mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	Summary: This patch made two improvements to NaryReassociate and the NVPTX pipeline 1. Run EarlyCSE/GVN after NaryReassociate to get rid of redundant common expressions. 2. When adding an instruction to SeenExprs, maps both the SCEV before and after reassociation to that instruction. Test Plan: updated @reassociate_gep_nsw in nary-gep.ll Reviewers: meheff, broune Reviewed By: broune Subscribers: dberlin, jholewinski, llvm-commits Differential Revision: http://reviews.llvm.org/D9947 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238396 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			504 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			504 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- NaryReassociate.cpp - Reassociate n-ary expressions ----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass reassociates n-ary add expressions and eliminates the redundancy
 | |
| // exposed by the reassociation.
 | |
| //
 | |
| // A motivating example:
 | |
| //
 | |
| //   void foo(int a, int b) {
 | |
| //     bar(a + b);
 | |
| //     bar((a + 2) + b);
 | |
| //   }
 | |
| //
 | |
| // An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify
 | |
| // the above code to
 | |
| //
 | |
| //   int t = a + b;
 | |
| //   bar(t);
 | |
| //   bar(t + 2);
 | |
| //
 | |
| // However, the Reassociate pass is unable to do that because it processes each
 | |
| // instruction individually and believes (a + 2) + b is the best form according
 | |
| // to its rank system.
 | |
| //
 | |
| // To address this limitation, NaryReassociate reassociates an expression in a
 | |
| // form that reuses existing instructions. As a result, NaryReassociate can
 | |
| // reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that
 | |
| // (a + b) is computed before.
 | |
| //
 | |
| // NaryReassociate works as follows. For every instruction in the form of (a +
 | |
| // b) + c, it checks whether a + c or b + c is already computed by a dominating
 | |
| // instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b +
 | |
| // c) + a and removes the redundancy accordingly. To efficiently look up whether
 | |
| // an expression is computed before, we store each instruction seen and its SCEV
 | |
| // into an SCEV-to-instruction map.
 | |
| //
 | |
| // Although the algorithm pattern-matches only ternary additions, it
 | |
| // automatically handles many >3-ary expressions by walking through the function
 | |
| // in the depth-first order. For example, given
 | |
| //
 | |
| //   (a + c) + d
 | |
| //   ((a + b) + c) + d
 | |
| //
 | |
| // NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites
 | |
| // ((a + c) + b) + d into ((a + c) + d) + b.
 | |
| //
 | |
| // Finally, the above dominator-based algorithm may need to be run multiple
 | |
| // iterations before emitting optimal code. One source of this need is that we
 | |
| // only split an operand when it is used only once. The above algorithm can
 | |
| // eliminate an instruction and decrease the usage count of its operands. As a
 | |
| // result, an instruction that previously had multiple uses may become a
 | |
| // single-use instruction and thus eligible for split consideration. For
 | |
| // example,
 | |
| //
 | |
| //   ac = a + c
 | |
| //   ab = a + b
 | |
| //   abc = ab + c
 | |
| //   ab2 = ab + b
 | |
| //   ab2c = ab2 + c
 | |
| //
 | |
| // In the first iteration, we cannot reassociate abc to ac+b because ab is used
 | |
| // twice. However, we can reassociate ab2c to abc+b in the first iteration. As a
 | |
| // result, ab2 becomes dead and ab will be used only once in the second
 | |
| // iteration.
 | |
| //
 | |
| // Limitations and TODO items:
 | |
| //
 | |
| // 1) We only considers n-ary adds for now. This should be extended and
 | |
| // generalized.
