mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186371 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			739 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			739 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the LoopInfo class that is used to identify natural loops
 | |
| // and determine the loop depth of various nodes of the CFG.  Note that the
 | |
| // loops identified may actually be several natural loops that share the same
 | |
| // header node... not just a single natural loop.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Analysis/LoopInfoImpl.h"
 | |
| #include "llvm/Analysis/LoopIterator.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/Assembly/Writer.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Metadata.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
 | |
| template class llvm::LoopBase<BasicBlock, Loop>;
 | |
| template class llvm::LoopInfoBase<BasicBlock, Loop>;
 | |
| 
 | |
| // Always verify loopinfo if expensive checking is enabled.
 | |
| #ifdef XDEBUG
 | |
| static bool VerifyLoopInfo = true;
 | |
| #else
 | |
| static bool VerifyLoopInfo = false;
 | |
| #endif
 | |
| static cl::opt<bool,true>
 | |
| VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
 | |
|                 cl::desc("Verify loop info (time consuming)"));
 | |
| 
 | |
| char LoopInfo::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(LoopInfo, "loops", "Natural Loop Information", true, true)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTree)
 | |
| INITIALIZE_PASS_END(LoopInfo, "loops", "Natural Loop Information", true, true)
 | |
| 
 | |
| // Loop identifier metadata name.
 | |
| static const char *const LoopMDName = "llvm.loop";
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Loop implementation
 | |
| //
 | |
| 
 | |
| /// isLoopInvariant - Return true if the specified value is loop invariant
 | |
| ///
 | |
| bool Loop::isLoopInvariant(Value *V) const {
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|     return !contains(I);
 | |
|   return true;  // All non-instructions are loop invariant
 | |
| }
 | |
| 
 | |
| /// hasLoopInvariantOperands - Return true if all the operands of the
 | |
| /// specified instruction are loop invariant.
 | |
| bool Loop::hasLoopInvariantOperands(Instruction *I) const {
 | |
|   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | |
|     if (!isLoopInvariant(I->getOperand(i)))
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// makeLoopInvariant - If the given value is an instruciton inside of the
 | |
| /// loop and it can be hoisted, do so to make it trivially loop-invariant.
 | |
| /// Return true if the value after any hoisting is loop invariant. This
 | |
| /// function can be used as a slightly more aggressive replacement for
 | |
| /// isLoopInvariant.
 | |
| ///
 | |
| /// If InsertPt is specified, it is the point to hoist instructions to.
 | |
| /// If null, the terminator of the loop preheader is used.
 | |
| ///
 | |
| bool Loop::makeLoopInvariant(Value *V, bool &Changed,
 | |
|                              Instruction *InsertPt) const {
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|     return makeLoopInvariant(I, Changed, InsertPt);
 | |
|   return true;  // All non-instructions are loop-invariant.
 | |
| }
 | |
| 
 | |
| /// makeLoopInvariant - If the given instruction is inside of the
 | |
| /// loop and it can be hoisted, do so to make it trivially loop-invariant.
 | |
| /// Return true if the instruction after any hoisting is loop invariant. This
 | |
| /// function can be used as a slightly more aggressive replacement for
 | |
| /// isLoopInvariant.
 | |
| ///
 | |
| /// If InsertPt is specified, it is the point to hoist instructions to.
 | |
| /// If null, the terminator of the loop preheader is used.
 | |
| ///
 | |
| bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
 | |
|                              Instruction *InsertPt) const {
 | |
|   // Test if the value is already loop-invariant.
 | |
|   if (isLoopInvariant(I))
 | |
|     return true;
 | |
|   if (!isSafeToSpeculativelyExecute(I))
 | |
|     return false;
 | |
|   if (I->mayReadFromMemory())
 | |
|     return false;
 | |
|   // The landingpad instruction is immobile.
 | |
|   if (isa<LandingPadInst>(I))
 | |
|     return false;
 | |
|   // Determine the insertion point, unless one was given.
 | |
|   if (!InsertPt) {
 | |
|     BasicBlock *Preheader = getLoopPreheader();
 | |
|     // Without a preheader, hoisting is not feasible.
 | |
|     if (!Preheader)
 | |
|       return false;
 | |
|     InsertPt = Preheader->getTerminator();
 | |
|   }
 | |
|   // Don't hoist instructions with loop-variant operands.
 | |
|   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | |
|     if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt))
 | |
|       return false;
 | |
| 
 | |
|   // Hoist.
