mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-25 00:33:15 +00:00
c0ccb8bb17
This nicely handles the most common case of virtual register sets, but also handles anticipated cases where we will map pointers to IDs. The goal is not to develop a completely generic SparseSet template. Instead we want to handle the expected uses within llvm without any template antics in the client code. I'm adding a bit of template nastiness here, and some assumption about expected usage in order to make the client code very clean. The expected common uses cases I'm designing for: - integer keys that need to be reindexed, and may map to additional data - densely numbered objects where we want pointer keys because no number->object map exists. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155227 91177308-0d34-0410-b5e6-96231b3b80d8
313 lines
9.8 KiB
C++
313 lines
9.8 KiB
C++
//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains some templates that are useful if you are working with the
|
|
// STL at all.
|
|
//
|
|
// No library is required when using these functions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ADT_STLEXTRAS_H
|
|
#define LLVM_ADT_STLEXTRAS_H
|
|
|
|
#include <cstddef> // for std::size_t
|
|
#include <cstdlib> // for qsort
|
|
#include <functional>
|
|
#include <iterator>
|
|
#include <utility> // for std::pair
|
|
|
|
namespace llvm {
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Extra additions to <functional>
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template<class Ty>
|
|
struct identity : public std::unary_function<Ty, Ty> {
|
|
Ty &operator()(Ty &self) const {
|
|
return self;
|
|
}
|
|
const Ty &operator()(const Ty &self) const {
|
|
return self;
|
|
}
|
|
};
|
|
|
|
template<class Ty>
|
|
struct less_ptr : public std::binary_function<Ty, Ty, bool> {
|
|
bool operator()(const Ty* left, const Ty* right) const {
|
|
return *left < *right;
|
|
}
|
|
};
|
|
|
|
template<class Ty>
|
|
struct greater_ptr : public std::binary_function<Ty, Ty, bool> {
|
|
bool operator()(const Ty* left, const Ty* right) const {
|
|
return *right < *left;
|
|
}
|
|
};
|
|
|
|
// deleter - Very very very simple method that is used to invoke operator
|
|
// delete on something. It is used like this:
|
|
//
|
|
// for_each(V.begin(), B.end(), deleter<Interval>);
|
|
//
|
|
template <class T>
|
|
static inline void deleter(T *Ptr) {
|
|
delete Ptr;
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Extra additions to <iterator>
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// mapped_iterator - This is a simple iterator adapter that causes a function to
|
|
// be dereferenced whenever operator* is invoked on the iterator.
|
|
//
|
|
template <class RootIt, class UnaryFunc>
|
|
class mapped_iterator {
|
|
RootIt current;
|
|
UnaryFunc Fn;
|
|
public:
|
|
typedef typename std::iterator_traits<RootIt>::iterator_category
|
|
iterator_category;
|
|
typedef typename std::iterator_traits<RootIt>::difference_type
|
|
difference_type;
|
|
typedef typename UnaryFunc::result_type value_type;
|
|
|
|
typedef void pointer;
|
|
//typedef typename UnaryFunc::result_type *pointer;
|
|
typedef void reference; // Can't modify value returned by fn
|
|
|
|
typedef RootIt iterator_type;
|
|
typedef mapped_iterator<RootIt, UnaryFunc> _Self;
|
|
|
|
inline const RootIt &getCurrent() const { return current; }
|
|
inline const UnaryFunc &getFunc() const { return Fn; }
|
|
|
|
inline explicit mapped_iterator(const RootIt &I, UnaryFunc F)
|
|
: current(I), Fn(F) {}
|
|
inline mapped_iterator(const mapped_iterator &It)
|
|
: current(It.current), Fn(It.Fn) {}
|
|
|
|
inline value_type operator*() const { // All this work to do this
|
|
return Fn(*current); // little change
|
|
}
|
|
|
|
_Self& operator++() { ++current; return *this; }
|
|
_Self& operator--() { --current; return *this; }