 | |
| //
 | |
| // 2) Besides arithmetic operations, similar reassociation can be applied to
 | |
| // GEPs. For example, if
 | |
| //   X = &arr[a]
 | |
| // dominates
 | |
| //   Y = &arr[a + b]
 | |
| // we may rewrite Y into X + b.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| using namespace llvm;
 | |
| using namespace PatternMatch;
 | |
| 
 | |
| #define DEBUG_TYPE "nary-reassociate"
 | |
| 
 | |
| namespace {
 | |
| class NaryReassociate : public FunctionPass {
 | |
| public:
 | |
|   static char ID;
 | |
| 
 | |
|   NaryReassociate(): FunctionPass(ID) {
 | |
|     initializeNaryReassociatePass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   bool doInitialization(Module &M) override {
 | |
|     DL = &M.getDataLayout();
 | |
|     return false;
 | |
|   }
 | |
|   bool runOnFunction(Function &F) override;
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.addPreserved<DominatorTreeWrapperPass>();
 | |
|     AU.addPreserved<ScalarEvolution>();
 | |
|     AU.addPreserved<TargetLibraryInfoWrapperPass>();
 | |
|     AU.addRequired<DominatorTreeWrapperPass>();
 | |
|     AU.addRequired<ScalarEvolution>();
 | |
|     AU.addRequired<TargetLibraryInfoWrapperPass>();
 | |
|     AU.addRequired<TargetTransformInfoWrapperPass>();
 | |
|     AU.setPreservesCFG();
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   // Runs only one iteration of the dominator-based algorithm. See the header
 | |
|   // comments for why we need multiple iterations.
 | |
|   bool doOneIteration(Function &F);
 | |
| 
 | |
|   // Reassociates I for better CSE.
 | |
|   Instruction *tryReassociate(Instruction *I);
 | |
| 
 | |
|   // Reassociate GEP for better CSE.
 | |
|   Instruction *tryReassociateGEP(GetElementPtrInst *GEP);
 | |
|   // Try splitting GEP at the I-th index and see whether either part can be
 | |
|   // CSE'ed. This is a helper function for tryReassociateGEP.
 | |
|   //
 | |
|   // \p IndexedType The element type indexed by GEP's I-th index. This is
 | |
|   //                equivalent to
 | |
|   //                  GEP->getIndexedType(GEP->getPointerOperand(), 0-th index,
 | |
|   //                                      ..., i-th index).
 | |
|   GetElementPtrInst *tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
 | |
|                                               unsigned I, Type *IndexedType);
 | |
|   // Given GEP's I-th index = LHS + RHS, see whether &Base[..][LHS][..] or
 | |
|   // &Base[..][RHS][..] can be CSE'ed and rewrite GEP accordingly.
 | |
|   GetElementPtrInst *tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
 | |
|                                               unsigned I, Value *LHS,
 | |
|                                               Value *RHS, Type *IndexedType);
 | |
| 
 | |
|   // Reassociate Add for better CSE.
 | |
|   Instruction *tryReassociateAdd(BinaryOperator *I);
 | |
|   // A helper function for tryReassociateAdd. LHS and RHS are explicitly passed.
 | |
|   Instruction *tryReassociateAdd(Value *LHS, Value *RHS, Instruction *I);
 | |
|   // Rewrites I to LHS + RHS if LHS is computed already.
 | |
|   Instruction *tryReassociatedAdd(const SCEV *LHS, Value *RHS, Instruction *I);
 | |
| 
 | |
|   // Returns the closest dominator of \c Dominatee that computes
 | |
|   // \c CandidateExpr. Returns null if not found.
 | |
|   Instruction *findClosestMatchingDominator(const SCEV *CandidateExpr,
 | |
|                                             Instruction *Dominatee);
 | |
|   // GetElementPtrInst implicitly sign-extends an index if the index is shorter
 | |
|   // than the pointer size. This function returns whether Index is shorter than
 | |
|   // GEP's pointer size, i.e., whether Index needs to be sign-extended in order
 | |
|   // to be an index of GEP.
 | |
|   bool requiresSignExtension(Value *Index, GetElementPtrInst *GEP);
 | |
| 
 | |
|   DominatorTree *DT;
 | |
|   ScalarEvolution *SE;
 | |
|   TargetLibraryInfo *TLI;
 | |
|   TargetTransformInfo *TTI;
 | |
|   const DataLayout *DL;
 | |
|   // A lookup table quickly telling which instructions compute the given SCEV.
