mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	This change does a few things: - Move some InstCombine transforms to InstSimplify - Run SimplifyCall from within InstCombine::visitCallInst - Teach InstSimplify to fold [us]mul_with_overflow(X, undef) to 0. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237995 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1924 lines
		
	
	
		
			74 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1924 lines
		
	
	
		
			74 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- InstCombineCalls.cpp -----------------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the visitCall and visitInvoke functions.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "InstCombineInternal.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/MemoryBuiltins.h"
 | |
| #include "llvm/IR/CallSite.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/IR/Statepoint.h"
 | |
| #include "llvm/Transforms/Utils/BuildLibCalls.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
 | |
| using namespace llvm;
 | |
| using namespace PatternMatch;
 | |
| 
 | |
| #define DEBUG_TYPE "instcombine"
 | |
| 
 | |
| STATISTIC(NumSimplified, "Number of library calls simplified");
 | |
| 
 | |
| /// getPromotedType - Return the specified type promoted as it would be to pass
 | |
| /// though a va_arg area.
 | |
| static Type *getPromotedType(Type *Ty) {
 | |
|   if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
 | |
|     if (ITy->getBitWidth() < 32)
 | |
|       return Type::getInt32Ty(Ty->getContext());
 | |
|   }
 | |
|   return Ty;
 | |
| }
 | |
| 
 | |
| /// reduceToSingleValueType - Given an aggregate type which ultimately holds a
 | |
| /// single scalar element, like {{{type}}} or [1 x type], return type.
 | |
| static Type *reduceToSingleValueType(Type *T) {
 | |
|   while (!T->isSingleValueType()) {
 | |
|     if (StructType *STy = dyn_cast<StructType>(T)) {
 | |
|       if (STy->getNumElements() == 1)
 | |
|         T = STy->getElementType(0);
 | |
|       else
 | |
|         break;
 | |
|     } else if (ArrayType *ATy = dyn_cast<ArrayType>(T)) {
 | |
|       if (ATy->getNumElements() == 1)
 | |
|         T = ATy->getElementType();
 | |
|       else
 | |
|         break;
 | |
|     } else
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   return T;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
 | |
|   unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), DL, MI, AC, DT);
 | |
|   unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), DL, MI, AC, DT);
 | |
|   unsigned MinAlign = std::min(DstAlign, SrcAlign);
 | |
|   unsigned CopyAlign = MI->getAlignment();
 | |
| 
 | |
|   if (CopyAlign < MinAlign) {
 | |
|     MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
 | |
|                                              MinAlign, false));
 | |
|     return MI;
 | |
|   }
 | |
| 
 | |
|   // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
 | |
|   // load/store.
 | |
|   ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getArgOperand(2));
 | |
|   if (!MemOpLength) return nullptr;
 | |
| 
 | |
|   // Source and destination pointer types are always "i8*" for intrinsic.  See
 | |
|   // if the size is something we can handle with a single primitive load/store.
 | |
|   // A single load+store correctly handles overlapping memory in the memmove
 | |
|   // case.
 | |
|   uint64_t Size = MemOpLength->getLimitedValue();
 | |
|   assert(Size && "0-sized memory transferring should be removed already.");
 | |
| 
 | |
|   if (Size > 8 || (Size&(Size-1)))
 | |
|     return nullptr;  // If not 1/2/4/8 bytes, exit.
 | |
| 
 | |
|   // Use an integer load+store unless we can find something better.
 | |
|   unsigned SrcAddrSp =
 | |
|     cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
 | |
|   unsigned DstAddrSp =
 | |
|     cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
 | |
| 
 | |
|   IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
 | |
|   Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
 | |
|   Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
 | |
| 
 | |
|   // Memcpy forces the use of i8* for the source and destination.  That means
 | |
|   // that if you're using memcpy to move one double around, you'll get a cast
 | |
|   // from double* to i8*.  We'd much rather use a double load+store rather than
 | |
|   // an i64 load+store, here because this improves the odds that the source or
 | |
|   // dest address will be promotable.  See if we can find a better type than the
 | |
|   // integer datatype.
 | |
|   Value *StrippedDest = MI->getArgOperand(0)->stripPointerCasts();
 | |
|   MDNode *CopyMD = nullptr;
 | |
|   if (StrippedDest != MI->getArgOperand(0)) {
 | |
|     Type *SrcETy = cast<PointerType>(StrippedDest->getType())
 | |
|                                     ->getElementType();
 | |
|     if (SrcETy->isSized() && DL.getTypeStoreSize(SrcETy) == Size) {
 | |
|       // The SrcETy might be something like {{{double}}} or [1 x double].  Rip
 | |
|       // down through these levels if so.
 | |
|       SrcETy = reduceToSingleValueType(SrcETy);
 | |
| 
 | |
|       if (SrcETy->isSingleValueType()) {
 | |
|         NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp);
 | |
|         NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp);
 | |
| 
 | |
|         // If the memcpy has metadata describing the members, see if we can
 | |
|         // get the TBAA tag describing our copy.
 | |
|         if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
 | |
|           if (M->getNumOperands() == 3 && M->getOperand(0) &&
 | |
|               mdconst::hasa<ConstantInt>(M->getOperand(0)) &&
 | |
|               mdconst::extract<ConstantInt>(M->getOperand(0))->isNullValue() &&
 | |
|               M->getOperand(1) &&
 | |
|               mdconst::hasa<ConstantInt>(M->getOperand(1)) &&
 | |
|               mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() ==
 | |
|                   Size &&
 | |
|               M->getOperand(2) && isa<MDNode>(M->getOperand(2)))
 | |
|             CopyMD = cast<MDNode>(M->getOperand(2));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the memcpy/memmove provides better alignment info than we can
 | |
|   // infer, use it.
 | |
|   SrcAlign = std::max(SrcAlign, CopyAlign);
 | |
|   DstAlign = std::max(DstAlign, CopyAlign);
 | |
| 
 | |
|   Value *Src = Builder->CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
 | |
|   Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
 | |
|   LoadInst *L = Builder->CreateLoad(Src, MI->isVolatile());
 | |
|   L->setAlignment(SrcAlign);
 | |
|   if (CopyMD)
 | |
|     L->setMetadata(LLVMContext::MD_tbaa, CopyMD);
 | |
|   StoreInst *S = Builder->CreateStore(L, Dest, MI->isVolatile());
 | |
|   S->setAlignment(DstAlign);
 | |
|   if (CopyMD)
 | |
|     S->setMetadata(LLVMContext::MD_tbaa, CopyMD);
 | |
| 
 | |
|   // Set the size of the copy to 0, it will be deleted on the next iteration.
 | |
|   MI->setArgOperand(2, Constant::getNullValue(MemOpLength->getType()));
 | |
|   return MI;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
 | |
|   unsigned Alignment = getKnownAlignment(MI->getDest(), DL, MI, AC, DT);
 | |
|   if (MI->getAlignment() < Alignment) {
 | |
|     MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
 | |
|                                              Alignment, false));
 | |
|     return MI;
 | |
|   }
 | |
| 
 | |
|   // Extract the length and alignment and fill if they are constant.
 | |
|   ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
 | |
|   ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
 | |
|   if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
 | |
|     return nullptr;
 | |
|   uint64_t Len = LenC->getLimitedValue();
 | |
|   Alignment = MI->getAlignment();
 | |
|   assert(Len && "0-sized memory setting should be removed already.");
 | |
| 
 | |
|   // memset(s,c,n) -> store s, c (for n=1,2,4,8)
 | |
|   if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
 | |
|     Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
 | |
| 
 | |
|     Value *Dest = MI->getDest();
 | |
|     unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
 | |
|     Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
 | |
|     Dest = Builder->CreateBitCast(Dest, NewDstPtrTy);
 | |
| 
 | |
|     // Alignment 0 is identity for alignment 1 for memset, but not store.
 | |
|     if (Alignment == 0) Alignment = 1;
 | |
| 
 | |
|     // Extract the fill value and store.
 | |
|     uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
 | |
|     StoreInst *S = Builder->CreateStore(ConstantInt::get(ITy, Fill), Dest,
 | |
|                                         MI->isVolatile());
 | |
|     S->setAlignment(Alignment);
 | |
| 
 | |
|     // Set the size of the copy to 0, it will be deleted on the next iteration.
 | |
|     MI->setLength(Constant::getNullValue(LenC->getType()));
 | |
|     return MI;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static Value *SimplifyX86insertps(const IntrinsicInst &II,
 | |
|                                   InstCombiner::BuilderTy &Builder) {
 | |
|   if (auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2))) {
 | |
|     VectorType *VecTy = cast<VectorType>(II.getType());
 | |
|     assert(VecTy->getNumElements() == 4 && "insertps with wrong vector type");
 | |
|     
 | |
|     // The immediate permute control byte looks like this:
 | |
|     //    [3:0] - zero mask for each 32-bit lane
 | |
|     //    [5:4] - select one 32-bit destination lane
 | |
|     //    [7:6] - select one 32-bit source lane
 | |
| 
 | |
|     uint8_t Imm = CInt->getZExtValue();
 | |
|     uint8_t ZMask = Imm & 0xf;
 | |
|     uint8_t DestLane = (Imm >> 4) & 0x3;
 | |
|     uint8_t SourceLane = (Imm >> 6) & 0x3;
 | |
| 
 | |
|     ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
 | |
| 
 | |
|     // If all zero mask bits are set, this was just a weird way to
 | |
|     // generate a zero vector.
 | |
|     if (ZMask == 0xf)
 | |
|       return ZeroVector;
 | |
| 
 | |
|     // Initialize by passing all of the first source bits through.
 | |
|     int ShuffleMask[4] = { 0, 1, 2, 3 };
 | |
| 
 | |
|     // We may replace the second operand with the zero vector.
 | |
|     Value *V1 = II.getArgOperand(1);
 | |
| 
 | |
|     if (ZMask) {
 | |
|       // If the zero mask is being used with a single input or the zero mask
 | |
|       // overrides the destination lane, this is a shuffle with the zero vector.
 | |
|       if ((II.getArgOperand(0) == II.getArgOperand(1)) ||
 | |
|           (ZMask & (1 << DestLane))) {
 | |
|         V1 = ZeroVector;
 | |
|         // We may still move 32-bits of the first source vector from one lane
 | |
|         // to another.
 | |
|         ShuffleMask[DestLane] = SourceLane;
 | |
|         // The zero mask may override the previous insert operation.
 | |
|         for (unsigned i = 0; i < 4; ++i)
 | |
|           if ((ZMask >> i) & 0x1)
 | |
|             ShuffleMask[i] = i + 4;
 | |
|       } else {
 | |
|         // TODO: Model this case as 2 shuffles or a 'logical and' plus shuffle?
 | |
|         return nullptr;
 | |
|       }
 | |
|     } else {
 | |
|       // Replace the selected destination lane with the selected source lane.
 | |
|       ShuffleMask[DestLane] = SourceLane + 4;
 | |
|     }
 | |
|   
 | |
|     return Builder.CreateShuffleVector(II.getArgOperand(0), V1, ShuffleMask);
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// The shuffle mask for a perm2*128 selects any two halves of two 256-bit
 | |
| /// source vectors, unless a zero bit is set. If a zero bit is set,
 | |
| /// then ignore that half of the mask and clear that half of the vector.