 | |
|   I->moveBefore(InsertPt);
 | |
|   Changed = true;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// getCanonicalInductionVariable - Check to see if the loop has a canonical
 | |
| /// induction variable: an integer recurrence that starts at 0 and increments
 | |
| /// by one each time through the loop.  If so, return the phi node that
 | |
| /// corresponds to it.
 | |
| ///
 | |
| /// The IndVarSimplify pass transforms loops to have a canonical induction
 | |
| /// variable.
 | |
| ///
 | |
| PHINode *Loop::getCanonicalInductionVariable() const {
 | |
|   BasicBlock *H = getHeader();
 | |
| 
 | |
|   BasicBlock *Incoming = 0, *Backedge = 0;
 | |
|   pred_iterator PI = pred_begin(H);
 | |
|   assert(PI != pred_end(H) &&
 | |
|          "Loop must have at least one backedge!");
 | |
|   Backedge = *PI++;
 | |
|   if (PI == pred_end(H)) return 0;  // dead loop
 | |
|   Incoming = *PI++;
 | |
|   if (PI != pred_end(H)) return 0;  // multiple backedges?
 | |
| 
 | |
|   if (contains(Incoming)) {
 | |
|     if (contains(Backedge))
 | |
|       return 0;
 | |
|     std::swap(Incoming, Backedge);
 | |
|   } else if (!contains(Backedge))
 | |
|     return 0;
 | |
| 
 | |
|   // Loop over all of the PHI nodes, looking for a canonical indvar.
 | |
|   for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
 | |
|     PHINode *PN = cast<PHINode>(I);
 | |
|     if (ConstantInt *CI =
 | |
|         dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
 | |
|       if (CI->isNullValue())
 | |
|         if (Instruction *Inc =
 | |
|             dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
 | |
|           if (Inc->getOpcode() == Instruction::Add &&
 | |
|                 Inc->getOperand(0) == PN)
 | |
|             if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
 | |
|               if (CI->equalsInt(1))
 | |
|                 return PN;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// isLCSSAForm - Return true if the Loop is in LCSSA form
 | |
| bool Loop::isLCSSAForm(DominatorTree &DT) const {
 | |
|   // Sort the blocks vector so that we can use binary search to do quick
 | |
|   // lookups.
 | |
|   SmallPtrSet<BasicBlock*, 16> LoopBBs(block_begin(), block_end());
 | |
| 
 | |
|   for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
 | |
|     BasicBlock *BB = *BI;
 | |
|     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I)
 | |
|       for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
 | |
|            ++UI) {
 | |
|         User *U = *UI;
 | |
|         BasicBlock *UserBB = cast<Instruction>(U)->getParent();
 | |
|         if (PHINode *P = dyn_cast<PHINode>(U))
 | |
|           UserBB = P->getIncomingBlock(UI);
 | |
| 
 | |
|         // Check the current block, as a fast-path, before checking whether
 | |
|         // the use is anywhere in the loop.  Most values are used in the same
 | |
|         // block they are defined in.  Also, blocks not reachable from the
 | |
|         // entry are special; uses in them don't need to go through PHIs.
 | |
|         if (UserBB != BB &&
 | |
|             !LoopBBs.count(UserBB) &&
 | |
|             DT.isReachableFromEntry(UserBB))
 | |
|           return false;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isLoopSimplifyForm - Return true if the Loop is in the form that
 | |
| /// the LoopSimplify form transforms loops to, which is sometimes called
 | |
| /// normal form.
 | |
| bool Loop::isLoopSimplifyForm() const {
 | |
|   // Normal-form loops have a preheader, a single backedge, and all of their
 | |
|   // exits have all their predecessors inside the loop.
 | |
|   return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
 | |
| }
 | |
| 
 | |
| /// isSafeToClone - Return true if the loop body is safe to clone in practice.
 | |
| /// Routines that reform the loop CFG and split edges often fail on indirectbr.
 | |
| bool Loop::isSafeToClone() const {
 | |
|   // Return false if any loop blocks contain indirectbrs, or there are any calls
 | |
|   // to noduplicate functions.