 | |
|   // Note that there can be multiple instructions at different locations
 | |
|   // computing to the same SCEV, so we map a SCEV to an instruction list.  For
 | |
|   // example,
 | |
|   //
 | |
|   //   if (p1)
 | |
|   //     foo(a + b);
 | |
|   //   if (p2)
 | |
|   //     bar(a + b);
 | |
|   DenseMap<const SCEV *, SmallVector<Instruction *, 2>> SeenExprs;
 | |
| };
 | |
| } // anonymous namespace
 | |
| 
 | |
| char NaryReassociate::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(NaryReassociate, "nary-reassociate", "Nary reassociation",
 | |
|                       false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
 | |
| INITIALIZE_PASS_END(NaryReassociate, "nary-reassociate", "Nary reassociation",
 | |
|                     false, false)
 | |
| 
 | |
| FunctionPass *llvm::createNaryReassociatePass() {
 | |
|   return new NaryReassociate();
 | |
| }
 | |
| 
 | |
| bool NaryReassociate::runOnFunction(Function &F) {
 | |
|   if (skipOptnoneFunction(F))
 | |
|     return false;
 | |
| 
 | |
|   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|   SE = &getAnalysis<ScalarEvolution>();
 | |
|   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
 | |
|   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
 | |
| 
 | |
|   bool Changed = false, ChangedInThisIteration;
 | |
|   do {
 | |
|     ChangedInThisIteration = doOneIteration(F);
 | |
|     Changed |= ChangedInThisIteration;
 | |
|   } while (ChangedInThisIteration);
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| // Whitelist the instruction types NaryReassociate handles for now.
 | |
| static bool isPotentiallyNaryReassociable(Instruction *I) {
 | |
|   switch (I->getOpcode()) {
 | |
|   case Instruction::Add:
 | |
|   case Instruction::GetElementPtr:
 | |
|     return true;
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool NaryReassociate::doOneIteration(Function &F) {
 | |
|   bool Changed = false;
 | |
|   SeenExprs.clear();
 | |
|   // Process the basic blocks in pre-order of the dominator tree. This order
 | |
|   // ensures that all bases of a candidate are in Candidates when we process it.
 | |
|   for (auto Node = GraphTraits<DominatorTree *>::nodes_begin(DT);
 | |
|        Node != GraphTraits<DominatorTree *>::nodes_end(DT); ++Node) {
 | |
|     BasicBlock *BB = Node->getBlock();
 | |
|     for (auto I = BB->begin(); I != BB->end(); ++I) {
 | |
|       if (SE->isSCEVable(I->getType()) && isPotentiallyNaryReassociable(I)) {
 | |
|         const SCEV *OldSCEV = SE->getSCEV(I);
 | |
|         if (Instruction *NewI = tryReassociate(I)) {
 | |
|           Changed = true;
 | |
|           SE->forgetValue(I);
 | |
|           I->replaceAllUsesWith(NewI);
 | |
|           RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
 | |
|           I = NewI;
 | |
|         }
 | |
|         // Add the rewritten instruction to SeenExprs; the original instruction
 | |
|         // is deleted.
 | |
|         const SCEV *NewSCEV = SE->getSCEV(I);
 | |
|         SeenExprs[NewSCEV].push_back(I);
 | |
|         // Ideally, NewSCEV should equal OldSCEV because tryReassociate(I)
 | |
|         // is equivalent to I. However, ScalarEvolution::getSCEV may
 | |
|         // weaken nsw causing NewSCEV not to equal OldSCEV. For example, suppose
 | |
|         // we reassociate
 | |
|         //   I = &a[sext(i +nsw j)] // assuming sizeof(a[0]) = 4
 | |
|         // to
 | |
|         //   NewI = &a[sext(i)] + sext(j).
 | |
|         //
 | |
|         // ScalarEvolution computes
 | |
|         //   getSCEV(I)    = a + 4 * sext(i + j)
 | |
|         //   getSCEV(newI) = a + 4 * sext(i) + 4 * sext(j)
 | |
|         // which are different SCEVs.
 | |
|         //
 | |
|         // To alleviate this issue of ScalarEvolution not always capturing
 | |
|         // equivalence, we add I to SeenExprs[OldSCEV] as well so that we can
 | |
|         // map both SCEV before and after tryReassociate(I) to I.
