non-scalar type!", &I);
 | 
						|
 | 
						|
  // Check that all uses of the instruction, if they are instructions
 | 
						|
  // themselves, actually have parent basic blocks.  If the use is not an
 | 
						|
  // instruction, it is an error!
 | 
						|
  for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
 | 
						|
       UI != UE; ++UI) {
 | 
						|
    Assert1(isa<Instruction>(*UI), "Use of instruction is not an instruction!",
 | 
						|
            *UI);
 | 
						|
    Instruction *Used = cast<Instruction>(*UI);
 | 
						|
    Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
 | 
						|
            " embeded in a basic block!", &I, Used);
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
 | 
						|
    Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I);
 | 
						|
 | 
						|
    // Check to make sure that only first-class-values are operands to
 | 
						|
    // instructions.
 | 
						|
    Assert1(I.getOperand(i)->getType()->isFirstClassType(),
 | 
						|
            "Instruction operands must be first-class values!", &I);
 | 
						|
  
 | 
						|
    if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
 | 
						|
      // Check to make sure that the "address of" an intrinsic function is never
 | 
						|
      // taken.
 | 
						|
      Assert1(!F->isIntrinsic() || (i == 0 && isa<CallInst>(I)),
 | 
						|
              "Cannot take the address of an intrinsic!", &I);
 | 
						|
    } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
 | 
						|
      Assert1(OpBB->getParent() == BB->getParent(),
 | 
						|
              "Referring to a basic block in another function!", &I);
 | 
						|
    } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
 | 
						|
      Assert1(OpArg->getParent() == BB->getParent(),
 | 
						|
              "Referring to an argument in another function!", &I);
 | 
						|
    } else if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) {
 | 
						|
      BasicBlock *OpBlock = Op->getParent();
 | 
						|
 | 
						|
      // Check that a definition dominates all of its uses.
 | 
						|
      if (!isa<PHINode>(I)) {
 | 
						|
        // Invoke results are only usable in the normal destination, not in the
 | 
						|
        // exceptional destination.
 | 
						|
        if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
 | 
						|
          OpBlock = II->getNormalDest();
 | 
						|
          
 | 
						|
          Assert2(OpBlock != II->getUnwindDest(),
 | 
						|
                  "No uses of invoke possible due to dominance structure!",
 | 
						|
                  Op, II);
 | 
						|
          
 | 
						|
          // If the normal successor of an invoke instruction has multiple
 | 
						|
          // predecessors, then the normal edge from the invoke is critical, so
 | 
						|
          // the invoke value can only be live if the destination block
 | 
						|
          // dominates all of it's predecessors (other than the invoke) or if
 | 
						|
          // the invoke value is only used by a phi in the successor.
 | 
						|
          if (!OpBlock->getSinglePredecessor() &&
 | 
						|
              EF->dominates(&BB->getParent()->getEntryBlock(), BB)) {
 | 
						|
            // The first case we allow is if the use is a PHI operand in the
 | 
						|
            // normal block, and if that PHI operand corresponds to the invoke's
 | 
						|
            // block.
 | 
						|
            bool Bad = true;
 | 
						|
            if (PHINode *PN = dyn_cast<PHINode>(&I))
 | 
						|
              if (PN->getParent() == OpBlock &&
 | 
						|
                  PN->getIncomingBlock(i/2) == Op->getParent())
 | 
						|
                Bad = false;
 | 
						|
            
