mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232998 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			852 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			852 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file transforms calls of the current function (self recursion) followed
 | |
| // by a return instruction with a branch to the entry of the function, creating
 | |
| // a loop.  This pass also implements the following extensions to the basic
 | |
| // algorithm:
 | |
| //
 | |
| //  1. Trivial instructions between the call and return do not prevent the
 | |
| //     transformation from taking place, though currently the analysis cannot
 | |
| //     support moving any really useful instructions (only dead ones).
 | |
| //  2. This pass transforms functions that are prevented from being tail
 | |
| //     recursive by an associative and commutative expression to use an
 | |
| //     accumulator variable, thus compiling the typical naive factorial or
 | |
| //     'fib' implementation into efficient code.
 | |
| //  3. TRE is performed if the function returns void, if the return
 | |
| //     returns the result returned by the call, or if the function returns a
 | |
| //     run-time constant on all exits from the function.  It is possible, though
 | |
| //     unlikely, that the return returns something else (like constant 0), and
 | |
| //     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
 | |
| //     the function return the exact same value.
 | |
| //  4. If it can prove that callees do not access their caller stack frame,
 | |
| //     they are marked as eligible for tail call elimination (by the code
 | |
| //     generator).
 | |
| //
 | |
| // There are several improvements that could be made:
 | |
| //
 | |
| //  1. If the function has any alloca instructions, these instructions will be
 | |
| //     moved out of the entry block of the function, causing them to be
 | |
| //     evaluated each time through the tail recursion.  Safely keeping allocas
 | |
| //     in the entry block requires analysis to proves that the tail-called
 | |
| //     function does not read or write the stack object.
 | |
| //  2. Tail recursion is only performed if the call immediately precedes the
 | |
| //     return instruction.  It's possible that there could be a jump between
 | |
| //     the call and the return.
 | |
| //  3. There can be intervening operations between the call and the return that
 | |
| //     prevent the TRE from occurring.  For example, there could be GEP's and
 | |
| //     stores to memory that will not be read or written by the call.  This
 | |
| //     requires some substantial analysis (such as with DSA) to prove safe to
 | |
| //     move ahead of the call, but doing so could allow many more TREs to be
 | |
| //     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
 | |
| //  4. The algorithm we use to detect if callees access their caller stack
 | |
| //     frames is very primitive.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/CFG.h"
 | |
| #include "llvm/Analysis/CaptureTracking.h"
 | |
| #include "llvm/Analysis/InlineCost.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/Loads.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/IR/CFG.h"
 | |
| #include "llvm/IR/CallSite.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/DiagnosticInfo.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/ValueHandle.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "tailcallelim"
 | |
| 
 | |
| STATISTIC(NumEliminated, "Number of tail calls removed");
 | |
| STATISTIC(NumRetDuped,   "Number of return duplicated");
 | |
| STATISTIC(NumAccumAdded, "Number of accumulators introduced");
 | |
| 
 | |
| namespace {
 | |
|   struct TailCallElim : public FunctionPass {
 | |
|     const TargetTransformInfo *TTI;
 | |
| 
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     TailCallElim() : FunctionPass(ID) {
 | |
|       initializeTailCallElimPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override;
 | |
| 
 | |
|     bool runOnFunction(Function &F) override;
 | |
| 
 | |
|   private:
 | |
|     bool runTRE(Function &F);
 | |
|     bool markTails(Function &F, bool &AllCallsAreTailCalls);
 | |
| 
 | |
|     CallInst *FindTRECandidate(Instruction *I,
 | |
|                                bool CannotTailCallElimCallsMarkedTail);
 | |
|     bool EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
 | |
|                                     BasicBlock *&OldEntry,
 | |
|                                     bool &TailCallsAreMarkedTail,
 | |
|                                     SmallVectorImpl<PHINode *> &ArgumentPHIs,
 | |
|                                     bool CannotTailCallElimCallsMarkedTail);
 | |
|     bool FoldReturnAndProcessPred(BasicBlock *BB,
 | |
|                                   ReturnInst *Ret, BasicBlock *&OldEntry,
 | |
|                                   bool &TailCallsAreMarkedTail,
 | |
|                                   SmallVectorImpl<PHINode *> &ArgumentPHIs,
 | |
|                                   bool CannotTailCallElimCallsMarkedTail);
 | |
|     bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry,
 | |
|                                bool &TailCallsAreMarkedTail,
 | |
|                                SmallVectorImpl<PHINode *> &ArgumentPHIs,
 | |
|                                bool CannotTailCallElimCallsMarkedTail);
 | |
|     bool CanMoveAboveCall(Instruction *I, CallInst *CI);
 | |
|     Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI);
 | |
|   };
 | |
| }
 | |
| 
 | |
| char TailCallElim::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim",
 | |
|                       "Tail Call Elimination", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
 | |
| INITIALIZE_PASS_END(TailCallElim, "tailcallelim",
 | |
|                     "Tail Call Elimination", false, false)
 | |
| 
 | |
| // Public interface to the TailCallElimination pass
 | |
| FunctionPass *llvm::createTailCallEliminationPass() {
 | |
|   return new TailCallElim();
 | |
| }
 | |
| 
 | |
| void TailCallElim::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.addRequired<TargetTransformInfoWrapperPass>();
 | |
| }
 | |
| 
 | |
| /// \brief Scan the specified function for alloca instructions.