 | |
|         //
 | |
|         // This improvement is exercised in @reassociate_gep_nsw in nary-gep.ll.
 | |
|         if (NewSCEV != OldSCEV)
 | |
|           SeenExprs[OldSCEV].push_back(I);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| Instruction *NaryReassociate::tryReassociate(Instruction *I) {
 | |
|   switch (I->getOpcode()) {
 | |
|   case Instruction::Add:
 | |
|     return tryReassociateAdd(cast<BinaryOperator>(I));
 | |
|   case Instruction::GetElementPtr:
 | |
|     return tryReassociateGEP(cast<GetElementPtrInst>(I));
 | |
|   default:
 | |
|     llvm_unreachable("should be filtered out by isPotentiallyNaryReassociable");
 | |
|   }
 | |
| }
 | |
| 
 | |
| // FIXME: extract this method into TTI->getGEPCost.
 | |
| static bool isGEPFoldable(GetElementPtrInst *GEP,
 | |
|                           const TargetTransformInfo *TTI,
 | |
|                           const DataLayout *DL) {
 | |
|   GlobalVariable *BaseGV = nullptr;
 | |
|   int64_t BaseOffset = 0;
 | |
|   bool HasBaseReg = false;
 | |
|   int64_t Scale = 0;
 | |
| 
 | |
|   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getPointerOperand()))
 | |
|     BaseGV = GV;
 | |
|   else
 | |
|     HasBaseReg = true;
 | |
| 
 | |
|   gep_type_iterator GTI = gep_type_begin(GEP);
 | |
|   for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I, ++GTI) {
 | |
|     if (isa<SequentialType>(*GTI)) {
 | |
|       int64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
 | |
|       if (ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I)) {
 | |
|         BaseOffset += ConstIdx->getSExtValue() * ElementSize;
 | |
|       } else {
 | |
|         // Needs scale register.
 | |
|         if (Scale != 0) {
 | |
|           // No addressing mode takes two scale registers.
 | |
|           return false;
 | |
|         }
 | |
|         Scale = ElementSize;
 | |
|       }
 | |
|     } else {
 | |
|       StructType *STy = cast<StructType>(*GTI);
 | |
|       uint64_t Field = cast<ConstantInt>(*I)->getZExtValue();
 | |
|       BaseOffset += DL->getStructLayout(STy)->getElementOffset(Field);
 | |
|     }
 | |
|   }
 | |
|   return TTI->isLegalAddressingMode(GEP->getType()->getElementType(), BaseGV,
 | |
|                                     BaseOffset, HasBaseReg, Scale);
 | |
| }
 | |
| 
 | |
| Instruction *NaryReassociate::tryReassociateGEP(GetElementPtrInst *GEP) {
 | |
|   // Not worth reassociating GEP if it is foldable.
 | |
|   if (isGEPFoldable(GEP, TTI, DL))
 | |
|     return nullptr;
 | |
| 
 | |
|   gep_type_iterator GTI = gep_type_begin(*GEP);
 | |
|   for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I) {
 | |
|     if (isa<SequentialType>(*GTI++)) {
 | |
|       if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I - 1, *GTI)) {
 | |
|         return NewGEP;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| bool NaryReassociate::requiresSignExtension(Value *Index,
 | |
|                                             GetElementPtrInst *GEP) {
 | |
|   unsigned PointerSizeInBits =
 | |
|       DL->getPointerSizeInBits(GEP->getType()->getPointerAddressSpace());
 | |
|   return cast<IntegerType>(Index->getType())->getBitWidth() < PointerSizeInBits;
 | |
| }
 | |
| 
 | |
| GetElementPtrInst *
 | |
| NaryReassociate::tryReassociateGEPAtIndex(GetElementPtrInst *GEP, unsigned I,
 | |
|                                           Type *IndexedType) {
 | |
|   Value *IndexToSplit = GEP->getOperand(I + 1);
 | |
|   if (SExtInst *SExt = dyn_cast<SExtInst>(IndexToSplit))
 | |
|     IndexToSplit = SExt->getOperand(0);
 | |
| 
 | |
|   if (AddOperator *AO = dyn_cast<AddOperator>(IndexToSplit)) {
 | |
|     // If the I-th index needs sext and the underlying add is not equipped with
 | |
|     // nsw, we cannot split the add because
 | |
|     //   sext(LHS + RHS) != sext(LHS) + sext(RHS).
