mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237624 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			3008 lines
		
	
	
		
			115 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3008 lines
		
	
	
		
			115 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// \file
 | |
| /// This file is a part of MemorySanitizer, a detector of uninitialized
 | |
| /// reads.
 | |
| ///
 | |
| /// The algorithm of the tool is similar to Memcheck
 | |
| /// (http://goo.gl/QKbem). We associate a few shadow bits with every
 | |
| /// byte of the application memory, poison the shadow of the malloc-ed
 | |
| /// or alloca-ed memory, load the shadow bits on every memory read,
 | |
| /// propagate the shadow bits through some of the arithmetic
 | |
| /// instruction (including MOV), store the shadow bits on every memory
 | |
| /// write, report a bug on some other instructions (e.g. JMP) if the
 | |
| /// associated shadow is poisoned.
 | |
| ///
 | |
| /// But there are differences too. The first and the major one:
 | |
| /// compiler instrumentation instead of binary instrumentation. This
 | |
| /// gives us much better register allocation, possible compiler
 | |
| /// optimizations and a fast start-up. But this brings the major issue
 | |
| /// as well: msan needs to see all program events, including system
 | |
| /// calls and reads/writes in system libraries, so we either need to
 | |
| /// compile *everything* with msan or use a binary translation
 | |
| /// component (e.g. DynamoRIO) to instrument pre-built libraries.
 | |
| /// Another difference from Memcheck is that we use 8 shadow bits per
 | |
| /// byte of application memory and use a direct shadow mapping. This
 | |
| /// greatly simplifies the instrumentation code and avoids races on
 | |
| /// shadow updates (Memcheck is single-threaded so races are not a
 | |
| /// concern there. Memcheck uses 2 shadow bits per byte with a slow
 | |
| /// path storage that uses 8 bits per byte).
 | |
| ///
 | |
| /// The default value of shadow is 0, which means "clean" (not poisoned).
 | |
| ///
 | |
| /// Every module initializer should call __msan_init to ensure that the
 | |
| /// shadow memory is ready. On error, __msan_warning is called. Since
 | |
| /// parameters and return values may be passed via registers, we have a
 | |
| /// specialized thread-local shadow for return values
 | |
| /// (__msan_retval_tls) and parameters (__msan_param_tls).
 | |
| ///
 | |
| ///                           Origin tracking.
 | |
| ///
 | |
| /// MemorySanitizer can track origins (allocation points) of all uninitialized
 | |
| /// values. This behavior is controlled with a flag (msan-track-origins) and is
 | |
| /// disabled by default.
 | |
| ///
 | |
| /// Origins are 4-byte values created and interpreted by the runtime library.
 | |
| /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
 | |
| /// of application memory. Propagation of origins is basically a bunch of
 | |
| /// "select" instructions that pick the origin of a dirty argument, if an
 | |
| /// instruction has one.
 | |
| ///
 | |
| /// Every 4 aligned, consecutive bytes of application memory have one origin
 | |
| /// value associated with them. If these bytes contain uninitialized data
 | |
| /// coming from 2 different allocations, the last store wins. Because of this,
 | |
| /// MemorySanitizer reports can show unrelated origins, but this is unlikely in
 | |
| /// practice.
 | |
| ///
 | |
| /// Origins are meaningless for fully initialized values, so MemorySanitizer
 | |
| /// avoids storing origin to memory when a fully initialized value is stored.
 | |
| /// This way it avoids needless overwritting origin of the 4-byte region on
 | |
| /// a short (i.e. 1 byte) clean store, and it is also good for performance.
 | |
| ///
 | |
| ///                            Atomic handling.
 | |
| ///
 | |
| /// Ideally, every atomic store of application value should update the
 | |
| /// corresponding shadow location in an atomic way. Unfortunately, atomic store
 | |
| /// of two disjoint locations can not be done without severe slowdown.
 | |
| ///
 | |
| /// Therefore, we implement an approximation that may err on the safe side.
 | |
| /// In this implementation, every atomically accessed location in the program
 | |
| /// may only change from (partially) uninitialized to fully initialized, but
 | |
| /// not the other way around. We load the shadow _after_ the application load,
 | |
| /// and we store the shadow _before_ the app store. Also, we always store clean
 | |
| /// shadow (if the application store is atomic). This way, if the store-load
 | |
| /// pair constitutes a happens-before arc, shadow store and load are correctly
 | |
| /// ordered such that the load will get either the value that was stored, or
 | |
| /// some later value (which is always clean).
 | |
| ///
 | |
| /// This does not work very well with Compare-And-Swap (CAS) and
 | |
| /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW
 | |
| /// must store the new shadow before the app operation, and load the shadow
 | |
| /// after the app operation. Computers don't work this way. Current
 | |
| /// implementation ignores the load aspect of CAS/RMW, always returning a clean
 | |
| /// value. It implements the store part as a simple atomic store by storing a
 | |
| /// clean shadow.
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Instrumentation.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/SmallString.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/ADT/Triple.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/InlineAsm.h"
 | |
| #include "llvm/IR/InstVisitor.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/MDBuilder.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/ValueMap.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/ModuleUtils.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "msan"
 | |
| 
 | |
| static const unsigned kOriginSize = 4;
 | |
| static const unsigned kMinOriginAlignment = 4;
 | |
| static const unsigned kShadowTLSAlignment = 8;
 | |
| 
 | |
| // These constants must be kept in sync with the ones in msan.h.
 | |
| static const unsigned kParamTLSSize = 800;
 | |
| static const unsigned kRetvalTLSSize = 800;
 | |
| 
 | |
| // Accesses sizes are powers of two: 1, 2, 4, 8.
 | |
| static const size_t kNumberOfAccessSizes = 4;
 | |
| 
 | |
| /// \brief Track origins of uninitialized values.
 | |
| ///
 | |
| /// Adds a section to MemorySanitizer report that points to the allocation
 | |
| /// (stack or heap) the uninitialized bits came from originally.
 | |
| static cl::opt<int> ClTrackOrigins("msan-track-origins",
 | |
|        cl::desc("Track origins (allocation sites) of poisoned memory"),
 | |
|        cl::Hidden, cl::init(0));
 | |
| static cl::opt<bool> ClKeepGoing("msan-keep-going",
 | |
|        cl::desc("keep going after reporting a UMR"),
 | |
|        cl::Hidden, cl::init(false));
 | |
| static cl::opt<bool> ClPoisonStack("msan-poison-stack",
 | |
|        cl::desc("poison uninitialized stack variables"),
 | |
|        cl::Hidden, cl::init(true));
 | |
| static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
 | |
|        cl::desc("poison uninitialized stack variables with a call"),
 | |
|        cl::Hidden, cl::init(false));
 | |
| static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
 | |
|        cl::desc("poison uninitialized stack variables with the given patter"),
 | |
|        cl::Hidden, cl::init(0xff));
 | |
| static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
 | |
|        cl::desc("poison undef temps"),
 | |
|        cl::Hidden, cl::init(true));
 | |
| 
 | |
| static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
 | |
|        cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
 | |
|        cl::Hidden, cl::init(true));
 | |
| 
 | |
| static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
 | |
|        cl::desc("exact handling of relational integer ICmp"),
 | |
|        cl::Hidden, cl::init(false));
 | |
| 
 | |
| // This flag controls whether we check the shadow of the address
 | |
| // operand of load or store. Such bugs are very rare, since load from
 | |
| // a garbage address typically results in SEGV, but still happen
 | |
| // (e.g. only lower bits of address are garbage, or the access happens
 | |
| // early at program startup where malloc-ed memory is more likely to
 | |
| // be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
 | |
| static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
 | |
|        cl::desc("report accesses through a pointer which has poisoned shadow"),
 | |
|        cl::Hidden, cl::init(true));
 | |
| 
 | |
| static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
 | |
|        cl::desc("print out instructions with default strict semantics"),
 | |
|        cl::Hidden, cl::init(false));
 | |
| 
 | |
| static cl::opt<int> ClInstrumentationWithCallThreshold(
 | |
|     "msan-instrumentation-with-call-threshold",
 | |
|     cl::desc(
 | |
|         "If the function being instrumented requires more than "
 | |
|         "this number of checks and origin stores, use callbacks instead of "
 | |
|         "inline checks (-1 means never use callbacks)."),
 | |
|     cl::Hidden, cl::init(3500));
 | |
| 
 | |
| // This is an experiment to enable handling of cases where shadow is a non-zero
 | |
| // compile-time constant. For some unexplainable reason they were silently
 | |
| // ignored in the instrumentation.
 | |
| static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow",
 | |
|        cl::desc("Insert checks for constant shadow values"),
 | |
|        cl::Hidden, cl::init(false));
 | |
| 
 | |
| static const char *const kMsanModuleCtorName = "msan.module_ctor";
 | |
| static const char *const kMsanInitName = "__msan_init";
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // Memory map parameters used in application-to-shadow address calculation.
 | |
| // Offset = (Addr & ~AndMask) ^ XorMask
 | |
| // Shadow = ShadowBase + Offset
 | |
| // Origin = OriginBase + Offset
 | |
| struct MemoryMapParams {
 | |
|   uint64_t AndMask;
 | |
|   uint64_t XorMask;
 | |
|   uint64_t ShadowBase;
 | |
|   uint64_t OriginBase;
 | |
| };
 | |
| 
 | |
| struct PlatformMemoryMapParams {
 | |
|   const MemoryMapParams *bits32;
 | |
|   const MemoryMapParams *bits64;
 | |
| };
 | |
| 
 | |
| // i386 Linux
 | |
| static const MemoryMapParams Linux_I386_MemoryMapParams = {
 | |
|   0x000080000000,  // AndMask
 | |
|   0,               // XorMask (not used)
 | |
|   0,               // ShadowBase (not used)
 | |
|   0x000040000000,  // OriginBase
 | |
| };
 | |
| 
 | |
| // x86_64 Linux
 | |
| static const MemoryMapParams Linux_X86_64_MemoryMapParams = {
 | |
|   0x400000000000,  // AndMask
 | |
|   0,               // XorMask (not used)
 | |
|   0,               // ShadowBase (not used)
 | |
|   0x200000000000,  // OriginBase
 | |
| };
 | |
| 
 | |
| // mips64 Linux
 | |
| static const MemoryMapParams Linux_MIPS64_MemoryMapParams = {
 | |
|   0x004000000000,  // AndMask
 | |
|   0,               // XorMask (not used)
 | |
|   0,               // ShadowBase (not used)
 | |
|   0x002000000000,  // OriginBase
 | |
| };
 | |
| 
 | |
| // i386 FreeBSD
 | |
| static const MemoryMapParams FreeBSD_I386_MemoryMapParams = {
 | |
|   0x000180000000,  // AndMask
 | |
|   0x000040000000,  // XorMask
 | |
|   0x000020000000,  // ShadowBase
 | |
|   0x000700000000,  // OriginBase
 | |
| };
 | |
| 
 | |
| // x86_64 FreeBSD
 | |
| static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = {
 | |
|   0xc00000000000,  // AndMask
 | |
|   0x200000000000,  // XorMask
 | |
|   0x100000000000,  // ShadowBase
 | |
|   0x380000000000,  // OriginBase
 | |
| };
 | |
| 
 | |
| static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = {
 | |
|   &Linux_I386_MemoryMapParams,
 | |
|   &Linux_X86_64_MemoryMapParams,
 | |
| };
 | |
| 
 | |
| static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = {
 | |
|   NULL,
 | |
|   &Linux_MIPS64_MemoryMapParams,
 | |
| };
 | |
| 
 | |
| static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = {
 | |
|   &FreeBSD_I386_MemoryMapParams,
 | |
|   &FreeBSD_X86_64_MemoryMapParams,
 | |
| };
 | |
| 
 | |
| /// \brief An instrumentation pass implementing detection of uninitialized
 | |
| /// reads.
 | |
| ///
 | |
| /// MemorySanitizer: instrument the code in module to find
 | |
| /// uninitialized reads.
 | |
| class MemorySanitizer : public FunctionPass {
 | |
|  public:
 | |
|   MemorySanitizer(int TrackOrigins = 0)
 | |
|       : FunctionPass(ID),
 | |
|         TrackOrigins(std::max(TrackOrigins, (int)ClTrackOrigins)),
 | |
|         WarningFn(nullptr) {}
 | |
|   const char *getPassName() const override { return "MemorySanitizer"; }
 | |
|   bool runOnFunction(Function &F) override;
 | |
|   bool doInitialization(Module &M) override;
 | |
|   static char ID;  // Pass identification, replacement for typeid.
 | |
| 
 | |
|  private:
 | |
|   void initializeCallbacks(Module &M);
 | |
| 
 | |
|   /// \brief Track origins (allocation points) of uninitialized values.
 | |
|   int TrackOrigins;
 | |
| 
 | |
|   LLVMContext *C;
 | |
|   Type *IntptrTy;
 | |
|   Type *OriginTy;
 | |
|   /// \brief Thread-local shadow storage for function parameters.
 | |
|   GlobalVariable *ParamTLS;
 | |
|   /// \brief Thread-local origin storage for function parameters.
 | |
|   GlobalVariable *ParamOriginTLS;
 | |
|   /// \brief Thread-local shadow storage for function return value.
 | |
|   GlobalVariable *RetvalTLS;
 | |
|   /// \brief Thread-local origin storage for function return value.
 | |
|   GlobalVariable *RetvalOriginTLS;
 | |
|   /// \brief Thread-local shadow storage for in-register va_arg function
 | |
|   /// parameters (x86_64-specific).
 | |
|   GlobalVariable *VAArgTLS;
 | |
|   /// \brief Thread-local shadow storage for va_arg overflow area
 | |
|   /// (x86_64-specific).
 | |
|   GlobalVariable *VAArgOverflowSizeTLS;
 | |
|   /// \brief Thread-local space used to pass origin value to the UMR reporting
 | |
|   /// function.
 | |
|   GlobalVariable *OriginTLS;
 | |
| 
 | |
|   /// \brief The run-time callback to print a warning.
 | |
|   Value *WarningFn;
 | |
|   // These arrays are indexed by log2(AccessSize).
 | |
|   Value *MaybeWarningFn[kNumberOfAccessSizes];
 | |
|   Value *MaybeStoreOriginFn[kNumberOfAccessSizes];
 | |
| 
 | |
|   /// \brief Run-time helper that generates a new origin value for a stack
 | |
|   /// allocation.
 | |
|   Value *MsanSetAllocaOrigin4Fn;
 | |
|   /// \brief Run-time helper that poisons stack on function entry.
 | |
|   Value *MsanPoisonStackFn;
 | |
|   /// \brief Run-time helper that records a store (or any event) of an
 | |
|   /// uninitialized value and returns an updated origin id encoding this info.
 | |
|   Value *MsanChainOriginFn;
 | |
|   /// \brief MSan runtime replacements for memmove, memcpy and memset.
 | |
|   Value *MemmoveFn, *MemcpyFn, *MemsetFn;
 | |
| 
 | |
|   /// \brief Memory map parameters used in application-to-shadow calculation.
 | |
|   const MemoryMapParams *MapParams;
 | |
| 
 | |
|   MDNode *ColdCallWeights;
 | |
|   /// \brief Branch weights for origin store.
 | |
|   MDNode *OriginStoreWeights;
 | |
|   /// \brief An empty volatile inline asm that prevents callback merge.
 | |
|   InlineAsm *EmptyAsm;
 | |
|   Function *MsanCtorFunction;
 | |
| 
 | |
|   friend struct MemorySanitizerVisitor;
 | |
|   friend struct VarArgAMD64Helper;
 | |
|   friend struct VarArgMIPS64Helper;
 | |
| };
 | |
| }  // namespace
 | |
| 
 | |
| char MemorySanitizer::ID = 0;
 | |
| INITIALIZE_PASS(MemorySanitizer, "msan",
 | |
|                 "MemorySanitizer: detects uninitialized reads.",
 | |
|                 false, false)
 | |
| 
 | |
| FunctionPass *llvm::createMemorySanitizerPass(int TrackOrigins) {
 | |
|   return new MemorySanitizer(TrackOrigins);
 | |
| }
 | |
| 
 | |
| /// \brief Create a non-const global initialized with the given string.
 | |
| ///
 | |
| /// Creates a writable global for Str so that we can pass it to the
 | |
| /// run-time lib. Runtime uses first 4 bytes of the string to store the
 | |
| /// frame ID, so the string needs to be mutable.
 | |
| static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
 | |
|                                                             StringRef Str) {
 | |
|   Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
 | |
|   return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
 | |
|                             GlobalValue::PrivateLinkage, StrConst, "");
 | |
| }
 | |
| 
 | |
| 
 | |
| /// \brief Insert extern declaration of runtime-provided functions and globals.
 | |
| void MemorySanitizer::initializeCallbacks(Module &M) {
 | |
|   // Only do this once.
 | |
|   if (WarningFn)
 | |
|     return;
 | |
| 
 | |
|   IRBuilder<> IRB(*C);
 | |
|   // Create the callback.
 | |
|   // FIXME: this function should have "Cold" calling conv,
 | |
|   // which is not yet implemented.