 | |
| /// If it contains any dynamic allocas, returns false.
 | |
| static bool CanTRE(Function &F) {
 | |
|   // Because of PR962, we don't TRE dynamic allocas.
 | |
|   for (auto &BB : F) {
 | |
|     for (auto &I : BB) {
 | |
|       if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
 | |
|         if (!AI->isStaticAlloca())
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool TailCallElim::runOnFunction(Function &F) {
 | |
|   if (skipOptnoneFunction(F))
 | |
|     return false;
 | |
| 
 | |
|   bool AllCallsAreTailCalls = false;
 | |
|   bool Modified = markTails(F, AllCallsAreTailCalls);
 | |
|   if (AllCallsAreTailCalls)
 | |
|     Modified |= runTRE(F);
 | |
|   return Modified;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| struct AllocaDerivedValueTracker {
 | |
|   // Start at a root value and walk its use-def chain to mark calls that use the
 | |
|   // value or a derived value in AllocaUsers, and places where it may escape in
 | |
|   // EscapePoints.
 | |
|   void walk(Value *Root) {
 | |
|     SmallVector<Use *, 32> Worklist;
 | |
|     SmallPtrSet<Use *, 32> Visited;
 | |
| 
 | |
|     auto AddUsesToWorklist = [&](Value *V) {
 | |
|       for (auto &U : V->uses()) {
 | |
|         if (!Visited.insert(&U).second)
 | |
|           continue;
 | |
|         Worklist.push_back(&U);
 | |
|       }
 | |
|     };
 | |
| 
 | |
|     AddUsesToWorklist(Root);
 | |
| 
 | |
|     while (!Worklist.empty()) {
 | |
|       Use *U = Worklist.pop_back_val();
 | |
|       Instruction *I = cast<Instruction>(U->getUser());
 | |
| 
 | |
|       switch (I->getOpcode()) {
 | |
|       case Instruction::Call:
 | |
|       case Instruction::Invoke: {
 | |
|         CallSite CS(I);
 | |
|         bool IsNocapture = !CS.isCallee(U) &&
 | |
|                            CS.doesNotCapture(CS.getArgumentNo(U));
 | |
|         callUsesLocalStack(CS, IsNocapture);
 | |
|         if (IsNocapture) {
 | |
|           // If the alloca-derived argument is passed in as nocapture, then it
 | |
|           // can't propagate to the call's return. That would be capturing.
 | |
|           continue;
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       case Instruction::Load: {
 | |
|         // The result of a load is not alloca-derived (unless an alloca has
 | |
|         // otherwise escaped, but this is a local analysis).
 | |
|         continue;
 | |
|       }
 | |
|       case Instruction::Store: {
 | |
|         if (U->getOperandNo() == 0)
 | |
|           EscapePoints.insert(I);
 | |
|         continue;  // Stores have no users to analyze.
 | |
|       }
 | |
|       case Instruction::BitCast:
 | |
|       case Instruction::GetElementPtr:
 | |
|       case Instruction::PHI:
 | |
|       case Instruction::Select:
 | |
|       case Instruction::AddrSpaceCast:
 | |
|         break;
 | |
|       default:
 | |
|         EscapePoints.insert(I);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       AddUsesToWorklist(I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void callUsesLocalStack(CallSite CS, bool IsNocapture) {
 | |
|     // Add it to the list of alloca users.
 | |
|     AllocaUsers.insert(CS.getInstruction());
 | |
| 
 | |
|     // If it's nocapture then it can't capture this alloca.
 | |
|     if (IsNocapture)
 | |
|       return;
 | |
| 
 | |
|     // If it can write to memory, it can leak the alloca value.
 | |
|     if (!CS.onlyReadsMemory())
 | |
|       EscapePoints.insert(CS.getInstruction());
 | |
|   }
 | |
| 
 | |
|   SmallPtrSet<Instruction *, 32> AllocaUsers;
 | |
|   SmallPtrSet<Instruction *, 32> EscapePoints;
 | |
| };
 | |
| }
 | |
| 
 | |
| bool TailCallElim::markTails(Function &F, bool &AllCallsAreTailCalls) {
 | |
|   if (F.callsFunctionThatReturnsTwice())
 | |
|     return false;
 | |
|   AllCallsAreTailCalls = true;
 | |
| 
 | |
|   // The local stack holds all alloca instructions and all byval arguments.
