mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	doing a lookup on the TargetMachine. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229995 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			481 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			481 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines a pass that optimizes call sequences on x86.
 | 
						|
// Currently, it converts movs of function parameters onto the stack into
 | 
						|
// pushes. This is beneficial for two main reasons:
 | 
						|
// 1) The push instruction encoding is much smaller than an esp-relative mov
 | 
						|
// 2) It is possible to push memory arguments directly. So, if the
 | 
						|
//    the transformation is preformed pre-reg-alloc, it can help relieve
 | 
						|
//    register pressure.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include <algorithm>
 | 
						|
 | 
						|
#include "X86.h"
 | 
						|
#include "X86InstrInfo.h"
 | 
						|
#include "X86Subtarget.h"
 | 
						|
#include "X86MachineFunctionInfo.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "x86-cf-opt"
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
    NoX86CFOpt("no-x86-call-frame-opt",
 | 
						|
               cl::desc("Avoid optimizing x86 call frames for size"),
 | 
						|
               cl::init(false), cl::Hidden);
 | 
						|
 | 
						|
namespace {
 | 
						|
class X86CallFrameOptimization : public MachineFunctionPass {
 | 
						|
public:
 | 
						|
  X86CallFrameOptimization() : MachineFunctionPass(ID) {}
 | 
						|
 | 
						|
  bool runOnMachineFunction(MachineFunction &MF) override;
 | 
						|
 | 
						|
private:
 | 
						|
  // Information we know about a particular call site
 | 
						|
  struct CallContext {
 | 
						|
    CallContext()
 | 
						|
        : Call(nullptr), SPCopy(nullptr), ExpectedDist(0),
 | 
						|
          MovVector(4, nullptr), NoStackParams(false), UsePush(false){};
 | 
						|
 | 
						|
    // Actuall call instruction
 | 
						|
    MachineInstr *Call;
 | 
						|
 | 
						|
    // A copy of the stack pointer
 | 
						|
    MachineInstr *SPCopy;
 | 
						|
 | 
						|
    // The total displacement of all passed parameters
 | 
						|
    int64_t ExpectedDist;
 | 
						|
 | 
						|
    // The sequence of movs used to pass the parameters
 | 
						|
    SmallVector<MachineInstr *, 4> MovVector;
 | 
						|
 | 
						|
    // True if this call site has no stack parameters
 | 
						|
    bool NoStackParams;
 | 
						|
 | 
						|
    // True of this callsite can use push instructions
 | 
						|
    bool UsePush;
 | 
						|
  };
 | 
						|
 | 
						|
  typedef DenseMap<MachineInstr *, CallContext> ContextMap;
 | 
						|
 | 
						|
  bool isLegal(MachineFunction &MF);
 | 
						|
  
 | 
						|
  bool isProfitable(MachineFunction &MF, ContextMap &CallSeqMap);
 | 
						|
 | 
						|
  void collectCallInfo(MachineFunction &MF, MachineBasicBlock &MBB,
 | 
						|
                       MachineBasicBlock::iterator I, CallContext &Context);
 | 
						|
 | 
						|
  bool adjustCallSequence(MachineFunction &MF, MachineBasicBlock::iterator I,
 | 
						|
                          const CallContext &Context);
 | 
						|
 | 
						|
  MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup,
 | 
						|
                                   unsigned Reg);
 | 
						|
 | 
						|
  const char *getPassName() const override { return "X86 Optimize Call Frame"; }
 | 
						|
 | 
						|
  const TargetInstrInfo *TII;
 | 
						|
  const TargetFrameLowering *TFL;
 | 
						|
  const MachineRegisterInfo *MRI;
 | 
						|
  static char ID;
 | 
						|
};
 | 
						|
 | 
						|
char X86CallFrameOptimization::ID = 0;
 | 
						|
}
 | 
						|
 | 
						|
FunctionPass *llvm::createX86CallFrameOptimization() {
 | 
						|
  return new X86CallFrameOptimization();
 | 
						|
}
 | 
						|
 | 
						|
// This checks whether the transformation is legal. 
 | 
						|
// Also returns false in cases where it's potentially legal, but
 | 
						|
// we don't even want to try.
 | 
						|
bool X86CallFrameOptimization::isLegal(MachineFunction &MF) {
 | 
						|
  if (NoX86CFOpt.getValue())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We currently only support call sequences where *all* parameters.