 | 
						|
            // If it is used by something non-phi, then the other case is that
 | 
						|
            // 'OpBlock' dominates all of its predecessors other than the
 | 
						|
            // invoke.  In this case, the invoke value can still be used.
 | 
						|
            if (Bad) {
 | 
						|
              Bad = false;
 | 
						|
              for (pred_iterator PI = pred_begin(OpBlock),
 | 
						|
                   E = pred_end(OpBlock); PI != E; ++PI) {
 | 
						|
                if (*PI != II->getParent() && !EF->dominates(OpBlock, *PI)) {
 | 
						|
                  Bad = true;
 | 
						|
                  break;
 | 
						|
                }
 | 
						|
              }
 | 
						|
            }
 | 
						|
            Assert2(!Bad,
 | 
						|
                    "Invoke value defined on critical edge but not dead!", &I,
 | 
						|
                    Op);
 | 
						|
          }
 | 
						|
        } else if (OpBlock == BB) {
 | 
						|
          // If they are in the same basic block, make sure that the definition
 | 
						|
          // comes before the use.
 | 
						|
          Assert2(InstsInThisBlock.count(Op) ||
 | 
						|
                  !EF->dominates(&BB->getParent()->getEntryBlock(), BB),
 | 
						|
                  "Instruction does not dominate all uses!", Op, &I);
 | 
						|
        }
 | 
						|
 | 
						|
        // Definition must dominate use unless use is unreachable!
 | 
						|
        Assert2(EF->dominates(OpBlock, BB) ||
 | 
						|
                !EF->dominates(&BB->getParent()->getEntryBlock(), BB),
 | 
						|
                "Instruction does not dominate all uses!", Op, &I);
 | 
						|
      } else {
 | 
						|
        // PHI nodes are more difficult than other nodes because they actually
 | 
						|
        // "use" the value in the predecessor basic blocks they correspond to.
 | 
						|
        BasicBlock *PredBB = cast<BasicBlock>(I.getOperand(i+1));
 | 
						|
        Assert2(EF->dominates(OpBlock, PredBB) ||
 | 
						|
                !EF->dominates(&BB->getParent()->getEntryBlock(), PredBB),
 | 
						|
                "Instruction does not dominate all uses!", Op, &I);
 | 
						|
      }
 | 
						|
    } else if (isa<InlineAsm>(I.getOperand(i))) {
 | 
						|
      Assert1(i == 0 && isa<CallInst>(I),
 | 
						|
              "Cannot take the address of an inline asm!", &I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  InstsInThisBlock.insert(&I);
 | 
						|
}
 | 
						|
 | 
						|
/// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
 | 
						|
///
 | 
						|
void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
 | 
						|
  Function *IF = CI.getCalledFunction();
 | 
						|
  Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!", IF);
 | 
						|
  
 | 
						|
#define GET_INTRINSIC_VERIFIER
 | 
						|
#include "llvm/Intrinsics.gen"
 | 
						|
#undef GET_INTRINSIC_VERIFIER
 | 
						|
}
 | 
						|
 | 
						|
/// VerifyIntrinsicPrototype - TableGen emits calls to this function into
 | 
						|
/// Intrinsics.gen.  This implements a little state machine that verifies the
 | 
						|
/// prototype of intrinsics.
 | 
						|
void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F, ...) {
 | 
						|
  va_list VA;
 | 
						|
  va_start(VA, F);
 | 
						|
  
 | 
						|
  const FunctionType *FTy = F->getFunctionType();
 | 
						|
  
 | 
						|
  // For overloaded intrinsics, the Suffix of the function name must match the
 | 
						|
  // types of the arguments. This variable keeps track of the expected
 | 
						|
  // suffix, to be checked at the end.
 | 
						|
  std::string Suffix;
 | 
						|
 | 
						|
  // Note that "arg#0" is the return type.
 | 
						|
  for (unsigned ArgNo = 0; 1; ++ArgNo) {
 | 
						|
    int TypeID = va_arg(VA, int);
 | 
						|
 | 
						|
    if (TypeID == -2) {
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (TypeID == -1) {
 | 
						|
      if (ArgNo != FTy->getNumParams()+1)
 | 
						|
        CheckFailed("Intrinsic prototype has too many arguments!", F);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ArgNo == FTy->getNumParams()+1) {
 | 
						|
      CheckFailed("Intrinsic prototype has too few arguments!", F);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    const Type *Ty;
 | 
						|
    if (ArgNo == 0)
 | 
						|
      Ty = FTy->getReturnType();
 | 
						|
    else
 | 
						|
      Ty = FTy->getParamType(ArgNo-1);
 | 
						|
    