 | |
|   AllocaDerivedValueTracker Tracker;
 | |
|   for (Argument &Arg : F.args()) {
 | |
|     if (Arg.hasByValAttr())
 | |
|       Tracker.walk(&Arg);
 | |
|   }
 | |
|   for (auto &BB : F) {
 | |
|     for (auto &I : BB)
 | |
|       if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
 | |
|         Tracker.walk(AI);
 | |
|   }
 | |
| 
 | |
|   bool Modified = false;
 | |
| 
 | |
|   // Track whether a block is reachable after an alloca has escaped. Blocks that
 | |
|   // contain the escaping instruction will be marked as being visited without an
 | |
|   // escaped alloca, since that is how the block began.
 | |
|   enum VisitType {
 | |
|     UNVISITED,
 | |
|     UNESCAPED,
 | |
|     ESCAPED
 | |
|   };
 | |
|   DenseMap<BasicBlock *, VisitType> Visited;
 | |
| 
 | |
|   // We propagate the fact that an alloca has escaped from block to successor.
 | |
|   // Visit the blocks that are propagating the escapedness first. To do this, we
 | |
|   // maintain two worklists.
 | |
|   SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped;
 | |
| 
 | |
|   // We may enter a block and visit it thinking that no alloca has escaped yet,
 | |
|   // then see an escape point and go back around a loop edge and come back to
 | |
|   // the same block twice. Because of this, we defer setting tail on calls when
 | |
|   // we first encounter them in a block. Every entry in this list does not
 | |
|   // statically use an alloca via use-def chain analysis, but may find an alloca
 | |
|   // through other means if the block turns out to be reachable after an escape
 | |
|   // point.
 | |
|   SmallVector<CallInst *, 32> DeferredTails;
 | |
| 
 | |
|   BasicBlock *BB = &F.getEntryBlock();
 | |
|   VisitType Escaped = UNESCAPED;
 | |
|   do {
 | |
|     for (auto &I : *BB) {
 | |
|       if (Tracker.EscapePoints.count(&I))
 | |
|         Escaped = ESCAPED;
 | |
| 
 | |
|       CallInst *CI = dyn_cast<CallInst>(&I);
 | |
|       if (!CI || CI->isTailCall())
 | |
|         continue;
 | |
| 
 | |
|       if (CI->doesNotAccessMemory()) {
 | |
|         // A call to a readnone function whose arguments are all things computed
 | |
|         // outside this function can be marked tail. Even if you stored the
 | |
|         // alloca address into a global, a readnone function can't load the
 | |
|         // global anyhow.
 | |
|         //
 | |
|         // Note that this runs whether we know an alloca has escaped or not. If
 | |
|         // it has, then we can't trust Tracker.AllocaUsers to be accurate.
 | |
|         bool SafeToTail = true;
 | |
|         for (auto &Arg : CI->arg_operands()) {
 | |
|           if (isa<Constant>(Arg.getUser()))
 | |
|             continue;
 | |
|           if (Argument *A = dyn_cast<Argument>(Arg.getUser()))
 | |
|             if (!A->hasByValAttr())
 | |
|               continue;
 | |
|           SafeToTail = false;
 | |
|           break;
 | |
|         }
 | |
|         if (SafeToTail) {
 | |
|           emitOptimizationRemark(
 | |
|               F.getContext(), "tailcallelim", F, CI->getDebugLoc(),
 | |
|               "marked this readnone call a tail call candidate");
 | |
|           CI->setTailCall();
 | |
|           Modified = true;
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) {
 | |
|         DeferredTails.push_back(CI);
 | |
|       } else {
 | |
|         AllCallsAreTailCalls = false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     for (auto *SuccBB : make_range(succ_begin(BB), succ_end(BB))) {
 | |
|       auto &State = Visited[SuccBB];
 | |
|       if (State < Escaped) {
 | |
|         State = Escaped;
 | |
|         if (State == ESCAPED)
 | |
|           WorklistEscaped.push_back(SuccBB);
 | |
|         else
 | |
|           WorklistUnescaped.push_back(SuccBB);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!WorklistEscaped.empty()) {
 | |
|       BB = WorklistEscaped.pop_back_val();
 | |
|       Escaped = ESCAPED;
 | |
|     } else {
 | |
|       BB = nullptr;
 | |
|       while (!WorklistUnescaped.empty()) {
 | |
|         auto *NextBB = WorklistUnescaped.pop_back_val();
 | |
|         if (Visited[NextBB] == UNESCAPED) {
 | |
|           BB = NextBB;
 | |
|           Escaped = UNESCAPED;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   } while (BB);
 | |
| 
 | |
|   for (CallInst *CI : DeferredTails) {
 | |
|     if (Visited[CI->getParent()] != ESCAPED) {
 | |
|       // If the escape point was part way through the block, calls after the
 | |
|       // escape point wouldn't have been put into DeferredTails.