 | |
|   StringRef WarningFnName = ClKeepGoing ? "__msan_warning"
 | |
|                                         : "__msan_warning_noreturn";
 | |
|   WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), nullptr);
 | |
| 
 | |
|   for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
 | |
|        AccessSizeIndex++) {
 | |
|     unsigned AccessSize = 1 << AccessSizeIndex;
 | |
|     std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize);
 | |
|     MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction(
 | |
|         FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
 | |
|         IRB.getInt32Ty(), nullptr);
 | |
| 
 | |
|     FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize);
 | |
|     MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction(
 | |
|         FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
 | |
|         IRB.getInt8PtrTy(), IRB.getInt32Ty(), nullptr);
 | |
|   }
 | |
| 
 | |
|   MsanSetAllocaOrigin4Fn = M.getOrInsertFunction(
 | |
|     "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
 | |
|     IRB.getInt8PtrTy(), IntptrTy, nullptr);
 | |
|   MsanPoisonStackFn =
 | |
|       M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(),
 | |
|                             IRB.getInt8PtrTy(), IntptrTy, nullptr);
 | |
|   MsanChainOriginFn = M.getOrInsertFunction(
 | |
|     "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty(), nullptr);
 | |
|   MemmoveFn = M.getOrInsertFunction(
 | |
|     "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
 | |
|     IRB.getInt8PtrTy(), IntptrTy, nullptr);
 | |
|   MemcpyFn = M.getOrInsertFunction(
 | |
|     "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
 | |
|     IntptrTy, nullptr);
 | |
|   MemsetFn = M.getOrInsertFunction(
 | |
|     "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
 | |
|     IntptrTy, nullptr);
 | |
| 
 | |
|   // Create globals.
 | |
|   RetvalTLS = new GlobalVariable(
 | |
|     M, ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), false,
 | |
|     GlobalVariable::ExternalLinkage, nullptr, "__msan_retval_tls", nullptr,
 | |
|     GlobalVariable::InitialExecTLSModel);
 | |
|   RetvalOriginTLS = new GlobalVariable(
 | |
|     M, OriginTy, false, GlobalVariable::ExternalLinkage, nullptr,
 | |
|     "__msan_retval_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel);
 | |
| 
 | |
|   ParamTLS = new GlobalVariable(
 | |
|     M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false,
 | |
|     GlobalVariable::ExternalLinkage, nullptr, "__msan_param_tls", nullptr,
 | |
|     GlobalVariable::InitialExecTLSModel);
 | |
|   ParamOriginTLS = new GlobalVariable(
 | |
|     M, ArrayType::get(OriginTy, kParamTLSSize / 4), false,
 | |
|     GlobalVariable::ExternalLinkage, nullptr, "__msan_param_origin_tls",
 | |
|     nullptr, GlobalVariable::InitialExecTLSModel);
 | |
| 
 | |
|   VAArgTLS = new GlobalVariable(
 | |
|     M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false,
 | |
|     GlobalVariable::ExternalLinkage, nullptr, "__msan_va_arg_tls", nullptr,
 | |
|     GlobalVariable::InitialExecTLSModel);
 | |
|   VAArgOverflowSizeTLS = new GlobalVariable(
 | |
|     M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, nullptr,
 | |
|     "__msan_va_arg_overflow_size_tls", nullptr,
 | |
|     GlobalVariable::InitialExecTLSModel);
 | |
|   OriginTLS = new GlobalVariable(
 | |
|     M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, nullptr,
 | |
|     "__msan_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel);
 | |
| 
 | |
|   // We insert an empty inline asm after __msan_report* to avoid callback merge.
 | |
|   EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
 | |
|                             StringRef(""), StringRef(""),
 | |
|                             /*hasSideEffects=*/true);
 | |
| }
 | |
| 
 | |
| /// \brief Module-level initialization.
 | |
| ///
 | |
| /// inserts a call to __msan_init to the module's constructor list.
 | |
| bool MemorySanitizer::doInitialization(Module &M) {
 | |
|   auto &DL = M.getDataLayout();
 | |
| 
 | |
|   Triple TargetTriple(M.getTargetTriple());
 | |
|   switch (TargetTriple.getOS()) {
 | |
|     case Triple::FreeBSD:
 | |
|       switch (TargetTriple.getArch()) {
 | |
|         case Triple::x86_64:
 | |
|           MapParams = FreeBSD_X86_MemoryMapParams.bits64;
 | |
|           break;
 | |
|         case Triple::x86:
 | |
|           MapParams = FreeBSD_X86_MemoryMapParams.bits32;
 | |
|           break;
 | |
|         default:
 | |
|           report_fatal_error("unsupported architecture");
 | |
|       }
 | |
|       break;
 | |
|     case Triple::Linux:
 | |
|       switch (TargetTriple.getArch()) {
 | |
|         case Triple::x86_64:
 | |
|           MapParams = Linux_X86_MemoryMapParams.bits64;
 | |
|           break;
 | |
|         case Triple::x86:
 | |
|           MapParams = Linux_X86_MemoryMapParams.bits32;
 | |
|           break;
 | |
|         case Triple::mips64:
 | |
|         case Triple::mips64el:
 | |
|           MapParams = Linux_MIPS_MemoryMapParams.bits64;
 | |
|           break;
 | |
|         default:
 | |
|           report_fatal_error("unsupported architecture");
 | |
|       }
 | |
|       break;
 | |
|     default:
 | |
|       report_fatal_error("unsupported operating system");
 | |
|   }
 | |
| 
 | |
|   C = &(M.getContext());
 | |
|   IRBuilder<> IRB(*C);
 | |
|   IntptrTy = IRB.getIntPtrTy(DL);
 | |
|   OriginTy = IRB.getInt32Ty();
 | |
| 
 | |
|   ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
 | |
|   OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
 | |
| 
 | |
|   std::tie(MsanCtorFunction, std::ignore) =
 | |
|       createSanitizerCtorAndInitFunctions(M, kMsanModuleCtorName, kMsanInitName,
 | |
|                                           /*InitArgTypes=*/{},
 | |
|                                           /*InitArgs=*/{});
 | |
| 
 | |
|   appendToGlobalCtors(M, MsanCtorFunction, 0);
 | |
| 
 | |
|   if (TrackOrigins)
 | |
|     new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
 | |
|                        IRB.getInt32(TrackOrigins), "__msan_track_origins");
 | |
| 
 | |
|   if (ClKeepGoing)
 | |
|     new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
 | |
|                        IRB.getInt32(ClKeepGoing), "__msan_keep_going");
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// \brief A helper class that handles instrumentation of VarArg
 | |
| /// functions on a particular platform.
 | |
| ///
 | |
| /// Implementations are expected to insert the instrumentation
 | |
| /// necessary to propagate argument shadow through VarArg function
 | |
| /// calls. Visit* methods are called during an InstVisitor pass over
 | |
| /// the function, and should avoid creating new basic blocks. A new
 | |
| /// instance of this class is created for each instrumented function.
 | |
| struct VarArgHelper {
 | |
|   /// \brief Visit a CallSite.
 | |
|   virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
 | |
| 
 | |
|   /// \brief Visit a va_start call.
 | |
|   virtual void visitVAStartInst(VAStartInst &I) = 0;
 | |
| 
 | |
|   /// \brief Visit a va_copy call.
 | |
|   virtual void visitVACopyInst(VACopyInst &I) = 0;
 | |
| 
 | |
|   /// \brief Finalize function instrumentation.
 | |
|   ///
 | |
|   /// This method is called after visiting all interesting (see above)
 | |
|   /// instructions in a function.
 | |
|   virtual void finalizeInstrumentation() = 0;
 | |
| 
 | |
|   virtual ~VarArgHelper() {}
 | |
| };
 | |
| 
 | |
| struct MemorySanitizerVisitor;
 | |
| 
 | |
| VarArgHelper*
 | |
| CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
 | |
|                    MemorySanitizerVisitor &Visitor);
 | |
| 
 | |
| unsigned TypeSizeToSizeIndex(unsigned TypeSize) {
 | |
|   if (TypeSize <= 8) return 0;
 | |
|   return Log2_32_Ceil(TypeSize / 8);
 | |
| }
 | |
| 
 | |
| /// This class does all the work for a given function. Store and Load
 | |
| /// instructions store and load corresponding shadow and origin
 | |
| /// values. Most instructions propagate shadow from arguments to their
 | |
| /// return values. Certain instructions (most importantly, BranchInst)
 | |
| /// test their argument shadow and print reports (with a runtime call) if it's
 | |
| /// non-zero.
 | |
| struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
 | |
|   Function &F;
 | |
|   MemorySanitizer &MS;
 | |
|   SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
 | |
|   ValueMap<Value*, Value*> ShadowMap, OriginMap;
 | |
|   std::unique_ptr<VarArgHelper> VAHelper;
 | |
| 
 | |
|   // The following flags disable parts of MSan instrumentation based on
 | |
|   // blacklist contents and command-line options.
 | |
|   bool InsertChecks;
 | |
|   bool PropagateShadow;
 | |
|   bool PoisonStack;
 | |
|   bool PoisonUndef;
 | |
|   bool CheckReturnValue;
 | |
| 
 | |
|   struct ShadowOriginAndInsertPoint {
 | |
|     Value *Shadow;
 | |
|     Value *Origin;
 | |
|     Instruction *OrigIns;
 | |
|     ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I)
 | |
|       : Shadow(S), Origin(O), OrigIns(I) { }
 | |
|   };
 | |
|   SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
 | |
|   SmallVector<Instruction*, 16> StoreList;
 | |
| 
 | |
|   MemorySanitizerVisitor(Function &F, MemorySanitizer &MS)
 | |
|       : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) {
 | |
|     bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory);
 | |
|     InsertChecks = SanitizeFunction;
 | |
|     PropagateShadow = SanitizeFunction;
 | |
|     PoisonStack = SanitizeFunction && ClPoisonStack;
 | |
|     PoisonUndef = SanitizeFunction && ClPoisonUndef;
 | |
|     // FIXME: Consider using SpecialCaseList to specify a list of functions that
 | |
|     // must always return fully initialized values. For now, we hardcode "main".
 | |
|     CheckReturnValue = SanitizeFunction && (F.getName() == "main");
 | |
| 
 | |
|     DEBUG(if (!InsertChecks)
 | |
|           dbgs() << "MemorySanitizer is not inserting checks into '"
 | |
|                  << F.getName() << "'\n");
 | |
|   }
 | |
| 
 | |
|   Value *updateOrigin(Value *V, IRBuilder<> &IRB) {
 | |
|     if (MS.TrackOrigins <= 1) return V;
 | |
|     return IRB.CreateCall(MS.MsanChainOriginFn, V);
 | |
|   }
 | |
| 
 | |
|   Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) {
 | |
|     const DataLayout &DL = F.getParent()->getDataLayout();
 | |
|     unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
 | |
|     if (IntptrSize == kOriginSize) return Origin;
 | |
|     assert(IntptrSize == kOriginSize * 2);
 | |
|     Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false);
 | |
|     return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8));
 | |
|   }
 | |
| 
 | |
|   /// \brief Fill memory range with the given origin value.
 | |
|   void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr,
 | |
|                    unsigned Size, unsigned Alignment) {
 | |
|     const DataLayout &DL = F.getParent()->getDataLayout();
 | |
|     unsigned IntptrAlignment = DL.getABITypeAlignment(MS.IntptrTy);
 | |
|     unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
 | |
|     assert(IntptrAlignment >= kMinOriginAlignment);
 | |
|     assert(IntptrSize >= kOriginSize);
 | |
| 
 | |
|     unsigned Ofs = 0;
 | |
|     unsigned CurrentAlignment = Alignment;
 | |
|     if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) {
 | |
|       Value *IntptrOrigin = originToIntptr(IRB, Origin);
 | |
|       Value *IntptrOriginPtr =
 | |
|           IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0));
 | |
|       for (unsigned i = 0; i < Size / IntptrSize; ++i) {
 | |
|         Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i)
 | |
|                        : IntptrOriginPtr;
 | |
|         IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment);
 | |
|         Ofs += IntptrSize / kOriginSize;
 | |
|         CurrentAlignment = IntptrAlignment;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) {
 | |
|       Value *GEP =
 | |
|           i ? IRB.CreateConstGEP1_32(nullptr, OriginPtr, i) : OriginPtr;
 | |
|       IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment);
 | |
|       CurrentAlignment = kMinOriginAlignment;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin,
 | |
|                    unsigned Alignment, bool AsCall) {
 | |
|     const DataLayout &DL = F.getParent()->getDataLayout();
 | |
|     unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
 | |
|     unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType());
 | |
|     if (isa<StructType>(Shadow->getType())) {
 | |
|       paintOrigin(IRB, updateOrigin(Origin, IRB),
 | |
|                   getOriginPtr(Addr, IRB, Alignment), StoreSize,
 | |
|                   OriginAlignment);
 | |
|     } else {
 | |
|       Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
 | |
|       Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow);
 | |
|       if (ConstantShadow) {
 | |
|         if (ClCheckConstantShadow && !ConstantShadow->isZeroValue())
 | |
|           paintOrigin(IRB, updateOrigin(Origin, IRB),
 | |
|                       getOriginPtr(Addr, IRB, Alignment), StoreSize,
 | |
|                       OriginAlignment);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       unsigned TypeSizeInBits =
 | |
|           DL.getTypeSizeInBits(ConvertedShadow->getType());
 | |
|       unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
 | |
|       if (AsCall && SizeIndex < kNumberOfAccessSizes) {
 | |
|         Value *Fn = MS.MaybeStoreOriginFn[SizeIndex];
 | |
|         Value *ConvertedShadow2 = IRB.CreateZExt(
 | |
|             ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
 | |
|         IRB.CreateCall(Fn, {ConvertedShadow2,
 | |
|                             IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
 | |
|                             Origin});
 | |
|       } else {
 | |
|         Value *Cmp = IRB.CreateICmpNE(
 | |
|             ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp");
 | |
|         Instruction *CheckTerm = SplitBlockAndInsertIfThen(
 | |
|             Cmp, IRB.GetInsertPoint(), false, MS.OriginStoreWeights);
 | |
|         IRBuilder<> IRBNew(CheckTerm);
 | |
|         paintOrigin(IRBNew, updateOrigin(Origin, IRBNew),
 | |
|                     getOriginPtr(Addr, IRBNew, Alignment), StoreSize,
 | |
|                     OriginAlignment);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void materializeStores(bool InstrumentWithCalls) {
 | |
|     for (auto Inst : StoreList) {
 | |
|       StoreInst &SI = *dyn_cast<StoreInst>(Inst);
 | |
| 
 | |
|       IRBuilder<> IRB(&SI);
 | |
|       Value *Val = SI.getValueOperand();
 | |
|       Value *Addr = SI.getPointerOperand();
 | |
|       Value *Shadow = SI.isAtomic() ? getCleanShadow(Val) : getShadow(Val);
 | |
|       Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
 | |
| 
 | |
|       StoreInst *NewSI =
 | |
|           IRB.CreateAlignedStore(Shadow, ShadowPtr, SI.getAlignment());
 | |
|       DEBUG(dbgs() << "  STORE: " << *NewSI << "\n");
 | |
|       (void)NewSI;
 | |
| 
 | |
|       if (ClCheckAccessAddress) insertShadowCheck(Addr, &SI);
 | |
| 
 | |
|       if (SI.isAtomic()) SI.setOrdering(addReleaseOrdering(SI.getOrdering()));
 | |
| 
 | |
|       if (MS.TrackOrigins && !SI.isAtomic())
 | |
|         storeOrigin(IRB, Addr, Shadow, getOrigin(Val), SI.getAlignment(),
 | |
|                     InstrumentWithCalls);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin,
 | |
|                            bool AsCall) {
 | |
|     IRBuilder<> IRB(OrigIns);
 | |
|     DEBUG(dbgs() << "  SHAD0 : " << *Shadow << "\n");
 | |
|     Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
 | |
|     DEBUG(dbgs() << "  SHAD1 : " << *ConvertedShadow << "\n");
 | |
| 
 | |
|     Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow);
 | |
|     if (ConstantShadow) {
 | |
|       if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) {
 | |
|         if (MS.TrackOrigins) {
 | |
|           IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0),
 | |
|                           MS.OriginTLS);
 | |
|         }
 | |
|         IRB.CreateCall(MS.WarningFn, {});
 | |
|         IRB.CreateCall(MS.EmptyAsm, {});
 | |
|         // FIXME: Insert UnreachableInst if !ClKeepGoing?
 | |
|         // This may invalidate some of the following checks and needs to be done
 | |
|         // at the very end.