 | 
						|
    if (TypeID != Ty->getTypeID()) {
 | 
						|
      if (ArgNo == 0)
 | 
						|
        CheckFailed("Intrinsic prototype has incorrect result type!", F);
 | 
						|
      else
 | 
						|
        CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is wrong!",F);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (TypeID == Type::IntegerTyID) {
 | 
						|
      unsigned ExpectedBits = (unsigned) va_arg(VA, int);
 | 
						|
      unsigned GotBits = cast<IntegerType>(Ty)->getBitWidth();
 | 
						|
      if (ExpectedBits == 0) {
 | 
						|
        Suffix += ".i" + utostr(GotBits);
 | 
						|
      } else if (GotBits != ExpectedBits) {
 | 
						|
        std::string bitmsg = " Expected " + utostr(ExpectedBits) + " but got "+
 | 
						|
                             utostr(GotBits) + " bits.";
 | 
						|
        if (ArgNo == 0)
 | 
						|
          CheckFailed("Intrinsic prototype has incorrect integer result width!"
 | 
						|
                      + bitmsg, F);
 | 
						|
        else
 | 
						|
          CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " has "
 | 
						|
                      "incorrect integer width!" + bitmsg, F);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      // Check some constraints on various intrinsics.
 | 
						|
      switch (ID) {
 | 
						|
        default: break; // Not everything needs to be checked.
 | 
						|
        case Intrinsic::bswap:
 | 
						|
          if (GotBits < 16 || GotBits % 16 != 0)
 | 
						|
            CheckFailed("Intrinsic requires even byte width argument", F);
 | 
						|
          /* FALL THROUGH */
 | 
						|
        case Intrinsic::part_set:
 | 
						|
        case Intrinsic::part_select:
 | 
						|
          if (ArgNo == 1) {
 | 
						|
            unsigned ResultBits = 
 | 
						|
              cast<IntegerType>(FTy->getReturnType())->getBitWidth();
 | 
						|
            if (GotBits != ResultBits)
 | 
						|
              CheckFailed("Intrinsic requires the bit widths of the first "
 | 
						|
                          "parameter and the result to match", F);
 | 
						|
          }
 | 
						|
          break;
 | 
						|
      }
 | 
						|
    } else if (TypeID == Type::VectorTyID) {
 | 
						|
      // If this is a packed argument, verify the number and type of elements.
 | 
						|
      const VectorType *PTy = cast<VectorType>(Ty);
 | 
						|
      int ElemTy = va_arg(VA, int);
 | 
						|
      if (ElemTy != PTy->getElementType()->getTypeID()) {
 | 
						|
        CheckFailed("Intrinsic prototype has incorrect vector element type!",
 | 
						|
                    F);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      if (ElemTy == Type::IntegerTyID) {
 | 
						|
        unsigned NumBits = (unsigned)va_arg(VA, int);
 | 
						|
        unsigned ExpectedBits = 
 | 
						|
          cast<IntegerType>(PTy->getElementType())->getBitWidth();
 | 
						|
        if (NumBits != ExpectedBits) {
 | 
						|
          CheckFailed("Intrinsic prototype has incorrect vector element type!",
 | 
						|
                      F);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if ((unsigned)va_arg(VA, int) != PTy->getNumElements()) {
 | 
						|
        CheckFailed("Intrinsic prototype has incorrect number of "
 | 
						|
                    "vector elements!",F);
 | 
						|
          break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  va_end(VA);
 | 
						|
 | 
						|
  // If we computed a Suffix then the intrinsic is overloaded and we need to 
 | 
						|
  // make sure that the name of the function is correct. We add the suffix to
 | 
						|
  // the name of the intrinsic and compare against the given function name. If
 | 
						|
  // they are not the same, the function name is invalid. This ensures that
 | 
						|
  // overloading of intrinsics uses a sane and consistent naming convention.
 | 
						|
  if (!Suffix.empty()) {
 | 
						|
    std::string Name(Intrinsic::getName(ID));
 | 
						|
    if (Name + Suffix != F->getName())
 | 
						|
      CheckFailed("Overloaded intrinsic has incorrect suffix: '" +
 | 
						|
                  F->getName().substr(Name.length()) + "'. It should be '" +
 | 
						|
                  Suffix + "'", F);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Implement the public interfaces to this file...
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) {
 | 
						|
  return new Verifier(action);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// verifyFunction - Create
 | 
						|
bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) {
 | 
						|
  Function &F = const_cast<Function&>(f);
 | 
						|
  assert(!F.isDeclaration() && "Cannot verify external functions");
 | 
						|
 | 
						|
  FunctionPassManager FPM(new ExistingModuleProvider(F.getParent()));
 | 
						|
  Verifier *V = new Verifier(action);
 | 
						|
  FPM.add(V);
 | 
						|
  FPM.run(F);
 | 
						|
  return V->Broken;
 | 
						|
}
 | 
						|
 | 
						|
/// verifyModule - Check a module for errors, printing messages on stderr.
 | 
						|
/// Return true if the module is corrupt.
 | 
						|
///
 | 
						|
bool llvm::verifyModule(const Module &M, VerifierFailureAction action,
 | 
						|
                        std::string *ErrorInfo) {
 | 
						|
  PassManager PM;
 | 
						|
  Verifier *V = new Verifier(action);
 | 
						|
  PM.add(V);
 | 
						|
  PM.run((Module&)M);
 | 
						|
  
 | 
						|
  if (ErrorInfo && V->Broken)
 | 
						|
    *ErrorInfo = V->msgs.str();
 | 
						|
  return V->Broken;
 | 
						|
}
 | 
						|
 | 
						|
// vim: sw=2
 |