 | |
|       emitOptimizationRemark(F.getContext(), "tailcallelim", F,
 | |
|                              CI->getDebugLoc(),
 | |
|                              "marked this call a tail call candidate");
 | |
|       CI->setTailCall();
 | |
|       Modified = true;
 | |
|     } else {
 | |
|       AllCallsAreTailCalls = false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Modified;
 | |
| }
 | |
| 
 | |
| bool TailCallElim::runTRE(Function &F) {
 | |
|   // If this function is a varargs function, we won't be able to PHI the args
 | |
|   // right, so don't even try to convert it...
 | |
|   if (F.getFunctionType()->isVarArg()) return false;
 | |
| 
 | |
|   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
 | |
|   BasicBlock *OldEntry = nullptr;
 | |
|   bool TailCallsAreMarkedTail = false;
 | |
|   SmallVector<PHINode*, 8> ArgumentPHIs;
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   // If false, we cannot perform TRE on tail calls marked with the 'tail'
 | |
|   // attribute, because doing so would cause the stack size to increase (real
 | |
|   // TRE would deallocate variable sized allocas, TRE doesn't).
 | |
|   bool CanTRETailMarkedCall = CanTRE(F);
 | |
| 
 | |
|   // Change any tail recursive calls to loops.
 | |
|   //
 | |
|   // FIXME: The code generator produces really bad code when an 'escaping
 | |
|   // alloca' is changed from being a static alloca to being a dynamic alloca.
 | |
|   // Until this is resolved, disable this transformation if that would ever
 | |
|   // happen.  This bug is PR962.
 | |
|   for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; /*in loop*/) {
 | |
|     BasicBlock *BB = BBI++; // FoldReturnAndProcessPred may delete BB.
 | |
|     if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) {
 | |
|       bool Change = ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
 | |
|                                           ArgumentPHIs, !CanTRETailMarkedCall);
 | |
|       if (!Change && BB->getFirstNonPHIOrDbg() == Ret)
 | |
|         Change = FoldReturnAndProcessPred(BB, Ret, OldEntry,
 | |
|                                           TailCallsAreMarkedTail, ArgumentPHIs,
 | |
|                                           !CanTRETailMarkedCall);
 | |
|       MadeChange |= Change;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we eliminated any tail recursions, it's possible that we inserted some
 | |
|   // silly PHI nodes which just merge an initial value (the incoming operand)
 | |
|   // with themselves.  Check to see if we did and clean up our mess if so.  This
 | |
|   // occurs when a function passes an argument straight through to its tail
 | |
|   // call.
 | |
|   for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) {
 | |
|     PHINode *PN = ArgumentPHIs[i];
 | |
| 
 | |
|     // If the PHI Node is a dynamic constant, replace it with the value it is.
 | |
|     if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) {
 | |
|       PN->replaceAllUsesWith(PNV);
 | |
|       PN->eraseFromParent();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Return true if it is safe to move the specified
 | |
| /// instruction from after the call to before the call, assuming that all
 | |
| /// instructions between the call and this instruction are movable.
 | |
| ///
 | |
| bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) {
 | |
|   // FIXME: We can move load/store/call/free instructions above the call if the
 | |
|   // call does not mod/ref the memory location being processed.
 | |
|   if (I->mayHaveSideEffects())  // This also handles volatile loads.
 | |
|     return false;
 | |
| 
 | |
|   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
 | |
|     // Loads may always be moved above calls without side effects.
 | |
|     if (CI->mayHaveSideEffects()) {
 | |
|       // Non-volatile loads may be moved above a call with side effects if it
 | |
|       // does not write to memory and the load provably won't trap.
 | |
|       // FIXME: Writes to memory only matter if they may alias the pointer
 | |
|       // being loaded from.
 | |
|       if (CI->mayWriteToMemory() ||
 | |
|           !isSafeToLoadUnconditionally(L->getPointerOperand(), L,
 | |
|                                        L->getAlignment()))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise, if this is a side-effect free instruction, check to make sure
 | |
|   // that it does not use the return value of the call.  If it doesn't use the
 | |
|   // return value of the call, it must only use things that are defined before
 | |
|   // the call, or movable instructions between the call and the instruction
 | |
|   // itself.
 | |
|   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | |
|     if (I->getOperand(i) == CI)
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Return true if the specified value is the same when the return would exit
 | |
| /// as it was when the initial iteration of the recursive function was executed.