 | |
|   for (Loop::block_iterator I = block_begin(), E = block_end(); I != E; ++I) {
 | |
|     if (isa<IndirectBrInst>((*I)->getTerminator())) {
 | |
|       return false;
 | |
|     } else if (const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator())) {
 | |
|       if (II->hasFnAttr(Attribute::NoDuplicate))
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     for (BasicBlock::iterator BI = (*I)->begin(), BE = (*I)->end(); BI != BE; ++BI) {
 | |
|       if (const CallInst *CI = dyn_cast<CallInst>(BI)) {
 | |
|         if (CI->hasFnAttr(Attribute::NoDuplicate))
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| MDNode *Loop::getLoopID() const {
 | |
|   MDNode *LoopID = 0;
 | |
|   if (isLoopSimplifyForm()) {
 | |
|     LoopID = getLoopLatch()->getTerminator()->getMetadata(LoopMDName);
 | |
|   } else {
 | |
|     // Go through each predecessor of the loop header and check the
 | |
|     // terminator for the metadata.
 | |
|     BasicBlock *H = getHeader();
 | |
|     for (block_iterator I = block_begin(), IE = block_end(); I != IE; ++I) {
 | |
|       TerminatorInst *TI = (*I)->getTerminator();
 | |
|       MDNode *MD = 0;
 | |
| 
 | |
|       // Check if this terminator branches to the loop header.
 | |
|       for (unsigned i = 0, ie = TI->getNumSuccessors(); i != ie; ++i) {
 | |
|         if (TI->getSuccessor(i) == H) {
 | |
|           MD = TI->getMetadata(LoopMDName);
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if (!MD)
 | |
|         return 0;
 | |
| 
 | |
|       if (!LoopID)
 | |
|         LoopID = MD;
 | |
|       else if (MD != LoopID)
 | |
|         return 0;
 | |
|     }
 | |
|   }
 | |
|   if (!LoopID || LoopID->getNumOperands() == 0 ||
 | |
|       LoopID->getOperand(0) != LoopID)
 | |
|     return 0;
 | |
|   return LoopID;
 | |
| }
 | |
| 
 | |
| void Loop::setLoopID(MDNode *LoopID) const {
 | |
|   assert(LoopID && "Loop ID should not be null");
 | |
|   assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand");
 | |
|   assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself");
 | |
| 
 | |
|   if (isLoopSimplifyForm()) {
 | |
|     getLoopLatch()->getTerminator()->setMetadata(LoopMDName, LoopID);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   BasicBlock *H = getHeader();
 | |
|   for (block_iterator I = block_begin(), IE = block_end(); I != IE; ++I) {
 | |
|     TerminatorInst *TI = (*I)->getTerminator();
 | |
|     for (unsigned i = 0, ie = TI->getNumSuccessors(); i != ie; ++i) {
 | |
|       if (TI->getSuccessor(i) == H)
 | |
|         TI->setMetadata(LoopMDName, LoopID);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool Loop::isAnnotatedParallel() const {
 | |
|   MDNode *desiredLoopIdMetadata = getLoopID();
 | |
| 
 | |
|   if (!desiredLoopIdMetadata)
 | |
|       return false;
 | |
| 
 | |
|   // The loop branch contains the parallel loop metadata. In order to ensure
 | |
|   // that any parallel-loop-unaware optimization pass hasn't added loop-carried
 | |
|   // dependencies (thus converted the loop back to a sequential loop), check
 | |
|   // that all the memory instructions in the loop contain parallelism metadata
 | |
|   // that point to the same unique "loop id metadata" the loop branch does.
 | |
|   for (block_iterator BB = block_begin(), BE = block_end(); BB != BE; ++BB) {
 | |
|     for (BasicBlock::iterator II = (*BB)->begin(), EE = (*BB)->end();
 | |
|          II != EE; II++) {
 | |
| 
 | |
|       if (!II->mayReadOrWriteMemory())
 | |
|         continue;
 | |
| 
 | |
|       if (!II->getMetadata("llvm.mem.parallel_loop_access"))
 | |
|         return false;
 | |
| 
 | |
|       // The memory instruction can refer to the loop identifier metadata
 | |
|       // directly or indirectly through another list metadata (in case of
 | |
|       // nested parallel loops). The loop identifier metadata refers to
 | |
|       // itself so we can check both cases with the same routine.