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     const DataLayout &DL = OrigIns->getModule()->getDataLayout();
 | |
| 
 | |
|     unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType());
 | |
|     unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
 | |
|     if (AsCall && SizeIndex < kNumberOfAccessSizes) {
 | |
|       Value *Fn = MS.MaybeWarningFn[SizeIndex];
 | |
|       Value *ConvertedShadow2 =
 | |
|           IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
 | |
|       IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin
 | |
|                                                 ? Origin
 | |
|                                                 : (Value *)IRB.getInt32(0)});
 | |
|     } else {
 | |
|       Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
 | |
|                                     getCleanShadow(ConvertedShadow), "_mscmp");
 | |
|       Instruction *CheckTerm = SplitBlockAndInsertIfThen(
 | |
|           Cmp, OrigIns,
 | |
|           /* Unreachable */ !ClKeepGoing, MS.ColdCallWeights);
 | |
| 
 | |
|       IRB.SetInsertPoint(CheckTerm);
 | |
|       if (MS.TrackOrigins) {
 | |
|         IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0),
 | |
|                         MS.OriginTLS);
 | |
|       }
 | |
|       IRB.CreateCall(MS.WarningFn, {});
 | |
|       IRB.CreateCall(MS.EmptyAsm, {});
 | |
|       DEBUG(dbgs() << "  CHECK: " << *Cmp << "\n");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void materializeChecks(bool InstrumentWithCalls) {
 | |
|     for (const auto &ShadowData : InstrumentationList) {
 | |
|       Instruction *OrigIns = ShadowData.OrigIns;
 | |
|       Value *Shadow = ShadowData.Shadow;
 | |
|       Value *Origin = ShadowData.Origin;
 | |
|       materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls);
 | |
|     }
 | |
|     DEBUG(dbgs() << "DONE:\n" << F);
 | |
|   }
 | |
| 
 | |
|   /// \brief Add MemorySanitizer instrumentation to a function.
 | |
|   bool runOnFunction() {
 | |
|     MS.initializeCallbacks(*F.getParent());
 | |
| 
 | |
|     // In the presence of unreachable blocks, we may see Phi nodes with
 | |
|     // incoming nodes from such blocks. Since InstVisitor skips unreachable
 | |
|     // blocks, such nodes will not have any shadow value associated with them.
 | |
|     // It's easier to remove unreachable blocks than deal with missing shadow.
 | |
|     removeUnreachableBlocks(F);
 | |
| 
 | |
|     // Iterate all BBs in depth-first order and create shadow instructions
 | |
|     // for all instructions (where applicable).
 | |
|     // For PHI nodes we create dummy shadow PHIs which will be finalized later.
 | |
|     for (BasicBlock *BB : depth_first(&F.getEntryBlock()))
 | |
|       visit(*BB);
 | |
| 
 | |
| 
 | |
|     // Finalize PHI nodes.
 | |
|     for (PHINode *PN : ShadowPHINodes) {
 | |
|       PHINode *PNS = cast<PHINode>(getShadow(PN));
 | |
|       PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr;
 | |
|       size_t NumValues = PN->getNumIncomingValues();
 | |
|       for (size_t v = 0; v < NumValues; v++) {
 | |
|         PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
 | |
|         if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     VAHelper->finalizeInstrumentation();
 | |
| 
 | |
|     bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 &&
 | |
|                                InstrumentationList.size() + StoreList.size() >
 | |
|                                    (unsigned)ClInstrumentationWithCallThreshold;
 | |
| 
 | |
|     // Delayed instrumentation of StoreInst.
 | |
|     // This may add new checks to be inserted later.
 | |
|     materializeStores(InstrumentWithCalls);
 | |
| 
 | |
|     // Insert shadow value checks.
 | |
|     materializeChecks(InstrumentWithCalls);
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// \brief Compute the shadow type that corresponds to a given Value.
 | |
|   Type *getShadowTy(Value *V) {
 | |
|     return getShadowTy(V->getType());
 | |
|   }
 | |
| 
 | |
|   /// \brief Compute the shadow type that corresponds to a given Type.
 | |
|   Type *getShadowTy(Type *OrigTy) {
 | |
|     if (!OrigTy->isSized()) {
 | |
|       return nullptr;
 | |
|     }
 | |
|     // For integer type, shadow is the same as the original type.
 | |
|     // This may return weird-sized types like i1.
 | |
|     if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
 | |
|       return IT;
 | |
|     const DataLayout &DL = F.getParent()->getDataLayout();
 | |
|     if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
 | |
|       uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType());
 | |
|       return VectorType::get(IntegerType::get(*MS.C, EltSize),
 | |
|                              VT->getNumElements());
 | |
|     }
 | |
|     if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) {
 | |
|       return ArrayType::get(getShadowTy(AT->getElementType()),
 | |
|                             AT->getNumElements());
 | |
|     }
 | |
|     if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
 | |
|       SmallVector<Type*, 4> Elements;
 | |
|       for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
 | |
|         Elements.push_back(getShadowTy(ST->getElementType(i)));
 | |
|       StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
 | |
|       DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
 | |
|       return Res;
 | |
|     }
 | |
|     uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy);
 | |
|     return IntegerType::get(*MS.C, TypeSize);
 | |
|   }
 | |
| 
 | |
|   /// \brief Flatten a vector type.
 | |
|   Type *getShadowTyNoVec(Type *ty) {
 | |
|     if (VectorType *vt = dyn_cast<VectorType>(ty))
 | |
|       return IntegerType::get(*MS.C, vt->getBitWidth());
 | |
|     return ty;
 | |
|   }
 | |
| 
 | |
|   /// \brief Convert a shadow value to it's flattened variant.
 | |
|   Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
 | |
|     Type *Ty = V->getType();
 | |
|     Type *NoVecTy = getShadowTyNoVec(Ty);
 | |
|     if (Ty == NoVecTy) return V;
 | |
|     return IRB.CreateBitCast(V, NoVecTy);
 | |
|   }
 | |
| 
 | |
|   /// \brief Compute the integer shadow offset that corresponds to a given
 | |
|   /// application address.
 | |
|   ///
 | |
|   /// Offset = (Addr & ~AndMask) ^ XorMask
 | |
|   Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) {
 | |
|     uint64_t AndMask = MS.MapParams->AndMask;
 | |
|     assert(AndMask != 0 && "AndMask shall be specified");
 | |
|     Value *OffsetLong =
 | |
|       IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
 | |
|                     ConstantInt::get(MS.IntptrTy, ~AndMask));
 | |
| 
 | |
|     uint64_t XorMask = MS.MapParams->XorMask;
 | |
|     if (XorMask != 0)
 | |
|       OffsetLong = IRB.CreateXor(OffsetLong,
 | |
|                                  ConstantInt::get(MS.IntptrTy, XorMask));
 | |
|     return OffsetLong;
 | |
|   }
 | |
| 
 | |
|   /// \brief Compute the shadow address that corresponds to a given application
 | |
|   /// address.
 | |
|   ///
 | |
|   /// Shadow = ShadowBase + Offset
 | |
|   Value *getShadowPtr(Value *Addr, Type *ShadowTy,
 | |
|                       IRBuilder<> &IRB) {
 | |
|     Value *ShadowLong = getShadowPtrOffset(Addr, IRB);
 | |
|     uint64_t ShadowBase = MS.MapParams->ShadowBase;
 | |
|     if (ShadowBase != 0)
 | |
|       ShadowLong =
 | |
|         IRB.CreateAdd(ShadowLong,
 | |
|                       ConstantInt::get(MS.IntptrTy, ShadowBase));
 | |
|     return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
 | |
|   }
 | |
| 
 | |
|   /// \brief Compute the origin address that corresponds to a given application
 | |
|   /// address.
 | |
|   ///
 | |
|   /// OriginAddr = (OriginBase + Offset) & ~3ULL
 | |
|   Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB, unsigned Alignment) {
 | |
|     Value *OriginLong = getShadowPtrOffset(Addr, IRB);
 | |
|     uint64_t OriginBase = MS.MapParams->OriginBase;
 | |
|     if (OriginBase != 0)
 | |
|       OriginLong =
 | |
|         IRB.CreateAdd(OriginLong,
 | |
|                       ConstantInt::get(MS.IntptrTy, OriginBase));
 | |
|     if (Alignment < kMinOriginAlignment) {
 | |
|       uint64_t Mask = kMinOriginAlignment - 1;
 | |
|       OriginLong = IRB.CreateAnd(OriginLong,
 | |
|                                  ConstantInt::get(MS.IntptrTy, ~Mask));
 | |
|     }
 | |
|     return IRB.CreateIntToPtr(OriginLong,
 | |
|                               PointerType::get(IRB.getInt32Ty(), 0));
 | |
|   }
 | |
| 
 | |
|   /// \brief Compute the shadow address for a given function argument.
 | |
|   ///
 | |
|   /// Shadow = ParamTLS+ArgOffset.
 | |
|   Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
 | |
|                                  int ArgOffset) {
 | |
|     Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
 | |
|     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
 | |
|     return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
 | |
|                               "_msarg");
 | |
|   }
 | |
| 
 | |
|   /// \brief Compute the origin address for a given function argument.
 | |
|   Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
 | |
|                                  int ArgOffset) {
 | |
|     if (!MS.TrackOrigins) return nullptr;
 | |
|     Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
 | |
|     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
 | |
|     return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
 | |
|                               "_msarg_o");
 | |
|   }
 | |
| 
 | |
|   /// \brief Compute the shadow address for a retval.
 | |
|   Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
 | |
|     Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy);
 | |
|     return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
 | |
|                               "_msret");
 | |
|   }
 | |
| 
 | |
|   /// \brief Compute the origin address for a retval.
 | |
|   Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
 | |
|     // We keep a single origin for the entire retval. Might be too optimistic.
 | |
|     return MS.RetvalOriginTLS;
 | |
|   }
 | |
| 
 | |
|   /// \brief Set SV to be the shadow value for V.
 | |
|   void setShadow(Value *V, Value *SV) {
 | |
|     assert(!ShadowMap.count(V) && "Values may only have one shadow");
 | |
|     ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V);
 | |
|   }
 | |
| 
 | |
|   /// \brief Set Origin to be the origin value for V.
 | |
|   void setOrigin(Value *V, Value *Origin) {
 | |
|     if (!MS.TrackOrigins) return;
 | |
|     assert(!OriginMap.count(V) && "Values may only have one origin");
 | |
|     DEBUG(dbgs() << "ORIGIN: " << *V << "  ==> " << *Origin << "\n");
 | |
|     OriginMap[V] = Origin;
 | |
|   }
 | |
| 
 | |
|   /// \brief Create a clean shadow value for a given value.
 | |
|   ///
 | |
|   /// Clean shadow (all zeroes) means all bits of the value are defined
 | |
|   /// (initialized).
 | |
|   Constant *getCleanShadow(Value *V) {
 | |
|     Type *ShadowTy = getShadowTy(V);
 | |
|     if (!ShadowTy)
 | |
|       return nullptr;
 | |
|     return Constant::getNullValue(ShadowTy);
 | |
|   }
 | |
| 
 | |
|   /// \brief Create a dirty shadow of a given shadow type.
 | |
|   Constant *getPoisonedShadow(Type *ShadowTy) {
 | |
|     assert(ShadowTy);
 | |
|     if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
 | |
|       return Constant::getAllOnesValue(ShadowTy);
 | |
|     if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) {
 | |
|       SmallVector<Constant *, 4> Vals(AT->getNumElements(),
 | |
|                                       getPoisonedShadow(AT->getElementType()));
 | |
|       return ConstantArray::get(AT, Vals);
 | |
|     }
 | |
|     if (StructType *ST = dyn_cast<StructType>(ShadowTy)) {
 | |
|       SmallVector<Constant *, 4> Vals;
 | |
|       for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
 | |
|         Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
 | |
|       return ConstantStruct::get(ST, Vals);
 | |
|     }
 | |
|     llvm_unreachable("Unexpected shadow type");
 | |
|   }
 | |
| 
 | |
|   /// \brief Create a dirty shadow for a given value.
 | |
|   Constant *getPoisonedShadow(Value *V) {
 | |
|     Type *ShadowTy = getShadowTy(V);
 | |
|     if (!ShadowTy)
 | |
|       return nullptr;
 | |
|     return getPoisonedShadow(ShadowTy);
 | |
|   }
 | |
| 
 | |
|   /// \brief Create a clean (zero) origin.
 | |
|   Value *getCleanOrigin() {
 | |
|     return Constant::getNullValue(MS.OriginTy);
 | |
|   }
 | |
| 
 | |
|   /// \brief Get the shadow value for a given Value.
 | |
|   ///
 | |
|   /// This function either returns the value set earlier with setShadow,
 | |
|   /// or extracts if from ParamTLS (for function arguments).
 | |
|   Value *getShadow(Value *V) {
 | |
|     if (!PropagateShadow) return getCleanShadow(V);
 | |
|     if (Instruction *I = dyn_cast<Instruction>(V)) {
 | |
|       // For instructions the shadow is already stored in the map.
 | |
|       Value *Shadow = ShadowMap[V];
 | |
|       if (!Shadow) {
 | |
|         DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
 | |
|         (void)I;
 | |
|         assert(Shadow && "No shadow for a value");
 | |
|       }
 | |
|       return Shadow;
 | |
|     }
 | |
|     if (UndefValue *U = dyn_cast<UndefValue>(V)) {
 | |
|       Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V);
 | |
|       DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
 | |
|       (void)U;
 | |
|       return AllOnes;
 | |
|     }
 | |
|     if (Argument *A = dyn_cast<Argument>(V)) {
 | |
|       // For arguments we compute the shadow on demand and store it in the map.
 | |
|       Value **ShadowPtr = &ShadowMap[V];
 | |
|       if (*ShadowPtr)
 | |
|         return *ShadowPtr;
 | |
|       Function *F = A->getParent();
 | |
|       IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI());
 | |
|       unsigned ArgOffset = 0;
 | |
|       const DataLayout &DL = F->getParent()->getDataLayout();
 | |
|       for (auto &FArg : F->args()) {
 | |
|         if (!FArg.getType()->isSized()) {
 | |
|           DEBUG(dbgs() << "Arg is not sized\n");
 | |
|           continue;
 | |
|         }
 | |
|         unsigned Size =
 | |
|             FArg.hasByValAttr()
 | |
|                 ? DL.getTypeAllocSize(FArg.getType()->getPointerElementType())
 | |
|                 : DL.getTypeAllocSize(FArg.getType());
 | |
|         if (A == &FArg) {
 | |
|           bool Overflow = ArgOffset + Size > kParamTLSSize;
 | |
|           Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset);
 | |
|           if (FArg.hasByValAttr()) {
 | |
|             // ByVal pointer itself has clean shadow. We copy the actual
 | |
|             // argument shadow to the underlying memory.
 | |
|             // Figure out maximal valid memcpy alignment.
 | |
|             unsigned ArgAlign = FArg.getParamAlignment();
 | |
|             if (ArgAlign == 0) {
 | |
|               Type *EltType = A->getType()->getPointerElementType();
 | |
|               ArgAlign = DL.getABITypeAlignment(EltType);
 | |
|             }
 | |
|             if (Overflow) {
 | |
|               // ParamTLS overflow.
 | |
|               EntryIRB.CreateMemSet(
 | |
|                   getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB),
 | |
|                   Constant::getNullValue(EntryIRB.getInt8Ty()), Size, ArgAlign);
 | |
|             } else {
 | |
|               unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
 | |
|               Value *Cpy = EntryIRB.CreateMemCpy(
 | |
|                   getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), Base, Size,
 | |
|                   CopyAlign);
 | |
|               DEBUG(dbgs() << "  ByValCpy: " << *Cpy << "\n");
 | |
|               (void)Cpy;
 | |
|             }
 | |
|             *ShadowPtr = getCleanShadow(V);
 | |
|           } else {
 | |
|             if (Overflow) {
 | |
|               // ParamTLS overflow.
 | |
|               *ShadowPtr = getCleanShadow(V);
 | |
|             } else {
 | |
|               *ShadowPtr =
 | |
|                   EntryIRB.CreateAlignedLoad(Base, kShadowTLSAlignment);
 | |
|             }
 | |
|           }
 | |
|           DEBUG(dbgs() << "  ARG:    "  << FArg << " ==> " <<
 | |
|                 **ShadowPtr << "\n");
 | |
|           if (MS.TrackOrigins && !Overflow) {
 | |
|             Value *OriginPtr =
 | |
|                 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset);
 | |
|             setOrigin(A, EntryIRB.CreateLoad(OriginPtr));
 | |
|           } else {
 | |
|             setOrigin(A, getCleanOrigin());
 | |
|           }
 | |
|         }
 | |
|         ArgOffset += RoundUpToAlignment(Size, kShadowTLSAlignment);
 | |
|       }
 | |
|       assert(*ShadowPtr && "Could not find shadow for an argument");
 | |
|       return *ShadowPtr;
 | |
|     }
 | |
|     // For everything else the shadow is zero.
 | |
|     return getCleanShadow(V);
 | |
|   }
 | |
| 
 | |
|   /// \brief Get the shadow for i-th argument of the instruction I.
 | |
|   Value *getShadow(Instruction *I, int i) {
 | |
|     return getShadow(I->getOperand(i));
 | |
|   }
 | |
| 
 | |
|   /// \brief Get the origin for a value.
 | |
|   Value *getOrigin(Value *V) {
 | |
|     if (!MS.TrackOrigins) return nullptr;
 | |
|     if (!PropagateShadow) return getCleanOrigin();
 | |
|     if (isa<Constant>(V)) return getCleanOrigin();
 | |
|     assert((isa<Instruction>(V) || isa<Argument>(V)) &&
 | |
|            "Unexpected value type in getOrigin()");
 | |
|     Value *Origin = OriginMap[V];
 | |
|     assert(Origin && "Missing origin");
 | |
|     return Origin;
 | |
|   }
 | |
| 
 | |
|   /// \brief Get the origin for i-th argument of the instruction I.
 | |
|   Value *getOrigin(Instruction *I, int i) {
 | |
|     return getOrigin(I->getOperand(i));
 | |
|   }
 | |
| 
 | |
|   /// \brief Remember the place where a shadow check should be inserted.
 | |
|   ///
 | |
|   /// This location will be later instrumented with a check that will print a
 | |
|   /// UMR warning in runtime if the shadow value is not 0.
 | |
|   void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) {
 | |
|     assert(Shadow);
 | |
|     if (!InsertChecks) return;
 | |
| #ifndef NDEBUG
 | |
|     Type *ShadowTy = Shadow->getType();
 | |
|     assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
 | |
|            "Can only insert checks for integer and vector shadow types");
 | |
| #endif
 | |
|     InstrumentationList.push_back(
 | |
|         ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
 | |
|   }
 | |
| 
 | |
|   /// \brief Remember the place where a shadow check should be inserted.
