mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	The patch is generated using clang-tidy misc-use-override check.
This command was used:
  tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py \
    -checks='-*,misc-use-override' -header-filter='llvm|clang' \
    -j=32 -fix -format
http://reviews.llvm.org/D8925
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234679 91177308-0d34-0410-b5e6-96231b3b80d8
		
	
		
			
				
	
	
		
			426 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			426 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===----------------------- AlignmentFromAssumptions.cpp -----------------===//
 | |
| //                  Set Load/Store Alignments From Assumptions
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements a ScalarEvolution-based transformation to set
 | |
| // the alignments of load, stores and memory intrinsics based on the truth
 | |
| // expressions of assume intrinsics. The primary motivation is to handle
 | |
| // complex alignment assumptions that apply to vector loads and stores that
 | |
| // appear after vectorization and unrolling.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define AA_NAME "alignment-from-assumptions"
 | |
| #define DEBUG_TYPE AA_NAME
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AssumptionCache.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/Constant.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumLoadAlignChanged,
 | |
|   "Number of loads changed by alignment assumptions");
 | |
| STATISTIC(NumStoreAlignChanged,
 | |
|   "Number of stores changed by alignment assumptions");
 | |
| STATISTIC(NumMemIntAlignChanged,
 | |
|   "Number of memory intrinsics changed by alignment assumptions");
 | |
| 
 | |
| namespace {
 | |
| struct AlignmentFromAssumptions : public FunctionPass {
 | |
|   static char ID; // Pass identification, replacement for typeid
 | |
|   AlignmentFromAssumptions() : FunctionPass(ID) {
 | |
|     initializeAlignmentFromAssumptionsPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   bool runOnFunction(Function &F) override;
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.addRequired<AssumptionCacheTracker>();
 | |
|     AU.addRequired<ScalarEvolution>();
 | |
|     AU.addRequired<DominatorTreeWrapperPass>();
 | |
| 
 | |
|     AU.setPreservesCFG();
 | |
|     AU.addPreserved<LoopInfoWrapperPass>();
 | |
|     AU.addPreserved<DominatorTreeWrapperPass>();
 | |
|     AU.addPreserved<ScalarEvolution>();
 | |
|   }
 | |
| 
 | |
|   // For memory transfers, we need a common alignment for both the source and
 | |
|   // destination. If we have a new alignment for only one operand of a transfer
 | |
|   // instruction, save it in these maps.  If we reach the other operand through
 | |
|   // another assumption later, then we may change the alignment at that point.
 | |
|   DenseMap<MemTransferInst *, unsigned> NewDestAlignments, NewSrcAlignments;
 | |
| 
 | |
|   ScalarEvolution *SE;
 | |
|   DominatorTree *DT;
 | |
| 
 | |
|   bool extractAlignmentInfo(CallInst *I, Value *&AAPtr, const SCEV *&AlignSCEV,
 | |
|                             const SCEV *&OffSCEV);
 | |
|   bool processAssumption(CallInst *I);
 | |
| };
 | |
| }
 | |
| 
 | |
| char AlignmentFromAssumptions::ID = 0;
 | |
| static const char aip_name[] = "Alignment from assumptions";
 | |
| INITIALIZE_PASS_BEGIN(AlignmentFromAssumptions, AA_NAME,
 | |
|                       aip_name, false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
 | |
| INITIALIZE_PASS_END(AlignmentFromAssumptions, AA_NAME,
 | |
|                     aip_name, false, false)
 | |
| 
 | |
| FunctionPass *llvm::createAlignmentFromAssumptionsPass() {
 | |
|   return new AlignmentFromAssumptions();
 | |
| }
 | |
| 
 | |
| // Given an expression for the (constant) alignment, AlignSCEV, and an
 | |
| // expression for the displacement between a pointer and the aligned address,
 | |
| // DiffSCEV, compute the alignment of the displaced pointer if it can be reduced
 | |
| // to a constant. Using SCEV to compute alignment handles the case where
 | |
| // DiffSCEV is a recurrence with constant start such that the aligned offset
 | |
| // is constant. e.g. {16,+,32} % 32 -> 16.