 | 
						|
  // are passed on the stack.
 | 
						|
  // No point in running this in 64-bit mode, since some arguments are
 | 
						|
  // passed in-register in all common calling conventions, so the pattern
 | 
						|
  // we're looking for will never match.
 | 
						|
  const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
 | 
						|
  if (STI.is64Bit())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // You would expect straight-line code between call-frame setup and
 | 
						|
  // call-frame destroy. You would be wrong. There are circumstances (e.g.
 | 
						|
  // CMOV_GR8 expansion of a select that feeds a function call!) where we can
 | 
						|
  // end up with the setup and the destroy in different basic blocks.
 | 
						|
  // This is bad, and breaks SP adjustment.
 | 
						|
  // So, check that all of the frames in the function are closed inside
 | 
						|
  // the same block, and, for good measure, that there are no nested frames.
 | 
						|
  int FrameSetupOpcode = TII->getCallFrameSetupOpcode();
 | 
						|
  int FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
 | 
						|
  for (MachineBasicBlock &BB : MF) {
 | 
						|
    bool InsideFrameSequence = false;
 | 
						|
    for (MachineInstr &MI : BB) {
 | 
						|
      if (MI.getOpcode() == FrameSetupOpcode) {
 | 
						|
        if (InsideFrameSequence)
 | 
						|
          return false;
 | 
						|
        InsideFrameSequence = true;
 | 
						|
      } else if (MI.getOpcode() == FrameDestroyOpcode) {
 | 
						|
        if (!InsideFrameSequence)
 | 
						|
          return false;
 | 
						|
        InsideFrameSequence = false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (InsideFrameSequence)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Check whether this trasnformation is profitable for a particular
 | 
						|
// function - in terms of code size.
 | 
						|
bool X86CallFrameOptimization::isProfitable(MachineFunction &MF, 
 | 
						|
  ContextMap &CallSeqMap) {
 | 
						|
  // This transformation is always a win when we do not expect to have
 | 
						|
  // a reserved call frame. Under other circumstances, it may be either
 | 
						|
  // a win or a loss, and requires a heuristic.
 | 
						|
  bool CannotReserveFrame = MF.getFrameInfo()->hasVarSizedObjects();
 | 
						|
  if (CannotReserveFrame)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Don't do this when not optimizing for size.
 | 
						|
  bool OptForSize =
 | 
						|
      MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize) ||
 | 
						|
      MF.getFunction()->hasFnAttribute(Attribute::MinSize);
 | 
						|
 | 
						|
  if (!OptForSize)
 | 
						|
    return false;
 | 
						|
 | 
						|
 | 
						|
  unsigned StackAlign = TFL->getStackAlignment();
 | 
						|
  
 | 
						|
  int64_t Advantage = 0;
 | 
						|
  for (auto CC : CallSeqMap) {
 | 
						|
    // Call sites where no parameters are passed on the stack
 | 
						|
    // do not affect the cost, since there needs to be no
 | 
						|
    // stack adjustment.
 | 
						|
    if (CC.second.NoStackParams)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (!CC.second.UsePush) {
 | 
						|
      // If we don't use pushes for a particular call site,
 | 
						|
      // we pay for not having a reserved call frame with an
 | 
						|
      // additional sub/add esp pair. The cost is ~3 bytes per instruction,
 | 
						|
      // depending on the size of the constant.
 | 
						|
      // TODO: Callee-pop functions should have a smaller penalty, because
 | 
						|
      // an add is needed even with a reserved call frame.
 | 
						|
      Advantage -= 6;
 | 
						|
    } else {
 | 
						|
      // We can use pushes. First, account for the fixed costs.
 | 
						|
      // We'll need a add after the call.
 | 
						|
      Advantage -= 3;
 | 
						|
      // If we have to realign the stack, we'll also need and sub before
 | 
						|
      if (CC.second.ExpectedDist % StackAlign)
 | 
						|
        Advantage -= 3;
 | 
						|
      // Now, for each push, we save ~3 bytes. For small constants, we actually,
 | 
						|
      // save more (up to 5 bytes), but 3 should be a good approximation.