 | |
|   ///
 | |
|   /// This location will be later instrumented with a check that will print a
 | |
|   /// UMR warning in runtime if the value is not fully defined.
 | |
|   void insertShadowCheck(Value *Val, Instruction *OrigIns) {
 | |
|     assert(Val);
 | |
|     Value *Shadow, *Origin;
 | |
|     if (ClCheckConstantShadow) {
 | |
|       Shadow = getShadow(Val);
 | |
|       if (!Shadow) return;
 | |
|       Origin = getOrigin(Val);
 | |
|     } else {
 | |
|       Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
 | |
|       if (!Shadow) return;
 | |
|       Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
 | |
|     }
 | |
|     insertShadowCheck(Shadow, Origin, OrigIns);
 | |
|   }
 | |
| 
 | |
|   AtomicOrdering addReleaseOrdering(AtomicOrdering a) {
 | |
|     switch (a) {
 | |
|       case NotAtomic:
 | |
|         return NotAtomic;
 | |
|       case Unordered:
 | |
|       case Monotonic:
 | |
|       case Release:
 | |
|         return Release;
 | |
|       case Acquire:
 | |
|       case AcquireRelease:
 | |
|         return AcquireRelease;
 | |
|       case SequentiallyConsistent:
 | |
|         return SequentiallyConsistent;
 | |
|     }
 | |
|     llvm_unreachable("Unknown ordering");
 | |
|   }
 | |
| 
 | |
|   AtomicOrdering addAcquireOrdering(AtomicOrdering a) {
 | |
|     switch (a) {
 | |
|       case NotAtomic:
 | |
|         return NotAtomic;
 | |
|       case Unordered:
 | |
|       case Monotonic:
 | |
|       case Acquire:
 | |
|         return Acquire;
 | |
|       case Release:
 | |
|       case AcquireRelease:
 | |
|         return AcquireRelease;
 | |
|       case SequentiallyConsistent:
 | |
|         return SequentiallyConsistent;
 | |
|     }
 | |
|     llvm_unreachable("Unknown ordering");
 | |
|   }
 | |
| 
 | |
|   // ------------------- Visitors.
 | |
| 
 | |
|   /// \brief Instrument LoadInst
 | |
|   ///
 | |
|   /// Loads the corresponding shadow and (optionally) origin.
 | |
|   /// Optionally, checks that the load address is fully defined.
 | |
|   void visitLoadInst(LoadInst &I) {
 | |
|     assert(I.getType()->isSized() && "Load type must have size");
 | |
|     IRBuilder<> IRB(I.getNextNode());
 | |
|     Type *ShadowTy = getShadowTy(&I);
 | |
|     Value *Addr = I.getPointerOperand();
 | |
|     if (PropagateShadow && !I.getMetadata("nosanitize")) {
 | |
|       Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
 | |
|       setShadow(&I,
 | |
|                 IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld"));
 | |
|     } else {
 | |
|       setShadow(&I, getCleanShadow(&I));
 | |
|     }
 | |
| 
 | |
|     if (ClCheckAccessAddress)
 | |
|       insertShadowCheck(I.getPointerOperand(), &I);
 | |
| 
 | |
|     if (I.isAtomic())
 | |
|       I.setOrdering(addAcquireOrdering(I.getOrdering()));
 | |
| 
 | |
|     if (MS.TrackOrigins) {
 | |
|       if (PropagateShadow) {
 | |
|         unsigned Alignment = I.getAlignment();
 | |
|         unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
 | |
|         setOrigin(&I, IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB, Alignment),
 | |
|                                             OriginAlignment));
 | |
|       } else {
 | |
|         setOrigin(&I, getCleanOrigin());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// \brief Instrument StoreInst
 | |
|   ///
 | |
|   /// Stores the corresponding shadow and (optionally) origin.
 | |
|   /// Optionally, checks that the store address is fully defined.
 | |
|   void visitStoreInst(StoreInst &I) {
 | |
|     StoreList.push_back(&I);
 | |
|   }
 | |
| 
 | |
|   void handleCASOrRMW(Instruction &I) {
 | |
|     assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
 | |
| 
 | |
|     IRBuilder<> IRB(&I);
 | |
|     Value *Addr = I.getOperand(0);
 | |
|     Value *ShadowPtr = getShadowPtr(Addr, I.getType(), IRB);
 | |
| 
 | |
|     if (ClCheckAccessAddress)
 | |
|       insertShadowCheck(Addr, &I);
 | |
| 
 | |
|     // Only test the conditional argument of cmpxchg instruction.
 | |
|     // The other argument can potentially be uninitialized, but we can not
 | |
|     // detect this situation reliably without possible false positives.
 | |
|     if (isa<AtomicCmpXchgInst>(I))
 | |
|       insertShadowCheck(I.getOperand(1), &I);
 | |
| 
 | |
|     IRB.CreateStore(getCleanShadow(&I), ShadowPtr);
 | |
| 
 | |
|     setShadow(&I, getCleanShadow(&I));
 | |
|     setOrigin(&I, getCleanOrigin());
 | |
|   }
 | |
| 
 | |
|   void visitAtomicRMWInst(AtomicRMWInst &I) {
 | |
|     handleCASOrRMW(I);
 | |
|     I.setOrdering(addReleaseOrdering(I.getOrdering()));
 | |
|   }
 | |
| 
 | |
|   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
 | |
|     handleCASOrRMW(I);
 | |
|     I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
 | |
|   }
 | |
| 
 | |
|   // Vector manipulation.
 | |
|   void visitExtractElementInst(ExtractElementInst &I) {
 | |
|     insertShadowCheck(I.getOperand(1), &I);
 | |
|     IRBuilder<> IRB(&I);
 | |
|     setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
 | |
|               "_msprop"));
 | |
|     setOrigin(&I, getOrigin(&I, 0));
 | |
|   }
 | |
| 
 | |
|   void visitInsertElementInst(InsertElementInst &I) {
 | |
|     insertShadowCheck(I.getOperand(2), &I);
 | |
|     IRBuilder<> IRB(&I);
 | |
|     setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
 | |
|               I.getOperand(2), "_msprop"));
 | |
|     setOriginForNaryOp(I);
 | |
|   }
 | |
| 
 | |
|   void visitShuffleVectorInst(ShuffleVectorInst &I) {
 | |
|     insertShadowCheck(I.getOperand(2), &I);
 | |
|     IRBuilder<> IRB(&I);
 | |
|     setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
 | |
|               I.getOperand(2), "_msprop"));
 | |
|     setOriginForNaryOp(I);
 | |
|   }
 | |
| 
 | |
|   // Casts.
 | |
|   void visitSExtInst(SExtInst &I) {
 | |
|     IRBuilder<> IRB(&I);
 | |
|     setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
 | |
|     setOrigin(&I, getOrigin(&I, 0));
 | |
|   }
 | |
| 
 | |
|   void visitZExtInst(ZExtInst &I) {
 | |
|     IRBuilder<> IRB(&I);
 | |
|     setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
 | |
|     setOrigin(&I, getOrigin(&I, 0));
 | |
|   }
 | |
| 
 | |
|   void visitTruncInst(TruncInst &I) {
 | |
|     IRBuilder<> IRB(&I);
 | |
|     setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
 | |
|     setOrigin(&I, getOrigin(&I, 0));
 | |
|   }
 | |
| 
 | |
|   void visitBitCastInst(BitCastInst &I) {
 | |
|     IRBuilder<> IRB(&I);
 | |
|     setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
 | |
|     setOrigin(&I, getOrigin(&I, 0));
 | |
|   }
 | |
| 
 | |
|   void visitPtrToIntInst(PtrToIntInst &I) {
 | |
|     IRBuilder<> IRB(&I);
 | |
|     setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
 | |
|              "_msprop_ptrtoint"));
 | |
|     setOrigin(&I, getOrigin(&I, 0));
 | |
|   }
 | |
| 
 | |
|   void visitIntToPtrInst(IntToPtrInst &I) {
 | |
|     IRBuilder<> IRB(&I);
 | |
|     setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
 | |
|              "_msprop_inttoptr"));
 | |
|     setOrigin(&I, getOrigin(&I, 0));
 | |
|   }
 | |
| 
 | |
|   void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
 | |
|   void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
 | |
|   void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
 | |
|   void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
 | |
|   void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
 | |
|   void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
 | |
| 
 | |
|   /// \brief Propagate shadow for bitwise AND.
 | |
|   ///
 | |
|   /// This code is exact, i.e. if, for example, a bit in the left argument
 | |
|   /// is defined and 0, then neither the value not definedness of the
 | |
|   /// corresponding bit in B don't affect the resulting shadow.
 | |
|   void visitAnd(BinaryOperator &I) {
 | |
|     IRBuilder<> IRB(&I);
 | |
|     //  "And" of 0 and a poisoned value results in unpoisoned value.
 | |
|     //  1&1 => 1;     0&1 => 0;     p&1 => p;
 | |
|     //  1&0 => 0;     0&0 => 0;     p&0 => 0;
 | |
|     //  1&p => p;     0&p => 0;     p&p => p;
 | |
|     //  S = (S1 & S2) | (V1 & S2) | (S1 & V2)
 | |
|     Value *S1 = getShadow(&I, 0);
 | |
|     Value *S2 = getShadow(&I, 1);
 | |
|     Value *V1 = I.getOperand(0);
 | |
|     Value *V2 = I.getOperand(1);
 | |
|     if (V1->getType() != S1->getType()) {
 | |
|       V1 = IRB.CreateIntCast(V1, S1->getType(), false);
 | |
|       V2 = IRB.CreateIntCast(V2, S2->getType(), false);
 | |
|     }
 | |
|     Value *S1S2 = IRB.CreateAnd(S1, S2);
 | |
|     Value *V1S2 = IRB.CreateAnd(V1, S2);
 | |
|     Value *S1V2 = IRB.CreateAnd(S1, V2);
 | |
|     setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
 | |
|     setOriginForNaryOp(I);
 | |
|   }
 | |
| 
 | |
|   void visitOr(BinaryOperator &I) {
 | |
|     IRBuilder<> IRB(&I);
 | |
|     //  "Or" of 1 and a poisoned value results in unpoisoned value.
 | |
|     //  1|1 => 1;     0|1 => 1;     p|1 => 1;
 | |
|     //  1|0 => 1;     0|0 => 0;     p|0 => p;
 | |
|     //  1|p => 1;     0|p => p;     p|p => p;
 | |
|     //  S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
 | |
|     Value *S1 = getShadow(&I, 0);
 | |
|     Value *S2 = getShadow(&I, 1);
 | |
|     Value *V1 = IRB.CreateNot(I.getOperand(0));
 | |
|     Value *V2 = IRB.CreateNot(I.getOperand(1));
 | |
|     if (V1->getType() != S1->getType()) {
 | |
|       V1 = IRB.CreateIntCast(V1, S1->getType(), false);
 | |
|       V2 = IRB.CreateIntCast(V2, S2->getType(), false);
 | |
|     }
 | |
|     Value *S1S2 = IRB.CreateAnd(S1, S2);
 | |
|     Value *V1S2 = IRB.CreateAnd(V1, S2);
 | |
|     Value *S1V2 = IRB.CreateAnd(S1, V2);
 | |
|     setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
 | |
|     setOriginForNaryOp(I);
 | |
|   }
 | |
| 
 | |
|   /// \brief Default propagation of shadow and/or origin.
 | |
|   ///
 | |
|   /// This class implements the general case of shadow propagation, used in all
 | |
|   /// cases where we don't know and/or don't care about what the operation
 | |
|   /// actually does. It converts all input shadow values to a common type
 | |
|   /// (extending or truncating as necessary), and bitwise OR's them.
 | |
|   ///
 | |
|   /// This is much cheaper than inserting checks (i.e. requiring inputs to be
 | |
|   /// fully initialized), and less prone to false positives.
 | |
|   ///
 | |
|   /// This class also implements the general case of origin propagation. For a
 | |
|   /// Nary operation, result origin is set to the origin of an argument that is
 | |
|   /// not entirely initialized. If there is more than one such arguments, the
 | |
|   /// rightmost of them is picked. It does not matter which one is picked if all
 | |
|   /// arguments are initialized.
 | |
|   template <bool CombineShadow>
 | |
|   class Combiner {
 | |
|     Value *Shadow;
 | |
|     Value *Origin;
 | |
|     IRBuilder<> &IRB;
 | |
|     MemorySanitizerVisitor *MSV;
 | |
| 
 | |
|   public:
 | |
|     Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) :
 | |
|       Shadow(nullptr), Origin(nullptr), IRB(IRB), MSV(MSV) {}
 | |
| 
 | |
|     /// \brief Add a pair of shadow and origin values to the mix.
 | |
|     Combiner &Add(Value *OpShadow, Value *OpOrigin) {
 | |
|       if (CombineShadow) {
 | |
|         assert(OpShadow);
 | |
|         if (!Shadow)
 | |
|           Shadow = OpShadow;
 | |
|         else {
 | |
|           OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
 | |
|           Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (MSV->MS.TrackOrigins) {
 | |
|         assert(OpOrigin);
 | |
|         if (!Origin) {
 | |
|           Origin = OpOrigin;
 | |
|         } else {
 | |
|           Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin);
 | |
|           // No point in adding something that might result in 0 origin value.
 | |
|           if (!ConstOrigin || !ConstOrigin->isNullValue()) {
 | |
|             Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
 | |
|             Value *Cond =
 | |
|                 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow));
 | |
|             Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     /// \brief Add an application value to the mix.
 | |
|     Combiner &Add(Value *V) {
 | |
|       Value *OpShadow = MSV->getShadow(V);
 | |
|       Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr;
 | |
|       return Add(OpShadow, OpOrigin);
 | |
|     }
 | |
| 
 | |
|     /// \brief Set the current combined values as the given instruction's shadow
 | |
|     /// and origin.
 | |
|     void Done(Instruction *I) {
 | |
|       if (CombineShadow) {
 | |
|         assert(Shadow);
 | |
|         Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
 | |
|         MSV->setShadow(I, Shadow);
 | |
|       }
 | |
|       if (MSV->MS.TrackOrigins) {
 | |
|         assert(Origin);
 | |
|         MSV->setOrigin(I, Origin);
 | |
|       }
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   typedef Combiner<true> ShadowAndOriginCombiner;
 | |
|   typedef Combiner<false> OriginCombiner;
 | |
| 
 | |
|   /// \brief Propagate origin for arbitrary operation.
 | |
|   void setOriginForNaryOp(Instruction &I) {
 | |
|     if (!MS.TrackOrigins) return;
 | |
|     IRBuilder<> IRB(&I);
 | |
|     OriginCombiner OC(this, IRB);
 | |
|     for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
 | |
|       OC.Add(OI->get());
 | |
|     OC.Done(&I);
 | |
|   }
 | |
| 
 | |
|   size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
 | |
|     assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
 | |
|            "Vector of pointers is not a valid shadow type");
 | |
|     return Ty->isVectorTy() ?
 | |
|       Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
 | |
|       Ty->getPrimitiveSizeInBits();
 | |
|   }
 | |
| 
 | |
|   /// \brief Cast between two shadow types, extending or truncating as
 | |
|   /// necessary.
 | |
|   Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy,
 | |
|                           bool Signed = false) {
 | |
|     Type *srcTy = V->getType();
 | |
|     if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
 | |
|       return IRB.CreateIntCast(V, dstTy, Signed);
 | |
|     if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
 | |
|         dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
 | |
|       return IRB.CreateIntCast(V, dstTy, Signed);
 | |
|     size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
 | |
|     size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
 | |
|     Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
 | |
|     Value *V2 =
 | |
|       IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed);
 | |
|     return IRB.CreateBitCast(V2, dstTy);
 | |
|     // TODO: handle struct types.
 | |
|   }
 | |
| 
 | |
|   /// \brief Cast an application value to the type of its own shadow.
 | |
|   Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) {
 | |
|     Type *ShadowTy = getShadowTy(V);
 | |
|     if (V->getType() == ShadowTy)
 | |
|       return V;
 | |
|     if (V->getType()->isPtrOrPtrVectorTy())
 | |
|       return IRB.CreatePtrToInt(V, ShadowTy);
 | |
|     else
 | |
|       return IRB.CreateBitCast(V, ShadowTy);
 | |
|   }
 | |
| 
 | |
|   /// \brief Propagate shadow for arbitrary operation.
 | |
|   void handleShadowOr(Instruction &I) {
 | |
|     IRBuilder<> IRB(&I);
 | |
|     ShadowAndOriginCombiner SC(this, IRB);
 | |
|     for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
 | |
|       SC.Add(OI->get());
 | |
|     SC.Done(&I);
 | |
|   }
 | |
| 
 | |
|   // \brief Handle multiplication by constant.
 | |
|   //
 | |
|   // Handle a special case of multiplication by constant that may have one or
 | |
|   // more zeros in the lower bits. This makes corresponding number of lower bits
 | |
|   // of the result zero as well. We model it by shifting the other operand
 | |
|   // shadow left by the required number of bits. Effectively, we transform
 | |
|   // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B).
 | |
|   // We use multiplication by 2**N instead of shift to cover the case of
 | |
|   // multiplication by 0, which may occur in some elements of a vector operand.