 | |
| static Value *SimplifyX86vperm2(const IntrinsicInst &II,
 | |
|                                 InstCombiner::BuilderTy &Builder) {
 | |
|   if (auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2))) {
 | |
|     VectorType *VecTy = cast<VectorType>(II.getType());
 | |
|     ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
 | |
| 
 | |
|     // The immediate permute control byte looks like this:
 | |
|     //    [1:0] - select 128 bits from sources for low half of destination
 | |
|     //    [2]   - ignore
 | |
|     //    [3]   - zero low half of destination
 | |
|     //    [5:4] - select 128 bits from sources for high half of destination
 | |
|     //    [6]   - ignore
 | |
|     //    [7]   - zero high half of destination
 | |
| 
 | |
|     uint8_t Imm = CInt->getZExtValue();
 | |
| 
 | |
|     bool LowHalfZero = Imm & 0x08;
 | |
|     bool HighHalfZero = Imm & 0x80;
 | |
| 
 | |
|     // If both zero mask bits are set, this was just a weird way to
 | |
|     // generate a zero vector.
 | |
|     if (LowHalfZero && HighHalfZero)
 | |
|       return ZeroVector;
 | |
| 
 | |
|     // If 0 or 1 zero mask bits are set, this is a simple shuffle.
 | |
|     unsigned NumElts = VecTy->getNumElements();
 | |
|     unsigned HalfSize = NumElts / 2;
 | |
|     SmallVector<int, 8> ShuffleMask(NumElts);
 | |
| 
 | |
|     // The high bit of the selection field chooses the 1st or 2nd operand.
 | |
|     bool LowInputSelect = Imm & 0x02;
 | |
|     bool HighInputSelect = Imm & 0x20;
 | |
|     
 | |
|     // The low bit of the selection field chooses the low or high half
 | |
|     // of the selected operand.
 | |
|     bool LowHalfSelect = Imm & 0x01;
 | |
|     bool HighHalfSelect = Imm & 0x10;
 | |
| 
 | |
|     // Determine which operand(s) are actually in use for this instruction.
 | |
|     Value *V0 = LowInputSelect ? II.getArgOperand(1) : II.getArgOperand(0);
 | |
|     Value *V1 = HighInputSelect ? II.getArgOperand(1) : II.getArgOperand(0);
 | |
|     
 | |
|     // If needed, replace operands based on zero mask.
 | |
|     V0 = LowHalfZero ? ZeroVector : V0;
 | |
|     V1 = HighHalfZero ? ZeroVector : V1;
 | |
|     
 | |
|     // Permute low half of result.
 | |
|     unsigned StartIndex = LowHalfSelect ? HalfSize : 0;
 | |
|     for (unsigned i = 0; i < HalfSize; ++i)
 | |
|       ShuffleMask[i] = StartIndex + i;
 | |
| 
 | |
|     // Permute high half of result.
 | |
|     StartIndex = HighHalfSelect ? HalfSize : 0;
 | |
|     StartIndex += NumElts;
 | |
|     for (unsigned i = 0; i < HalfSize; ++i)
 | |
|       ShuffleMask[i + HalfSize] = StartIndex + i;
 | |
| 
 | |
|     return Builder.CreateShuffleVector(V0, V1, ShuffleMask);
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// visitCallInst - CallInst simplification.  This mostly only handles folding
 | |
| /// of intrinsic instructions.  For normal calls, it allows visitCallSite to do
 | |
| /// the heavy lifting.
 | |
| ///
 | |
| Instruction *InstCombiner::visitCallInst(CallInst &CI) {
 | |
|   auto Args = CI.arg_operands();
 | |
|   if (Value *V = SimplifyCall(CI.getCalledValue(), Args.begin(), Args.end(), DL,
 | |
|                               TLI, DT, AC))
 | |
|     return ReplaceInstUsesWith(CI, V);
 | |
| 
 | |
|   if (isFreeCall(&CI, TLI))
 | |
|     return visitFree(CI);
 | |
| 
 | |
|   // If the caller function is nounwind, mark the call as nounwind, even if the
 | |
|   // callee isn't.
 | |
|   if (CI.getParent()->getParent()->doesNotThrow() &&
 | |
|       !CI.doesNotThrow()) {
 | |
|     CI.setDoesNotThrow();
 | |
|     return &CI;
 | |
|   }
 | |
| 
 | |
|   IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
 | |
|   if (!II) return visitCallSite(&CI);
 | |
| 
 | |
|   // Intrinsics cannot occur in an invoke, so handle them here instead of in
 | |
|   // visitCallSite.
 | |
|   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
 | |
|     bool Changed = false;
 | |
| 
 | |
|     // memmove/cpy/set of zero bytes is a noop.
 | |
|     if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
 | |
|       if (NumBytes->isNullValue())
 | |
|         return EraseInstFromFunction(CI);
 | |
| 
 | |
|       if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
 | |
|         if (CI->getZExtValue() == 1) {
 | |
|           // Replace the instruction with just byte operations.  We would
 | |
|           // transform other cases to loads/stores, but we don't know if
 | |
|           // alignment is sufficient.
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // No other transformations apply to volatile transfers.
 | |
|     if (MI->isVolatile())
 | |
|       return nullptr;
 | |
| 
 | |
|     // If we have a memmove and the source operation is a constant global,
 | |
|     // then the source and dest pointers can't alias, so we can change this
 | |
|     // into a call to memcpy.
 | |
|     if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
 | |
|       if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
 | |
|         if (GVSrc->isConstant()) {
 | |
|           Module *M = CI.getParent()->getParent()->getParent();
 | |
|           Intrinsic::ID MemCpyID = Intrinsic::memcpy;
 | |
|           Type *Tys[3] = { CI.getArgOperand(0)->getType(),
 | |
|                            CI.getArgOperand(1)->getType(),
 | |
|                            CI.getArgOperand(2)->getType() };
 | |
|           CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
 | |
|           Changed = true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
 | |
|       // memmove(x,x,size) -> noop.
 | |
|       if (MTI->getSource() == MTI->getDest())
 | |
|         return EraseInstFromFunction(CI);
 | |
|     }
 | |
| 
 | |
|     // If we can determine a pointer alignment that is bigger than currently
 | |
|     // set, update the alignment.
 | |
|     if (isa<MemTransferInst>(MI)) {
 | |
|       if (Instruction *I = SimplifyMemTransfer(MI))
 | |
|         return I;
 | |
|     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
 | |
|       if (Instruction *I = SimplifyMemSet(MSI))
 | |
|         return I;
 | |
|     }
 | |
| 
 | |
|     if (Changed) return II;
 | |
|   }
 | |
| 
 | |
|   switch (II->getIntrinsicID()) {
 | |
|   default: break;
 | |
|   case Intrinsic::objectsize: {
 | |
|     uint64_t Size;
 | |
|     if (getObjectSize(II->getArgOperand(0), Size, DL, TLI))
 | |
|       return ReplaceInstUsesWith(CI, ConstantInt::get(CI.getType(), Size));
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Intrinsic::bswap: {
 | |
|     Value *IIOperand = II->getArgOperand(0);
 | |
|     Value *X = nullptr;
 | |
| 
 | |
|     // bswap(bswap(x)) -> x
 | |
|     if (match(IIOperand, m_BSwap(m_Value(X))))
 | |
|         return ReplaceInstUsesWith(CI, X);
 | |
| 
 | |
|     // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
 | |
|     if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
 | |
|       unsigned C = X->getType()->getPrimitiveSizeInBits() -
 | |
|         IIOperand->getType()->getPrimitiveSizeInBits();
 | |
|       Value *CV = ConstantInt::get(X->getType(), C);
 | |
|       Value *V = Builder->CreateLShr(X, CV);
 | |
|       return new TruncInst(V, IIOperand->getType());
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::powi:
 | |
|     if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
 | |
|       // powi(x, 0) -> 1.0
 | |
|       if (Power->isZero())
 | |
|         return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
 | |
|       // powi(x, 1) -> x
 | |
|       if (Power->isOne())
 | |
|         return ReplaceInstUsesWith(CI, II->getArgOperand(0));
 | |
|       // powi(x, -1) -> 1/x
 | |
|       if (Power->isAllOnesValue())
 | |
|         return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
 | |
|                                           II->getArgOperand(0));
 | |
|     }
 | |
|     break;
 | |
|   case Intrinsic::cttz: {
 | |
|     // If all bits below the first known one are known zero,
 | |
|     // this value is constant.
 | |
|     IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
 | |
|     // FIXME: Try to simplify vectors of integers.
 | |
|     if (!IT) break;
 | |
|     uint32_t BitWidth = IT->getBitWidth();
 | |
|     APInt KnownZero(BitWidth, 0);
 | |
|     APInt KnownOne(BitWidth, 0);
 | |
|     computeKnownBits(II->getArgOperand(0), KnownZero, KnownOne, 0, II);
 | |
|     unsigned TrailingZeros = KnownOne.countTrailingZeros();
 | |
|     APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
 | |
|     if ((Mask & KnownZero) == Mask)
 | |
|       return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
 | |
|                                  APInt(BitWidth, TrailingZeros)));
 | |
| 
 | |
|     }
 | |
|     break;
 | |
|   case Intrinsic::ctlz: {
 | |
|     // If all bits above the first known one are known zero,
 | |
|     // this value is constant.
 | |
|     IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
 | |
|     // FIXME: Try to simplify vectors of integers.
 | |
|     if (!IT) break;
 | |
|     uint32_t BitWidth = IT->getBitWidth();
 | |
|     APInt KnownZero(BitWidth, 0);
 | |
|     APInt KnownOne(BitWidth, 0);
 | |
|     computeKnownBits(II->getArgOperand(0), KnownZero, KnownOne, 0, II);
 | |
|     unsigned LeadingZeros = KnownOne.countLeadingZeros();
 | |
|     APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
 | |
|     if ((Mask & KnownZero) == Mask)
 | |
|       return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
 | |
|                                  APInt(BitWidth, LeadingZeros)));
 | |
| 
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Intrinsic::uadd_with_overflow:
 | |
|   case Intrinsic::sadd_with_overflow:
 | |
|   case Intrinsic::umul_with_overflow:
 | |
|   case Intrinsic::smul_with_overflow:
 | |
|     if (isa<Constant>(II->getArgOperand(0)) &&
 | |
|         !isa<Constant>(II->getArgOperand(1))) {
 | |
|       // Canonicalize constants into the RHS.
 | |
|       Value *LHS = II->getArgOperand(0);
 | |
|       II->setArgOperand(0, II->getArgOperand(1));
 | |
|       II->setArgOperand(1, LHS);
 | |
|       return II;
 | |
|     }
 | |
|     // fall through
 | |
| 
 | |
|   case Intrinsic::usub_with_overflow:
 | |
|   case Intrinsic::ssub_with_overflow: {
 | |
|     OverflowCheckFlavor OCF =
 | |
|         IntrinsicIDToOverflowCheckFlavor(II->getIntrinsicID());
 | |
|     assert(OCF != OCF_INVALID && "unexpected!");
 | |
| 
 | |
|     Value *OperationResult = nullptr;
 | |
|     Constant *OverflowResult = nullptr;
 | |
|     if (OptimizeOverflowCheck(OCF, II->getArgOperand(0), II->getArgOperand(1),
 | |
|                               *II, OperationResult, OverflowResult))
 | |
|       return CreateOverflowTuple(II, OperationResult, OverflowResult);
 | |
| 
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::minnum:
 | |
|   case Intrinsic::maxnum: {
 | |
|     Value *Arg0 = II->getArgOperand(0);
 | |
|     Value *Arg1 = II->getArgOperand(1);
 | |
| 
 | |
|     // fmin(x, x) -> x
 | |
|     if (Arg0 == Arg1)
 | |
|       return ReplaceInstUsesWith(CI, Arg0);
 | |
| 
 | |
|     const ConstantFP *C0 = dyn_cast<ConstantFP>(Arg0);
 | |
|     const ConstantFP *C1 = dyn_cast<ConstantFP>(Arg1);
 | |
| 
 | |
|     // Canonicalize constants into the RHS.
