Reid Spencer a932e3f799 1. "unsigned" -> "uint32_t" to gaurantee its bit width on all platforms.
Size matters in this case.
2. Remove the unused whichByte private function, which was also broken.
3. Remove the non-const overload of the getWord function, getWord() is
   never used as an lvalue.
4. Rename some local variables for clarity (e.g. API -> Result).


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@34390 91177308-0d34-0410-b5e6-96231b3b80d8
2007-02-18 18:42:35 +00:00

646 lines
21 KiB
C++

//===-- llvm/Support/APInt.h - For Arbitrary Precision Integer -*- C++ -*--===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Sheng Zhou and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a class to represent arbitrary precision integral
// constant values.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_APINT_H
#define LLVM_APINT_H
#include "llvm/Support/DataTypes.h"
#include <cassert>
#include <string>
namespace llvm {
/// Forward declaration.
class APInt;
namespace APIntOps {
APInt udiv(const APInt& LHS, const APInt& RHS);
APInt urem(const APInt& LHS, const APInt& RHS);
}
//===----------------------------------------------------------------------===//
// APInt Class
//===----------------------------------------------------------------------===//
/// APInt - This class represents arbitrary precision constant integral values.
/// It is a functional replacement for common case unsigned integer type like
/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
/// than 64-bits of precision. APInt provides a variety of arithmetic operators
/// and methods to manipulate integer values of any bit-width. It supports both
/// the typical integer arithmetic and comparison operations as well as bitwise
/// manipulation.
///
/// The class has several invariants worth noting:
/// * All bit, byte, and word positions are zero-based.
/// * Once the bit width is set, it doesn't change except by the Truncate,
/// SignExtend, or ZeroExtend operations.
/// * All binary operators must be on APInt instances of the same bit width.
/// Attempting to use these operators on instances with different bit
/// widths will yield an assertion.
/// * The value is stored canonically as an unsigned value. For operations
/// where it makes a difference, there are both signed and unsigned variants
/// of the operation. For example, sdiv and udiv. However, because the bit
/// widths must be the same, operations such as Mul and Add produce the same
/// results regardless of whether the values are interpreted as signed or
/// not.
/// * In general, the class tries to follow the style of computation that LLVM
/// uses in its IR. This simplifies its use for LLVM.
///
/// @brief Class for arbitrary precision integers.
class APInt {
public:
uint32_t BitWidth; ///< The number of bits in this APInt.
/// This union is used to store the integer value. When the
/// integer bit-width <= 64, it uses VAL;
/// otherwise it uses the pVal.
union {
uint64_t VAL; ///< Used to store the <= 64 bits integer value.
uint64_t *pVal; ///< Used to store the >64 bits integer value.
};
/// This enum is just used to hold a constant we needed for APInt.
enum {
APINT_BITS_PER_WORD = sizeof(uint64_t) * 8
};
/// Here one word's bitwidth equals to that of uint64_t.
/// @returns the number of words to hold the integer value of this APInt.
/// @brief Get the number of words.
inline uint32_t getNumWords() const {
return (BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
}
/// @returns true if the number of bits <= 64, false otherwise.
/// @brief Determine if this APInt just has one word to store value.
inline bool isSingleWord() const {
return BitWidth <= APINT_BITS_PER_WORD;
}
/// @returns the word position for the specified bit position.
static inline uint32_t whichWord(uint32_t bitPosition) {
return bitPosition / APINT_BITS_PER_WORD;
}
/// @returns the bit position in a word for the specified bit position
/// in APInt.
static inline uint32_t whichBit(uint32_t bitPosition) {
return bitPosition % APINT_BITS_PER_WORD;
}
/// @returns a uint64_t type integer with just bit position at
/// "whichBit(bitPosition)" setting, others zero.
static inline uint64_t maskBit(uint32_t bitPosition) {
return (static_cast<uint64_t>(1)) << whichBit(bitPosition);
}
/// This method is used internally to clear the to "N" bits that are not used
/// by the APInt. This is needed after a word is assigned a value to ensure
/// that those bits are zero'd out.
/// @brief Clear high order bits
inline void clearUnusedBits() {
if (isSingleWord())
VAL &= ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - BitWidth);
else
pVal[getNumWords() - 1] &= ~uint64_t(0ULL) >>
(APINT_BITS_PER_WORD - (whichBit(BitWidth - 1) + 1));
}
/// @returns the corresponding word for the specified bit position.