|
|
_Self operator++(int) { _Self __tmp = *this; ++current; return __tmp; }
|
|
_Self operator--(int) { _Self __tmp = *this; --current; return __tmp; }
|
|
_Self operator+ (difference_type n) const {
|
|
return _Self(current + n, Fn);
|
|
}
|
|
_Self& operator+= (difference_type n) { current += n; return *this; }
|
|
_Self operator- (difference_type n) const {
|
|
return _Self(current - n, Fn);
|
|
}
|
|
_Self& operator-= (difference_type n) { current -= n; return *this; }
|
|
reference operator[](difference_type n) const { return *(*this + n); }
|
|
|
|
inline bool operator!=(const _Self &X) const { return !operator==(X); }
|
|
inline bool operator==(const _Self &X) const { return current == X.current; }
|
|
inline bool operator< (const _Self &X) const { return current < X.current; }
|
|
|
|
inline difference_type operator-(const _Self &X) const {
|
|
return current - X.current;
|
|
}
|
|
};
|
|
|
|
template <class _Iterator, class Func>
|
|
inline mapped_iterator<_Iterator, Func>
|
|
operator+(typename mapped_iterator<_Iterator, Func>::difference_type N,
|
|
const mapped_iterator<_Iterator, Func>& X) {
|
|
return mapped_iterator<_Iterator, Func>(X.getCurrent() - N, X.getFunc());
|
|
}
|
|
|
|
|
|
// map_iterator - Provide a convenient way to create mapped_iterators, just like
|
|
// make_pair is useful for creating pairs...
|
|
//
|
|
template <class ItTy, class FuncTy>
|
|
inline mapped_iterator<ItTy, FuncTy> map_iterator(const ItTy &I, FuncTy F) {
|
|
return mapped_iterator<ItTy, FuncTy>(I, F);
|
|
}
|
|
|
|
|
|
// next/prior - These functions unlike std::advance do not modify the
|
|
// passed iterator but return a copy.
|
|
//
|
|
// next(myIt) returns copy of myIt incremented once
|
|
// next(myIt, n) returns copy of myIt incremented n times
|
|
// prior(myIt) returns copy of myIt decremented once
|
|
// prior(myIt, n) returns copy of myIt decremented n times
|
|
|
|
template <typename ItTy, typename Dist>
|
|
inline ItTy next(ItTy it, Dist n)
|
|
{
|
|
std::advance(it, n);
|
|
return it;
|
|
}
|
|
|
|
template <typename ItTy>
|
|
inline ItTy next(ItTy it)
|
|
{
|
|
return ++it;
|
|
}
|
|
|
|
template <typename ItTy, typename Dist>
|
|
inline ItTy prior(ItTy it, Dist n)
|
|
{
|
|
std::advance(it, -n);
|
|
return it;
|
|
}
|
|
|
|
template <typename ItTy>
|
|
inline ItTy prior(ItTy it)
|
|
{
|
|
return --it;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Extra additions to <utility>
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// tie - this function ties two objects and returns a temporary object
|
|
// that is assignable from a std::pair. This can be used to make code
|
|
// more readable when using values returned from functions bundled in
|
|
// a std::pair. Since an example is worth 1000 words:
|
|
//
|
|
// typedef std::map<int, int> Int2IntMap;
|
|
//
|
|
// Int2IntMap myMap;
|
|
// Int2IntMap::iterator where;
|
|
// bool inserted;
|
|
// tie(where, inserted) = myMap.insert(std::make_pair(123,456));
|
|
//
|
|
// if (inserted)
|
|
// // do stuff
|
|
// else
|
|
// // do other stuff
|
|
template <typename T1, typename T2>
|
|
struct tier {
|
|
typedef T1 &first_type;
|
|
typedef T2 &second_type;
|
|
|
|
first_type first;
|
|
second_type second;
|
|
|
|
tier(first_type f, second_type s) : first(f), second(s) { }
|
|
tier& operator=(const std::pair<T1, T2>& p) {
|
|
first = p.first;
|
|
second = p.second;
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
template <typename T1, typename T2>
|
|
inline tier<T1, T2> tie(T1& f, T2& s) {
|
|
return tier<T1, T2>(f, s);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Extra additions for arrays
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Find where an array ends (for ending iterators)
|
|
/// This returns a pointer to the byte immediately
|
|
/// after the end of an array.