 | |
|     if (C0 && !C1) {
 | |
|       II->setArgOperand(0, Arg1);
 | |
|       II->setArgOperand(1, Arg0);
 | |
|       return II;
 | |
|     }
 | |
| 
 | |
|     // fmin(x, nan) -> x
 | |
|     if (C1 && C1->isNaN())
 | |
|       return ReplaceInstUsesWith(CI, Arg0);
 | |
| 
 | |
|     // This is the value because if undef were NaN, we would return the other
 | |
|     // value and cannot return a NaN unless both operands are.
 | |
|     //
 | |
|     // fmin(undef, x) -> x
 | |
|     if (isa<UndefValue>(Arg0))
 | |
|       return ReplaceInstUsesWith(CI, Arg1);
 | |
| 
 | |
|     // fmin(x, undef) -> x
 | |
|     if (isa<UndefValue>(Arg1))
 | |
|       return ReplaceInstUsesWith(CI, Arg0);
 | |
| 
 | |
|     Value *X = nullptr;
 | |
|     Value *Y = nullptr;
 | |
|     if (II->getIntrinsicID() == Intrinsic::minnum) {
 | |
|       // fmin(x, fmin(x, y)) -> fmin(x, y)
 | |
|       // fmin(y, fmin(x, y)) -> fmin(x, y)
 | |
|       if (match(Arg1, m_FMin(m_Value(X), m_Value(Y)))) {
 | |
|         if (Arg0 == X || Arg0 == Y)
 | |
|           return ReplaceInstUsesWith(CI, Arg1);
 | |
|       }
 | |
| 
 | |
|       // fmin(fmin(x, y), x) -> fmin(x, y)
 | |
|       // fmin(fmin(x, y), y) -> fmin(x, y)
 | |
|       if (match(Arg0, m_FMin(m_Value(X), m_Value(Y)))) {
 | |
|         if (Arg1 == X || Arg1 == Y)
 | |
|           return ReplaceInstUsesWith(CI, Arg0);
 | |
|       }
 | |
| 
 | |
|       // TODO: fmin(nnan x, inf) -> x
 | |
|       // TODO: fmin(nnan ninf x, flt_max) -> x
 | |
|       if (C1 && C1->isInfinity()) {
 | |
|         // fmin(x, -inf) -> -inf
 | |
|         if (C1->isNegative())
 | |
|           return ReplaceInstUsesWith(CI, Arg1);
 | |
|       }
 | |
|     } else {
 | |
|       assert(II->getIntrinsicID() == Intrinsic::maxnum);
 | |
|       // fmax(x, fmax(x, y)) -> fmax(x, y)
 | |
|       // fmax(y, fmax(x, y)) -> fmax(x, y)
 | |
|       if (match(Arg1, m_FMax(m_Value(X), m_Value(Y)))) {
 | |
|         if (Arg0 == X || Arg0 == Y)
 | |
|           return ReplaceInstUsesWith(CI, Arg1);
 | |
|       }
 | |
| 
 | |
|       // fmax(fmax(x, y), x) -> fmax(x, y)
 | |
|       // fmax(fmax(x, y), y) -> fmax(x, y)
 | |
|       if (match(Arg0, m_FMax(m_Value(X), m_Value(Y)))) {
 | |
|         if (Arg1 == X || Arg1 == Y)
 | |
|           return ReplaceInstUsesWith(CI, Arg0);
 | |
|       }
 | |
| 
 | |
|       // TODO: fmax(nnan x, -inf) -> x
 | |
|       // TODO: fmax(nnan ninf x, -flt_max) -> x
 | |
|       if (C1 && C1->isInfinity()) {
 | |
|         // fmax(x, inf) -> inf
 | |
|         if (!C1->isNegative())
 | |
|           return ReplaceInstUsesWith(CI, Arg1);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Intrinsic::ppc_altivec_lvx:
 | |
|   case Intrinsic::ppc_altivec_lvxl:
 | |
|     // Turn PPC lvx -> load if the pointer is known aligned.
 | |
|     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, AC, DT) >=
 | |
|         16) {
 | |
|       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
 | |
|                                          PointerType::getUnqual(II->getType()));
 | |
|       return new LoadInst(Ptr);
 | |
|     }
 | |
|     break;
 | |
|   case Intrinsic::ppc_vsx_lxvw4x:
 | |
|   case Intrinsic::ppc_vsx_lxvd2x: {
 | |
|     // Turn PPC VSX loads into normal loads.
 | |
|     Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
 | |
|                                         PointerType::getUnqual(II->getType()));
 | |
|     return new LoadInst(Ptr, Twine(""), false, 1);
 | |
|   }
 | |
|   case Intrinsic::ppc_altivec_stvx:
 | |
|   case Intrinsic::ppc_altivec_stvxl:
 | |
|     // Turn stvx -> store if the pointer is known aligned.
 | |
|     if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, AC, DT) >=
 | |
|         16) {
 | |
|       Type *OpPtrTy =
 | |
|         PointerType::getUnqual(II->getArgOperand(0)->getType());
 | |
|       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
 | |
|       return new StoreInst(II->getArgOperand(0), Ptr);
 | |
|     }
 | |
|     break;
 | |
|   case Intrinsic::ppc_vsx_stxvw4x:
 | |
|   case Intrinsic::ppc_vsx_stxvd2x: {
 | |
|     // Turn PPC VSX stores into normal stores.
 | |
|     Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType());
 | |
|     Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
 | |
|     return new StoreInst(II->getArgOperand(0), Ptr, false, 1);
 | |
|   }
 | |
|   case Intrinsic::ppc_qpx_qvlfs:
 | |
|     // Turn PPC QPX qvlfs -> load if the pointer is known aligned.
 | |
|     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, AC, DT) >=
 | |
|         16) {
 | |
|       Type *VTy = VectorType::get(Builder->getFloatTy(),
 | |
|                                   II->getType()->getVectorNumElements());
 | |
|       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
 | |
|                                          PointerType::getUnqual(VTy));
 | |
|       Value *Load = Builder->CreateLoad(Ptr);
 | |
|       return new FPExtInst(Load, II->getType());
 | |
|     }
 | |
|     break;
 | |
|   case Intrinsic::ppc_qpx_qvlfd:
 | |
|     // Turn PPC QPX qvlfd -> load if the pointer is known aligned.
 | |
|     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 32, DL, II, AC, DT) >=
 | |
|         32) {
 | |
|       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
 | |
|                                          PointerType::getUnqual(II->getType()));
 | |
|       return new LoadInst(Ptr);
 | |
|     }
 | |
|     break;
 | |
|   case Intrinsic::ppc_qpx_qvstfs:
 | |
|     // Turn PPC QPX qvstfs -> store if the pointer is known aligned.
 | |
|     if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, AC, DT) >=
 | |
|         16) {
 | |
|       Type *VTy = VectorType::get(Builder->getFloatTy(),
 | |
|           II->getArgOperand(0)->getType()->getVectorNumElements());
 | |
|       Value *TOp = Builder->CreateFPTrunc(II->getArgOperand(0), VTy);
 | |
|       Type *OpPtrTy = PointerType::getUnqual(VTy);
 | |
|       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
 | |
|       return new StoreInst(TOp, Ptr);
 | |
|     }
 | |
|     break;
 | |
|   case Intrinsic::ppc_qpx_qvstfd:
 | |
|     // Turn PPC QPX qvstfd -> store if the pointer is known aligned.
 | |
|     if (getOrEnforceKnownAlignment(II->getArgOperand(1), 32, DL, II, AC, DT) >=
 | |
|         32) {
 | |
|       Type *OpPtrTy =
 | |
|         PointerType::getUnqual(II->getArgOperand(0)->getType());
 | |
|       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
 | |
|       return new StoreInst(II->getArgOperand(0), Ptr);
 | |
|     }
 | |
|     break;
 | |
|   case Intrinsic::x86_sse_storeu_ps:
 | |
|   case Intrinsic::x86_sse2_storeu_pd:
 | |
|   case Intrinsic::x86_sse2_storeu_dq:
 | |
|     // Turn X86 storeu -> store if the pointer is known aligned.
 | |
|     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, AC, DT) >=
 | |
|         16) {
 | |
|       Type *OpPtrTy =
 | |
|         PointerType::getUnqual(II->getArgOperand(1)->getType());
 | |
|       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), OpPtrTy);
 | |
|       return new StoreInst(II->getArgOperand(1), Ptr);
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Intrinsic::x86_sse_cvtss2si:
 | |
|   case Intrinsic::x86_sse_cvtss2si64:
 | |
|   case Intrinsic::x86_sse_cvttss2si:
 | |
|   case Intrinsic::x86_sse_cvttss2si64:
 | |
|   case Intrinsic::x86_sse2_cvtsd2si:
 | |
|   case Intrinsic::x86_sse2_cvtsd2si64:
 | |
|   case Intrinsic::x86_sse2_cvttsd2si:
 | |
|   case Intrinsic::x86_sse2_cvttsd2si64: {
 | |
|     // These intrinsics only demand the 0th element of their input vectors. If
 | |
|     // we can simplify the input based on that, do so now.
 | |
|     unsigned VWidth =
 | |
|       cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
 | |
|     APInt DemandedElts(VWidth, 1);
 | |
|     APInt UndefElts(VWidth, 0);
 | |
|     if (Value *V = SimplifyDemandedVectorElts(II->getArgOperand(0),
 | |
|                                               DemandedElts, UndefElts)) {
 | |
|       II->setArgOperand(0, V);
 | |
|       return II;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Constant fold <A x Bi> << Ci.
 | |
|   // FIXME: We don't handle _dq because it's a shift of an i128, but is
 | |
|   // represented in the IR as <2 x i64>. A per element shift is wrong.