 | |
|   void handleMulByConstant(BinaryOperator &I, Constant *ConstArg,
 | |
|                            Value *OtherArg) {
 | |
|     Constant *ShadowMul;
 | |
|     Type *Ty = ConstArg->getType();
 | |
|     if (Ty->isVectorTy()) {
 | |
|       unsigned NumElements = Ty->getVectorNumElements();
 | |
|       Type *EltTy = Ty->getSequentialElementType();
 | |
|       SmallVector<Constant *, 16> Elements;
 | |
|       for (unsigned Idx = 0; Idx < NumElements; ++Idx) {
 | |
|         ConstantInt *Elt =
 | |
|             dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx));
 | |
|         APInt V = Elt->getValue();
 | |
|         APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
 | |
|         Elements.push_back(ConstantInt::get(EltTy, V2));
 | |
|       }
 | |
|       ShadowMul = ConstantVector::get(Elements);
 | |
|     } else {
 | |
|       ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg);
 | |
|       APInt V = Elt->getValue();
 | |
|       APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
 | |
|       ShadowMul = ConstantInt::get(Elt->getType(), V2);
 | |
|     }
 | |
| 
 | |
|     IRBuilder<> IRB(&I);
 | |
|     setShadow(&I,
 | |
|               IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst"));
 | |
|     setOrigin(&I, getOrigin(OtherArg));
 | |
|   }
 | |
| 
 | |
|   void visitMul(BinaryOperator &I) {
 | |
|     Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
 | |
|     Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
 | |
|     if (constOp0 && !constOp1)
 | |
|       handleMulByConstant(I, constOp0, I.getOperand(1));
 | |
|     else if (constOp1 && !constOp0)
 | |
|       handleMulByConstant(I, constOp1, I.getOperand(0));
 | |
|     else
 | |
|       handleShadowOr(I);
 | |
|   }
 | |
| 
 | |
|   void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
 | |
|   void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
 | |
|   void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
 | |
|   void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
 | |
|   void visitSub(BinaryOperator &I) { handleShadowOr(I); }
 | |
|   void visitXor(BinaryOperator &I) { handleShadowOr(I); }
 | |
| 
 | |
|   void handleDiv(Instruction &I) {
 | |
|     IRBuilder<> IRB(&I);
 | |
|     // Strict on the second argument.
 | |
|     insertShadowCheck(I.getOperand(1), &I);
 | |
|     setShadow(&I, getShadow(&I, 0));
 | |
|     setOrigin(&I, getOrigin(&I, 0));
 | |
|   }
 | |
| 
 | |
|   void visitUDiv(BinaryOperator &I) { handleDiv(I); }
 | |
|   void visitSDiv(BinaryOperator &I) { handleDiv(I); }
 | |
|   void visitFDiv(BinaryOperator &I) { handleDiv(I); }
 | |
|   void visitURem(BinaryOperator &I) { handleDiv(I); }
 | |
|   void visitSRem(BinaryOperator &I) { handleDiv(I); }
 | |
|   void visitFRem(BinaryOperator &I) { handleDiv(I); }
 | |
| 
 | |
|   /// \brief Instrument == and != comparisons.
 | |
|   ///
 | |
|   /// Sometimes the comparison result is known even if some of the bits of the
 | |
|   /// arguments are not.
 | |
|   void handleEqualityComparison(ICmpInst &I) {
 | |
|     IRBuilder<> IRB(&I);
 | |
|     Value *A = I.getOperand(0);
 | |
|     Value *B = I.getOperand(1);
 | |
|     Value *Sa = getShadow(A);
 | |
|     Value *Sb = getShadow(B);
 | |
| 
 | |
|     // Get rid of pointers and vectors of pointers.
 | |
|     // For ints (and vectors of ints), types of A and Sa match,
 | |
|     // and this is a no-op.
 | |
|     A = IRB.CreatePointerCast(A, Sa->getType());
 | |
|     B = IRB.CreatePointerCast(B, Sb->getType());
 | |
| 
 | |
|     // A == B  <==>  (C = A^B) == 0
 | |
|     // A != B  <==>  (C = A^B) != 0
 | |
|     // Sc = Sa | Sb
 | |
|     Value *C = IRB.CreateXor(A, B);
 | |
|     Value *Sc = IRB.CreateOr(Sa, Sb);
 | |
|     // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
 | |
|     // Result is defined if one of the following is true
 | |
|     // * there is a defined 1 bit in C
 | |
|     // * C is fully defined
 | |
|     // Si = !(C & ~Sc) && Sc
 | |
|     Value *Zero = Constant::getNullValue(Sc->getType());
 | |
|     Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
 | |
|     Value *Si =
 | |
|       IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
 | |
|                     IRB.CreateICmpEQ(
 | |
|                       IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
 | |
|     Si->setName("_msprop_icmp");
 | |
|     setShadow(&I, Si);
 | |
|     setOriginForNaryOp(I);
 | |
|   }
 | |
| 
 | |
|   /// \brief Build the lowest possible value of V, taking into account V's
 | |
|   ///        uninitialized bits.
 | |
|   Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
 | |
|                                 bool isSigned) {
 | |
|     if (isSigned) {
 | |
|       // Split shadow into sign bit and other bits.
 | |
|       Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
 | |
|       Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
 | |
|       // Maximise the undefined shadow bit, minimize other undefined bits.
 | |
|       return
 | |
|         IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
 | |
|     } else {
 | |
|       // Minimize undefined bits.
 | |
|       return IRB.CreateAnd(A, IRB.CreateNot(Sa));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// \brief Build the highest possible value of V, taking into account V's
 | |
|   ///        uninitialized bits.
 | |
|   Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
 | |
|                                 bool isSigned) {
 | |
|     if (isSigned) {
 | |
|       // Split shadow into sign bit and other bits.
 | |
|       Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
 | |
|       Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
 | |
|       // Minimise the undefined shadow bit, maximise other undefined bits.
 | |
|       return
 | |
|         IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
 | |
|     } else {
 | |
|       // Maximize undefined bits.
 | |
|       return IRB.CreateOr(A, Sa);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// \brief Instrument relational comparisons.
 | |
|   ///
 | |
|   /// This function does exact shadow propagation for all relational
 | |
|   /// comparisons of integers, pointers and vectors of those.
 | |
|   /// FIXME: output seems suboptimal when one of the operands is a constant
 | |
|   void handleRelationalComparisonExact(ICmpInst &I) {
 | |
|     IRBuilder<> IRB(&I);
 | |
|     Value *A = I.getOperand(0);
 | |
|     Value *B = I.getOperand(1);
 | |
|     Value *Sa = getShadow(A);
 | |
|     Value *Sb = getShadow(B);
 | |
| 
 | |
|     // Get rid of pointers and vectors of pointers.
 | |
|     // For ints (and vectors of ints), types of A and Sa match,
 | |
|     // and this is a no-op.
 | |
|     A = IRB.CreatePointerCast(A, Sa->getType());
 | |
|     B = IRB.CreatePointerCast(B, Sb->getType());
 | |
| 
 | |
|     // Let [a0, a1] be the interval of possible values of A, taking into account
 | |
|     // its undefined bits. Let [b0, b1] be the interval of possible values of B.
 | |
|     // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
 | |
|     bool IsSigned = I.isSigned();
 | |
|     Value *S1 = IRB.CreateICmp(I.getPredicate(),
 | |
|                                getLowestPossibleValue(IRB, A, Sa, IsSigned),
 | |
|                                getHighestPossibleValue(IRB, B, Sb, IsSigned));
 | |
|     Value *S2 = IRB.CreateICmp(I.getPredicate(),
 | |
|                                getHighestPossibleValue(IRB, A, Sa, IsSigned),
 | |
|                                getLowestPossibleValue(IRB, B, Sb, IsSigned));
 | |
|     Value *Si = IRB.CreateXor(S1, S2);
 | |
|     setShadow(&I, Si);
 | |
|     setOriginForNaryOp(I);
 | |
|   }
 | |
| 
 | |
|   /// \brief Instrument signed relational comparisons.
 | |
|   ///
 | |
|   /// Handle (x<0) and (x>=0) comparisons (essentially, sign bit tests) by
 | |
|   /// propagating the highest bit of the shadow. Everything else is delegated
 | |
|   /// to handleShadowOr().
 | |
|   void handleSignedRelationalComparison(ICmpInst &I) {
 | |
|     Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
 | |
|     Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
 | |
|     Value* op = nullptr;
 | |
|     CmpInst::Predicate pre = I.getPredicate();
 | |
|     if (constOp0 && constOp0->isNullValue() &&
 | |
|         (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE)) {
 | |
|       op = I.getOperand(1);
 | |
|     } else if (constOp1 && constOp1->isNullValue() &&
 | |
|                (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) {
 | |
|       op = I.getOperand(0);
 | |
|     }
 | |
|     if (op) {
 | |
|       IRBuilder<> IRB(&I);
 | |
|       Value* Shadow =
 | |
|         IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), "_msprop_icmpslt");
 | |
|       setShadow(&I, Shadow);
 | |
|       setOrigin(&I, getOrigin(op));
 | |
|     } else {
 | |
|       handleShadowOr(I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void visitICmpInst(ICmpInst &I) {
 | |
|     if (!ClHandleICmp) {
 | |
|       handleShadowOr(I);
 | |
|       return;
 | |
|     }
 | |
|     if (I.isEquality()) {
 | |
|       handleEqualityComparison(I);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     assert(I.isRelational());
 | |
|     if (ClHandleICmpExact) {
 | |
|       handleRelationalComparisonExact(I);
 | |
|       return;
 | |
|     }
 | |
|     if (I.isSigned()) {
 | |
|       handleSignedRelationalComparison(I);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     assert(I.isUnsigned());
 | |
|     if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
 | |
|       handleRelationalComparisonExact(I);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     handleShadowOr(I);
 | |
|   }
 | |
| 
 | |
|   void visitFCmpInst(FCmpInst &I) {
 | |
|     handleShadowOr(I);
 | |
|   }
 | |
| 
 | |
|   void handleShift(BinaryOperator &I) {
 | |
|     IRBuilder<> IRB(&I);
 | |
|     // If any of the S2 bits are poisoned, the whole thing is poisoned.
 | |
|     // Otherwise perform the same shift on S1.
 | |
|     Value *S1 = getShadow(&I, 0);
 | |
|     Value *S2 = getShadow(&I, 1);
 | |
|     Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
 | |
|                                    S2->getType());
 | |
|     Value *V2 = I.getOperand(1);
 | |
|     Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
 | |
|     setShadow(&I, IRB.CreateOr(Shift, S2Conv));
 | |
|     setOriginForNaryOp(I);
 | |
|   }
 | |
| 
 | |
|   void visitShl(BinaryOperator &I) { handleShift(I); }
 | |
|   void visitAShr(BinaryOperator &I) { handleShift(I); }
 | |
|   void visitLShr(BinaryOperator &I) { handleShift(I); }
 | |
| 
 | |
|   /// \brief Instrument llvm.memmove
 | |
|   ///
 | |
|   /// At this point we don't know if llvm.memmove will be inlined or not.
 | |
|   /// If we don't instrument it and it gets inlined,
 | |
|   /// our interceptor will not kick in and we will lose the memmove.
 | |
|   /// If we instrument the call here, but it does not get inlined,
 | |
|   /// we will memove the shadow twice: which is bad in case
 | |
|   /// of overlapping regions. So, we simply lower the intrinsic to a call.
 | |
|   ///
 | |
|   /// Similar situation exists for memcpy and memset.
 | |
|   void visitMemMoveInst(MemMoveInst &I) {
 | |
|     IRBuilder<> IRB(&I);
 | |
|     IRB.CreateCall(
 | |
|         MS.MemmoveFn,
 | |
|         {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
 | |
|          IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
 | |
|          IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
 | |
|     I.eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   // Similar to memmove: avoid copying shadow twice.
 | |
|   // This is somewhat unfortunate as it may slowdown small constant memcpys.
 | |
|   // FIXME: consider doing manual inline for small constant sizes and proper
 | |
|   // alignment.
 | |
|   void visitMemCpyInst(MemCpyInst &I) {
 | |
|     IRBuilder<> IRB(&I);
 | |
|     IRB.CreateCall(
 | |
|         MS.MemcpyFn,
 | |
|         {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
 | |
|          IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
 | |
|          IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
 | |
|     I.eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   // Same as memcpy.
 | |
|   void visitMemSetInst(MemSetInst &I) {
 | |
|     IRBuilder<> IRB(&I);
 | |
|     IRB.CreateCall(
 | |
|         MS.MemsetFn,
 | |
|         {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
 | |
|          IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
 | |
|          IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
 | |
|     I.eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   void visitVAStartInst(VAStartInst &I) {
 | |
|     VAHelper->visitVAStartInst(I);
 | |
|   }
 | |
| 
 | |
|   void visitVACopyInst(VACopyInst &I) {
 | |
|     VAHelper->visitVACopyInst(I);
 | |
|   }
 | |
| 
 | |
|   enum IntrinsicKind {
 | |
|     IK_DoesNotAccessMemory,
 | |
|     IK_OnlyReadsMemory,
 | |
|     IK_WritesMemory
 | |
|   };
 | |
| 
 | |
|   static IntrinsicKind getIntrinsicKind(Intrinsic::ID iid) {
 | |
|     const int DoesNotAccessMemory = IK_DoesNotAccessMemory;
 | |
|     const int OnlyReadsArgumentPointees = IK_OnlyReadsMemory;
 | |
|     const int OnlyReadsMemory = IK_OnlyReadsMemory;
 | |
|     const int OnlyAccessesArgumentPointees = IK_WritesMemory;
 | |
|     const int UnknownModRefBehavior = IK_WritesMemory;
 | |
| #define GET_INTRINSIC_MODREF_BEHAVIOR
 | |
| #define ModRefBehavior IntrinsicKind
 | |
| #include "llvm/IR/Intrinsics.gen"
 | |
| #undef ModRefBehavior
 | |
| #undef GET_INTRINSIC_MODREF_BEHAVIOR
 | |
|   }
 | |
| 
 | |
|   /// \brief Handle vector store-like intrinsics.
 | |
|   ///
 | |
|   /// Instrument intrinsics that look like a simple SIMD store: writes memory,
 | |
|   /// has 1 pointer argument and 1 vector argument, returns void.
 | |
|   bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
 | |
|     IRBuilder<> IRB(&I);
 | |
|     Value* Addr = I.getArgOperand(0);
 | |
|     Value *Shadow = getShadow(&I, 1);
 | |
|     Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
 | |
| 
 | |
|     // We don't know the pointer alignment (could be unaligned SSE store!).
 | |
|     // Have to assume to worst case.
 | |
|     IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
 | |
| 
 | |
|     if (ClCheckAccessAddress)
 | |
|       insertShadowCheck(Addr, &I);
 | |
| 
 | |
|     // FIXME: use ClStoreCleanOrigin
 | |
|     // FIXME: factor out common code from materializeStores
 | |
|     if (MS.TrackOrigins)
 | |
|       IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB, 1));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// \brief Handle vector load-like intrinsics.
 | |
|   ///
 | |
|   /// Instrument intrinsics that look like a simple SIMD load: reads memory,
 | |
|   /// has 1 pointer argument, returns a vector.
 | |
|   bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
 | |
|     IRBuilder<> IRB(&I);
 | |
|     Value *Addr = I.getArgOperand(0);
 | |
| 
 | |
|     Type *ShadowTy = getShadowTy(&I);
 | |
|     if (PropagateShadow) {
 | |
|       Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
 | |
|       // We don't know the pointer alignment (could be unaligned SSE load!).
 | |
|       // Have to assume to worst case.
 | |
|       setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld"));
 | |
|     } else {
 | |
|       setShadow(&I, getCleanShadow(&I));
 | |
|     }
 | |
| 
 | |
|     if (ClCheckAccessAddress)
 | |
|       insertShadowCheck(Addr, &I);
 | |
| 
 | |
|     if (MS.TrackOrigins) {
 | |
|       if (PropagateShadow)
 | |
|         setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB, 1)));
 | |
|       else
 | |
|         setOrigin(&I, getCleanOrigin());
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// \brief Handle (SIMD arithmetic)-like intrinsics.
 | |
|   ///
 | |
|   /// Instrument intrinsics with any number of arguments of the same type,
 | |
|   /// equal to the return type. The type should be simple (no aggregates or
 | |
|   /// pointers; vectors are fine).
 | |
|   /// Caller guarantees that this intrinsic does not access memory.
 | |
|   bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
 | |
|     Type *RetTy = I.getType();
 | |
|     if (!(RetTy->isIntOrIntVectorTy() ||
 | |
|           RetTy->isFPOrFPVectorTy() ||
 | |
|           RetTy->isX86_MMXTy()))
 | |
|       return false;
 | |
| 
 | |
|     unsigned NumArgOperands = I.getNumArgOperands();
 | |
| 
 | |
|     for (unsigned i = 0; i < NumArgOperands; ++i) {
 | |
|       Type *Ty = I.getArgOperand(i)->getType();
 | |
|       if (Ty != RetTy)
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     IRBuilder<> IRB(&I);
 | |
|     ShadowAndOriginCombiner SC(this, IRB);
 | |
|     for (unsigned i = 0; i < NumArgOperands; ++i)
 | |
|       SC.Add(I.getArgOperand(i));
 | |
|     SC.Done(&I);
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// \brief Heuristically instrument unknown intrinsics.
 | |
|   ///
 | |
|   /// The main purpose of this code is to do something reasonable with all
 | |
|   /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
 | |
|   /// We recognize several classes of intrinsics by their argument types and
 | |
|   /// ModRefBehaviour and apply special intrumentation when we are reasonably
 | |
|   /// sure that we know what the intrinsic does.
 | |
|   ///
 | |
|   /// We special-case intrinsics where this approach fails. See llvm.bswap
 | |
|   /// handling as an example of that.