/// This is a constant version.
inline uint64_t getWord(uint32_t bitPosition) const {
return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
}
/// @brief Converts a char array into an integer.
void fromString(uint32_t numBits, const char *StrStart, uint32_t slen,
uint8_t radix);
public:
/// @brief Create a new APInt of numBits bit-width, and initialized as val.
APInt(uint32_t numBits, uint64_t val);
/// @brief Create a new APInt of numBits bit-width, and initialized as
/// bigVal[].
APInt(uint32_t numBits, uint32_t numWords, uint64_t bigVal[]);
/// @brief Create a new APInt by translating the string represented
/// integer value.
APInt(uint32_t numBits, const std::string& Val, uint8_t radix);
/// @brief Create a new APInt by translating the char array represented
/// integer value.
APInt(uint32_t numBits, const char StrStart[], uint32_t slen, uint8_t radix);
/// @brief Copy Constructor.
APInt(const APInt& API);
/// @brief Destructor.
~APInt();
/// @brief Copy assignment operator.
APInt& operator=(const APInt& RHS);
/// Assigns an integer value to the APInt.
/// @brief Assignment operator.
APInt& operator=(uint64_t RHS);
/// Increments the APInt by one.
/// @brief Postfix increment operator.
inline const APInt operator++(int) {
APInt API(*this);
++(*this);
return API;
}
/// Increments the APInt by one.
/// @brief Prefix increment operator.
APInt& operator++();
/// Decrements the APInt by one.
/// @brief Postfix decrement operator.
inline const APInt operator--(int) {
APInt API(*this);
--(*this);
return API;
}
/// Decrements the APInt by one.
/// @brief Prefix decrement operator.
APInt& operator--();
/// Performs bitwise AND operation on this APInt and the given APInt& RHS,
/// assigns the result to this APInt.
/// @brief Bitwise AND assignment operator.
APInt& operator&=(const APInt& RHS);
/// Performs bitwise OR operation on this APInt and the given APInt& RHS,
/// assigns the result to this APInt.
/// @brief Bitwise OR assignment operator.
APInt& operator|=(const APInt& RHS);
/// Performs bitwise XOR operation on this APInt and the given APInt& RHS,
/// assigns the result to this APInt.
/// @brief Bitwise XOR assignment operator.
APInt& operator^=(const APInt& RHS);
/// Performs a bitwise complement operation on this APInt.
/// @brief Bitwise complement operator.
APInt operator~() const;
/// Multiplies this APInt by the given APInt& RHS and
/// assigns the result to this APInt.
/// @brief Multiplication assignment operator.
APInt& operator*=(const APInt& RHS);
/// Adds this APInt by the given APInt& RHS and
/// assigns the result to this APInt.
/// @brief Addition assignment operator.
APInt& operator+=(const APInt& RHS);
/// Subtracts this APInt by the given APInt &RHS and
/// assigns the result to this APInt.
/// @brief Subtraction assignment operator.
APInt& operator-=(const APInt& RHS);
/// Performs bitwise AND operation on this APInt and
/// the given APInt& RHS.
/// @brief Bitwise AND operator.
APInt operator&(const APInt& RHS) const;
/// Performs bitwise OR operation on this APInt and the given APInt& RHS.
/// @brief Bitwise OR operator.
APInt operator|(const APInt& RHS) const;
/// Performs bitwise XOR operation on this APInt and the given APInt& RHS.
/// @brief Bitwise XOR operator.
APInt operator^(const APInt& RHS) const;
/// Performs logical negation operation on this APInt.
/// @brief Logical negation operator.
bool operator !() const;
/// Multiplies this APInt by the given APInt& RHS.
/// @brief Multiplication operator.
APInt operator*(const APInt& RHS) const;
/// Adds this APInt by the given APInt& RHS.
/// @brief Addition operator.
APInt operator+(const APInt& RHS) const;
/// Subtracts this APInt by the given APInt& RHS
/// @brief Subtraction operator.
APInt operator-(const APInt& RHS) const;
/// @brief Unary negation operator
inline APInt operator-() const {
return APInt(BitWidth, 0) - (*this);
}
/// @brief Array-indexing support.
bool operator[](uint32_t bitPosition) const;
/// Compare this APInt with the given APInt& RHS
/// for the validity of the equality relationship.