 | |
|   case Intrinsic::x86_sse2_psll_d:
 | |
|   case Intrinsic::x86_sse2_psll_q:
 | |
|   case Intrinsic::x86_sse2_psll_w:
 | |
|   case Intrinsic::x86_sse2_pslli_d:
 | |
|   case Intrinsic::x86_sse2_pslli_q:
 | |
|   case Intrinsic::x86_sse2_pslli_w:
 | |
|   case Intrinsic::x86_avx2_psll_d:
 | |
|   case Intrinsic::x86_avx2_psll_q:
 | |
|   case Intrinsic::x86_avx2_psll_w:
 | |
|   case Intrinsic::x86_avx2_pslli_d:
 | |
|   case Intrinsic::x86_avx2_pslli_q:
 | |
|   case Intrinsic::x86_avx2_pslli_w:
 | |
|   case Intrinsic::x86_sse2_psrl_d:
 | |
|   case Intrinsic::x86_sse2_psrl_q:
 | |
|   case Intrinsic::x86_sse2_psrl_w:
 | |
|   case Intrinsic::x86_sse2_psrli_d:
 | |
|   case Intrinsic::x86_sse2_psrli_q:
 | |
|   case Intrinsic::x86_sse2_psrli_w:
 | |
|   case Intrinsic::x86_avx2_psrl_d:
 | |
|   case Intrinsic::x86_avx2_psrl_q:
 | |
|   case Intrinsic::x86_avx2_psrl_w:
 | |
|   case Intrinsic::x86_avx2_psrli_d:
 | |
|   case Intrinsic::x86_avx2_psrli_q:
 | |
|   case Intrinsic::x86_avx2_psrli_w: {
 | |
|     // Simplify if count is constant. To 0 if >= BitWidth,
 | |
|     // otherwise to shl/lshr.
 | |
|     auto CDV = dyn_cast<ConstantDataVector>(II->getArgOperand(1));
 | |
|     auto CInt = dyn_cast<ConstantInt>(II->getArgOperand(1));
 | |
|     if (!CDV && !CInt)
 | |
|       break;
 | |
|     ConstantInt *Count;
 | |
|     if (CDV)
 | |
|       Count = cast<ConstantInt>(CDV->getElementAsConstant(0));
 | |
|     else
 | |
|       Count = CInt;
 | |
| 
 | |
|     auto Vec = II->getArgOperand(0);
 | |
|     auto VT = cast<VectorType>(Vec->getType());
 | |
|     if (Count->getZExtValue() >
 | |
|         VT->getElementType()->getPrimitiveSizeInBits() - 1)
 | |
|       return ReplaceInstUsesWith(
 | |
|           CI, ConstantAggregateZero::get(Vec->getType()));
 | |
| 
 | |
|     bool isPackedShiftLeft = true;
 | |
|     switch (II->getIntrinsicID()) {
 | |
|     default : break;
 | |
|     case Intrinsic::x86_sse2_psrl_d:
 | |
|     case Intrinsic::x86_sse2_psrl_q:
 | |
|     case Intrinsic::x86_sse2_psrl_w:
 | |
|     case Intrinsic::x86_sse2_psrli_d:
 | |
|     case Intrinsic::x86_sse2_psrli_q:
 | |
|     case Intrinsic::x86_sse2_psrli_w:
 | |
|     case Intrinsic::x86_avx2_psrl_d:
 | |
|     case Intrinsic::x86_avx2_psrl_q:
 | |
|     case Intrinsic::x86_avx2_psrl_w:
 | |
|     case Intrinsic::x86_avx2_psrli_d:
 | |
|     case Intrinsic::x86_avx2_psrli_q:
 | |
|     case Intrinsic::x86_avx2_psrli_w: isPackedShiftLeft = false; break;
 | |
|     }
 | |
| 
 | |
|     unsigned VWidth = VT->getNumElements();
 | |
|     // Get a constant vector of the same type as the first operand.
 | |
|     auto VTCI = ConstantInt::get(VT->getElementType(), Count->getZExtValue());
 | |
|     if (isPackedShiftLeft)
 | |
|       return BinaryOperator::CreateShl(Vec,
 | |
|           Builder->CreateVectorSplat(VWidth, VTCI));
 | |
| 
 | |
|     return BinaryOperator::CreateLShr(Vec,
 | |
|         Builder->CreateVectorSplat(VWidth, VTCI));
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::x86_sse41_pmovsxbw:
 | |
|   case Intrinsic::x86_sse41_pmovsxwd:
 | |
|   case Intrinsic::x86_sse41_pmovsxdq:
 | |
|   case Intrinsic::x86_sse41_pmovzxbw:
 | |
|   case Intrinsic::x86_sse41_pmovzxwd:
 | |
|   case Intrinsic::x86_sse41_pmovzxdq: {
 | |
|     // pmov{s|z}x ignores the upper half of their input vectors.
 | |
|     unsigned VWidth =
 | |
|       cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
 | |
|     unsigned LowHalfElts = VWidth / 2;
 | |
|     APInt InputDemandedElts(APInt::getBitsSet(VWidth, 0, LowHalfElts));
 | |
|     APInt UndefElts(VWidth, 0);
 | |
|     if (Value *TmpV = SimplifyDemandedVectorElts(
 | |
|             II->getArgOperand(0), InputDemandedElts, UndefElts)) {
 | |
|       II->setArgOperand(0, TmpV);
 | |
|       return II;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Intrinsic::x86_sse41_insertps:
 | |
|     if (Value *V = SimplifyX86insertps(*II, *Builder))
 | |
|       return ReplaceInstUsesWith(*II, V);
 | |
|     break;
 | |
|     
 | |
|   case Intrinsic::x86_sse4a_insertqi: {
 | |
|     // insertqi x, y, 64, 0 can just copy y's lower bits and leave the top
 | |
|     // ones undef
 | |
|     // TODO: eventually we should lower this intrinsic to IR
 | |
|     if (auto CIWidth = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
 | |
|       if (auto CIStart = dyn_cast<ConstantInt>(II->getArgOperand(3))) {
 | |
|         unsigned Index = CIStart->getZExtValue();
 | |
|         // From AMD documentation: "a value of zero in the field length is
 | |
|         // defined as length of 64".
 | |
|         unsigned Length = CIWidth->equalsInt(0) ? 64 : CIWidth->getZExtValue();
 | |
| 
 | |
|         // From AMD documentation: "If the sum of the bit index + length field
 | |
|         // is greater than 64, the results are undefined".
 | |
| 
 | |
|         // Note that both field index and field length are 8-bit quantities.
 | |
|         // Since variables 'Index' and 'Length' are unsigned values
 | |
|         // obtained from zero-extending field index and field length
 | |
|         // respectively, their sum should never wrap around.
 | |
|         if ((Index + Length) > 64)
 | |
|           return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
 | |
| 
 | |
|         if (Length == 64 && Index == 0) {
 | |
|           Value *Vec = II->getArgOperand(1);
 | |
|           Value *Undef = UndefValue::get(Vec->getType());
 | |
|           const uint32_t Mask[] = { 0, 2 };
 | |
|           return ReplaceInstUsesWith(
 | |
|               CI,
 | |
|               Builder->CreateShuffleVector(
 | |
|                   Vec, Undef, ConstantDataVector::get(
 | |
|                                   II->getContext(), makeArrayRef(Mask))));
 | |
| 
 | |
|         } else if (auto Source =
 | |
|                        dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
 | |
|           if (Source->hasOneUse() &&
 | |
|               Source->getArgOperand(1) == II->getArgOperand(1)) {
 | |
|             // If the source of the insert has only one use and it's another
 | |
|             // insert (and they're both inserting from the same vector), try to
 | |
|             // bundle both together.
 | |
|             auto CISourceWidth =
 | |
|                 dyn_cast<ConstantInt>(Source->getArgOperand(2));
 | |
|             auto CISourceStart =
 | |
|                 dyn_cast<ConstantInt>(Source->getArgOperand(3));
 | |
|             if (CISourceStart && CISourceWidth) {
 | |
|               unsigned Start = CIStart->getZExtValue();
 | |
|               unsigned Width = CIWidth->getZExtValue();
 | |
|               unsigned End = Start + Width;
 | |
|               unsigned SourceStart = CISourceStart->getZExtValue();
 | |
|               unsigned SourceWidth = CISourceWidth->getZExtValue();
 | |
|               unsigned SourceEnd = SourceStart + SourceWidth;
 | |
|               unsigned NewStart, NewWidth;
 | |
|               bool ShouldReplace = false;
 | |
|               if (Start <= SourceStart && SourceStart <= End) {
 | |
|                 NewStart = Start;
 | |
|                 NewWidth = std::max(End, SourceEnd) - NewStart;
 | |
|                 ShouldReplace = true;
 | |
|               } else if (SourceStart <= Start && Start <= SourceEnd) {
 | |
|                 NewStart = SourceStart;
 | |
|                 NewWidth = std::max(SourceEnd, End) - NewStart;
 | |
|                 ShouldReplace = true;
 | |
|               }
 | |
| 
 | |
|               if (ShouldReplace) {
 | |
|                 Constant *ConstantWidth = ConstantInt::get(
 | |
|                     II->getArgOperand(2)->getType(), NewWidth, false);
 | |
|                 Constant *ConstantStart = ConstantInt::get(
 | |
|                     II->getArgOperand(3)->getType(), NewStart, false);
 | |
|                 Value *Args[4] = { Source->getArgOperand(0),
 | |
|                                    II->getArgOperand(1), ConstantWidth,
 | |
|                                    ConstantStart };
 | |
|                 Module *M = CI.getParent()->getParent()->getParent();
 | |
|                 Value *F =
 | |
|                     Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi);
 | |
|                 return ReplaceInstUsesWith(CI, Builder->CreateCall(F, Args));
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::x86_sse41_pblendvb:
 | |
|   case Intrinsic::x86_sse41_blendvps:
 | |
|   case Intrinsic::x86_sse41_blendvpd:
 | |
|   case Intrinsic::x86_avx_blendv_ps_256:
 | |
|   case Intrinsic::x86_avx_blendv_pd_256:
 | |
|   case Intrinsic::x86_avx2_pblendvb: {
 | |
|     // Convert blendv* to vector selects if the mask is constant.
 | |
|     // This optimization is convoluted because the intrinsic is defined as
 | |
|     // getting a vector of floats or doubles for the ps and pd versions.
 | |
|     // FIXME: That should be changed.
 | |
|     Value *Mask = II->getArgOperand(2);
 | |
|     if (auto C = dyn_cast<ConstantDataVector>(Mask)) {
 | |
|       auto Tyi1 = Builder->getInt1Ty();
 | |
|       auto SelectorType = cast<VectorType>(Mask->getType());
 | |
|       auto EltTy = SelectorType->getElementType();
 | |
|       unsigned Size = SelectorType->getNumElements();
 | |
|       unsigned BitWidth =
 | |
|           EltTy->isFloatTy()
 | |
|               ? 32
 | |
|               : (EltTy->isDoubleTy() ? 64 : EltTy->getIntegerBitWidth());
 | |
|       assert((BitWidth == 64 || BitWidth == 32 || BitWidth == 8) &&
 | |
|              "Wrong arguments for variable blend intrinsic");
 | |
|       SmallVector<Constant *, 32> Selectors;
 | |
|       for (unsigned I = 0; I < Size; ++I) {
 | |
|         // The intrinsics only read the top bit
 | |
|         uint64_t Selector;
 | |
|         if (BitWidth == 8)
 | |
|           Selector = C->getElementAsInteger(I);
 | |
|         else
 | |
|           Selector = C->getElementAsAPFloat(I).bitcastToAPInt().getZExtValue();
 | |
|         Selectors.push_back(ConstantInt::get(Tyi1, Selector >> (BitWidth - 1)));
 | |
|       }
 | |
|       auto NewSelector = ConstantVector::get(Selectors);
 | |
|       return SelectInst::Create(NewSelector, II->getArgOperand(1),
 | |
|                                 II->getArgOperand(0), "blendv");
 | |
|     } else {
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::x86_avx_vpermilvar_ps:
 | |
|   case Intrinsic::x86_avx_vpermilvar_ps_256:
 | |
|   case Intrinsic::x86_avx_vpermilvar_pd:
 | |
|   case Intrinsic::x86_avx_vpermilvar_pd_256: {
 | |
|     // Convert vpermil* to shufflevector if the mask is constant.