 | |
|   bool handleUnknownIntrinsic(IntrinsicInst &I) {
 | |
|     unsigned NumArgOperands = I.getNumArgOperands();
 | |
|     if (NumArgOperands == 0)
 | |
|       return false;
 | |
| 
 | |
|     Intrinsic::ID iid = I.getIntrinsicID();
 | |
|     IntrinsicKind IK = getIntrinsicKind(iid);
 | |
|     bool OnlyReadsMemory = IK == IK_OnlyReadsMemory;
 | |
|     bool WritesMemory = IK == IK_WritesMemory;
 | |
|     assert(!(OnlyReadsMemory && WritesMemory));
 | |
| 
 | |
|     if (NumArgOperands == 2 &&
 | |
|         I.getArgOperand(0)->getType()->isPointerTy() &&
 | |
|         I.getArgOperand(1)->getType()->isVectorTy() &&
 | |
|         I.getType()->isVoidTy() &&
 | |
|         WritesMemory) {
 | |
|       // This looks like a vector store.
 | |
|       return handleVectorStoreIntrinsic(I);
 | |
|     }
 | |
| 
 | |
|     if (NumArgOperands == 1 &&
 | |
|         I.getArgOperand(0)->getType()->isPointerTy() &&
 | |
|         I.getType()->isVectorTy() &&
 | |
|         OnlyReadsMemory) {
 | |
|       // This looks like a vector load.
 | |
|       return handleVectorLoadIntrinsic(I);
 | |
|     }
 | |
| 
 | |
|     if (!OnlyReadsMemory && !WritesMemory)
 | |
|       if (maybeHandleSimpleNomemIntrinsic(I))
 | |
|         return true;
 | |
| 
 | |
|     // FIXME: detect and handle SSE maskstore/maskload
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   void handleBswap(IntrinsicInst &I) {
 | |
|     IRBuilder<> IRB(&I);
 | |
|     Value *Op = I.getArgOperand(0);
 | |
|     Type *OpType = Op->getType();
 | |
|     Function *BswapFunc = Intrinsic::getDeclaration(
 | |
|       F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1));
 | |
|     setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
 | |
|     setOrigin(&I, getOrigin(Op));
 | |
|   }
 | |
| 
 | |
|   // \brief Instrument vector convert instrinsic.
 | |
|   //
 | |
|   // This function instruments intrinsics like cvtsi2ss:
 | |
|   // %Out = int_xxx_cvtyyy(%ConvertOp)
 | |
|   // or
 | |
|   // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp)
 | |
|   // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same
 | |
|   // number \p Out elements, and (if has 2 arguments) copies the rest of the
 | |
|   // elements from \p CopyOp.
 | |
|   // In most cases conversion involves floating-point value which may trigger a
 | |
|   // hardware exception when not fully initialized. For this reason we require
 | |
|   // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise.
 | |
|   // We copy the shadow of \p CopyOp[NumUsedElements:] to \p
 | |
|   // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always
 | |
|   // return a fully initialized value.
 | |
|   void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) {
 | |
|     IRBuilder<> IRB(&I);
 | |
|     Value *CopyOp, *ConvertOp;
 | |
| 
 | |
|     switch (I.getNumArgOperands()) {
 | |
|     case 2:
 | |
|       CopyOp = I.getArgOperand(0);
 | |
|       ConvertOp = I.getArgOperand(1);
 | |
|       break;
 | |
|     case 1:
 | |
|       ConvertOp = I.getArgOperand(0);
 | |
|       CopyOp = nullptr;
 | |
|       break;
 | |
|     default:
 | |
|       llvm_unreachable("Cvt intrinsic with unsupported number of arguments.");
 | |
|     }
 | |
| 
 | |
|     // The first *NumUsedElements* elements of ConvertOp are converted to the
 | |
|     // same number of output elements. The rest of the output is copied from
 | |
|     // CopyOp, or (if not available) filled with zeroes.
 | |
|     // Combine shadow for elements of ConvertOp that are used in this operation,
 | |
|     // and insert a check.
 | |
|     // FIXME: consider propagating shadow of ConvertOp, at least in the case of
 | |
|     // int->any conversion.
 | |
|     Value *ConvertShadow = getShadow(ConvertOp);
 | |
|     Value *AggShadow = nullptr;
 | |
|     if (ConvertOp->getType()->isVectorTy()) {
 | |
|       AggShadow = IRB.CreateExtractElement(
 | |
|           ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
 | |
|       for (int i = 1; i < NumUsedElements; ++i) {
 | |
|         Value *MoreShadow = IRB.CreateExtractElement(
 | |
|             ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i));
 | |
|         AggShadow = IRB.CreateOr(AggShadow, MoreShadow);
 | |
|       }
 | |
|     } else {
 | |
|       AggShadow = ConvertShadow;
 | |
|     }
 | |
|     assert(AggShadow->getType()->isIntegerTy());
 | |
|     insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I);
 | |
| 
 | |
|     // Build result shadow by zero-filling parts of CopyOp shadow that come from
 | |
|     // ConvertOp.
 | |
|     if (CopyOp) {
 | |
|       assert(CopyOp->getType() == I.getType());
 | |
|       assert(CopyOp->getType()->isVectorTy());
 | |
|       Value *ResultShadow = getShadow(CopyOp);
 | |
|       Type *EltTy = ResultShadow->getType()->getVectorElementType();
 | |
|       for (int i = 0; i < NumUsedElements; ++i) {
 | |
|         ResultShadow = IRB.CreateInsertElement(
 | |
|             ResultShadow, ConstantInt::getNullValue(EltTy),
 | |
|             ConstantInt::get(IRB.getInt32Ty(), i));
 | |
|       }
 | |
|       setShadow(&I, ResultShadow);
 | |
|       setOrigin(&I, getOrigin(CopyOp));
 | |
|     } else {
 | |
|       setShadow(&I, getCleanShadow(&I));
 | |
|       setOrigin(&I, getCleanOrigin());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Given a scalar or vector, extract lower 64 bits (or less), and return all
 | |
|   // zeroes if it is zero, and all ones otherwise.
 | |
|   Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
 | |
|     if (S->getType()->isVectorTy())
 | |
|       S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true);
 | |
|     assert(S->getType()->getPrimitiveSizeInBits() <= 64);
 | |
|     Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
 | |
|     return CreateShadowCast(IRB, S2, T, /* Signed */ true);
 | |
|   }
 | |
| 
 | |
|   Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) {
 | |
|     Type *T = S->getType();
 | |
|     assert(T->isVectorTy());
 | |
|     Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
 | |
|     return IRB.CreateSExt(S2, T);
 | |
|   }
 | |
| 
 | |
|   // \brief Instrument vector shift instrinsic.
 | |
|   //
 | |
|   // This function instruments intrinsics like int_x86_avx2_psll_w.
 | |
|   // Intrinsic shifts %In by %ShiftSize bits.
 | |
|   // %ShiftSize may be a vector. In that case the lower 64 bits determine shift
 | |
|   // size, and the rest is ignored. Behavior is defined even if shift size is
 | |
|   // greater than register (or field) width.
 | |
|   void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) {
 | |
|     assert(I.getNumArgOperands() == 2);
 | |
|     IRBuilder<> IRB(&I);
 | |
|     // If any of the S2 bits are poisoned, the whole thing is poisoned.
 | |
|     // Otherwise perform the same shift on S1.
 | |
|     Value *S1 = getShadow(&I, 0);
 | |
|     Value *S2 = getShadow(&I, 1);
 | |
|     Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2)
 | |
|                              : Lower64ShadowExtend(IRB, S2, getShadowTy(&I));
 | |
|     Value *V1 = I.getOperand(0);
 | |
|     Value *V2 = I.getOperand(1);
 | |
|     Value *Shift = IRB.CreateCall(I.getCalledValue(),
 | |
|                                   {IRB.CreateBitCast(S1, V1->getType()), V2});
 | |
|     Shift = IRB.CreateBitCast(Shift, getShadowTy(&I));
 | |
|     setShadow(&I, IRB.CreateOr(Shift, S2Conv));
 | |
|     setOriginForNaryOp(I);
 | |
|   }
 | |
| 
 | |
|   // \brief Get an X86_MMX-sized vector type.
 | |
|   Type *getMMXVectorTy(unsigned EltSizeInBits) {
 | |
|     const unsigned X86_MMXSizeInBits = 64;
 | |
|     return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits),
 | |
|                            X86_MMXSizeInBits / EltSizeInBits);
 | |
|   }
 | |
| 
 | |
|   // \brief Returns a signed counterpart for an (un)signed-saturate-and-pack
 | |
|   // intrinsic.
 | |
|   Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) {
 | |
|     switch (id) {
 | |
|       case llvm::Intrinsic::x86_sse2_packsswb_128:
 | |
|       case llvm::Intrinsic::x86_sse2_packuswb_128:
 | |
|         return llvm::Intrinsic::x86_sse2_packsswb_128;
 | |
| 
 | |
|       case llvm::Intrinsic::x86_sse2_packssdw_128:
 | |
|       case llvm::Intrinsic::x86_sse41_packusdw:
 | |
|         return llvm::Intrinsic::x86_sse2_packssdw_128;
 | |
| 
 | |
|       case llvm::Intrinsic::x86_avx2_packsswb:
 | |
|       case llvm::Intrinsic::x86_avx2_packuswb:
 | |
|         return llvm::Intrinsic::x86_avx2_packsswb;
 | |
| 
 | |
|       case llvm::Intrinsic::x86_avx2_packssdw:
 | |
|       case llvm::Intrinsic::x86_avx2_packusdw:
 | |
|         return llvm::Intrinsic::x86_avx2_packssdw;
 | |
| 
 | |
|       case llvm::Intrinsic::x86_mmx_packsswb:
 | |
|       case llvm::Intrinsic::x86_mmx_packuswb:
 | |
|         return llvm::Intrinsic::x86_mmx_packsswb;
 | |
| 
 | |
|       case llvm::Intrinsic::x86_mmx_packssdw:
 | |
|         return llvm::Intrinsic::x86_mmx_packssdw;
 | |
|       default:
 | |
|         llvm_unreachable("unexpected intrinsic id");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // \brief Instrument vector pack instrinsic.
 | |
|   //
 | |
|   // This function instruments intrinsics like x86_mmx_packsswb, that
 | |
|   // packs elements of 2 input vectors into half as many bits with saturation.
 | |
|   // Shadow is propagated with the signed variant of the same intrinsic applied
 | |
|   // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer).
 | |
|   // EltSizeInBits is used only for x86mmx arguments.
 | |
|   void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) {
 | |
|     assert(I.getNumArgOperands() == 2);
 | |
|     bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
 | |
|     IRBuilder<> IRB(&I);
 | |
|     Value *S1 = getShadow(&I, 0);
 | |
|     Value *S2 = getShadow(&I, 1);
 | |
|     assert(isX86_MMX || S1->getType()->isVectorTy());
 | |
| 
 | |
|     // SExt and ICmpNE below must apply to individual elements of input vectors.
 | |
|     // In case of x86mmx arguments, cast them to appropriate vector types and
 | |
|     // back.
 | |
|     Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType();
 | |
|     if (isX86_MMX) {
 | |
|       S1 = IRB.CreateBitCast(S1, T);
 | |
|       S2 = IRB.CreateBitCast(S2, T);
 | |
|     }
 | |
|     Value *S1_ext = IRB.CreateSExt(
 | |
|         IRB.CreateICmpNE(S1, llvm::Constant::getNullValue(T)), T);
 | |
|     Value *S2_ext = IRB.CreateSExt(
 | |
|         IRB.CreateICmpNE(S2, llvm::Constant::getNullValue(T)), T);
 | |
|     if (isX86_MMX) {
 | |
|       Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C);
 | |
|       S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy);
 | |
|       S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy);
 | |
|     }
 | |
| 
 | |
|     Function *ShadowFn = Intrinsic::getDeclaration(
 | |
|         F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID()));
 | |
| 
 | |
|     Value *S =
 | |
|         IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack");
 | |
|     if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I));
 | |
|     setShadow(&I, S);
 | |
|     setOriginForNaryOp(I);
 | |
|   }
 | |
| 
 | |
|   // \brief Instrument sum-of-absolute-differencies intrinsic.
 | |
|   void handleVectorSadIntrinsic(IntrinsicInst &I) {
 | |
|     const unsigned SignificantBitsPerResultElement = 16;
 | |
|     bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
 | |
|     Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType();
 | |
|     unsigned ZeroBitsPerResultElement =
 | |
|         ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement;
 | |
| 
 | |
|     IRBuilder<> IRB(&I);
 | |
|     Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
 | |
|     S = IRB.CreateBitCast(S, ResTy);
 | |
|     S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
 | |
|                        ResTy);
 | |
|     S = IRB.CreateLShr(S, ZeroBitsPerResultElement);
 | |
|     S = IRB.CreateBitCast(S, getShadowTy(&I));
 | |
|     setShadow(&I, S);
 | |
|     setOriginForNaryOp(I);
 | |
|   }
 | |
| 
 | |
|   // \brief Instrument multiply-add intrinsic.