 | |
|       MDNode *loopIdMD =
 | |
|           dyn_cast<MDNode>(II->getMetadata("llvm.mem.parallel_loop_access"));
 | |
|       bool loopIdMDFound = false;
 | |
|       for (unsigned i = 0, e = loopIdMD->getNumOperands(); i < e; ++i) {
 | |
|         if (loopIdMD->getOperand(i) == desiredLoopIdMetadata) {
 | |
|           loopIdMDFound = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (!loopIdMDFound)
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// hasDedicatedExits - Return true if no exit block for the loop
 | |
| /// has a predecessor that is outside the loop.
 | |
| bool Loop::hasDedicatedExits() const {
 | |
|   // Sort the blocks vector so that we can use binary search to do quick
 | |
|   // lookups.
 | |
|   SmallPtrSet<BasicBlock *, 16> LoopBBs(block_begin(), block_end());
 | |
|   // Each predecessor of each exit block of a normal loop is contained
 | |
|   // within the loop.
 | |
|   SmallVector<BasicBlock *, 4> ExitBlocks;
 | |
|   getExitBlocks(ExitBlocks);
 | |
|   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
 | |
|     for (pred_iterator PI = pred_begin(ExitBlocks[i]),
 | |
|          PE = pred_end(ExitBlocks[i]); PI != PE; ++PI)
 | |
|       if (!LoopBBs.count(*PI))
 | |
|         return false;
 | |
|   // All the requirements are met.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
 | |
| /// These are the blocks _outside of the current loop_ which are branched to.
 | |
| /// This assumes that loop exits are in canonical form.
 | |
| ///
 | |
| void
 | |
| Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
 | |
|   assert(hasDedicatedExits() &&
 | |
|          "getUniqueExitBlocks assumes the loop has canonical form exits!");
 | |
| 
 | |
|   // Sort the blocks vector so that we can use binary search to do quick
 | |
|   // lookups.
 | |
|   SmallVector<BasicBlock *, 128> LoopBBs(block_begin(), block_end());
 | |
|   std::sort(LoopBBs.begin(), LoopBBs.end());
 | |
| 
 | |
|   SmallVector<BasicBlock *, 32> switchExitBlocks;
 | |
| 
 | |
|   for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {
 | |
| 
 | |
|     BasicBlock *current = *BI;
 | |
|     switchExitBlocks.clear();
 | |
| 
 | |
|     for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) {
 | |
|       // If block is inside the loop then it is not a exit block.
 | |
|       if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
 | |
|         continue;
 | |
| 
 | |
|       pred_iterator PI = pred_begin(*I);
 | |
|       BasicBlock *firstPred = *PI;
 | |
| 
 | |
|       // If current basic block is this exit block's first predecessor
 | |
|       // then only insert exit block in to the output ExitBlocks vector.
 | |
|       // This ensures that same exit block is not inserted twice into
 | |
|       // ExitBlocks vector.
 | |
|       if (current != firstPred)
 | |
|         continue;
 | |
| 
 | |
|       // If a terminator has more then two successors, for example SwitchInst,
 | |
|       // then it is possible that there are multiple edges from current block
 | |
|       // to one exit block.
 | |
|       if (std::distance(succ_begin(current), succ_end(current)) <= 2) {
 | |
|         ExitBlocks.push_back(*I);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // In case of multiple edges from current block to exit block, collect
 | |
|       // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
 | |
|       // duplicate edges.
 | |
|       if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
 | |
|           == switchExitBlocks.end()) {
 | |
|         switchExitBlocks.push_back(*I);
 | |
|         ExitBlocks.push_back(*I);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
 | |
| /// block, return that block. Otherwise return null.
 | |
| BasicBlock *Loop::getUniqueExitBlock() const {
 | |
|   SmallVector<BasicBlock *, 8> UniqueExitBlocks;
 | |
|   getUniqueExitBlocks(UniqueExitBlocks);
 | |
|   if (UniqueExitBlocks.size() == 1)
 | |
|     return UniqueExitBlocks[0];
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| void Loop::dump() const {
 | |
|   print(dbgs());
 | |
| }
 | |
| #endif
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // UnloopUpdater implementation
 | |
| //
 | |
| 
 | |
| namespace {
 | |
| /// Find the new parent loop for all blocks within the "unloop" whose last
 | |
| /// backedges has just been removed.
 | |
| class UnloopUpdater {
 | |
|   Loop *Unloop;
 | |
|   LoopInfo *LI;
 | |
| 
 | |
|   LoopBlocksDFS DFS;
 | |
| 
 | |
|   // Map unloop's immediate subloops to their nearest reachable parents. Nested
 | |
|   // loops within these subloops will not change parents. However, an immediate
 | |
|   // subloop's new parent will be the nearest loop reachable from either its own
 | |
|   // exits *or* any of its nested loop's exits.