 | |
|     Value *V = II->getArgOperand(1);
 | |
|     unsigned Size = cast<VectorType>(V->getType())->getNumElements();
 | |
|     assert(Size == 8 || Size == 4 || Size == 2);
 | |
|     uint32_t Indexes[8];
 | |
|     if (auto C = dyn_cast<ConstantDataVector>(V)) {
 | |
|       // The intrinsics only read one or two bits, clear the rest.
 | |
|       for (unsigned I = 0; I < Size; ++I) {
 | |
|         uint32_t Index = C->getElementAsInteger(I) & 0x3;
 | |
|         if (II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd ||
 | |
|             II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd_256)
 | |
|           Index >>= 1;
 | |
|         Indexes[I] = Index;
 | |
|       }
 | |
|     } else if (isa<ConstantAggregateZero>(V)) {
 | |
|       for (unsigned I = 0; I < Size; ++I)
 | |
|         Indexes[I] = 0;
 | |
|     } else {
 | |
|       break;
 | |
|     }
 | |
|     // The _256 variants are a bit trickier since the mask bits always index
 | |
|     // into the corresponding 128 half. In order to convert to a generic
 | |
|     // shuffle, we have to make that explicit.
 | |
|     if (II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_ps_256 ||
 | |
|         II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd_256) {
 | |
|       for (unsigned I = Size / 2; I < Size; ++I)
 | |
|         Indexes[I] += Size / 2;
 | |
|     }
 | |
|     auto NewC =
 | |
|         ConstantDataVector::get(V->getContext(), makeArrayRef(Indexes, Size));
 | |
|     auto V1 = II->getArgOperand(0);
 | |
|     auto V2 = UndefValue::get(V1->getType());
 | |
|     auto Shuffle = Builder->CreateShuffleVector(V1, V2, NewC);
 | |
|     return ReplaceInstUsesWith(CI, Shuffle);
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::x86_avx_vperm2f128_pd_256:
 | |
|   case Intrinsic::x86_avx_vperm2f128_ps_256:
 | |
|   case Intrinsic::x86_avx_vperm2f128_si_256:
 | |
|   case Intrinsic::x86_avx2_vperm2i128:
 | |
|     if (Value *V = SimplifyX86vperm2(*II, *Builder))
 | |
|       return ReplaceInstUsesWith(*II, V);
 | |
|     break;
 | |
| 
 | |
|   case Intrinsic::ppc_altivec_vperm:
 | |
|     // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
 | |
|     // Note that ppc_altivec_vperm has a big-endian bias, so when creating
 | |
|     // a vectorshuffle for little endian, we must undo the transformation
 | |
|     // performed on vec_perm in altivec.h.  That is, we must complement
 | |
|     // the permutation mask with respect to 31 and reverse the order of
 | |
|     // V1 and V2.
 | |
|     if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) {
 | |
|       assert(Mask->getType()->getVectorNumElements() == 16 &&
 | |
|              "Bad type for intrinsic!");
 | |
| 
 | |
|       // Check that all of the elements are integer constants or undefs.
 | |
|       bool AllEltsOk = true;
 | |
|       for (unsigned i = 0; i != 16; ++i) {
 | |
|         Constant *Elt = Mask->getAggregateElement(i);
 | |
|         if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
 | |
|           AllEltsOk = false;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (AllEltsOk) {
 | |
|         // Cast the input vectors to byte vectors.
 | |
|         Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0),
 | |
|                                             Mask->getType());
 | |
|         Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1),
 | |
|                                             Mask->getType());
 | |
|         Value *Result = UndefValue::get(Op0->getType());
 | |
| 
 | |
|         // Only extract each element once.
 | |
|         Value *ExtractedElts[32];
 | |
|         memset(ExtractedElts, 0, sizeof(ExtractedElts));
 | |
| 
 | |
|         for (unsigned i = 0; i != 16; ++i) {
 | |
|           if (isa<UndefValue>(Mask->getAggregateElement(i)))
 | |
|             continue;
 | |
|           unsigned Idx =
 | |
|             cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
 | |
|           Idx &= 31;  // Match the hardware behavior.
 | |
|           if (DL.isLittleEndian())
 | |
|             Idx = 31 - Idx;
 | |
| 
 | |
|           if (!ExtractedElts[Idx]) {
 | |
|             Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0;
 | |
|             Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1;
 | |
|             ExtractedElts[Idx] =
 | |
|               Builder->CreateExtractElement(Idx < 16 ? Op0ToUse : Op1ToUse,
 | |
|                                             Builder->getInt32(Idx&15));
 | |
|           }
 | |
| 
 | |
|           // Insert this value into the result vector.
 | |
|           Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
 | |
|                                                 Builder->getInt32(i));
 | |
|         }
 | |
|         return CastInst::Create(Instruction::BitCast, Result, CI.getType());
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Intrinsic::arm_neon_vld1:
 | |
|   case Intrinsic::arm_neon_vld2:
 | |
|   case Intrinsic::arm_neon_vld3:
 | |
|   case Intrinsic::arm_neon_vld4:
 | |
|   case Intrinsic::arm_neon_vld2lane:
 | |
|   case Intrinsic::arm_neon_vld3lane:
 | |
|   case Intrinsic::arm_neon_vld4lane:
 | |
|   case Intrinsic::arm_neon_vst1:
 | |
|   case Intrinsic::arm_neon_vst2:
 | |
|   case Intrinsic::arm_neon_vst3:
 | |
|   case Intrinsic::arm_neon_vst4:
 | |
|   case Intrinsic::arm_neon_vst2lane:
 | |
|   case Intrinsic::arm_neon_vst3lane:
 | |
|   case Intrinsic::arm_neon_vst4lane: {
 | |
|     unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), DL, II, AC, DT);
 | |
|     unsigned AlignArg = II->getNumArgOperands() - 1;
 | |
|     ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
 | |
|     if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
 | |
|       II->setArgOperand(AlignArg,
 | |
|                         ConstantInt::get(Type::getInt32Ty(II->getContext()),
 | |
|                                          MemAlign, false));
 | |
|       return II;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::arm_neon_vmulls:
 | |
|   case Intrinsic::arm_neon_vmullu:
 | |
|   case Intrinsic::aarch64_neon_smull:
 | |
|   case Intrinsic::aarch64_neon_umull: {
 | |
|     Value *Arg0 = II->getArgOperand(0);
 | |
|     Value *Arg1 = II->getArgOperand(1);
 | |
| 
 | |
|     // Handle mul by zero first:
 | |
|     if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
 | |
|       return ReplaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
 | |
|     }
 | |
| 
 | |
|     // Check for constant LHS & RHS - in this case we just simplify.
 | |
|     bool Zext = (II->getIntrinsicID() == Intrinsic::arm_neon_vmullu ||
 | |
|                  II->getIntrinsicID() == Intrinsic::aarch64_neon_umull);
 | |
|     VectorType *NewVT = cast<VectorType>(II->getType());
 | |
|     if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
 | |
|       if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
 | |
|         CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext);
 | |
|         CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext);
 | |
| 
 | |
|         return ReplaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1));
 | |
|       }
 | |
| 
 | |
|       // Couldn't simplify - canonicalize constant to the RHS.
 | |
|       std::swap(Arg0, Arg1);
 | |
|     }
 | |
| 
 | |
|     // Handle mul by one:
 | |
|     if (Constant *CV1 = dyn_cast<Constant>(Arg1))
 | |
|       if (ConstantInt *Splat =
 | |
|               dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
 | |
|         if (Splat->isOne())
 | |
|           return CastInst::CreateIntegerCast(Arg0, II->getType(),
 | |
|                                              /*isSigned=*/!Zext);
 | |
| 
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::AMDGPU_rcp: {
 | |
|     if (const ConstantFP *C = dyn_cast<ConstantFP>(II->getArgOperand(0))) {
 | |
|       const APFloat &ArgVal = C->getValueAPF();
 | |
|       APFloat Val(ArgVal.getSemantics(), 1.0);
 | |
|       APFloat::opStatus Status = Val.divide(ArgVal,
 | |
|                                             APFloat::rmNearestTiesToEven);
 | |
|       // Only do this if it was exact and therefore not dependent on the
 | |
|       // rounding mode.
 | |
|       if (Status == APFloat::opOK)
 | |
|         return ReplaceInstUsesWith(CI, ConstantFP::get(II->getContext(), Val));
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   case Intrinsic::stackrestore: {
 | |
|     // If the save is right next to the restore, remove the restore.  This can
 | |
|     // happen when variable allocas are DCE'd.
 | |
|     if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
 | |
|       if (SS->getIntrinsicID() == Intrinsic::stacksave) {
 | |
|         BasicBlock::iterator BI = SS;
 | |
|         if (&*++BI == II)
 | |
|           return EraseInstFromFunction(CI);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Scan down this block to see if there is another stack restore in the
 | |
|     // same block without an intervening call/alloca.
 | |
|     BasicBlock::iterator BI = II;
 | |
|     TerminatorInst *TI = II->getParent()->getTerminator();
 | |
|     bool CannotRemove = false;
 | |
|     for (++BI; &*BI != TI; ++BI) {
 | |
|       if (isa<AllocaInst>(BI)) {
 | |
|         CannotRemove = true;
 | |
|         break;
 | |
|       }
 | |
|       if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
 | |
|         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
 | |
|           // If there is a stackrestore below this one, remove this one.
 | |
|           if (II->getIntrinsicID() == Intrinsic::stackrestore)
 | |
|             return EraseInstFromFunction(CI);
 | |
|           // Otherwise, ignore the intrinsic.
 | |
|         } else {
 | |
|           // If we found a non-intrinsic call, we can't remove the stack
 | |
|           // restore.
 | |
|           CannotRemove = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If the stack restore is in a return, resume, or unwind block and if there
 | |
|     // are no allocas or calls between the restore and the return, nuke the
 | |
|     // restore.
 | |
|     if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
 | |
|       return EraseInstFromFunction(CI);
 | |
|     break;
 | |
|   }
 | |
|   case Intrinsic::assume: {
 | |
|     // Canonicalize assume(a && b) -> assume(a); assume(b);
 | |
|     // Note: New assumption intrinsics created here are registered by
 | |
|     // the InstCombineIRInserter object.