 | 
						|
      Advantage += (CC.second.ExpectedDist / 4) * 3;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return (Advantage >= 0);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
  TII = MF.getSubtarget().getInstrInfo();
 | 
						|
  TFL = MF.getSubtarget().getFrameLowering();
 | 
						|
  MRI = &MF.getRegInfo();
 | 
						|
 | 
						|
  if (!isLegal(MF))
 | 
						|
    return false;
 | 
						|
 | 
						|
  int FrameSetupOpcode = TII->getCallFrameSetupOpcode();
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  ContextMap CallSeqMap;
 | 
						|
 | 
						|
  for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
 | 
						|
    for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ++I)
 | 
						|
      if (I->getOpcode() == FrameSetupOpcode) {
 | 
						|
        CallContext &Context = CallSeqMap[I];
 | 
						|
        collectCallInfo(MF, *BB, I, Context);
 | 
						|
      }
 | 
						|
 | 
						|
  if (!isProfitable(MF, CallSeqMap))
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (auto CC : CallSeqMap)
 | 
						|
    if (CC.second.UsePush)
 | 
						|
      Changed |= adjustCallSequence(MF, CC.first, CC.second);
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
void X86CallFrameOptimization::collectCallInfo(MachineFunction &MF,
 | 
						|
                                               MachineBasicBlock &MBB,
 | 
						|
                                               MachineBasicBlock::iterator I,
 | 
						|
                                               CallContext &Context) {
 | 
						|
  // Check that this particular call sequence is amenable to the
 | 
						|
  // transformation.
 | 
						|
  const X86RegisterInfo &RegInfo = *static_cast<const X86RegisterInfo *>(
 | 
						|
                                       MF.getSubtarget().getRegisterInfo());
 | 
						|
  unsigned StackPtr = RegInfo.getStackRegister();
 | 
						|
  int FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
 | 
						|
 | 
						|
  // We expect to enter this at the beginning of a call sequence
 | 
						|
  assert(I->getOpcode() == TII->getCallFrameSetupOpcode());
 | 
						|
  MachineBasicBlock::iterator FrameSetup = I++;
 | 
						|
 | 
						|
  // How much do we adjust the stack? This puts an upper bound on
 | 
						|
  // the number of parameters actually passed on it.
 | 
						|
  unsigned int MaxAdjust = FrameSetup->getOperand(0).getImm() / 4;  
 | 
						|
  
 | 
						|
  // A zero adjustment means no stack parameters
 | 
						|
  if (!MaxAdjust) {
 | 
						|
    Context.NoStackParams = true;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // For globals in PIC mode, we can have some LEAs here.
 | 
						|
  // Ignore them, they don't bother us.
 | 
						|
  // TODO: Extend this to something that covers more cases.
 | 
						|
  while (I->getOpcode() == X86::LEA32r)
 | 
						|
    ++I;
 | 
						|
 | 
						|
  // We expect a copy instruction here.
 | 
						|
  // TODO: The copy instruction is a lowering artifact.
 | 
						|
  //       We should also support a copy-less version, where the stack
 | 
						|
  //       pointer is used directly.
 | 
						|
  if (!I->isCopy() || !I->getOperand(0).isReg())
 | 
						|
    return;
 | 
						|
  Context.SPCopy = I++;
 | 
						|
  StackPtr = Context.SPCopy->getOperand(0).getReg();
 | 
						|
 | 
						|
  // Scan the call setup sequence for the pattern we're looking for.
 | 
						|
  // We only handle a simple case - a sequence of MOV32mi or MOV32mr
 | 
						|
  // instructions, that push a sequence of 32-bit values onto the stack, with
 | 
						|
  // no gaps between them.
 | 
						|
  if (MaxAdjust > 4)
 | 
						|
    Context.MovVector.resize(MaxAdjust, nullptr);
 | 
						|
 | 
						|
  do {
 | 
						|
    int Opcode = I->getOpcode();
 | 
						|
    if (Opcode != X86::MOV32mi && Opcode != X86::MOV32mr)
 | 
						|
      break;
 | 
						|
 | 
						|
    // We only want movs of the form:
 | 
						|
    // movl imm/r32, k(%esp)
 | 
						|
    // If we run into something else, bail.
 | 
						|
    // Note that AddrBaseReg may, counter to its name, not be a register,
 | 
						|
    // but rather a frame index.
 | 
						|
    // TODO: Support the fi case. This should probably work now that we
 | 
						|
    // have the infrastructure to track the stack pointer within a call
 | 
						|
    // sequence.