 | |
| static unsigned getNewAlignmentDiff(const SCEV *DiffSCEV,
 | |
|                                     const SCEV *AlignSCEV,
 | |
|                                     ScalarEvolution *SE) {
 | |
|   // DiffUnits = Diff % int64_t(Alignment)
 | |
|   const SCEV *DiffAlignDiv = SE->getUDivExpr(DiffSCEV, AlignSCEV);
 | |
|   const SCEV *DiffAlign = SE->getMulExpr(DiffAlignDiv, AlignSCEV);
 | |
|   const SCEV *DiffUnitsSCEV = SE->getMinusSCEV(DiffAlign, DiffSCEV);
 | |
| 
 | |
|   DEBUG(dbgs() << "\talignment relative to " << *AlignSCEV << " is " <<
 | |
|                   *DiffUnitsSCEV << " (diff: " << *DiffSCEV << ")\n");
 | |
| 
 | |
|   if (const SCEVConstant *ConstDUSCEV =
 | |
|       dyn_cast<SCEVConstant>(DiffUnitsSCEV)) {
 | |
|     int64_t DiffUnits = ConstDUSCEV->getValue()->getSExtValue();
 | |
| 
 | |
|     // If the displacement is an exact multiple of the alignment, then the
 | |
|     // displaced pointer has the same alignment as the aligned pointer, so
 | |
|     // return the alignment value.
 | |
|     if (!DiffUnits)
 | |
|       return (unsigned)
 | |
|         cast<SCEVConstant>(AlignSCEV)->getValue()->getSExtValue();
 | |
| 
 | |
|     // If the displacement is not an exact multiple, but the remainder is a
 | |
|     // constant, then return this remainder (but only if it is a power of 2).
 | |
|     uint64_t DiffUnitsAbs = std::abs(DiffUnits);
 | |
|     if (isPowerOf2_64(DiffUnitsAbs))
 | |
|       return (unsigned) DiffUnitsAbs;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // There is an address given by an offset OffSCEV from AASCEV which has an
 | |
| // alignment AlignSCEV. Use that information, if possible, to compute a new
 | |
| // alignment for Ptr.
 | |
| static unsigned getNewAlignment(const SCEV *AASCEV, const SCEV *AlignSCEV,
 | |
|                                 const SCEV *OffSCEV, Value *Ptr,
 | |
|                                 ScalarEvolution *SE) {
 | |
|   const SCEV *PtrSCEV = SE->getSCEV(Ptr);
 | |
|   const SCEV *DiffSCEV = SE->getMinusSCEV(PtrSCEV, AASCEV);
 | |
| 
 | |
|   // On 32-bit platforms, DiffSCEV might now have type i32 -- we've always
 | |
|   // sign-extended OffSCEV to i64, so make sure they agree again.
 | |
|   DiffSCEV = SE->getNoopOrSignExtend(DiffSCEV, OffSCEV->getType());
 | |
| 
 | |
|   // What we really want to know is the overall offset to the aligned
 | |
|   // address. This address is displaced by the provided offset.
 | |
|   DiffSCEV = SE->getMinusSCEV(DiffSCEV, OffSCEV);
 | |
| 
 | |
|   DEBUG(dbgs() << "AFI: alignment of " << *Ptr << " relative to " <<
 | |
|                   *AlignSCEV << " and offset " << *OffSCEV <<
 | |
|                   " using diff " << *DiffSCEV << "\n");
 | |
| 
 | |
|   unsigned NewAlignment = getNewAlignmentDiff(DiffSCEV, AlignSCEV, SE);
 | |
|   DEBUG(dbgs() << "\tnew alignment: " << NewAlignment << "\n");
 | |
| 
 | |
|   if (NewAlignment) {
 | |
|     return NewAlignment;
 | |
|   } else if (const SCEVAddRecExpr *DiffARSCEV =
 | |
|              dyn_cast<SCEVAddRecExpr>(DiffSCEV)) {
 | |
|     // The relative offset to the alignment assumption did not yield a constant,
 | |
|     // but we should try harder: if we assume that a is 32-byte aligned, then in
 | |
|     // for (i = 0; i < 1024; i += 4) r += a[i]; not all of the loads from a are
 | |
|     // 32-byte aligned, but instead alternate between 32 and 16-byte alignment.
 | |
|     // As a result, the new alignment will not be a constant, but can still
 | |
|     // be improved over the default (of 4) to 16.
 | |
| 
 | |
|     const SCEV *DiffStartSCEV = DiffARSCEV->getStart();
 | |
|     const SCEV *DiffIncSCEV = DiffARSCEV->getStepRecurrence(*SE);
 | |
| 
 | |
|     DEBUG(dbgs() << "\ttrying start/inc alignment using start " <<
 | |
|                     *DiffStartSCEV << " and inc " << *DiffIncSCEV << "\n");
 | |
| 
 | |
|     // Now compute the new alignment using the displacement to the value in the
 | |
|     // first iteration, and also the alignment using the per-iteration delta.