 | |
|     Value *IIOperand = II->getArgOperand(0), *A, *B,
 | |
|           *AssumeIntrinsic = II->getCalledValue();
 | |
|     if (match(IIOperand, m_And(m_Value(A), m_Value(B)))) {
 | |
|       Builder->CreateCall(AssumeIntrinsic, A, II->getName());
 | |
|       Builder->CreateCall(AssumeIntrinsic, B, II->getName());
 | |
|       return EraseInstFromFunction(*II);
 | |
|     }
 | |
|     // assume(!(a || b)) -> assume(!a); assume(!b);
 | |
|     if (match(IIOperand, m_Not(m_Or(m_Value(A), m_Value(B))))) {
 | |
|       Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(A),
 | |
|                           II->getName());
 | |
|       Builder->CreateCall(AssumeIntrinsic, Builder->CreateNot(B),
 | |
|                           II->getName());
 | |
|       return EraseInstFromFunction(*II);
 | |
|     }
 | |
| 
 | |
|     // assume( (load addr) != null ) -> add 'nonnull' metadata to load
 | |
|     // (if assume is valid at the load)
 | |
|     if (ICmpInst* ICmp = dyn_cast<ICmpInst>(IIOperand)) {
 | |
|       Value *LHS = ICmp->getOperand(0);
 | |
|       Value *RHS = ICmp->getOperand(1);
 | |
|       if (ICmpInst::ICMP_NE == ICmp->getPredicate() &&
 | |
|           isa<LoadInst>(LHS) &&
 | |
|           isa<Constant>(RHS) &&
 | |
|           RHS->getType()->isPointerTy() &&
 | |
|           cast<Constant>(RHS)->isNullValue()) {
 | |
|         LoadInst* LI = cast<LoadInst>(LHS);
 | |
|         if (isValidAssumeForContext(II, LI, DT)) {
 | |
|           MDNode *MD = MDNode::get(II->getContext(), None);
 | |
|           LI->setMetadata(LLVMContext::MD_nonnull, MD);
 | |
|           return EraseInstFromFunction(*II);
 | |
|         }
 | |
|       }
 | |
|       // TODO: apply nonnull return attributes to calls and invokes
 | |
|       // TODO: apply range metadata for range check patterns?
 | |
|     }
 | |
|     // If there is a dominating assume with the same condition as this one,
 | |
|     // then this one is redundant, and should be removed.
 | |
|     APInt KnownZero(1, 0), KnownOne(1, 0);
 | |
|     computeKnownBits(IIOperand, KnownZero, KnownOne, 0, II);
 | |
|     if (KnownOne.isAllOnesValue())
 | |
|       return EraseInstFromFunction(*II);
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   case Intrinsic::experimental_gc_relocate: {
 | |
|     // Translate facts known about a pointer before relocating into
 | |
|     // facts about the relocate value, while being careful to
 | |
|     // preserve relocation semantics.
 | |
|     GCRelocateOperands Operands(II);
 | |
|     Value *DerivedPtr = Operands.getDerivedPtr();
 | |
|     auto *GCRelocateType = cast<PointerType>(II->getType());
 | |
| 
 | |
|     // Remove the relocation if unused, note that this check is required
 | |
|     // to prevent the cases below from looping forever.
 | |
|     if (II->use_empty())
 | |
|       return EraseInstFromFunction(*II);
 | |
| 
 | |
|     // Undef is undef, even after relocation.
 | |
|     // TODO: provide a hook for this in GCStrategy.  This is clearly legal for
 | |
|     // most practical collectors, but there was discussion in the review thread
 | |
|     // about whether it was legal for all possible collectors.
 | |
|     if (isa<UndefValue>(DerivedPtr)) {
 | |
|       // gc_relocate is uncasted. Use undef of gc_relocate's type to replace it.
 | |
|       return ReplaceInstUsesWith(*II, UndefValue::get(GCRelocateType));
 | |
|     }
 | |
| 
 | |
|     // The relocation of null will be null for most any collector.
 | |
|     // TODO: provide a hook for this in GCStrategy.  There might be some weird
 | |
|     // collector this property does not hold for.
 | |
|     if (isa<ConstantPointerNull>(DerivedPtr)) {
 | |
|       // gc_relocate is uncasted. Use null-pointer of gc_relocate's type to replace it.
 | |
|       return ReplaceInstUsesWith(*II, ConstantPointerNull::get(GCRelocateType));
 | |
|     }
 | |
| 
 | |
|     // isKnownNonNull -> nonnull attribute
 | |
|     if (isKnownNonNull(DerivedPtr))
 | |
|       II->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
 | |
| 
 | |
|     // isDereferenceablePointer -> deref attribute
 | |
|     if (isDereferenceablePointer(DerivedPtr, DL)) {
 | |
|       if (Argument *A = dyn_cast<Argument>(DerivedPtr)) {
 | |
|         uint64_t Bytes = A->getDereferenceableBytes();
 | |
|         II->addDereferenceableAttr(AttributeSet::ReturnIndex, Bytes);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
 | |
|     // Canonicalize on the type from the uses to the defs
 | |
| 
 | |
|     // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   return visitCallSite(II);
 | |
| }
 | |
| 
 | |
| // InvokeInst simplification
 | |
| //
 | |
| Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
 | |
|   return visitCallSite(&II);
 | |
| }
 | |
| 
 | |
| /// isSafeToEliminateVarargsCast - If this cast does not affect the value
 | |
| /// passed through the varargs area, we can eliminate the use of the cast.
 | |
| static bool isSafeToEliminateVarargsCast(const CallSite CS,
 | |
|                                          const DataLayout &DL,
 | |
|                                          const CastInst *const CI,
 | |
|                                          const int ix) {
 | |
|   if (!CI->isLosslessCast())
 | |
|     return false;
 | |
| 
 | |
|   // If this is a GC intrinsic, avoid munging types.  We need types for
 | |
|   // statepoint reconstruction in SelectionDAG.
 | |
|   // TODO: This is probably something which should be expanded to all
 | |
|   // intrinsics since the entire point of intrinsics is that
 | |
|   // they are understandable by the optimizer.
 | |
|   if (isStatepoint(CS) || isGCRelocate(CS) || isGCResult(CS))
 | |
|     return false;
 | |
| 
 | |
|   // The size of ByVal or InAlloca arguments is derived from the type, so we
 | |
|   // can't change to a type with a different size.  If the size were
 | |
|   // passed explicitly we could avoid this check.
 | |
|   if (!CS.isByValOrInAllocaArgument(ix))
 | |
|     return true;
 | |
| 
 | |
|   Type* SrcTy =
 | |
|             cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
 | |
|   Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
 | |
|   if (!SrcTy->isSized() || !DstTy->isSized())
 | |
|     return false;
 | |
|   if (DL.getTypeAllocSize(SrcTy) != DL.getTypeAllocSize(DstTy))
 | |
|     return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Try to fold some different type of calls here.
 | |
| // Currently we're only working with the checking functions, memcpy_chk,
 | |
| // mempcpy_chk, memmove_chk, memset_chk, strcpy_chk, stpcpy_chk, strncpy_chk,
 | |
| // strcat_chk and strncat_chk.
 | |
| Instruction *InstCombiner::tryOptimizeCall(CallInst *CI) {
 | |
|   if (!CI->getCalledFunction()) return nullptr;
 | |
| 
 | |
|   auto InstCombineRAUW = [this](Instruction *From, Value *With) {
 | |
|     ReplaceInstUsesWith(*From, With);
 | |
|   };
 | |
|   LibCallSimplifier Simplifier(DL, TLI, InstCombineRAUW);
 | |
|   if (Value *With = Simplifier.optimizeCall(CI)) {
 | |
|     ++NumSimplified;
 | |
|     return CI->use_empty() ? CI : ReplaceInstUsesWith(*CI, With);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static IntrinsicInst *FindInitTrampolineFromAlloca(Value *TrampMem) {
 | |
|   // Strip off at most one level of pointer casts, looking for an alloca.  This
 | |
|   // is good enough in practice and simpler than handling any number of casts.
 | |
|   Value *Underlying = TrampMem->stripPointerCasts();
 | |
|   if (Underlying != TrampMem &&
 | |
|       (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
 | |
|     return nullptr;
 | |
|   if (!isa<AllocaInst>(Underlying))
 | |
|     return nullptr;
 | |
| 
 | |
|   IntrinsicInst *InitTrampoline = nullptr;
 | |
|   for (User *U : TrampMem->users()) {
 | |
|     IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
 | |
|     if (!II)
 | |
|       return nullptr;
 | |
|     if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
 | |
|       if (InitTrampoline)
 | |
|         // More than one init_trampoline writes to this value.  Give up.
 | |
|         return nullptr;
 | |
|       InitTrampoline = II;
 | |
|       continue;
 | |
|     }
 | |
|     if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
 | |
|       // Allow any number of calls to adjust.trampoline.
 | |
|       continue;
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   // No call to init.trampoline found.
 | |
|   if (!InitTrampoline)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Check that the alloca is being used in the expected way.
 | |
|   if (InitTrampoline->getOperand(0) != TrampMem)
 | |
|     return nullptr;
 | |
| 
 | |
|   return InitTrampoline;
 | |
| }
 | |
| 
 | |
| static IntrinsicInst *FindInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
 | |
|                                                Value *TrampMem) {
 | |
|   // Visit all the previous instructions in the basic block, and try to find a
 | |
|   // init.trampoline which has a direct path to the adjust.trampoline.
 | |
|   for (BasicBlock::iterator I = AdjustTramp,
 | |
|        E = AdjustTramp->getParent()->begin(); I != E; ) {
 | |
|     Instruction *Inst = --I;
 | |
|     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
 | |
|       if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
 | |
|           II->getOperand(0) == TrampMem)
 | |
|         return II;
 | |
|     if (Inst->mayWriteToMemory())
 | |
|       return nullptr;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| // Given a call to llvm.adjust.trampoline, find and return the corresponding
 | |
| // call to llvm.init.trampoline if the call to the trampoline can be optimized
 | |
| // to a direct call to a function.  Otherwise return NULL.
 | |
| //
 | |
| static IntrinsicInst *FindInitTrampoline(Value *Callee) {
 | |
|   Callee = Callee->stripPointerCasts();
 | |
|   IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
 | |
|   if (!AdjustTramp ||
 | |
|       AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *TrampMem = AdjustTramp->getOperand(0);
 | |
| 
 | |
|   if (IntrinsicInst *IT = FindInitTrampolineFromAlloca(TrampMem))
 | |
|     return IT;
 | |
|   if (IntrinsicInst *IT = FindInitTrampolineFromBB(AdjustTramp, TrampMem))
 | |
|     return IT;
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| // visitCallSite - Improvements for call and invoke instructions.
 | |
| //
 | |
| Instruction *InstCombiner::visitCallSite(CallSite CS) {
 | |
|   if (isAllocLikeFn(CS.getInstruction(), TLI))
 | |
|     return visitAllocSite(*CS.getInstruction());
 | |
| 
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // If the callee is a pointer to a function, attempt to move any casts to the
 | |
|   // arguments of the call/invoke.
 | |
|   Value *Callee = CS.getCalledValue();
 | |
|   if (!isa<Function>(Callee) && transformConstExprCastCall(CS))
 | |
|     return nullptr;
 | |
| 
 | |
|   if (Function *CalleeF = dyn_cast<Function>(Callee))
 | |
|     // If the call and callee calling conventions don't match, this call must
 | |
|     // be unreachable, as the call is undefined.
 | |
|     if (CalleeF->getCallingConv() != CS.getCallingConv() &&
 | |
|         // Only do this for calls to a function with a body.  A prototype may
 | |
|         // not actually end up matching the implementation's calling conv for a
 | |
|         // variety of reasons (e.g. it may be written in assembly).
 | |
|         !CalleeF->isDeclaration()) {
 | |
|       Instruction *OldCall = CS.getInstruction();
 | |
|       new StoreInst(ConstantInt::getTrue(Callee->getContext()),
 | |
|                 UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
 | |
|                                   OldCall);
 | |
|       // If OldCall does not return void then replaceAllUsesWith undef.