|
|
template<class T, std::size_t N>
|
|
inline T *array_endof(T (&x)[N]) {
|
|
return x+N;
|
|
}
|
|
|
|
/// Find the length of an array.
|
|
template<class T, std::size_t N>
|
|
inline size_t array_lengthof(T (&)[N]) {
|
|
return N;
|
|
}
|
|
|
|
/// array_pod_sort_comparator - This is helper function for array_pod_sort,
|
|
/// which just uses operator< on T.
|
|
template<typename T>
|
|
static inline int array_pod_sort_comparator(const void *P1, const void *P2) {
|
|
if (*reinterpret_cast<const T*>(P1) < *reinterpret_cast<const T*>(P2))
|
|
return -1;
|
|
if (*reinterpret_cast<const T*>(P2) < *reinterpret_cast<const T*>(P1))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/// get_array_pad_sort_comparator - This is an internal helper function used to
|
|
/// get type deduction of T right.
|
|
template<typename T>
|
|
static int (*get_array_pad_sort_comparator(const T &))
|
|
(const void*, const void*) {
|
|
return array_pod_sort_comparator<T>;
|
|
}
|
|
|
|
|
|
/// array_pod_sort - This sorts an array with the specified start and end
|
|
/// extent. This is just like std::sort, except that it calls qsort instead of
|
|
/// using an inlined template. qsort is slightly slower than std::sort, but
|
|
/// most sorts are not performance critical in LLVM and std::sort has to be
|
|
/// template instantiated for each type, leading to significant measured code
|
|
/// bloat. This function should generally be used instead of std::sort where
|
|
/// possible.
|
|
///
|
|
/// This function assumes that you have simple POD-like types that can be
|
|
/// compared with operator< and can be moved with memcpy. If this isn't true,
|
|
/// you should use std::sort.
|
|
///
|
|
/// NOTE: If qsort_r were portable, we could allow a custom comparator and
|
|
/// default to std::less.
|
|
template<class IteratorTy>
|
|
static inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
|
|
// Don't dereference start iterator of empty sequence.
|
|
if (Start == End) return;
|
|
qsort(&*Start, End-Start, sizeof(*Start),
|
|
get_array_pad_sort_comparator(*Start));
|
|
}
|
|
|
|
template<class IteratorTy>
|
|
static inline void array_pod_sort(IteratorTy Start, IteratorTy End,
|
|
int (*Compare)(const void*, const void*)) {
|
|
// Don't dereference start iterator of empty sequence.
|
|
if (Start == End) return;
|
|
qsort(&*Start, End-Start, sizeof(*Start), Compare);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Extra additions to <algorithm>
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// For a container of pointers, deletes the pointers and then clears the
|
|
/// container.
|
|
template<typename Container>
|
|
void DeleteContainerPointers(Container &C) {
|
|
for (typename Container::iterator I = C.begin(), E = C.end(); I != E; ++I)
|
|
delete *I;
|
|
C.clear();
|
|
}
|
|
|
|
/// In a container of pairs (usually a map) whose second element is a pointer,
|
|
/// deletes the second elements and then clears the container.
|
|
template<typename Container>
|
|
void DeleteContainerSeconds(Container &C) {
|
|
for (typename Container::iterator I = C.begin(), E = C.end(); I != E; ++I)
|
|
delete I->second;
|
|
C.clear();
|
|
}
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|