 | |
|   DenseMap<Loop*, Loop*> SubloopParents;
 | |
| 
 | |
|   // Flag the presence of an irreducible backedge whose destination is a block
 | |
|   // directly contained by the original unloop.
 | |
|   bool FoundIB;
 | |
| 
 | |
| public:
 | |
|   UnloopUpdater(Loop *UL, LoopInfo *LInfo) :
 | |
|     Unloop(UL), LI(LInfo), DFS(UL), FoundIB(false) {}
 | |
| 
 | |
|   void updateBlockParents();
 | |
| 
 | |
|   void removeBlocksFromAncestors();
 | |
| 
 | |
|   void updateSubloopParents();
 | |
| 
 | |
| protected:
 | |
|   Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// updateBlockParents - Update the parent loop for all blocks that are directly
 | |
| /// contained within the original "unloop".
 | |
| void UnloopUpdater::updateBlockParents() {
 | |
|   if (Unloop->getNumBlocks()) {
 | |
|     // Perform a post order CFG traversal of all blocks within this loop,
 | |
|     // propagating the nearest loop from sucessors to predecessors.
 | |
|     LoopBlocksTraversal Traversal(DFS, LI);
 | |
|     for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
 | |
|            POE = Traversal.end(); POI != POE; ++POI) {
 | |
| 
 | |
|       Loop *L = LI->getLoopFor(*POI);
 | |
|       Loop *NL = getNearestLoop(*POI, L);
 | |
| 
 | |
|       if (NL != L) {
 | |
|         // For reducible loops, NL is now an ancestor of Unloop.
 | |
|         assert((NL != Unloop && (!NL || NL->contains(Unloop))) &&
 | |
|                "uninitialized successor");
 | |
|         LI->changeLoopFor(*POI, NL);
 | |
|       }
 | |
|       else {
 | |
|         // Or the current block is part of a subloop, in which case its parent
 | |
|         // is unchanged.
 | |
|         assert((FoundIB || Unloop->contains(L)) && "uninitialized successor");
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // Each irreducible loop within the unloop induces a round of iteration using
 | |
|   // the DFS result cached by Traversal.
 | |
|   bool Changed = FoundIB;
 | |
|   for (unsigned NIters = 0; Changed; ++NIters) {
 | |
|     assert(NIters < Unloop->getNumBlocks() && "runaway iterative algorithm");
 | |
| 
 | |
|     // Iterate over the postorder list of blocks, propagating the nearest loop
 | |
|     // from successors to predecessors as before.
 | |
|     Changed = false;
 | |
|     for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
 | |
|            POE = DFS.endPostorder(); POI != POE; ++POI) {
 | |
| 
 | |
|       Loop *L = LI->getLoopFor(*POI);
 | |
|       Loop *NL = getNearestLoop(*POI, L);
 | |
|       if (NL != L) {
 | |
|         assert(NL != Unloop && (!NL || NL->contains(Unloop)) &&
 | |
|                "uninitialized successor");
 | |
|         LI->changeLoopFor(*POI, NL);
 | |
|         Changed = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// removeBlocksFromAncestors - Remove unloop's blocks from all ancestors below
 | |
| /// their new parents.
 | |
| void UnloopUpdater::removeBlocksFromAncestors() {
 | |
|   // Remove all unloop's blocks (including those in nested subloops) from
 | |
|   // ancestors below the new parent loop.
 | |
|   for (Loop::block_iterator BI = Unloop->block_begin(),
 | |
|          BE = Unloop->block_end(); BI != BE; ++BI) {
 | |
|     Loop *OuterParent = LI->getLoopFor(*BI);
 | |
|     if (Unloop->contains(OuterParent)) {
 | |
|       while (OuterParent->getParentLoop() != Unloop)
 | |
|         OuterParent = OuterParent->getParentLoop();
 | |
|       OuterParent = SubloopParents[OuterParent];
 | |
|     }
 | |
|     // Remove blocks from former Ancestors except Unloop itself which will be
 | |
|     // deleted.
 | |
|     for (Loop *OldParent = Unloop->getParentLoop(); OldParent != OuterParent;
 | |
|          OldParent = OldParent->getParentLoop()) {
 | |
|       assert(OldParent && "new loop is not an ancestor of the original");
 | |
|       OldParent->removeBlockFromLoop(*BI);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// updateSubloopParents - Update the parent loop for all subloops directly
 | |
| /// nested within unloop.