 | |
|     // If these are the same, then use that answer. Otherwise, use the smaller
 | |
|     // one, but only if it divides the larger one.
 | |
|     NewAlignment = getNewAlignmentDiff(DiffStartSCEV, AlignSCEV, SE);
 | |
|     unsigned NewIncAlignment = getNewAlignmentDiff(DiffIncSCEV, AlignSCEV, SE);
 | |
| 
 | |
|     DEBUG(dbgs() << "\tnew start alignment: " << NewAlignment << "\n");
 | |
|     DEBUG(dbgs() << "\tnew inc alignment: " << NewIncAlignment << "\n");
 | |
| 
 | |
|     if (!NewAlignment || !NewIncAlignment) {
 | |
|       return 0;
 | |
|     } else if (NewAlignment > NewIncAlignment) {
 | |
|       if (NewAlignment % NewIncAlignment == 0) {
 | |
|         DEBUG(dbgs() << "\tnew start/inc alignment: " <<
 | |
|                         NewIncAlignment << "\n");
 | |
|         return NewIncAlignment;
 | |
|       }
 | |
|     } else if (NewIncAlignment > NewAlignment) {
 | |
|       if (NewIncAlignment % NewAlignment == 0) {
 | |
|         DEBUG(dbgs() << "\tnew start/inc alignment: " <<
 | |
|                         NewAlignment << "\n");
 | |
|         return NewAlignment;
 | |
|       }
 | |
|     } else if (NewIncAlignment == NewAlignment) {
 | |
|       DEBUG(dbgs() << "\tnew start/inc alignment: " <<
 | |
|                       NewAlignment << "\n");
 | |
|       return NewAlignment;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| bool AlignmentFromAssumptions::extractAlignmentInfo(CallInst *I,
 | |
|                                  Value *&AAPtr, const SCEV *&AlignSCEV,
 | |
|                                  const SCEV *&OffSCEV) {
 | |
|   // An alignment assume must be a statement about the least-significant
 | |
|   // bits of the pointer being zero, possibly with some offset.
 | |
|   ICmpInst *ICI = dyn_cast<ICmpInst>(I->getArgOperand(0));
 | |
|   if (!ICI)
 | |
|     return false;
 | |
| 
 | |
|   // This must be an expression of the form: x & m == 0.
 | |
|   if (ICI->getPredicate() != ICmpInst::ICMP_EQ)
 | |
|     return false;
 | |
| 
 | |
|   // Swap things around so that the RHS is 0.
 | |
|   Value *CmpLHS = ICI->getOperand(0);
 | |
|   Value *CmpRHS = ICI->getOperand(1);
 | |
|   const SCEV *CmpLHSSCEV = SE->getSCEV(CmpLHS);
 | |
|   const SCEV *CmpRHSSCEV = SE->getSCEV(CmpRHS);
 | |
|   if (CmpLHSSCEV->isZero())
 | |
|     std::swap(CmpLHS, CmpRHS);
 | |
|   else if (!CmpRHSSCEV->isZero())
 | |
|     return false;
 | |
| 
 | |
|   BinaryOperator *CmpBO = dyn_cast<BinaryOperator>(CmpLHS);
 | |
|   if (!CmpBO || CmpBO->getOpcode() != Instruction::And)
 | |
|     return false;
 | |
| 
 | |
|   // Swap things around so that the right operand of the and is a constant
 | |
|   // (the mask); we cannot deal with variable masks.
 | |
|   Value *AndLHS = CmpBO->getOperand(0);
 | |
|   Value *AndRHS = CmpBO->getOperand(1);
 | |
|   const SCEV *AndLHSSCEV = SE->getSCEV(AndLHS);
 | |
|   const SCEV *AndRHSSCEV = SE->getSCEV(AndRHS);
 | |
|   if (isa<SCEVConstant>(AndLHSSCEV)) {
 | |
|     std::swap(AndLHS, AndRHS);
 | |
|     std::swap(AndLHSSCEV, AndRHSSCEV);
 | |
|   }
 | |
| 
 | |
|   const SCEVConstant *MaskSCEV = dyn_cast<SCEVConstant>(AndRHSSCEV);
 | |
|   if (!MaskSCEV)
 | |
|     return false;
 | |
| 
 | |
|   // The mask must have some trailing ones (otherwise the condition is
 | |
|   // trivial and tells us nothing about the alignment of the left operand).