 | |
| ///
 | |
| /// We currently handle static constants and arguments that are not modified as
 | |
| /// part of the recursion.
 | |
| static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) {
 | |
|   if (isa<Constant>(V)) return true; // Static constants are always dyn consts
 | |
| 
 | |
|   // Check to see if this is an immutable argument, if so, the value
 | |
|   // will be available to initialize the accumulator.
 | |
|   if (Argument *Arg = dyn_cast<Argument>(V)) {
 | |
|     // Figure out which argument number this is...
 | |
|     unsigned ArgNo = 0;
 | |
|     Function *F = CI->getParent()->getParent();
 | |
|     for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
 | |
|       ++ArgNo;
 | |
| 
 | |
|     // If we are passing this argument into call as the corresponding
 | |
|     // argument operand, then the argument is dynamically constant.
 | |
|     // Otherwise, we cannot transform this function safely.
 | |
|     if (CI->getArgOperand(ArgNo) == Arg)
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   // Switch cases are always constant integers. If the value is being switched
 | |
|   // on and the return is only reachable from one of its cases, it's
 | |
|   // effectively constant.
 | |
|   if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor())
 | |
|     if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator()))
 | |
|       if (SI->getCondition() == V)
 | |
|         return SI->getDefaultDest() != RI->getParent();
 | |
| 
 | |
|   // Not a constant or immutable argument, we can't safely transform.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Check to see if the function containing the specified tail call consistently
 | |
| /// returns the same runtime-constant value at all exit points except for
 | |
| /// IgnoreRI. If so, return the returned value.
 | |
| static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) {
 | |
|   Function *F = CI->getParent()->getParent();
 | |
|   Value *ReturnedValue = nullptr;
 | |
| 
 | |
|   for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) {
 | |
|     ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator());
 | |
|     if (RI == nullptr || RI == IgnoreRI) continue;
 | |
| 
 | |
|     // We can only perform this transformation if the value returned is
 | |
|     // evaluatable at the start of the initial invocation of the function,
 | |
|     // instead of at the end of the evaluation.
 | |
|     //
 | |
|     Value *RetOp = RI->getOperand(0);
 | |
|     if (!isDynamicConstant(RetOp, CI, RI))
 | |
|       return nullptr;
 | |
| 
 | |
|     if (ReturnedValue && RetOp != ReturnedValue)
 | |
|       return nullptr;     // Cannot transform if differing values are returned.
 | |
|     ReturnedValue = RetOp;
 | |
|   }
 | |
|   return ReturnedValue;
 | |
| }
 | |
| 
 | |
| /// If the specified instruction can be transformed using accumulator recursion
 | |
| /// elimination, return the constant which is the start of the accumulator
 | |
| /// value.  Otherwise return null.
 | |
| Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I,
 | |
|                                                       CallInst *CI) {
 | |
|   if (!I->isAssociative() || !I->isCommutative()) return nullptr;
 | |
|   assert(I->getNumOperands() == 2 &&
 | |
|          "Associative/commutative operations should have 2 args!");
 | |
| 
 | |
|   // Exactly one operand should be the result of the call instruction.
 | |
|   if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
 | |
|       (I->getOperand(0) != CI && I->getOperand(1) != CI))
 | |
|     return nullptr;
 | |
| 
 | |
|   // The only user of this instruction we allow is a single return instruction.
 | |
|   if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back()))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Ok, now we have to check all of the other return instructions in this
 | |
|   // function.  If they return non-constants or differing values, then we cannot
 | |
|   // transform the function safely.
 | |
|   return getCommonReturnValue(cast<ReturnInst>(I->user_back()), CI);
 | |
| }
 | |
| 
 | |
| static Instruction *FirstNonDbg(BasicBlock::iterator I) {
 | |
|   while (isa<DbgInfoIntrinsic>(I))
 | |
|     ++I;
 | |
|   return &*I;
 | |
| }
 | |
| 
 | |
| CallInst*
 | |
| TailCallElim::FindTRECandidate(Instruction *TI,
 | |
|                                bool CannotTailCallElimCallsMarkedTail) {
 | |
|   BasicBlock *BB = TI->getParent();
 | |
|   Function *F = BB->getParent();
 | |
| 
 | |
|   if (&BB->front() == TI) // Make sure there is something before the terminator.
 | |
|     return nullptr;
 | |
| 
 | |
|   // Scan backwards from the return, checking to see if there is a tail call in
 | |
|   // this block.  If so, set CI to it.
 | |
|   CallInst *CI = nullptr;
 | |
|   BasicBlock::iterator BBI = TI;
 | |
|   while (true) {
 | |
|     CI = dyn_cast<CallInst>(BBI);
 | |
|     if (CI && CI->getCalledFunction() == F)
 | |
|       break;
 | |
| 
 | |
|     if (BBI == BB->begin())
 | |
|       return nullptr;          // Didn't find a potential tail call.