 | 
						|
    if (!I->getOperand(X86::AddrBaseReg).isReg() ||
 | 
						|
        (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) ||
 | 
						|
        !I->getOperand(X86::AddrScaleAmt).isImm() ||
 | 
						|
        (I->getOperand(X86::AddrScaleAmt).getImm() != 1) ||
 | 
						|
        (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) ||
 | 
						|
        (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) ||
 | 
						|
        !I->getOperand(X86::AddrDisp).isImm())
 | 
						|
      return;
 | 
						|
 | 
						|
    int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm();
 | 
						|
    assert(StackDisp >= 0 &&
 | 
						|
           "Negative stack displacement when passing parameters");
 | 
						|
 | 
						|
    // We really don't want to consider the unaligned case.
 | 
						|
    if (StackDisp % 4)
 | 
						|
      return;
 | 
						|
    StackDisp /= 4;
 | 
						|
 | 
						|
    assert((size_t)StackDisp < Context.MovVector.size() &&
 | 
						|
           "Function call has more parameters than the stack is adjusted for.");
 | 
						|
 | 
						|
    // If the same stack slot is being filled twice, something's fishy.
 | 
						|
    if (Context.MovVector[StackDisp] != nullptr)
 | 
						|
      return;
 | 
						|
    Context.MovVector[StackDisp] = I;
 | 
						|
 | 
						|
    ++I;
 | 
						|
  } while (I != MBB.end());
 | 
						|
 | 
						|
  // We now expect the end of the sequence - a call and a stack adjust.
 | 
						|
  if (I == MBB.end())
 | 
						|
    return;
 | 
						|
 | 
						|
  // For PCrel calls, we expect an additional COPY of the basereg.
 | 
						|
  // If we find one, skip it.
 | 
						|
  if (I->isCopy()) {
 | 
						|
    if (I->getOperand(1).getReg() ==
 | 
						|
        MF.getInfo<X86MachineFunctionInfo>()->getGlobalBaseReg())
 | 
						|
      ++I;
 | 
						|
    else
 | 
						|
      return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!I->isCall())
 | 
						|
    return;
 | 
						|
 | 
						|
  Context.Call = I;
 | 
						|
  if ((++I)->getOpcode() != FrameDestroyOpcode)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Now, go through the vector, and see that we don't have any gaps,
 | 
						|
  // but only a series of 32-bit MOVs.
 | 
						|
  auto MMI = Context.MovVector.begin(), MME = Context.MovVector.end();
 | 
						|
  for (; MMI != MME; ++MMI, Context.ExpectedDist += 4)
 | 
						|
    if (*MMI == nullptr)
 | 
						|
      break;
 | 
						|
 | 
						|
  // If the call had no parameters, do nothing
 | 
						|
  if (MMI == Context.MovVector.begin())
 | 
						|
    return;
 | 
						|
 | 
						|
  // We are either at the last parameter, or a gap.
 | 
						|
  // Make sure it's not a gap
 | 
						|
  for (; MMI != MME; ++MMI)
 | 
						|
    if (*MMI != nullptr)
 | 
						|
      return;
 | 
						|
 | 
						|
  Context.UsePush = true;
 | 
						|
  return;
 | 
						|
}
 | 
						|
 | 
						|
bool X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF,
 | 
						|
                                                  MachineBasicBlock::iterator I,
 | 
						|
                                                  const CallContext &Context) {
 | 
						|
  // Ok, we can in fact do the transformation for this call.
 | 
						|
  // Do not remove the FrameSetup instruction, but adjust the parameters.
 | 
						|
  // PEI will end up finalizing the handling of this.
 | 
						|
  MachineBasicBlock::iterator FrameSetup = I;
 | 
						|
  MachineBasicBlock &MBB = *(I->getParent());
 | 
						|
  FrameSetup->getOperand(1).setImm(Context.ExpectedDist);
 | 
						|
 | 
						|
  DebugLoc DL = I->getDebugLoc();
 | 
						|
  // Now, iterate through the vector in reverse order, and replace the movs
 | 
						|
  // with pushes. MOVmi/MOVmr doesn't have any defs, so no need to
 | 
						|
  // replace uses.
 | 
						|
  for (int Idx = (Context.ExpectedDist / 4) - 1; Idx >= 0; --Idx) {
 | 
						|
    MachineBasicBlock::iterator MOV = *Context.MovVector[Idx];
 | 
						|
    MachineOperand PushOp = MOV->getOperand(X86::AddrNumOperands);
 | 
						|
    if (MOV->getOpcode() == X86::MOV32mi) {
 | 
						|
      unsigned PushOpcode = X86::PUSHi32;
 | 
						|
      // If the operand is a small (8-bit) immediate, we can use a
 | 
						|
      // PUSH instruction with a shorter encoding.