 | |
|   unsigned TrailingOnes =
 | |
|     MaskSCEV->getValue()->getValue().countTrailingOnes();
 | |
|   if (!TrailingOnes)
 | |
|     return false;
 | |
| 
 | |
|   // Cap the alignment at the maximum with which LLVM can deal (and make sure
 | |
|   // we don't overflow the shift).
 | |
|   uint64_t Alignment;
 | |
|   TrailingOnes = std::min(TrailingOnes,
 | |
|     unsigned(sizeof(unsigned) * CHAR_BIT - 1));
 | |
|   Alignment = std::min(1u << TrailingOnes, +Value::MaximumAlignment);
 | |
| 
 | |
|   Type *Int64Ty = Type::getInt64Ty(I->getParent()->getParent()->getContext());
 | |
|   AlignSCEV = SE->getConstant(Int64Ty, Alignment);
 | |
| 
 | |
|   // The LHS might be a ptrtoint instruction, or it might be the pointer
 | |
|   // with an offset.
 | |
|   AAPtr = nullptr;
 | |
|   OffSCEV = nullptr;
 | |
|   if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(AndLHS)) {
 | |
|     AAPtr = PToI->getPointerOperand();
 | |
|     OffSCEV = SE->getConstant(Int64Ty, 0);
 | |
|   } else if (const SCEVAddExpr* AndLHSAddSCEV =
 | |
|              dyn_cast<SCEVAddExpr>(AndLHSSCEV)) {
 | |
|     // Try to find the ptrtoint; subtract it and the rest is the offset.
 | |
|     for (SCEVAddExpr::op_iterator J = AndLHSAddSCEV->op_begin(),
 | |
|          JE = AndLHSAddSCEV->op_end(); J != JE; ++J)
 | |
|       if (const SCEVUnknown *OpUnk = dyn_cast<SCEVUnknown>(*J))
 | |
|         if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(OpUnk->getValue())) {
 | |
|           AAPtr = PToI->getPointerOperand();
 | |
|           OffSCEV = SE->getMinusSCEV(AndLHSAddSCEV, *J);
 | |
|           break;
 | |
|         }
 | |
|   }
 | |
| 
 | |
|   if (!AAPtr)
 | |
|     return false;
 | |
| 
 | |
|   // Sign extend the offset to 64 bits (so that it is like all of the other
 | |
|   // expressions). 
 | |
|   unsigned OffSCEVBits = OffSCEV->getType()->getPrimitiveSizeInBits();
 | |
|   if (OffSCEVBits < 64)
 | |
|     OffSCEV = SE->getSignExtendExpr(OffSCEV, Int64Ty);
 | |
|   else if (OffSCEVBits > 64)
 | |
|     return false;
 | |
| 
 | |
|   AAPtr = AAPtr->stripPointerCasts();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool AlignmentFromAssumptions::processAssumption(CallInst *ACall) {
 | |
|   Value *AAPtr;
 | |
|   const SCEV *AlignSCEV, *OffSCEV;
 | |
|   if (!extractAlignmentInfo(ACall, AAPtr, AlignSCEV, OffSCEV))
 | |
|     return false;
 | |
| 
 | |
|   const SCEV *AASCEV = SE->getSCEV(AAPtr);
 | |
| 
 | |
|   // Apply the assumption to all other users of the specified pointer.
 | |
|   SmallPtrSet<Instruction *, 32> Visited;
 | |
|   SmallVector<Instruction*, 16> WorkList;
 | |
|   for (User *J : AAPtr->users()) {
 | |
|     if (J == ACall)
 | |
|       continue;
 | |
| 
 | |
|     if (Instruction *K = dyn_cast<Instruction>(J))
 | |
|       if (isValidAssumeForContext(ACall, K, DT))
 | |
|         WorkList.push_back(K);
 | |
|   }
 | |
| 
 | |
|   while (!WorkList.empty()) {
 | |
|     Instruction *J = WorkList.pop_back_val();
 | |
| 
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(J)) {
 | |
|       unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
 | |
|         LI->getPointerOperand(), SE);
 | |
| 
 | |
|       if (NewAlignment > LI->getAlignment()) {
 | |
|         LI->setAlignment(NewAlignment);
 | |
|         ++NumLoadAlignChanged;
 | |
|       }
 | |
|     } else if (StoreInst *SI = dyn_cast<StoreInst>(J)) {
 | |
|       unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
 | |
|         SI->getPointerOperand(), SE);
 | |
| 
 | |
|       if (NewAlignment > SI->getAlignment()) {
 | |
|         SI->setAlignment(NewAlignment);
 | |
|         ++NumStoreAlignChanged;
 | |
|       }
 | |
|     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(J)) {
 | |
|       unsigned NewDestAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
 | |
|         MI->getDest(), SE);
 | |
| 
 | |
|       // For memory transfers, we need a common alignment for both the
 | |
|       // source and destination. If we have a new alignment for this
 | |
|       // instruction, but only for one operand, save it. If we reach the
 | |
|       // other operand through another assumption later, then we may
 | |
|       // change the alignment at that point.