 | |
|     --BBI;
 | |
|   }
 | |
| 
 | |
|   // If this call is marked as a tail call, and if there are dynamic allocas in
 | |
|   // the function, we cannot perform this optimization.
 | |
|   if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
 | |
|     return nullptr;
 | |
| 
 | |
|   // As a special case, detect code like this:
 | |
|   //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
 | |
|   // and disable this xform in this case, because the code generator will
 | |
|   // lower the call to fabs into inline code.
 | |
|   if (BB == &F->getEntryBlock() &&
 | |
|       FirstNonDbg(BB->front()) == CI &&
 | |
|       FirstNonDbg(std::next(BB->begin())) == TI &&
 | |
|       CI->getCalledFunction() &&
 | |
|       !TTI->isLoweredToCall(CI->getCalledFunction())) {
 | |
|     // A single-block function with just a call and a return. Check that
 | |
|     // the arguments match.
 | |
|     CallSite::arg_iterator I = CallSite(CI).arg_begin(),
 | |
|                            E = CallSite(CI).arg_end();
 | |
|     Function::arg_iterator FI = F->arg_begin(),
 | |
|                            FE = F->arg_end();
 | |
|     for (; I != E && FI != FE; ++I, ++FI)
 | |
|       if (*I != &*FI) break;
 | |
|     if (I == E && FI == FE)
 | |
|       return nullptr;
 | |
|   }
 | |
| 
 | |
|   return CI;
 | |
| }
 | |
| 
 | |
| bool TailCallElim::EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
 | |
|                                        BasicBlock *&OldEntry,
 | |
|                                        bool &TailCallsAreMarkedTail,
 | |
|                                        SmallVectorImpl<PHINode *> &ArgumentPHIs,
 | |
|                                        bool CannotTailCallElimCallsMarkedTail) {
 | |
|   // If we are introducing accumulator recursion to eliminate operations after
 | |
|   // the call instruction that are both associative and commutative, the initial
 | |
|   // value for the accumulator is placed in this variable.  If this value is set
 | |
|   // then we actually perform accumulator recursion elimination instead of
 | |
|   // simple tail recursion elimination.  If the operation is an LLVM instruction
 | |
|   // (eg: "add") then it is recorded in AccumulatorRecursionInstr.  If not, then
 | |
|   // we are handling the case when the return instruction returns a constant C
 | |
|   // which is different to the constant returned by other return instructions
 | |
|   // (which is recorded in AccumulatorRecursionEliminationInitVal).  This is a
 | |
|   // special case of accumulator recursion, the operation being "return C".
 | |
|   Value *AccumulatorRecursionEliminationInitVal = nullptr;
 | |
|   Instruction *AccumulatorRecursionInstr = nullptr;
 | |
| 
 | |
|   // Ok, we found a potential tail call.  We can currently only transform the
 | |
|   // tail call if all of the instructions between the call and the return are
 | |
|   // movable to above the call itself, leaving the call next to the return.
 | |
|   // Check that this is the case now.
 | |
|   BasicBlock::iterator BBI = CI;
 | |
|   for (++BBI; &*BBI != Ret; ++BBI) {
 | |
|     if (CanMoveAboveCall(BBI, CI)) continue;
 | |
| 
 | |
|     // If we can't move the instruction above the call, it might be because it
 | |
|     // is an associative and commutative operation that could be transformed
 | |
|     // using accumulator recursion elimination.  Check to see if this is the
 | |
|     // case, and if so, remember the initial accumulator value for later.
 | |
|     if ((AccumulatorRecursionEliminationInitVal =
 | |
|                            CanTransformAccumulatorRecursion(BBI, CI))) {
 | |
|       // Yes, this is accumulator recursion.  Remember which instruction
 | |
|       // accumulates.
 | |
|       AccumulatorRecursionInstr = BBI;
 | |
|     } else {
 | |
|       return false;   // Otherwise, we cannot eliminate the tail recursion!