 | |
|     if (requiresSignExtension(IndexToSplit, GEP) && !AO->hasNoSignedWrap())
 | |
|       return nullptr;
 | |
|     Value *LHS = AO->getOperand(0), *RHS = AO->getOperand(1);
 | |
|     // IndexToSplit = LHS + RHS.
 | |
|     if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I, LHS, RHS, IndexedType))
 | |
|       return NewGEP;
 | |
|     // Symmetrically, try IndexToSplit = RHS + LHS.
 | |
|     if (LHS != RHS) {
 | |
|       if (auto *NewGEP =
 | |
|               tryReassociateGEPAtIndex(GEP, I, RHS, LHS, IndexedType))
 | |
|         return NewGEP;
 | |
|     }
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| GetElementPtrInst *
 | |
| NaryReassociate::tryReassociateGEPAtIndex(GetElementPtrInst *GEP, unsigned I,
 | |
|                                           Value *LHS, Value *RHS,
 | |
|                                           Type *IndexedType) {
 | |
|   // Look for GEP's closest dominator that has the same SCEV as GEP except that
 | |
|   // the I-th index is replaced with LHS.
 | |
|   SmallVector<const SCEV *, 4> IndexExprs;
 | |
|   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
 | |
|     IndexExprs.push_back(SE->getSCEV(*Index));
 | |
|   // Replace the I-th index with LHS.
 | |
|   IndexExprs[I] = SE->getSCEV(LHS);
 | |
|   const SCEV *CandidateExpr = SE->getGEPExpr(
 | |
|       GEP->getSourceElementType(), SE->getSCEV(GEP->getPointerOperand()),
 | |
|       IndexExprs, GEP->isInBounds());
 | |
| 
 | |
|   auto *Candidate = findClosestMatchingDominator(CandidateExpr, GEP);
 | |
|   if (Candidate == nullptr)
 | |
|     return nullptr;
 | |
| 
 | |
|   PointerType *TypeOfCandidate = dyn_cast<PointerType>(Candidate->getType());
 | |
|   // Pretty rare but theoretically possible when a numeric value happens to
 | |
|   // share CandidateExpr.
 | |
|   if (TypeOfCandidate == nullptr)
 | |
|     return nullptr;
 | |
| 
 | |
|   // NewGEP = (char *)Candidate + RHS * sizeof(IndexedType)
 | |
|   uint64_t IndexedSize = DL->getTypeAllocSize(IndexedType);
 | |
|   Type *ElementType = TypeOfCandidate->getElementType();
 | |
|   uint64_t ElementSize = DL->getTypeAllocSize(ElementType);
 | |
|   // Another less rare case: because I is not necessarily the last index of the
 | |
|   // GEP, the size of the type at the I-th index (IndexedSize) is not
 | |
|   // necessarily divisible by ElementSize. For example,
 | |
|   //
 | |
|   // #pragma pack(1)
 | |
|   // struct S {
 | |
|   //   int a[3];
 | |
|   //   int64 b[8];
 | |
|   // };
 | |
|   // #pragma pack()
 | |
|   //
 | |
|   // sizeof(S) = 100 is indivisible by sizeof(int64) = 8.
 | |
|   //
 | |
|   // TODO: bail out on this case for now. We could emit uglygep.