 | |
|   void handleVectorPmaddIntrinsic(IntrinsicInst &I,
 | |
|                                   unsigned EltSizeInBits = 0) {
 | |
|     bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
 | |
|     Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType();
 | |
|     IRBuilder<> IRB(&I);
 | |
|     Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
 | |
|     S = IRB.CreateBitCast(S, ResTy);
 | |
|     S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
 | |
|                        ResTy);
 | |
|     S = IRB.CreateBitCast(S, getShadowTy(&I));
 | |
|     setShadow(&I, S);
 | |
|     setOriginForNaryOp(I);
 | |
|   }
 | |
| 
 | |
|   void visitIntrinsicInst(IntrinsicInst &I) {
 | |
|     switch (I.getIntrinsicID()) {
 | |
|     case llvm::Intrinsic::bswap:
 | |
|       handleBswap(I);
 | |
|       break;
 | |
|     case llvm::Intrinsic::x86_avx512_cvtsd2usi64:
 | |
|     case llvm::Intrinsic::x86_avx512_cvtsd2usi:
 | |
|     case llvm::Intrinsic::x86_avx512_cvtss2usi64:
 | |
|     case llvm::Intrinsic::x86_avx512_cvtss2usi:
 | |
|     case llvm::Intrinsic::x86_avx512_cvttss2usi64:
 | |
|     case llvm::Intrinsic::x86_avx512_cvttss2usi:
 | |
|     case llvm::Intrinsic::x86_avx512_cvttsd2usi64:
 | |
|     case llvm::Intrinsic::x86_avx512_cvttsd2usi:
 | |
|     case llvm::Intrinsic::x86_avx512_cvtusi2sd:
 | |
|     case llvm::Intrinsic::x86_avx512_cvtusi2ss:
 | |
|     case llvm::Intrinsic::x86_avx512_cvtusi642sd:
 | |
|     case llvm::Intrinsic::x86_avx512_cvtusi642ss:
 | |
|     case llvm::Intrinsic::x86_sse2_cvtsd2si64:
 | |
|     case llvm::Intrinsic::x86_sse2_cvtsd2si:
 | |
|     case llvm::Intrinsic::x86_sse2_cvtsd2ss:
 | |
|     case llvm::Intrinsic::x86_sse2_cvtsi2sd:
 | |
|     case llvm::Intrinsic::x86_sse2_cvtsi642sd:
 | |
|     case llvm::Intrinsic::x86_sse2_cvtss2sd:
 | |
|     case llvm::Intrinsic::x86_sse2_cvttsd2si64:
 | |
|     case llvm::Intrinsic::x86_sse2_cvttsd2si:
 | |
|     case llvm::Intrinsic::x86_sse_cvtsi2ss:
 | |
|     case llvm::Intrinsic::x86_sse_cvtsi642ss:
 | |
|     case llvm::Intrinsic::x86_sse_cvtss2si64:
 | |
|     case llvm::Intrinsic::x86_sse_cvtss2si:
 | |
|     case llvm::Intrinsic::x86_sse_cvttss2si64:
 | |
|     case llvm::Intrinsic::x86_sse_cvttss2si:
 | |
|       handleVectorConvertIntrinsic(I, 1);
 | |
|       break;
 | |
|     case llvm::Intrinsic::x86_sse2_cvtdq2pd:
 | |
|     case llvm::Intrinsic::x86_sse2_cvtps2pd:
 | |
|     case llvm::Intrinsic::x86_sse_cvtps2pi:
 | |
|     case llvm::Intrinsic::x86_sse_cvttps2pi:
 | |
|       handleVectorConvertIntrinsic(I, 2);
 | |
|       break;
 | |
|     case llvm::Intrinsic::x86_avx2_psll_w:
 | |
|     case llvm::Intrinsic::x86_avx2_psll_d:
 | |
|     case llvm::Intrinsic::x86_avx2_psll_q:
 | |
|     case llvm::Intrinsic::x86_avx2_pslli_w:
 | |
|     case llvm::Intrinsic::x86_avx2_pslli_d:
 | |
|     case llvm::Intrinsic::x86_avx2_pslli_q:
 | |
|     case llvm::Intrinsic::x86_avx2_psrl_w:
 | |
|     case llvm::Intrinsic::x86_avx2_psrl_d:
 | |
|     case llvm::Intrinsic::x86_avx2_psrl_q:
 | |
|     case llvm::Intrinsic::x86_avx2_psra_w:
 | |
|     case llvm::Intrinsic::x86_avx2_psra_d:
 | |
|     case llvm::Intrinsic::x86_avx2_psrli_w:
 | |
|     case llvm::Intrinsic::x86_avx2_psrli_d:
 | |
|     case llvm::Intrinsic::x86_avx2_psrli_q:
 | |
|     case llvm::Intrinsic::x86_avx2_psrai_w:
 | |
|     case llvm::Intrinsic::x86_avx2_psrai_d:
 | |
|     case llvm::Intrinsic::x86_sse2_psll_w:
 | |
|     case llvm::Intrinsic::x86_sse2_psll_d:
 | |
|     case llvm::Intrinsic::x86_sse2_psll_q:
 | |
|     case llvm::Intrinsic::x86_sse2_pslli_w:
 | |
|     case llvm::Intrinsic::x86_sse2_pslli_d:
 | |
|     case llvm::Intrinsic::x86_sse2_pslli_q:
 | |
|     case llvm::Intrinsic::x86_sse2_psrl_w:
 | |
|     case llvm::Intrinsic::x86_sse2_psrl_d:
 | |
|     case llvm::Intrinsic::x86_sse2_psrl_q:
 | |
|     case llvm::Intrinsic::x86_sse2_psra_w:
 | |
|     case llvm::Intrinsic::x86_sse2_psra_d:
 | |
|     case llvm::Intrinsic::x86_sse2_psrli_w:
 | |
|     case llvm::Intrinsic::x86_sse2_psrli_d:
 | |
|     case llvm::Intrinsic::x86_sse2_psrli_q:
 | |
|     case llvm::Intrinsic::x86_sse2_psrai_w:
 | |
|     case llvm::Intrinsic::x86_sse2_psrai_d:
 | |
|     case llvm::Intrinsic::x86_mmx_psll_w:
 | |
|     case llvm::Intrinsic::x86_mmx_psll_d:
 | |
|     case llvm::Intrinsic::x86_mmx_psll_q:
 | |
|     case llvm::Intrinsic::x86_mmx_pslli_w:
 | |
|     case llvm::Intrinsic::x86_mmx_pslli_d:
 | |
|     case llvm::Intrinsic::x86_mmx_pslli_q:
 | |
|     case llvm::Intrinsic::x86_mmx_psrl_w:
 | |
|     case llvm::Intrinsic::x86_mmx_psrl_d:
 | |
|     case llvm::Intrinsic::x86_mmx_psrl_q:
 | |
|     case llvm::Intrinsic::x86_mmx_psra_w:
 | |
|     case llvm::Intrinsic::x86_mmx_psra_d:
 | |
|     case llvm::Intrinsic::x86_mmx_psrli_w:
 | |
|     case llvm::Intrinsic::x86_mmx_psrli_d:
 | |
|     case llvm::Intrinsic::x86_mmx_psrli_q:
 | |
|     case llvm::Intrinsic::x86_mmx_psrai_w:
 | |
|     case llvm::Intrinsic::x86_mmx_psrai_d:
 | |
|       handleVectorShiftIntrinsic(I, /* Variable */ false);
 | |
|       break;
 | |
|     case llvm::Intrinsic::x86_avx2_psllv_d:
 | |
|     case llvm::Intrinsic::x86_avx2_psllv_d_256:
 | |
|     case llvm::Intrinsic::x86_avx2_psllv_q:
 | |
|     case llvm::Intrinsic::x86_avx2_psllv_q_256:
 | |
|     case llvm::Intrinsic::x86_avx2_psrlv_d:
 | |
|     case llvm::Intrinsic::x86_avx2_psrlv_d_256:
 | |
|     case llvm::Intrinsic::x86_avx2_psrlv_q:
 | |
|     case llvm::Intrinsic::x86_avx2_psrlv_q_256:
 | |
|     case llvm::Intrinsic::x86_avx2_psrav_d:
 | |
|     case llvm::Intrinsic::x86_avx2_psrav_d_256:
 | |
|       handleVectorShiftIntrinsic(I, /* Variable */ true);
 | |
|       break;
 | |
| 
 | |
|     case llvm::Intrinsic::x86_sse2_packsswb_128:
 | |
|     case llvm::Intrinsic::x86_sse2_packssdw_128:
 | |
|     case llvm::Intrinsic::x86_sse2_packuswb_128:
 | |
|     case llvm::Intrinsic::x86_sse41_packusdw:
 | |
|     case llvm::Intrinsic::x86_avx2_packsswb:
 | |
|     case llvm::Intrinsic::x86_avx2_packssdw:
 | |
|     case llvm::Intrinsic::x86_avx2_packuswb:
 | |
|     case llvm::Intrinsic::x86_avx2_packusdw:
 | |
|       handleVectorPackIntrinsic(I);
 | |
|       break;
 | |
| 
 | |
|     case llvm::Intrinsic::x86_mmx_packsswb:
 | |
|     case llvm::Intrinsic::x86_mmx_packuswb:
 | |
|       handleVectorPackIntrinsic(I, 16);
 | |
|       break;
 | |
| 
 | |
|     case llvm::Intrinsic::x86_mmx_packssdw:
 | |
|       handleVectorPackIntrinsic(I, 32);
 | |
|       break;
 | |
| 
 | |
|     case llvm::Intrinsic::x86_mmx_psad_bw:
 | |
|     case llvm::Intrinsic::x86_sse2_psad_bw:
 | |
|     case llvm::Intrinsic::x86_avx2_psad_bw:
 | |
|       handleVectorSadIntrinsic(I);
 | |
|       break;
 | |
| 
 | |
|     case llvm::Intrinsic::x86_sse2_pmadd_wd:
 | |
|     case llvm::Intrinsic::x86_avx2_pmadd_wd:
 | |
|     case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw_128:
 | |
|     case llvm::Intrinsic::x86_avx2_pmadd_ub_sw:
 | |
|       handleVectorPmaddIntrinsic(I);
 | |
|       break;
 | |
| 
 | |
|     case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw:
 | |
|       handleVectorPmaddIntrinsic(I, 8);
 | |
|       break;
 | |
| 
 | |
|     case llvm::Intrinsic::x86_mmx_pmadd_wd:
 | |
|       handleVectorPmaddIntrinsic(I, 16);
 | |
|       break;
 | |
| 
 | |
|     default:
 | |
|       if (!handleUnknownIntrinsic(I))
 | |
|         visitInstruction(I);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void visitCallSite(CallSite CS) {
 | |
|     Instruction &I = *CS.getInstruction();
 | |
|     assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite");
 | |
|     if (CS.isCall()) {
 | |
|       CallInst *Call = cast<CallInst>(&I);
 | |
| 
 | |
|       // For inline asm, do the usual thing: check argument shadow and mark all
 | |
|       // outputs as clean. Note that any side effects of the inline asm that are
 | |
|       // not immediately visible in its constraints are not handled.
 | |
|       if (Call->isInlineAsm()) {
 | |
|         visitInstruction(I);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
 | |
| 
 | |
|       // We are going to insert code that relies on the fact that the callee
 | |
|       // will become a non-readonly function after it is instrumented by us. To
 | |
|       // prevent this code from being optimized out, mark that function
 | |
|       // non-readonly in advance.
 | |
|       if (Function *Func = Call->getCalledFunction()) {
 | |
|         // Clear out readonly/readnone attributes.
 | |
|         AttrBuilder B;
 | |
|         B.addAttribute(Attribute::ReadOnly)
 | |
|           .addAttribute(Attribute::ReadNone);
 | |
|         Func->removeAttributes(AttributeSet::FunctionIndex,
 | |
|                                AttributeSet::get(Func->getContext(),
 | |
|                                                  AttributeSet::FunctionIndex,
 | |
|                                                  B));
 | |
|       }
 | |
|     }
 | |
|     IRBuilder<> IRB(&I);
 | |
| 
 | |
|     unsigned ArgOffset = 0;
 | |
|     DEBUG(dbgs() << "  CallSite: " << I << "\n");
 | |
|     for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
 | |
|          ArgIt != End; ++ArgIt) {
 | |
|       Value *A = *ArgIt;
 | |
|       unsigned i = ArgIt - CS.arg_begin();
 | |
|       if (!A->getType()->isSized()) {
 | |
|         DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
 | |
|         continue;
 | |
|       }
 | |
|       unsigned Size = 0;
 | |
|       Value *Store = nullptr;
 | |
|       // Compute the Shadow for arg even if it is ByVal, because
 | |
|       // in that case getShadow() will copy the actual arg shadow to
 | |
|       // __msan_param_tls.
 | |
|       Value *ArgShadow = getShadow(A);
 | |
|       Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
 | |
|       DEBUG(dbgs() << "  Arg#" << i << ": " << *A <<
 | |
|             " Shadow: " << *ArgShadow << "\n");
 | |
|       bool ArgIsInitialized = false;
 | |
|       const DataLayout &DL = F.getParent()->getDataLayout();
 | |
|       if (CS.paramHasAttr(i + 1, Attribute::ByVal)) {
 | |
|         assert(A->getType()->isPointerTy() &&
 | |
|                "ByVal argument is not a pointer!");
 | |
|         Size = DL.getTypeAllocSize(A->getType()->getPointerElementType());
 | |
|         if (ArgOffset + Size > kParamTLSSize) break;
 | |
|         unsigned ParamAlignment = CS.getParamAlignment(i + 1);
 | |
|         unsigned Alignment = std::min(ParamAlignment, kShadowTLSAlignment);
 | |
|         Store = IRB.CreateMemCpy(ArgShadowBase,
 | |
|                                  getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB),
 | |
|                                  Size, Alignment);
 | |
|       } else {
 | |
|         Size = DL.getTypeAllocSize(A->getType());
 | |
|         if (ArgOffset + Size > kParamTLSSize) break;
 | |
|         Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
 | |
|                                        kShadowTLSAlignment);
 | |
|         Constant *Cst = dyn_cast<Constant>(ArgShadow);
 | |
|         if (Cst && Cst->isNullValue()) ArgIsInitialized = true;
 | |
|       }
 | |
|       if (MS.TrackOrigins && !ArgIsInitialized)
 | |
|         IRB.CreateStore(getOrigin(A),
 | |
|                         getOriginPtrForArgument(A, IRB, ArgOffset));
 | |
|       (void)Store;
 | |
|       assert(Size != 0 && Store != nullptr);
 | |
|       DEBUG(dbgs() << "  Param:" << *Store << "\n");
 | |
|       ArgOffset += RoundUpToAlignment(Size, 8);
 | |
|     }
 | |
|     DEBUG(dbgs() << "  done with call args\n");
 | |
| 
 | |
|     FunctionType *FT =
 | |
|       cast<FunctionType>(CS.getCalledValue()->getType()->getContainedType(0));
 | |
|     if (FT->isVarArg()) {
 | |
|       VAHelper->visitCallSite(CS, IRB);
 | |
|     }
 | |
| 
 | |
|     // Now, get the shadow for the RetVal.
 | |
|     if (!I.getType()->isSized()) return;
 | |
|     IRBuilder<> IRBBefore(&I);
 | |
|     // Until we have full dynamic coverage, make sure the retval shadow is 0.
 | |
|     Value *Base = getShadowPtrForRetval(&I, IRBBefore);
 | |
|     IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment);
 | |
|     Instruction *NextInsn = nullptr;
 | |
|     if (CS.isCall()) {
 | |
|       NextInsn = I.getNextNode();
 | |
|     } else {
 | |
|       BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
 | |
|       if (!NormalDest->getSinglePredecessor()) {
 | |
|         // FIXME: this case is tricky, so we are just conservative here.
 | |
|         // Perhaps we need to split the edge between this BB and NormalDest,
 | |
|         // but a naive attempt to use SplitEdge leads to a crash.
 | |
|         setShadow(&I, getCleanShadow(&I));
 | |
|         setOrigin(&I, getCleanOrigin());
 | |
|         return;
 | |
|       }
 | |
|       NextInsn = NormalDest->getFirstInsertionPt();
 | |
|       assert(NextInsn &&
 | |
|              "Could not find insertion point for retval shadow load");
 | |
|     }
 | |
|     IRBuilder<> IRBAfter(NextInsn);
 | |
|     Value *RetvalShadow =
 | |
|       IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter),
 | |
|                                  kShadowTLSAlignment, "_msret");
 | |
|     setShadow(&I, RetvalShadow);
 | |
|     if (MS.TrackOrigins)
 | |
|       setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter)));
 | |
|   }
 | |
| 
 | |
|   void visitReturnInst(ReturnInst &I) {
 | |
|     IRBuilder<> IRB(&I);
 | |
|     Value *RetVal = I.getReturnValue();
 | |
|     if (!RetVal) return;
 | |
|     Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
 | |
|     if (CheckReturnValue) {
 | |
|       insertShadowCheck(RetVal, &I);
 | |
|       Value *Shadow = getCleanShadow(RetVal);
 | |
|       IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
 | |
|     } else {
 | |
|       Value *Shadow = getShadow(RetVal);
 | |
|       IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
 | |
|       // FIXME: make it conditional if ClStoreCleanOrigin==0
 | |
|       if (MS.TrackOrigins)
 | |
|         IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void visitPHINode(PHINode &I) {
 | |
|     IRBuilder<> IRB(&I);
 | |
|     if (!PropagateShadow) {
 | |
|       setShadow(&I, getCleanShadow(&I));
 | |
|       setOrigin(&I, getCleanOrigin());
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     ShadowPHINodes.push_back(&I);
 | |
|     setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
 | |
|                                 "_msphi_s"));
 | |
|     if (MS.TrackOrigins)
 | |
|       setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
 | |
|                                   "_msphi_o"));
 | |
|   }
 | |
| 
 | |
|   void visitAllocaInst(AllocaInst &I) {
 | |
|     setShadow(&I, getCleanShadow(&I));
 | |
|     setOrigin(&I, getCleanOrigin());
 | |
|     IRBuilder<> IRB(I.getNextNode());
 | |
|     const DataLayout &DL = F.getParent()->getDataLayout();
 | |
|     uint64_t Size = DL.getTypeAllocSize(I.getAllocatedType());
 | |
|     if (PoisonStack && ClPoisonStackWithCall) {
 | |
|       IRB.CreateCall(MS.MsanPoisonStackFn,
 | |
|                      {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
 | |
|                       ConstantInt::get(MS.IntptrTy, Size)});
 | |
|     } else {
 | |
|       Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB);
 | |
|       Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0);
 | |
|       IRB.CreateMemSet(ShadowBase, PoisonValue, Size, I.getAlignment());
 | |
|     }
 | |
| 
 | |
|     if (PoisonStack && MS.TrackOrigins) {
 | |
|       SmallString<2048> StackDescriptionStorage;
 | |
|       raw_svector_ostream StackDescription(StackDescriptionStorage);
 | |
|       // We create a string with a description of the stack allocation and
 | |
|       // pass it into __msan_set_alloca_origin.
 | |
|       // It will be printed by the run-time if stack-originated UMR is found.
 | |
|       // The first 4 bytes of the string are set to '----' and will be replaced
 | |
|       // by __msan_va_arg_overflow_size_tls at the first call.
 | |
|       StackDescription << "----" << I.getName() << "@" << F.getName();
 | |
|       Value *Descr =
 | |
|           createPrivateNonConstGlobalForString(*F.getParent(),
 | |
|                                                StackDescription.str());
 | |
| 
 | |
|       IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn,
 | |
|                      {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
 | |
|                       ConstantInt::get(MS.IntptrTy, Size),
 | |
|                       IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()),
 | |
|                       IRB.CreatePointerCast(&F, MS.IntptrTy)});
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void visitSelectInst(SelectInst& I) {
 | |
|     IRBuilder<> IRB(&I);
 | |
|     // a = select b, c, d
 | |
|     Value *B = I.getCondition();
 | |
|     Value *C = I.getTrueValue();
 | |
|     Value *D = I.getFalseValue();
 | |
|     Value *Sb = getShadow(B);
 | |
|     Value *Sc = getShadow(C);
 | |
|     Value *Sd = getShadow(D);
 | |
| 
 | |
|     // Result shadow if condition shadow is 0.
 | |
|     Value *Sa0 = IRB.CreateSelect(B, Sc, Sd);
 | |
|     Value *Sa1;
 | |
|     if (I.getType()->isAggregateType()) {
 | |
|       // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do
 | |
|       // an extra "select". This results in much more compact IR.
 | |
|       // Sa = select Sb, poisoned, (select b, Sc, Sd)
 | |
|       Sa1 = getPoisonedShadow(getShadowTy(I.getType()));
 | |
|     } else {
 | |
|       // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ]
 | |
|       // If Sb (condition is poisoned), look for bits in c and d that are equal
 | |
|       // and both unpoisoned.
 | |
|       // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd.
 | |
| 
 | |
|       // Cast arguments to shadow-compatible type.
 | |
|       C = CreateAppToShadowCast(IRB, C);
 | |
|       D = CreateAppToShadowCast(IRB, D);
 | |
| 
 | |
|       // Result shadow if condition shadow is 1.
 | |
|       Sa1 = IRB.CreateOr(IRB.CreateXor(C, D), IRB.CreateOr(Sc, Sd));
 | |
|     }
 | |
|     Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select");
 | |
|     setShadow(&I, Sa);
 | |
|     if (MS.TrackOrigins) {
 | |
|       // Origins are always i32, so any vector conditions must be flattened.
 | |
|       // FIXME: consider tracking vector origins for app vectors?