 | |
|       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
 | |
|         unsigned NewSrcAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
 | |
|           MTI->getSource(), SE);
 | |
| 
 | |
|         DenseMap<MemTransferInst *, unsigned>::iterator DI =
 | |
|           NewDestAlignments.find(MTI);
 | |
|         unsigned AltDestAlignment = (DI == NewDestAlignments.end()) ?
 | |
|                                     0 : DI->second;
 | |
| 
 | |
|         DenseMap<MemTransferInst *, unsigned>::iterator SI =
 | |
|           NewSrcAlignments.find(MTI);
 | |
|         unsigned AltSrcAlignment = (SI == NewSrcAlignments.end()) ?
 | |
|                                    0 : SI->second;
 | |
| 
 | |
|         DEBUG(dbgs() << "\tmem trans: " << NewDestAlignment << " " <<
 | |
|                         AltDestAlignment << " " << NewSrcAlignment <<
 | |
|                         " " << AltSrcAlignment << "\n");
 | |
| 
 | |
|         // Of these four alignments, pick the largest possible...
 | |
|         unsigned NewAlignment = 0;
 | |
|         if (NewDestAlignment <= std::max(NewSrcAlignment, AltSrcAlignment))
 | |
|           NewAlignment = std::max(NewAlignment, NewDestAlignment);
 | |
|         if (AltDestAlignment <= std::max(NewSrcAlignment, AltSrcAlignment))
 | |
|           NewAlignment = std::max(NewAlignment, AltDestAlignment);
 | |
|         if (NewSrcAlignment <= std::max(NewDestAlignment, AltDestAlignment))
 | |
|           NewAlignment = std::max(NewAlignment, NewSrcAlignment);
 | |
|         if (AltSrcAlignment <= std::max(NewDestAlignment, AltDestAlignment))
 | |
|           NewAlignment = std::max(NewAlignment, AltSrcAlignment);
 | |
| 
 | |
|         if (NewAlignment > MI->getAlignment()) {
 | |
|           MI->setAlignment(ConstantInt::get(Type::getInt32Ty(
 | |
|             MI->getParent()->getContext()), NewAlignment));
 | |
|           ++NumMemIntAlignChanged;
 | |
|         }
 | |
| 
 | |
|         NewDestAlignments.insert(std::make_pair(MTI, NewDestAlignment));
 | |
|         NewSrcAlignments.insert(std::make_pair(MTI, NewSrcAlignment));
 | |
|       } else if (NewDestAlignment > MI->getAlignment()) {
 | |
|         assert((!isa<MemIntrinsic>(MI) || isa<MemSetInst>(MI)) &&
 | |
|                "Unknown memory intrinsic");
 | |
| 
 | |
|         MI->setAlignment(ConstantInt::get(Type::getInt32Ty(
 | |
|           MI->getParent()->getContext()), NewDestAlignment));
 | |
|         ++NumMemIntAlignChanged;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Now that we've updated that use of the pointer, look for other uses of
 | |
|     // the pointer to update.
 | |
|     Visited.insert(J);
 | |
|     for (User *UJ : J->users()) {
 | |
|       Instruction *K = cast<Instruction>(UJ);
 | |
|       if (!Visited.count(K) && isValidAssumeForContext(ACall, K, DT))
 | |
|         WorkList.push_back(K);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool AlignmentFromAssumptions::runOnFunction(Function &F) {
 | |
|   bool Changed = false;
 | |
|   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
 | |
|   SE = &getAnalysis<ScalarEvolution>();
 | |
|   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
| 
 | |
|   NewDestAlignments.clear();
 | |
|   NewSrcAlignments.clear();
 | |
| 
 | |
|   for (auto &AssumeVH : AC.assumptions())
 | |
|     if (AssumeVH)
 | |
|       Changed |= processAssumption(cast<CallInst>(AssumeVH));
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 |