 | |
|   if (IndexedSize % ElementSize != 0)
 | |
|     return nullptr;
 | |
| 
 | |
|   // NewGEP = &Candidate[RHS * (sizeof(IndexedType) / sizeof(Candidate[0])));
 | |
|   IRBuilder<> Builder(GEP);
 | |
|   Type *IntPtrTy = DL->getIntPtrType(TypeOfCandidate);
 | |
|   if (RHS->getType() != IntPtrTy)
 | |
|     RHS = Builder.CreateSExtOrTrunc(RHS, IntPtrTy);
 | |
|   if (IndexedSize != ElementSize) {
 | |
|     RHS = Builder.CreateMul(
 | |
|         RHS, ConstantInt::get(IntPtrTy, IndexedSize / ElementSize));
 | |
|   }
 | |
|   GetElementPtrInst *NewGEP =
 | |
|       cast<GetElementPtrInst>(Builder.CreateGEP(Candidate, RHS));
 | |
|   NewGEP->setIsInBounds(GEP->isInBounds());
 | |
|   NewGEP->takeName(GEP);
 | |
|   return NewGEP;
 | |
| }
 | |
| 
 | |
| Instruction *NaryReassociate::tryReassociateAdd(BinaryOperator *I) {
 | |
|   Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
 | |
|   if (auto *NewI = tryReassociateAdd(LHS, RHS, I))
 | |
|     return NewI;
 | |
|   if (auto *NewI = tryReassociateAdd(RHS, LHS, I))
 | |
|     return NewI;
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Instruction *NaryReassociate::tryReassociateAdd(Value *LHS, Value *RHS,
 | |
|                                                 Instruction *I) {
 | |
|   Value *A = nullptr, *B = nullptr;
 | |
|   // To be conservative, we reassociate I only when it is the only user of A+B.
 | |
|   if (LHS->hasOneUse() && match(LHS, m_Add(m_Value(A), m_Value(B)))) {
 | |
|     // I = (A + B) + RHS
 | |
|     //   = (A + RHS) + B or (B + RHS) + A
 | |
|     const SCEV *AExpr = SE->getSCEV(A), *BExpr = SE->getSCEV(B);
 | |
|     const SCEV *RHSExpr = SE->getSCEV(RHS);
 | |
|     if (BExpr != RHSExpr) {
 | |
|       if (auto *NewI = tryReassociatedAdd(SE->getAddExpr(AExpr, RHSExpr), B, I))
 | |
|         return NewI;
 | |
|     }
 | |
|     if (AExpr != RHSExpr) {
 | |
|       if (auto *NewI = tryReassociatedAdd(SE->getAddExpr(BExpr, RHSExpr), A, I))
 | |
|         return NewI;
 | |
|     }
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Instruction *NaryReassociate::tryReassociatedAdd(const SCEV *LHSExpr,
 | |
|                                                  Value *RHS, Instruction *I) {
 | |
|   auto Pos = SeenExprs.find(LHSExpr);
 | |
|   // Bail out if LHSExpr is not previously seen.
 | |
|   if (Pos == SeenExprs.end())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Look for the closest dominator LHS of I that computes LHSExpr, and replace
 | |
|   // I with LHS + RHS.
 | |
|   auto *LHS = findClosestMatchingDominator(LHSExpr, I);
 | |
|   if (LHS == nullptr)
 | |
|     return nullptr;
 | |
| 
 | |
|   Instruction *NewI = BinaryOperator::CreateAdd(LHS, RHS, "", I);
 | |
|   NewI->takeName(I);
 | |
|   return NewI;
 | |
| }
 | |
| 
 | |
| Instruction *
 | |
| NaryReassociate::findClosestMatchingDominator(const SCEV *CandidateExpr,
 | |
|                                               Instruction *Dominatee) {
 | |
|   auto Pos = SeenExprs.find(CandidateExpr);
 | |
|   if (Pos == SeenExprs.end())
 | |
|     return nullptr;
 | |
| 
 | |
|   auto &Candidates = Pos->second;
 | |
|   // Because we process the basic blocks in pre-order of the dominator tree, a
 | |
|   // candidate that doesn't dominate the current instruction won't dominate any
 | |
|   // future instruction either. Therefore, we pop it out of the stack. This
 | |
|   // optimization makes the algorithm O(n).
 | |
|   while (!Candidates.empty()) {
 | |
|     Instruction *Candidate = Candidates.back();
 | |
|     if (DT->dominates(Candidate, Dominatee))
 | |
|       return Candidate;
 | |
|     Candidates.pop_back();
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 |