 | |
|       if (B->getType()->isVectorTy()) {
 | |
|         Type *FlatTy = getShadowTyNoVec(B->getType());
 | |
|         B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy),
 | |
|                                 ConstantInt::getNullValue(FlatTy));
 | |
|         Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy),
 | |
|                                       ConstantInt::getNullValue(FlatTy));
 | |
|       }
 | |
|       // a = select b, c, d
 | |
|       // Oa = Sb ? Ob : (b ? Oc : Od)
 | |
|       setOrigin(
 | |
|           &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()),
 | |
|                                IRB.CreateSelect(B, getOrigin(I.getTrueValue()),
 | |
|                                                 getOrigin(I.getFalseValue()))));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void visitLandingPadInst(LandingPadInst &I) {
 | |
|     // Do nothing.
 | |
|     // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1
 | |
|     setShadow(&I, getCleanShadow(&I));
 | |
|     setOrigin(&I, getCleanOrigin());
 | |
|   }
 | |
| 
 | |
|   void visitGetElementPtrInst(GetElementPtrInst &I) {
 | |
|     handleShadowOr(I);
 | |
|   }
 | |
| 
 | |
|   void visitExtractValueInst(ExtractValueInst &I) {
 | |
|     IRBuilder<> IRB(&I);
 | |
|     Value *Agg = I.getAggregateOperand();
 | |
|     DEBUG(dbgs() << "ExtractValue:  " << I << "\n");
 | |
|     Value *AggShadow = getShadow(Agg);
 | |
|     DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
 | |
|     Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
 | |
|     DEBUG(dbgs() << "   ResShadow:  " << *ResShadow << "\n");
 | |
|     setShadow(&I, ResShadow);
 | |
|     setOriginForNaryOp(I);
 | |
|   }
 | |
| 
 | |
|   void visitInsertValueInst(InsertValueInst &I) {
 | |
|     IRBuilder<> IRB(&I);
 | |
|     DEBUG(dbgs() << "InsertValue:  " << I << "\n");
 | |
|     Value *AggShadow = getShadow(I.getAggregateOperand());
 | |
|     Value *InsShadow = getShadow(I.getInsertedValueOperand());
 | |
|     DEBUG(dbgs() << "   AggShadow:  " << *AggShadow << "\n");
 | |
|     DEBUG(dbgs() << "   InsShadow:  " << *InsShadow << "\n");
 | |
|     Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
 | |
|     DEBUG(dbgs() << "   Res:        " << *Res << "\n");
 | |
|     setShadow(&I, Res);
 | |
|     setOriginForNaryOp(I);
 | |
|   }
 | |
| 
 | |
|   void dumpInst(Instruction &I) {
 | |
|     if (CallInst *CI = dyn_cast<CallInst>(&I)) {
 | |
|       errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
 | |
|     } else {
 | |
|       errs() << "ZZZ " << I.getOpcodeName() << "\n";
 | |
|     }
 | |
|     errs() << "QQQ " << I << "\n";
 | |
|   }
 | |
| 
 | |
|   void visitResumeInst(ResumeInst &I) {
 | |
|     DEBUG(dbgs() << "Resume: " << I << "\n");
 | |
|     // Nothing to do here.
 | |
|   }
 | |
| 
 | |
|   void visitInstruction(Instruction &I) {
 | |
|     // Everything else: stop propagating and check for poisoned shadow.
 | |
|     if (ClDumpStrictInstructions)
 | |
|       dumpInst(I);
 | |
|     DEBUG(dbgs() << "DEFAULT: " << I << "\n");
 | |
|     for (size_t i = 0, n = I.getNumOperands(); i < n; i++)
 | |
|       insertShadowCheck(I.getOperand(i), &I);
 | |
|     setShadow(&I, getCleanShadow(&I));
 | |
|     setOrigin(&I, getCleanOrigin());
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// \brief AMD64-specific implementation of VarArgHelper.
 | |
| struct VarArgAMD64Helper : public VarArgHelper {
 | |
|   // An unfortunate workaround for asymmetric lowering of va_arg stuff.
 | |
|   // See a comment in visitCallSite for more details.
 | |
|   static const unsigned AMD64GpEndOffset = 48;  // AMD64 ABI Draft 0.99.6 p3.5.7
 | |
|   static const unsigned AMD64FpEndOffset = 176;
 | |
| 
 | |
|   Function &F;
 | |
|   MemorySanitizer &MS;
 | |
|   MemorySanitizerVisitor &MSV;
 | |
|   Value *VAArgTLSCopy;
 | |
|   Value *VAArgOverflowSize;
 | |
| 
 | |
|   SmallVector<CallInst*, 16> VAStartInstrumentationList;
 | |
| 
 | |
|   VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
 | |
|                     MemorySanitizerVisitor &MSV)
 | |
|     : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr),
 | |
|       VAArgOverflowSize(nullptr) {}
 | |
| 
 | |
|   enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
 | |
| 
 | |
|   ArgKind classifyArgument(Value* arg) {
 | |
|     // A very rough approximation of X86_64 argument classification rules.
 | |
|     Type *T = arg->getType();
 | |
|     if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
 | |
|       return AK_FloatingPoint;
 | |
|     if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
 | |
|       return AK_GeneralPurpose;
 | |
|     if (T->isPointerTy())
 | |
|       return AK_GeneralPurpose;
 | |
|     return AK_Memory;
 | |
|   }
 | |
| 
 | |
|   // For VarArg functions, store the argument shadow in an ABI-specific format
 | |
|   // that corresponds to va_list layout.
 | |
|   // We do this because Clang lowers va_arg in the frontend, and this pass
 | |
|   // only sees the low level code that deals with va_list internals.
 | |
|   // A much easier alternative (provided that Clang emits va_arg instructions)
 | |
|   // would have been to associate each live instance of va_list with a copy of
 | |
|   // MSanParamTLS, and extract shadow on va_arg() call in the argument list
 | |
|   // order.
 | |
|   void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
 | |
|     unsigned GpOffset = 0;
 | |
|     unsigned FpOffset = AMD64GpEndOffset;
 | |
|     unsigned OverflowOffset = AMD64FpEndOffset;
 | |
|     const DataLayout &DL = F.getParent()->getDataLayout();
 | |
|     for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
 | |
|          ArgIt != End; ++ArgIt) {
 | |
|       Value *A = *ArgIt;
 | |
|       unsigned ArgNo = CS.getArgumentNo(ArgIt);
 | |
|       bool IsByVal = CS.paramHasAttr(ArgNo + 1, Attribute::ByVal);
 | |
|       if (IsByVal) {
 | |
|         // ByVal arguments always go to the overflow area.
 | |
|         assert(A->getType()->isPointerTy());
 | |
|         Type *RealTy = A->getType()->getPointerElementType();
 | |
|         uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
 | |
|         Value *Base = getShadowPtrForVAArgument(RealTy, IRB, OverflowOffset);
 | |
|         OverflowOffset += RoundUpToAlignment(ArgSize, 8);
 | |
|         IRB.CreateMemCpy(Base, MSV.getShadowPtr(A, IRB.getInt8Ty(), IRB),
 | |
|                          ArgSize, kShadowTLSAlignment);
 | |
|       } else {
 | |
|         ArgKind AK = classifyArgument(A);
 | |
|         if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
 | |
|           AK = AK_Memory;
 | |
|         if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
 | |
|           AK = AK_Memory;
 | |
|         Value *Base;
 | |
|         switch (AK) {
 | |
|           case AK_GeneralPurpose:
 | |
|             Base = getShadowPtrForVAArgument(A->getType(), IRB, GpOffset);
 | |
|             GpOffset += 8;
 | |
|             break;
 | |
|           case AK_FloatingPoint:
 | |
|             Base = getShadowPtrForVAArgument(A->getType(), IRB, FpOffset);
 | |
|             FpOffset += 16;
 | |
|             break;
 | |
|           case AK_Memory:
 | |
|             uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
 | |
|             Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset);
 | |
|             OverflowOffset += RoundUpToAlignment(ArgSize, 8);
 | |
|         }
 | |
|         IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
 | |
|       }
 | |
|     }
 | |
|     Constant *OverflowSize =
 | |
|       ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
 | |
|     IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
 | |
|   }
 | |
| 
 | |
|   /// \brief Compute the shadow address for a given va_arg.
 | |
|   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
 | |
|                                    int ArgOffset) {
 | |
|     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
 | |
|     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
 | |
|     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
 | |
|                               "_msarg");
 | |
|   }
 | |
| 
 | |
|   void visitVAStartInst(VAStartInst &I) override {
 | |
|     IRBuilder<> IRB(&I);
 | |
|     VAStartInstrumentationList.push_back(&I);
 | |
|     Value *VAListTag = I.getArgOperand(0);
 | |
|     Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
 | |
| 
 | |
|     // Unpoison the whole __va_list_tag.
 | |
|     // FIXME: magic ABI constants.
 | |
|     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
 | |
|                      /* size */24, /* alignment */8, false);
 | |
|   }
 | |
| 
 | |
|   void visitVACopyInst(VACopyInst &I) override {
 | |
|     IRBuilder<> IRB(&I);
 | |
|     Value *VAListTag = I.getArgOperand(0);
 | |
|     Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
 | |
| 
 | |
|     // Unpoison the whole __va_list_tag.
 | |
|     // FIXME: magic ABI constants.
 | |
|     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
 | |
|                      /* size */24, /* alignment */8, false);
 | |
|   }
 | |
| 
 | |
|   void finalizeInstrumentation() override {
 | |
|     assert(!VAArgOverflowSize && !VAArgTLSCopy &&
 | |
|            "finalizeInstrumentation called twice");
 | |
|     if (!VAStartInstrumentationList.empty()) {
 | |
|       // If there is a va_start in this function, make a backup copy of
 | |
|       // va_arg_tls somewhere in the function entry block.
 | |
|       IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
 | |
|       VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
 | |
|       Value *CopySize =
 | |
|         IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
 | |
|                       VAArgOverflowSize);
 | |
|       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
 | |
|       IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
 | |
|     }
 | |
| 
 | |
|     // Instrument va_start.
 | |
|     // Copy va_list shadow from the backup copy of the TLS contents.
 | |
|     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
 | |
|       CallInst *OrigInst = VAStartInstrumentationList[i];
 | |
|       IRBuilder<> IRB(OrigInst->getNextNode());
 | |
|       Value *VAListTag = OrigInst->getArgOperand(0);
 | |
| 
 | |
|       Value *RegSaveAreaPtrPtr =
 | |
|         IRB.CreateIntToPtr(
 | |
|           IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
 | |
|                         ConstantInt::get(MS.IntptrTy, 16)),
 | |
|           Type::getInt64PtrTy(*MS.C));
 | |
|       Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
 | |
|       Value *RegSaveAreaShadowPtr =
 | |
|         MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
 | |
|       IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy,
 | |
|                        AMD64FpEndOffset, 16);
 | |
| 
 | |
|       Value *OverflowArgAreaPtrPtr =
 | |
|         IRB.CreateIntToPtr(
 | |
|           IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
 | |
|                         ConstantInt::get(MS.IntptrTy, 8)),
 | |
|           Type::getInt64PtrTy(*MS.C));
 | |
|       Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr);
 | |
|       Value *OverflowArgAreaShadowPtr =
 | |
|         MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB);
 | |
|       Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy,
 | |
|                                              AMD64FpEndOffset);
 | |
|       IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16);
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// \brief MIPS64-specific implementation of VarArgHelper.
 | |
| struct VarArgMIPS64Helper : public VarArgHelper {
 | |
|   Function &F;
 | |
|   MemorySanitizer &MS;
 | |
|   MemorySanitizerVisitor &MSV;
 | |
|   Value *VAArgTLSCopy;
 | |
|   Value *VAArgSize;
 | |
| 
 | |
|   SmallVector<CallInst*, 16> VAStartInstrumentationList;
 | |
| 
 | |
|   VarArgMIPS64Helper(Function &F, MemorySanitizer &MS,
 | |
|                     MemorySanitizerVisitor &MSV)
 | |
|     : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr),
 | |
|       VAArgSize(nullptr) {}
 | |
| 
 | |
|   void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
 | |
|     unsigned VAArgOffset = 0;
 | |
|     const DataLayout &DL = F.getParent()->getDataLayout();
 | |
|     for (CallSite::arg_iterator ArgIt = CS.arg_begin() + 1, End = CS.arg_end();
 | |
|          ArgIt != End; ++ArgIt) {
 | |
|       Value *A = *ArgIt;
 | |
|       Value *Base;
 | |
|       uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
 | |
| #if defined(__MIPSEB__) || defined(MIPSEB)
 | |
|       // Adjusting the shadow for argument with size < 8 to match the placement
 | |
|       // of bits in big endian system
 | |
|       if (ArgSize < 8)
 | |
|         VAArgOffset += (8 - ArgSize);
 | |
| #endif
 | |
|       Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset);
 | |
|       VAArgOffset += ArgSize;
 | |
|       VAArgOffset = RoundUpToAlignment(VAArgOffset, 8);
 | |
|       IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
 | |
|     }
 | |
| 
 | |
|     Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset);
 | |
|     // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
 | |
|     // a new class member i.e. it is the total size of all VarArgs.
 | |
|     IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
 | |
|   }
 | |
| 
 | |
|   /// \brief Compute the shadow address for a given va_arg.
 | |
|   Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
 | |
|                                    int ArgOffset) {
 | |
|     Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
 | |
|     Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
 | |
|     return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
 | |
|                               "_msarg");
 | |
|   }
 | |
| 
 | |
|   void visitVAStartInst(VAStartInst &I) override {
 | |
|     IRBuilder<> IRB(&I);
 | |
|     VAStartInstrumentationList.push_back(&I);
 | |
|     Value *VAListTag = I.getArgOperand(0);
 | |
|     Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
 | |
|     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
 | |
|                      /* size */8, /* alignment */8, false);
 | |
|   }
 | |
| 
 | |
|   void visitVACopyInst(VACopyInst &I) override {
 | |
|     IRBuilder<> IRB(&I);
 | |
|     Value *VAListTag = I.getArgOperand(0);
 | |
|     Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
 | |
|     // Unpoison the whole __va_list_tag.
 | |
|     // FIXME: magic ABI constants.
 | |
|     IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
 | |
|                      /* size */8, /* alignment */8, false);
 | |
|   }
 | |
| 
 | |
|   void finalizeInstrumentation() override {
 | |
|     assert(!VAArgSize && !VAArgTLSCopy &&
 | |
|            "finalizeInstrumentation called twice");
 | |
|     IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
 | |
|     VAArgSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
 | |
|     Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0),
 | |
|                                     VAArgSize);
 | |
| 
 | |
|     if (!VAStartInstrumentationList.empty()) {
 | |
|       // If there is a va_start in this function, make a backup copy of
 | |
|       // va_arg_tls somewhere in the function entry block.
 | |
|       VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
 | |
|       IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
 | |
|     }
 | |
| 
 | |
|     // Instrument va_start.
 | |
|     // Copy va_list shadow from the backup copy of the TLS contents.
 | |
|     for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
 | |
|       CallInst *OrigInst = VAStartInstrumentationList[i];
 | |
|       IRBuilder<> IRB(OrigInst->getNextNode());
 | |
|       Value *VAListTag = OrigInst->getArgOperand(0);
 | |
|       Value *RegSaveAreaPtrPtr =
 | |
|         IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
 | |
|                         Type::getInt64PtrTy(*MS.C));
 | |
|       Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
 | |
|       Value *RegSaveAreaShadowPtr =
 | |
|       MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
 | |
|       IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy, CopySize, 8);
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// \brief A no-op implementation of VarArgHelper.
 | |
| struct VarArgNoOpHelper : public VarArgHelper {
 | |
|   VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
 | |
|                    MemorySanitizerVisitor &MSV) {}
 | |
| 
 | |
|   void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {}
 | |
| 
 | |
|   void visitVAStartInst(VAStartInst &I) override {}
 | |
| 
 | |
|   void visitVACopyInst(VACopyInst &I) override {}
 | |
| 
 | |
|   void finalizeInstrumentation() override {}
 | |
| };
 | |
| 
 | |
| VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
 | |
|                                  MemorySanitizerVisitor &Visitor) {
 | |
|   // VarArg handling is only implemented on AMD64. False positives are possible
 | |
|   // on other platforms.
 | |
|   llvm::Triple TargetTriple(Func.getParent()->getTargetTriple());
 | |
|   if (TargetTriple.getArch() == llvm::Triple::x86_64)
 | |
|     return new VarArgAMD64Helper(Func, Msan, Visitor);
 | |
|   else if (TargetTriple.getArch() == llvm::Triple::mips64 ||
 | |
|            TargetTriple.getArch() == llvm::Triple::mips64el)
 | |
|     return new VarArgMIPS64Helper(Func, Msan, Visitor);
 | |
|   else
 | |
|     return new VarArgNoOpHelper(Func, Msan, Visitor);
 | |
| }
 | |
| 
 | |
| }  // namespace
 | |
| 
 | |
| bool MemorySanitizer::runOnFunction(Function &F) {
 | |
|   if (&F == MsanCtorFunction)
 | |
|     return false;
 | |
|   MemorySanitizerVisitor Visitor(F, *this);
 | |
| 
 | |
|   // Clear out readonly/readnone attributes.
 | |
|   AttrBuilder B;
 | |
|   B.addAttribute(Attribute::ReadOnly)
 | |
|     .addAttribute(Attribute::ReadNone);
 | |
|   F.removeAttributes(AttributeSet::FunctionIndex,
 | |
|                      AttributeSet::get(F.getContext(),
 | |
|                                        AttributeSet::FunctionIndex, B));
 | |
| 
 | |
|   return Visitor.runOnFunction();
 | |
| }
 |