 | |
|       // This allows ValueHandlers and custom metadata to adjust itself.
 | |
|       if (!OldCall->getType()->isVoidTy())
 | |
|         ReplaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
 | |
|       if (isa<CallInst>(OldCall))
 | |
|         return EraseInstFromFunction(*OldCall);
 | |
| 
 | |
|       // We cannot remove an invoke, because it would change the CFG, just
 | |
|       // change the callee to a null pointer.
 | |
|       cast<InvokeInst>(OldCall)->setCalledFunction(
 | |
|                                     Constant::getNullValue(CalleeF->getType()));
 | |
|       return nullptr;
 | |
|     }
 | |
| 
 | |
|   if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
 | |
|     // If CS does not return void then replaceAllUsesWith undef.
 | |
|     // This allows ValueHandlers and custom metadata to adjust itself.
 | |
|     if (!CS.getInstruction()->getType()->isVoidTy())
 | |
|       ReplaceInstUsesWith(*CS.getInstruction(),
 | |
|                           UndefValue::get(CS.getInstruction()->getType()));
 | |
| 
 | |
|     if (isa<InvokeInst>(CS.getInstruction())) {
 | |
|       // Can't remove an invoke because we cannot change the CFG.
 | |
|       return nullptr;
 | |
|     }
 | |
| 
 | |
|     // This instruction is not reachable, just remove it.  We insert a store to
 | |
|     // undef so that we know that this code is not reachable, despite the fact
 | |
|     // that we can't modify the CFG here.
 | |
|     new StoreInst(ConstantInt::getTrue(Callee->getContext()),
 | |
|                   UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
 | |
|                   CS.getInstruction());
 | |
| 
 | |
|     return EraseInstFromFunction(*CS.getInstruction());
 | |
|   }
 | |
| 
 | |
|   if (IntrinsicInst *II = FindInitTrampoline(Callee))
 | |
|     return transformCallThroughTrampoline(CS, II);
 | |
| 
 | |
|   PointerType *PTy = cast<PointerType>(Callee->getType());
 | |
|   FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
 | |
|   if (FTy->isVarArg()) {
 | |
|     int ix = FTy->getNumParams();
 | |
|     // See if we can optimize any arguments passed through the varargs area of
 | |
|     // the call.
 | |
|     for (CallSite::arg_iterator I = CS.arg_begin() + FTy->getNumParams(),
 | |
|            E = CS.arg_end(); I != E; ++I, ++ix) {
 | |
|       CastInst *CI = dyn_cast<CastInst>(*I);
 | |
|       if (CI && isSafeToEliminateVarargsCast(CS, DL, CI, ix)) {
 | |
|         *I = CI->getOperand(0);
 | |
|         Changed = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
 | |
|     // Inline asm calls cannot throw - mark them 'nounwind'.
 | |
|     CS.setDoesNotThrow();
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
|   // Try to optimize the call if possible, we require DataLayout for most of
 | |
|   // this.  None of these calls are seen as possibly dead so go ahead and
 | |
|   // delete the instruction now.
 | |
|   if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
 | |
|     Instruction *I = tryOptimizeCall(CI);
 | |
|     // If we changed something return the result, etc. Otherwise let
 | |
|     // the fallthrough check.
 | |
|     if (I) return EraseInstFromFunction(*I);
 | |
|   }
 | |
| 
 | |
|   return Changed ? CS.getInstruction() : nullptr;
 | |
| }
 | |
| 
 | |
| // transformConstExprCastCall - If the callee is a constexpr cast of a function,
 | |
| // attempt to move the cast to the arguments of the call/invoke.
 | |
| //
 | |
| bool InstCombiner::transformConstExprCastCall(CallSite CS) {
 | |
|   Function *Callee =
 | |
|     dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
 | |
|   if (!Callee)
 | |
|     return false;
 | |
|   // The prototype of thunks are a lie, don't try to directly call such
 | |
|   // functions.
 | |
|   if (Callee->hasFnAttribute("thunk"))
 | |
|     return false;
 | |
|   Instruction *Caller = CS.getInstruction();
 | |
|   const AttributeSet &CallerPAL = CS.getAttributes();
 | |
| 
 | |
|   // Okay, this is a cast from a function to a different type.  Unless doing so
 | |
|   // would cause a type conversion of one of our arguments, change this call to
 | |
|   // be a direct call with arguments casted to the appropriate types.
 | |
|   //
 | |
|   FunctionType *FT = Callee->getFunctionType();
 | |
|   Type *OldRetTy = Caller->getType();
 | |
|   Type *NewRetTy = FT->getReturnType();
 | |
| 
 | |
|   // Check to see if we are changing the return type...
 | |
|   if (OldRetTy != NewRetTy) {
 | |
| 
 | |
|     if (NewRetTy->isStructTy())
 | |
|       return false; // TODO: Handle multiple return values.
 | |
| 
 | |
|     if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
 | |
|       if (Callee->isDeclaration())
 | |
|         return false;   // Cannot transform this return value.
 | |
| 
 | |
|       if (!Caller->use_empty() &&
 | |
|           // void -> non-void is handled specially
 | |
|           !NewRetTy->isVoidTy())
 | |
|         return false;   // Cannot transform this return value.
 | |
|     }
 | |
| 
 | |
|     if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
 | |
|       AttrBuilder RAttrs(CallerPAL, AttributeSet::ReturnIndex);
 | |
|       if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy)))
 | |
|         return false;   // Attribute not compatible with transformed value.
 | |
|     }
 | |
| 
 | |
|     // If the callsite is an invoke instruction, and the return value is used by
 | |
|     // a PHI node in a successor, we cannot change the return type of the call
 | |
|     // because there is no place to put the cast instruction (without breaking
 | |
|     // the critical edge).  Bail out in this case.
 | |
|     if (!Caller->use_empty())
 | |
|       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
 | |
|         for (User *U : II->users())
 | |
|           if (PHINode *PN = dyn_cast<PHINode>(U))
 | |
|             if (PN->getParent() == II->getNormalDest() ||
 | |
|                 PN->getParent() == II->getUnwindDest())
 | |
|               return false;
 | |
|   }
 | |
| 
 | |
|   unsigned NumActualArgs = CS.arg_size();
 | |
|   unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
 | |
| 
 | |
|   // Prevent us turning:
 | |
|   // declare void @takes_i32_inalloca(i32* inalloca)
 | |
|   //  call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
 | |
|   //
 | |
|   // into:
 | |
|   //  call void @takes_i32_inalloca(i32* null)
 | |
|   //
 | |
|   //  Similarly, avoid folding away bitcasts of byval calls.
 | |
|   if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
 | |
|       Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal))
 | |
|     return false;
 | |
| 
 | |
|   CallSite::arg_iterator AI = CS.arg_begin();
 | |
|   for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
 | |
|     Type *ParamTy = FT->getParamType(i);
 | |
|     Type *ActTy = (*AI)->getType();
 | |
| 
 | |
|     if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
 | |
|       return false;   // Cannot transform this parameter value.
 | |
| 
 | |
|     if (AttrBuilder(CallerPAL.getParamAttributes(i + 1), i + 1).
 | |
|           overlaps(AttributeFuncs::typeIncompatible(ParamTy)))
 | |
|       return false;   // Attribute not compatible with transformed value.
 | |
| 
 | |
|     if (CS.isInAllocaArgument(i))
 | |
|       return false;   // Cannot transform to and from inalloca.
 | |
| 
 | |
|     // If the parameter is passed as a byval argument, then we have to have a
 | |
|     // sized type and the sized type has to have the same size as the old type.
 | |
|     if (ParamTy != ActTy &&
 | |
|         CallerPAL.getParamAttributes(i + 1).hasAttribute(i + 1,
 | |
|                                                          Attribute::ByVal)) {
 | |
|       PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
 | |
|       if (!ParamPTy || !ParamPTy->getElementType()->isSized())
 | |
|         return false;
 | |
| 
 | |
|       Type *CurElTy = ActTy->getPointerElementType();
 | |
|       if (DL.getTypeAllocSize(CurElTy) !=
 | |
|           DL.getTypeAllocSize(ParamPTy->getElementType()))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Callee->isDeclaration()) {
 | |
|     // Do not delete arguments unless we have a function body.
 | |
|     if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
 | |
|       return false;
 | |
| 
 | |
|     // If the callee is just a declaration, don't change the varargsness of the
 | |
|     // call.  We don't want to introduce a varargs call where one doesn't
 | |
|     // already exist.
 | |
|     PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType());
 | |
|     if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
 | |
|       return false;
 | |
| 
 | |
|     // If both the callee and the cast type are varargs, we still have to make
 | |
|     // sure the number of fixed parameters are the same or we have the same
 | |
|     // ABI issues as if we introduce a varargs call.
 | |
|     if (FT->isVarArg() &&
 | |
|         cast<FunctionType>(APTy->getElementType())->isVarArg() &&
 | |
|         FT->getNumParams() !=
 | |
|         cast<FunctionType>(APTy->getElementType())->getNumParams())
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
 | |
|       !CallerPAL.isEmpty())
 | |
|     // In this case we have more arguments than the new function type, but we
 | |
|     // won't be dropping them.  Check that these extra arguments have attributes
 | |
|     // that are compatible with being a vararg call argument.
 | |
|     for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
 | |
|       unsigned Index = CallerPAL.getSlotIndex(i - 1);
 | |
|       if (Index <= FT->getNumParams())
 | |
|         break;
 | |
| 
 | |
|       // Check if it has an attribute that's incompatible with varargs.
 | |
|       AttributeSet PAttrs = CallerPAL.getSlotAttributes(i - 1);
 | |
|       if (PAttrs.hasAttribute(Index, Attribute::StructRet))
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
| 
 | |
|   // Okay, we decided that this is a safe thing to do: go ahead and start
 | |
|   // inserting cast instructions as necessary.
 | |
|   std::vector<Value*> Args;
 | |
|   Args.reserve(NumActualArgs);
 | |
|   SmallVector<AttributeSet, 8> attrVec;
 | |
|   attrVec.reserve(NumCommonArgs);
 | |
| 
 | |
|   // Get any return attributes.
 | |
|   AttrBuilder RAttrs(CallerPAL, AttributeSet::ReturnIndex);
 | |
| 
 | |
|   // If the return value is not being used, the type may not be compatible
 | |
|   // with the existing attributes.  Wipe out any problematic attributes.
 | |
|   RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy));
 | |
| 
 | |
|   // Add the new return attributes.
 | |
|   if (RAttrs.hasAttributes())
 | |
|     attrVec.push_back(AttributeSet::get(Caller->getContext(),
 | |
|                                         AttributeSet::ReturnIndex, RAttrs));
 | |
| 
 | |
|   AI = CS.arg_begin();
 | |
|   for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
 | |
|     Type *ParamTy = FT->getParamType(i);
 | |
| 
 | |
|     if ((*AI)->getType() == ParamTy) {
 | |
|       Args.push_back(*AI);
 | |
|     } else {
 | |
|       Args.push_back(Builder->CreateBitOrPointerCast(*AI, ParamTy));
 | |
|     }
 | |
| 
 | |
|     // Add any parameter attributes.
 | |
|     AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1);
 | |
|     if (PAttrs.hasAttributes())
 | |
|       attrVec.push_back(AttributeSet::get(Caller->getContext(), i + 1,
 | |
|                                           PAttrs));
 | |
|   }
 | |
| 
 | |
|   // If the function takes more arguments than the call was taking, add them
 | |
|   // now.