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We can only transform call/return pairs that either ignore the return value
 | |
|   // of the call and return void, ignore the value of the call and return a
 | |
|   // constant, return the value returned by the tail call, or that are being
 | |
|   // accumulator recursion variable eliminated.
 | |
|   if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
 | |
|       !isa<UndefValue>(Ret->getReturnValue()) &&
 | |
|       AccumulatorRecursionEliminationInitVal == nullptr &&
 | |
|       !getCommonReturnValue(nullptr, CI)) {
 | |
|     // One case remains that we are able to handle: the current return
 | |
|     // instruction returns a constant, and all other return instructions
 | |
|     // return a different constant.
 | |
|     if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret))
 | |
|       return false; // Current return instruction does not return a constant.
 | |
|     // Check that all other return instructions return a common constant.  If
 | |
|     // so, record it in AccumulatorRecursionEliminationInitVal.
 | |
|     AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI);
 | |
|     if (!AccumulatorRecursionEliminationInitVal)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   BasicBlock *BB = Ret->getParent();
 | |
|   Function *F = BB->getParent();
 | |
| 
 | |
|   emitOptimizationRemark(F->getContext(), "tailcallelim", *F, CI->getDebugLoc(),
 | |
|                          "transforming tail recursion to loop");
 | |
| 
 | |
|   // OK! We can transform this tail call.  If this is the first one found,
 | |
|   // create the new entry block, allowing us to branch back to the old entry.
 | |
|   if (!OldEntry) {
 | |
|     OldEntry = &F->getEntryBlock();
 | |
|     BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry);
 | |
|     NewEntry->takeName(OldEntry);
 | |
|     OldEntry->setName("tailrecurse");
 | |
|     BranchInst::Create(OldEntry, NewEntry);
 | |
| 
 | |
|     // If this tail call is marked 'tail' and if there are any allocas in the
 | |
|     // entry block, move them up to the new entry block.
 | |
|     TailCallsAreMarkedTail = CI->isTailCall();
 | |
|     if (TailCallsAreMarkedTail)
 | |
|       // Move all fixed sized allocas from OldEntry to NewEntry.
 | |
|       for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
 | |
|              NEBI = NewEntry->begin(); OEBI != E; )
 | |
|         if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
 | |
|           if (isa<ConstantInt>(AI->getArraySize()))
 | |
|             AI->moveBefore(NEBI);
 | |
| 
 | |
|     // Now that we have created a new block, which jumps to the entry
 | |
|     // block, insert a PHI node for each argument of the function.
 | |
|     // For now, we initialize each PHI to only have the real arguments
 | |
|     // which are passed in.
 | |
|     Instruction *InsertPos = OldEntry->begin();
 | |
|     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
 | |
|          I != E; ++I) {
 | |
|       PHINode *PN = PHINode::Create(I->getType(), 2,
 | |
|                                     I->getName() + ".tr", InsertPos);
 | |
|       I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
 | |
|       PN->addIncoming(I, NewEntry);
 | |
|       ArgumentPHIs.push_back(PN);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this function has self recursive calls in the tail position where some
 | |
|   // are marked tail and some are not, only transform one flavor or another.  We
 | |
|   // have to choose whether we move allocas in the entry block to the new entry
 | |
|   // block or not, so we can't make a good choice for both.  NOTE: We could do
 | |
|   // slightly better here in the case that the function has no entry block
 | |
|   // allocas.
 | |
|   if (TailCallsAreMarkedTail && !CI->isTailCall())
 | |
|     return false;
 | |
| 
 | |
|   // Ok, now that we know we have a pseudo-entry block WITH all of the
 | |
|   // required PHI nodes, add entries into the PHI node for the actual
 | |
|   // parameters passed into the tail-recursive call.
 | |
|   for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
 | |
|     ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);
 | |
| 
 | |
|   // If we are introducing an accumulator variable to eliminate the recursion,
 | |
|   // do so now.  Note that we _know_ that no subsequent tail recursion
 | |
|   // eliminations will happen on this function because of the way the
 | |
|   // accumulator recursion predicate is set up.
 | |
|   //
 | |
|   if (AccumulatorRecursionEliminationInitVal) {
 | |
|     Instruction *AccRecInstr = AccumulatorRecursionInstr;
 | |
|     // Start by inserting a new PHI node for the accumulator.
 | |
|     pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry);
 | |
|     PHINode *AccPN =
 | |
|       PHINode::Create(AccumulatorRecursionEliminationInitVal->getType(),
 | |
|                       std::distance(PB, PE) + 1,
 | |
|                       "accumulator.tr", OldEntry->begin());
 | |
| 
 | |
|     // Loop over all of the predecessors of the tail recursion block.  For the
 | |
|     // real entry into the function we seed the PHI with the initial value,
 | |
|     // computed earlier.  For any other existing branches to this block (due to
 | |
|     // other tail recursions eliminated) the accumulator is not modified.
 | |
|     // Because we haven't added the branch in the current block to OldEntry yet,
 | |
|     // it will not show up as a predecessor.
 | |
|     for (pred_iterator PI = PB; PI != PE; ++PI) {
 | |
|       BasicBlock *P = *PI;
 | |
|       if (P == &F->getEntryBlock())
 | |
|         AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P);
 | |
|       else
 | |
|         AccPN->addIncoming(AccPN, P);
 | |
|     }
 | |
| 
 | |
|     if (AccRecInstr) {
 | |
|       // Add an incoming argument for the current block, which is computed by
 | |
|       // our associative and commutative accumulator instruction.