 | |
| void UnloopUpdater::updateSubloopParents() {
 | |
|   while (!Unloop->empty()) {
 | |
|     Loop *Subloop = *llvm::prior(Unloop->end());
 | |
|     Unloop->removeChildLoop(llvm::prior(Unloop->end()));
 | |
| 
 | |
|     assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
 | |
|     if (Loop *Parent = SubloopParents[Subloop])
 | |
|       Parent->addChildLoop(Subloop);
 | |
|     else
 | |
|       LI->addTopLevelLoop(Subloop);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getNearestLoop - Return the nearest parent loop among this block's
 | |
| /// successors. If a successor is a subloop header, consider its parent to be
 | |
| /// the nearest parent of the subloop's exits.
 | |
| ///
 | |
| /// For subloop blocks, simply update SubloopParents and return NULL.
 | |
| Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
 | |
| 
 | |
|   // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
 | |
|   // is considered uninitialized.
 | |
|   Loop *NearLoop = BBLoop;
 | |
| 
 | |
|   Loop *Subloop = 0;
 | |
|   if (NearLoop != Unloop && Unloop->contains(NearLoop)) {
 | |
|     Subloop = NearLoop;
 | |
|     // Find the subloop ancestor that is directly contained within Unloop.
 | |
|     while (Subloop->getParentLoop() != Unloop) {
 | |
|       Subloop = Subloop->getParentLoop();
 | |
|       assert(Subloop && "subloop is not an ancestor of the original loop");
 | |
|     }
 | |
|     // Get the current nearest parent of the Subloop exits, initially Unloop.
 | |
|     NearLoop =
 | |
|       SubloopParents.insert(std::make_pair(Subloop, Unloop)).first->second;
 | |
|   }
 | |
| 
 | |
|   succ_iterator I = succ_begin(BB), E = succ_end(BB);
 | |
|   if (I == E) {
 | |
|     assert(!Subloop && "subloop blocks must have a successor");
 | |
|     NearLoop = 0; // unloop blocks may now exit the function.
 | |
|   }
 | |
|   for (; I != E; ++I) {
 | |
|     if (*I == BB)
 | |
|       continue; // self loops are uninteresting
 | |
| 
 | |
|     Loop *L = LI->getLoopFor(*I);
 | |
|     if (L == Unloop) {
 | |
|       // This successor has not been processed. This path must lead to an
 | |
|       // irreducible backedge.
 | |
|       assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
 | |
|       FoundIB = true;
 | |
|     }
 | |
|     if (L != Unloop && Unloop->contains(L)) {
 | |
|       // Successor is in a subloop.
 | |
|       if (Subloop)
 | |
|         continue; // Branching within subloops. Ignore it.
 | |
| 
 | |
|       // BB branches from the original into a subloop header.
 | |
|       assert(L->getParentLoop() == Unloop && "cannot skip into nested loops");
 | |
| 
 | |
|       // Get the current nearest parent of the Subloop's exits.
 | |
|       L = SubloopParents[L];
 | |
|       // L could be Unloop if the only exit was an irreducible backedge.
 | |
|     }
 | |
|     if (L == Unloop) {
 | |
|       continue;
 | |
|     }
 | |
|     // Handle critical edges from Unloop into a sibling loop.
 | |
|     if (L && !L->contains(Unloop)) {
 | |
|       L = L->getParentLoop();
 | |
|     }
 | |
|     // Remember the nearest parent loop among successors or subloop exits.
 | |
|     if (NearLoop == Unloop || !NearLoop || NearLoop->contains(L))
 | |
|       NearLoop = L;
 | |
|   }
 | |
|   if (Subloop) {
 | |
|     SubloopParents[Subloop] = NearLoop;
 | |
|     return BBLoop;
 | |
|   }
 | |
|   return NearLoop;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // LoopInfo implementation
 | |
| //
 | |
| bool LoopInfo::runOnFunction(Function &) {
 | |
|   releaseMemory();
 | |
|   LI.Analyze(getAnalysis<DominatorTree>().getBase());
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// updateUnloop - The last backedge has been removed from a loop--now the
 | |
| /// "unloop". Find a new parent for the blocks contained within unloop and
 | |
| /// update the loop tree. We don't necessarily have valid dominators at this
 | |
| /// point, but LoopInfo is still valid except for the removal of this loop.