 | |
|   for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
 | |
|     Args.push_back(Constant::getNullValue(FT->getParamType(i)));
 | |
| 
 | |
|   // If we are removing arguments to the function, emit an obnoxious warning.
 | |
|   if (FT->getNumParams() < NumActualArgs) {
 | |
|     // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
 | |
|     if (FT->isVarArg()) {
 | |
|       // Add all of the arguments in their promoted form to the arg list.
 | |
|       for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
 | |
|         Type *PTy = getPromotedType((*AI)->getType());
 | |
|         if (PTy != (*AI)->getType()) {
 | |
|           // Must promote to pass through va_arg area!
 | |
|           Instruction::CastOps opcode =
 | |
|             CastInst::getCastOpcode(*AI, false, PTy, false);
 | |
|           Args.push_back(Builder->CreateCast(opcode, *AI, PTy));
 | |
|         } else {
 | |
|           Args.push_back(*AI);
 | |
|         }
 | |
| 
 | |
|         // Add any parameter attributes.
 | |
|         AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1);
 | |
|         if (PAttrs.hasAttributes())
 | |
|           attrVec.push_back(AttributeSet::get(FT->getContext(), i + 1,
 | |
|                                               PAttrs));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   AttributeSet FnAttrs = CallerPAL.getFnAttributes();
 | |
|   if (CallerPAL.hasAttributes(AttributeSet::FunctionIndex))
 | |
|     attrVec.push_back(AttributeSet::get(Callee->getContext(), FnAttrs));
 | |
| 
 | |
|   if (NewRetTy->isVoidTy())
 | |
|     Caller->setName("");   // Void type should not have a name.
 | |
| 
 | |
|   const AttributeSet &NewCallerPAL = AttributeSet::get(Callee->getContext(),
 | |
|                                                        attrVec);
 | |
| 
 | |
|   Instruction *NC;
 | |
|   if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
 | |
|     NC = Builder->CreateInvoke(Callee, II->getNormalDest(),
 | |
|                                II->getUnwindDest(), Args);
 | |
|     NC->takeName(II);
 | |
|     cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
 | |
|     cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
 | |
|   } else {
 | |
|     CallInst *CI = cast<CallInst>(Caller);
 | |
|     NC = Builder->CreateCall(Callee, Args);
 | |
|     NC->takeName(CI);
 | |
|     if (CI->isTailCall())
 | |
|       cast<CallInst>(NC)->setTailCall();
 | |
|     cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
 | |
|     cast<CallInst>(NC)->setAttributes(NewCallerPAL);
 | |
|   }
 | |
| 
 | |
|   // Insert a cast of the return type as necessary.
 | |
|   Value *NV = NC;
 | |
|   if (OldRetTy != NV->getType() && !Caller->use_empty()) {
 | |
|     if (!NV->getType()->isVoidTy()) {
 | |
|       NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy);
 | |
|       NC->setDebugLoc(Caller->getDebugLoc());
 | |
| 
 | |
|       // If this is an invoke instruction, we should insert it after the first
 | |
|       // non-phi, instruction in the normal successor block.
 | |
|       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
 | |
|         BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
 | |
|         InsertNewInstBefore(NC, *I);
 | |
|       } else {
 | |
|         // Otherwise, it's a call, just insert cast right after the call.
 | |
|         InsertNewInstBefore(NC, *Caller);
 | |
|       }
 | |
|       Worklist.AddUsersToWorkList(*Caller);
 | |
|     } else {
 | |
|       NV = UndefValue::get(Caller->getType());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!Caller->use_empty())
 | |
|     ReplaceInstUsesWith(*Caller, NV);
 | |
|   else if (Caller->hasValueHandle()) {
 | |
|     if (OldRetTy == NV->getType())
 | |
|       ValueHandleBase::ValueIsRAUWd(Caller, NV);
 | |
|     else
 | |
|       // We cannot call ValueIsRAUWd with a different type, and the
 | |
|       // actual tracked value will disappear.
 | |
|       ValueHandleBase::ValueIsDeleted(Caller);
 | |
|   }
 | |
| 
 | |
|   EraseInstFromFunction(*Caller);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // transformCallThroughTrampoline - Turn a call to a function created by
 | |
| // init_trampoline / adjust_trampoline intrinsic pair into a direct call to the
 | |
| // underlying function.
 | |
| //
 | |
| Instruction *
 | |
| InstCombiner::transformCallThroughTrampoline(CallSite CS,
 | |
|                                              IntrinsicInst *Tramp) {
 | |
|   Value *Callee = CS.getCalledValue();
 | |
|   PointerType *PTy = cast<PointerType>(Callee->getType());
 | |
|   FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
 | |
|   const AttributeSet &Attrs = CS.getAttributes();
 | |
| 
 | |
|   // If the call already has the 'nest' attribute somewhere then give up -
 | |
|   // otherwise 'nest' would occur twice after splicing in the chain.
 | |
|   if (Attrs.hasAttrSomewhere(Attribute::Nest))
 | |
|     return nullptr;
 | |
| 
 | |
|   assert(Tramp &&
 | |
|          "transformCallThroughTrampoline called with incorrect CallSite.");
 | |
| 
 | |
|   Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts());
 | |
|   PointerType *NestFPTy = cast<PointerType>(NestF->getType());
 | |
|   FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
 | |
| 
 | |
|   const AttributeSet &NestAttrs = NestF->getAttributes();
 | |
|   if (!NestAttrs.isEmpty()) {
 | |
|     unsigned NestIdx = 1;
 | |
|     Type *NestTy = nullptr;
 | |
|     AttributeSet NestAttr;
 | |
| 
 | |
|     // Look for a parameter marked with the 'nest' attribute.
 | |
|     for (FunctionType::param_iterator I = NestFTy->param_begin(),
 | |
|          E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
 | |
|       if (NestAttrs.hasAttribute(NestIdx, Attribute::Nest)) {
 | |
|         // Record the parameter type and any other attributes.
 | |
|         NestTy = *I;
 | |
|         NestAttr = NestAttrs.getParamAttributes(NestIdx);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|     if (NestTy) {
 | |
|       Instruction *Caller = CS.getInstruction();
 | |
|       std::vector<Value*> NewArgs;
 | |
|       NewArgs.reserve(CS.arg_size() + 1);
 | |
| 
 | |
|       SmallVector<AttributeSet, 8> NewAttrs;
 | |
|       NewAttrs.reserve(Attrs.getNumSlots() + 1);
 | |
| 
 | |
|       // Insert the nest argument into the call argument list, which may
 | |
|       // mean appending it.  Likewise for attributes.
 | |
| 
 | |
|       // Add any result attributes.
 | |
|       if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
 | |
|         NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
 | |
|                                              Attrs.getRetAttributes()));
 | |
| 
 | |
|       {
 | |
|         unsigned Idx = 1;
 | |
|         CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
 | |
|         do {
 | |
|           if (Idx == NestIdx) {
 | |
|             // Add the chain argument and attributes.
 | |
|             Value *NestVal = Tramp->getArgOperand(2);
 | |
|             if (NestVal->getType() != NestTy)
 | |
|               NestVal = Builder->CreateBitCast(NestVal, NestTy, "nest");
 | |
|             NewArgs.push_back(NestVal);
 | |
|             NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
 | |
|                                                  NestAttr));
 | |
|           }
 | |
| 
 | |
|           if (I == E)
 | |
|             break;
 | |
| 
 | |
|           // Add the original argument and attributes.
 | |
|           NewArgs.push_back(*I);
 | |
|           AttributeSet Attr = Attrs.getParamAttributes(Idx);
 | |
|           if (Attr.hasAttributes(Idx)) {
 | |
|             AttrBuilder B(Attr, Idx);
 | |
|             NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
 | |
|                                                  Idx + (Idx >= NestIdx), B));
 | |
|           }
 | |
| 
 | |
|           ++Idx, ++I;
 | |
|         } while (1);
 | |
|       }
 | |
| 
 | |
|       // Add any function attributes.
 | |
|       if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
 | |
|         NewAttrs.push_back(AttributeSet::get(FTy->getContext(),
 | |
|                                              Attrs.getFnAttributes()));
 | |
| 
 | |
|       // The trampoline may have been bitcast to a bogus type (FTy).
 | |
|       // Handle this by synthesizing a new function type, equal to FTy
 | |
|       // with the chain parameter inserted.
 | |
| 
 | |
|       std::vector<Type*> NewTypes;
 | |
|       NewTypes.reserve(FTy->getNumParams()+1);
 | |
| 
 | |
|       // Insert the chain's type into the list of parameter types, which may
 | |
|       // mean appending it.
 | |
|       {
 | |
|         unsigned Idx = 1;
 | |
|         FunctionType::param_iterator I = FTy->param_begin(),
 | |
|           E = FTy->param_end();
 | |
| 
 | |
|         do {
 | |
|           if (Idx == NestIdx)
 | |
|             // Add the chain's type.
 | |
|             NewTypes.push_back(NestTy);
 | |
| 
 | |
|           if (I == E)
 | |
|             break;
 | |
| 
 | |
|           // Add the original type.
 | |
|           NewTypes.push_back(*I);
 | |
| 
 | |
|           ++Idx, ++I;
 | |
|         } while (1);
 | |
|       }
 | |
| 
 | |
|       // Replace the trampoline call with a direct call.  Let the generic
 | |
|       // code sort out any function type mismatches.
 | |
|       FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
 | |
|                                                 FTy->isVarArg());
 | |
|       Constant *NewCallee =
 | |
|         NestF->getType() == PointerType::getUnqual(NewFTy) ?
 | |
|         NestF : ConstantExpr::getBitCast(NestF,
 | |
|                                          PointerType::getUnqual(NewFTy));
 | |
|       const AttributeSet &NewPAL =
 | |
|           AttributeSet::get(FTy->getContext(), NewAttrs);
 | |
| 
 | |
|       Instruction *NewCaller;
 | |
|       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
 | |
|         NewCaller = InvokeInst::Create(NewCallee,
 | |
|                                        II->getNormalDest(), II->getUnwindDest(),
 | |
|                                        NewArgs);
 | |
|         cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
 | |
|         cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
 | |
|       } else {
 | |
|         NewCaller = CallInst::Create(NewCallee, NewArgs);
 | |
|         if (cast<CallInst>(Caller)->isTailCall())
 | |
|           cast<CallInst>(NewCaller)->setTailCall();
 | |
|         cast<CallInst>(NewCaller)->
 | |
|           setCallingConv(cast<CallInst>(Caller)->getCallingConv());
 | |
|         cast<CallInst>(NewCaller)->setAttributes(NewPAL);
 | |
|       }
 | |
| 
 | |
|       return NewCaller;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Replace the trampoline call with a direct call.  Since there is no 'nest'
 | |
|   // parameter, there is no need to adjust the argument list.  Let the generic
 | |
|   // code sort out any function type mismatches.
 | |
|   Constant *NewCallee =
 | |
|     NestF->getType() == PTy ? NestF :
 | |
|                               ConstantExpr::getBitCast(NestF, PTy);
 | |
|   CS.setCalledFunction(NewCallee);
 | |
|   return CS.getInstruction();
 | |
| }
 |