 | 
						|
      // Note that isImm() may fail even though this is a MOVmi, because
 | 
						|
      // the operand can also be a symbol.
 | 
						|
      if (PushOp.isImm()) {
 | 
						|
        int64_t Val = PushOp.getImm();
 | 
						|
        if (isInt<8>(Val))
 | 
						|
          PushOpcode = X86::PUSH32i8;
 | 
						|
      }
 | 
						|
      BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)).addOperand(PushOp);
 | 
						|
    } else {
 | 
						|
      unsigned int Reg = PushOp.getReg();
 | 
						|
 | 
						|
      // If PUSHrmm is not slow on this target, try to fold the source of the
 | 
						|
      // push into the instruction.
 | 
						|
      const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
 | 
						|
      bool SlowPUSHrmm = ST.isAtom() || ST.isSLM();
 | 
						|
 | 
						|
      // Check that this is legal to fold. Right now, we're extremely
 | 
						|
      // conservative about that.
 | 
						|
      MachineInstr *DefMov = nullptr;
 | 
						|
      if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) {
 | 
						|
        MachineInstr *Push =
 | 
						|
            BuildMI(MBB, Context.Call, DL, TII->get(X86::PUSH32rmm));
 | 
						|
 | 
						|
        unsigned NumOps = DefMov->getDesc().getNumOperands();
 | 
						|
        for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
 | 
						|
          Push->addOperand(DefMov->getOperand(i));
 | 
						|
 | 
						|
        DefMov->eraseFromParent();
 | 
						|
      } else {
 | 
						|
        BuildMI(MBB, Context.Call, DL, TII->get(X86::PUSH32r))
 | 
						|
            .addReg(Reg)
 | 
						|
            .getInstr();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    MBB.erase(MOV);
 | 
						|
  }
 | 
						|
 | 
						|
  // The stack-pointer copy is no longer used in the call sequences.
 | 
						|
  // There should not be any other users, but we can't commit to that, so:
 | 
						|
  if (MRI->use_empty(Context.SPCopy->getOperand(0).getReg()))
 | 
						|
    Context.SPCopy->eraseFromParent();
 | 
						|
 | 
						|
  // Once we've done this, we need to make sure PEI doesn't assume a reserved
 | 
						|
  // frame.
 | 
						|
  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
 | 
						|
  FuncInfo->setHasPushSequences(true);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush(
 | 
						|
    MachineBasicBlock::iterator FrameSetup, unsigned Reg) {
 | 
						|
  // Do an extremely restricted form of load folding.
 | 
						|
  // ISel will often create patterns like:
 | 
						|
  // movl    4(%edi), %eax
 | 
						|
  // movl    8(%edi), %ecx
 | 
						|
  // movl    12(%edi), %edx
 | 
						|
  // movl    %edx, 8(%esp)
 | 
						|
  // movl    %ecx, 4(%esp)
 | 
						|
  // movl    %eax, (%esp)
 | 
						|
  // call
 | 
						|
  // Get rid of those with prejudice.
 | 
						|
  if (!TargetRegisterInfo::isVirtualRegister(Reg))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Make sure this is the only use of Reg.
 | 
						|
  if (!MRI->hasOneNonDBGUse(Reg))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  MachineBasicBlock::iterator DefMI = MRI->getVRegDef(Reg);
 | 
						|
 | 
						|
  // Make sure the def is a MOV from memory.
 | 
						|
  // If the def is an another block, give up.
 | 
						|
  if (DefMI->getOpcode() != X86::MOV32rm ||
 | 
						|
      DefMI->getParent() != FrameSetup->getParent())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Now, make sure everything else up until the ADJCALLSTACK is a sequence
 | 
						|
  // of MOVs. To be less conservative would require duplicating a lot of the
 | 
						|
  // logic from PeepholeOptimizer.
 | 
						|
  // FIXME: A possibly better approach would be to teach the PeepholeOptimizer
 | 
						|
  // to be smarter about folding into pushes.
 | 
						|
  for (auto I = DefMI; I != FrameSetup; ++I)
 | 
						|
    if (I->getOpcode() != X86::MOV32rm)
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
  return DefMI;
 | 
						|
}
 |