 | |
| ///
 | |
| /// Note that Unloop may now be an empty loop. Calling Loop::getHeader without
 | |
| /// checking first is illegal.
 | |
| void LoopInfo::updateUnloop(Loop *Unloop) {
 | |
| 
 | |
|   // First handle the special case of no parent loop to simplify the algorithm.
 | |
|   if (!Unloop->getParentLoop()) {
 | |
|     // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
 | |
|     for (Loop::block_iterator I = Unloop->block_begin(),
 | |
|          E = Unloop->block_end(); I != E; ++I) {
 | |
| 
 | |
|       // Don't reparent blocks in subloops.
 | |
|       if (getLoopFor(*I) != Unloop)
 | |
|         continue;
 | |
| 
 | |
|       // Blocks no longer have a parent but are still referenced by Unloop until
 | |
|       // the Unloop object is deleted.
 | |
|       LI.changeLoopFor(*I, 0);
 | |
|     }
 | |
| 
 | |
|     // Remove the loop from the top-level LoopInfo object.
 | |
|     for (LoopInfo::iterator I = LI.begin();; ++I) {
 | |
|       assert(I != LI.end() && "Couldn't find loop");
 | |
|       if (*I == Unloop) {
 | |
|         LI.removeLoop(I);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Move all of the subloops to the top-level.
 | |
|     while (!Unloop->empty())
 | |
|       LI.addTopLevelLoop(Unloop->removeChildLoop(llvm::prior(Unloop->end())));
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Update the parent loop for all blocks within the loop. Blocks within
 | |
|   // subloops will not change parents.
 | |
|   UnloopUpdater Updater(Unloop, this);
 | |
|   Updater.updateBlockParents();
 | |
| 
 | |
|   // Remove blocks from former ancestor loops.
 | |
|   Updater.removeBlocksFromAncestors();
 | |
| 
 | |
|   // Add direct subloops as children in their new parent loop.
 | |
|   Updater.updateSubloopParents();
 | |
| 
 | |
|   // Remove unloop from its parent loop.
 | |
|   Loop *ParentLoop = Unloop->getParentLoop();
 | |
|   for (Loop::iterator I = ParentLoop->begin();; ++I) {
 | |
|     assert(I != ParentLoop->end() && "Couldn't find loop");
 | |
|     if (*I == Unloop) {
 | |
|       ParentLoop->removeChildLoop(I);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void LoopInfo::verifyAnalysis() const {
 | |
|   // LoopInfo is a FunctionPass, but verifying every loop in the function
 | |
|   // each time verifyAnalysis is called is very expensive. The
 | |
|   // -verify-loop-info option can enable this. In order to perform some
 | |
|   // checking by default, LoopPass has been taught to call verifyLoop
 | |
|   // manually during loop pass sequences.
 | |
| 
 | |
|   if (!VerifyLoopInfo) return;
 | |
| 
 | |
|   DenseSet<const Loop*> Loops;
 | |
|   for (iterator I = begin(), E = end(); I != E; ++I) {
 | |
|     assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");
 | |
|     (*I)->verifyLoopNest(&Loops);
 | |
|   }
 | |
| 
 | |
|   // Verify that blocks are mapped to valid loops.
 | |
|   for (DenseMap<BasicBlock*, Loop*>::const_iterator I = LI.BBMap.begin(),
 | |
|          E = LI.BBMap.end(); I != E; ++I) {
 | |
|     assert(Loops.count(I->second) && "orphaned loop");
 | |
|     assert(I->second->contains(I->first) && "orphaned block");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesAll();
 | |
|   AU.addRequired<DominatorTree>();
 | |
| }
 | |
| 
 | |
| void LoopInfo::print(raw_ostream &OS, const Module*) const {
 | |
|   LI.print(OS);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // LoopBlocksDFS implementation
 | |
| //
 | |
| 
 | |
| /// Traverse the loop blocks and store the DFS result.
 | |
| /// Useful for clients that just want the final DFS result and don't need to
 | |
| /// visit blocks during the initial traversal.
 | |
| void LoopBlocksDFS::perform(LoopInfo *LI) {
 | |
|   LoopBlocksTraversal Traversal(*this, LI);
 | |
|   for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
 | |
|          POE = Traversal.end(); POI != POE; ++POI) ;
 | |
| }
 |