 | |
|       AccPN->addIncoming(AccRecInstr, BB);
 | |
| 
 | |
|       // Next, rewrite the accumulator recursion instruction so that it does not
 | |
|       // use the result of the call anymore, instead, use the PHI node we just
 | |
|       // inserted.
 | |
|       AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
 | |
|     } else {
 | |
|       // Add an incoming argument for the current block, which is just the
 | |
|       // constant returned by the current return instruction.
 | |
|       AccPN->addIncoming(Ret->getReturnValue(), BB);
 | |
|     }
 | |
| 
 | |
|     // Finally, rewrite any return instructions in the program to return the PHI
 | |
|     // node instead of the "initval" that they do currently.  This loop will
 | |
|     // actually rewrite the return value we are destroying, but that's ok.
 | |
|     for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
 | |
|       if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
 | |
|         RI->setOperand(0, AccPN);
 | |
|     ++NumAccumAdded;
 | |
|   }
 | |
| 
 | |
|   // Now that all of the PHI nodes are in place, remove the call and
 | |
|   // ret instructions, replacing them with an unconditional branch.
 | |
|   BranchInst *NewBI = BranchInst::Create(OldEntry, Ret);
 | |
|   NewBI->setDebugLoc(CI->getDebugLoc());
 | |
| 
 | |
|   BB->getInstList().erase(Ret);  // Remove return.
 | |
|   BB->getInstList().erase(CI);   // Remove call.
 | |
|   ++NumEliminated;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool TailCallElim::FoldReturnAndProcessPred(BasicBlock *BB,
 | |
|                                        ReturnInst *Ret, BasicBlock *&OldEntry,
 | |
|                                        bool &TailCallsAreMarkedTail,
 | |
|                                        SmallVectorImpl<PHINode *> &ArgumentPHIs,
 | |
|                                        bool CannotTailCallElimCallsMarkedTail) {
 | |
|   bool Change = false;
 | |
| 
 | |
|   // If the return block contains nothing but the return and PHI's,
 | |
|   // there might be an opportunity to duplicate the return in its
 | |
|   // predecessors and perform TRC there. Look for predecessors that end
 | |
|   // in unconditional branch and recursive call(s).
 | |
|   SmallVector<BranchInst*, 8> UncondBranchPreds;
 | |
|   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
 | |
|     BasicBlock *Pred = *PI;
 | |
|     TerminatorInst *PTI = Pred->getTerminator();
 | |
|     if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
 | |
|       if (BI->isUnconditional())
 | |
|         UncondBranchPreds.push_back(BI);
 | |
|   }
 | |
| 
 | |
|   while (!UncondBranchPreds.empty()) {
 | |
|     BranchInst *BI = UncondBranchPreds.pop_back_val();
 | |
|     BasicBlock *Pred = BI->getParent();
 | |
|     if (CallInst *CI = FindTRECandidate(BI, CannotTailCallElimCallsMarkedTail)){
 | |
|       DEBUG(dbgs() << "FOLDING: " << *BB
 | |
|             << "INTO UNCOND BRANCH PRED: " << *Pred);
 | |
|       ReturnInst *RI = FoldReturnIntoUncondBranch(Ret, BB, Pred);
 | |
| 
 | |
|       // Cleanup: if all predecessors of BB have been eliminated by
 | |
|       // FoldReturnIntoUncondBranch, delete it.  It is important to empty it,
 | |
|       // because the ret instruction in there is still using a value which
 | |
|       // EliminateRecursiveTailCall will attempt to remove.
 | |
|       if (!BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
 | |
|         BB->eraseFromParent();
 | |
| 
 | |
|       EliminateRecursiveTailCall(CI, RI, OldEntry, TailCallsAreMarkedTail,
 | |
|                                  ArgumentPHIs,
 | |
|                                  CannotTailCallElimCallsMarkedTail);
 | |
|       ++NumRetDuped;
 | |
|       Change = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Change;
 | |
| }
 | |
| 
 | |
| bool
 | |
| TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry,
 | |
|                                     bool &TailCallsAreMarkedTail,
 | |
|                                     SmallVectorImpl<PHINode *> &ArgumentPHIs,
 | |
|                                     bool CannotTailCallElimCallsMarkedTail) {
 | |
|   CallInst *CI = FindTRECandidate(Ret, CannotTailCallElimCallsMarkedTail);
 | |
|   if (!CI)
 | |
|     return false;
 | |
| 
 | |
|   return EliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail,
 | |
|                                     ArgumentPHIs,
 | |
|                                     CannotTailCallElimCallsMarkedTail);
 | |
| }
 |