/// @brief Equality operator.
bool operator==(const APInt& RHS) const;
/// Compare this APInt with the given uint64_t value
/// for the validity of the equality relationship.
/// @brief Equality operator.
bool operator==(uint64_t Val) const;
/// Compare this APInt with the given APInt& RHS
/// for the validity of the inequality relationship.
/// @brief Inequality operator.
inline bool operator!=(const APInt& RHS) const {
return !((*this) == RHS);
}
/// Compare this APInt with the given uint64_t value
/// for the validity of the inequality relationship.
/// @brief Inequality operator.
inline bool operator!=(uint64_t Val) const {
return !((*this) == Val);
}
/// @brief Equality comparison
bool eq(const APInt &RHS) const {
return (*this) == RHS;
}
/// @brief Inequality comparison
bool ne(const APInt &RHS) const {
return !((*this) == RHS);
}
/// @brief Unsigned less than comparison
bool ult(const APInt& RHS) const;
/// @brief Signed less than comparison
bool slt(const APInt& RHS) const;
/// @brief Unsigned less or equal comparison
bool ule(const APInt& RHS) const {
return ult(RHS) || eq(RHS);
}
/// @brief Signed less or equal comparison
bool sle(const APInt& RHS) const {
return slt(RHS) || eq(RHS);
}
/// @brief Unsigned greather than comparison
bool ugt(const APInt& RHS) const {
return !ult(RHS) && !eq(RHS);
}
/// @brief Signed greather than comparison
bool sgt(const APInt& RHS) const {
return !slt(RHS) && !eq(RHS);
}
/// @brief Unsigned greater or equal comparison
bool uge(const APInt& RHS) const {
return !ult(RHS);
}
/// @brief Signed greather or equal comparison
bool sge(const APInt& RHS) const {
return !slt(RHS);
}
/// Arithmetic right-shift this APInt by shiftAmt.
/// @brief Arithmetic right-shift function.
APInt ashr(uint32_t shiftAmt) const;
/// Logical right-shift this APInt by shiftAmt.
/// @brief Logical right-shift function.
APInt lshr(uint32_t shiftAmt) const;
/// Left-shift this APInt by shiftAmt.
/// @brief Left-shift function.
APInt shl(uint32_t shiftAmt) const;
/// Signed divide this APInt by APInt RHS.
/// @brief Signed division function for APInt.
inline APInt sdiv(const APInt& RHS) const {
bool isNegativeLHS = (*this)[BitWidth - 1];
bool isNegativeRHS = RHS[RHS.BitWidth - 1];
APInt Result = APIntOps::udiv(
isNegativeLHS ? -(*this) : (*this), isNegativeRHS ? -RHS : RHS);
return isNegativeLHS != isNegativeRHS ? -Result : Result;
}
/// Unsigned divide this APInt by APInt RHS.
/// @brief Unsigned division function for APInt.
APInt udiv(const APInt& RHS) const;
/// Signed remainder operation on APInt.
/// @brief Function for signed remainder operation.
inline APInt srem(const APInt& RHS) const {
bool isNegativeLHS = (*this)[BitWidth - 1];
bool isNegativeRHS = RHS[RHS.BitWidth - 1];
APInt Result = APIntOps::urem(
isNegativeLHS ? -(*this) : (*this), isNegativeRHS ? -RHS : RHS);
return isNegativeLHS ? -Result : Result;
}
/// Unsigned remainder operation on APInt.
/// @brief Function for unsigned remainder operation.
APInt urem(const APInt& RHS) const;
/// Truncate the APInt to a specified width. It is an error to specify a width
/// that is greater than or equal to the current width.
/// @brief Truncate to new width.
void trunc(uint32_t width);
/// This operation sign extends the APInt to a new width. If the high order
/// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
/// It is an error to specify a width that is less than or equal to the
/// current width.
/// @brief Sign extend to a new width.
void sext(uint32_t width);
/// This operation zero extends the APInt to a new width. Thie high order bits
/// are filled with 0 bits. It is an error to specify a width that is less
/// than or equal to the current width.
/// @brief Zero extend to a new width.
void zext(uint32_t width);
/// @brief Set every bit to 1.
APInt& set();
/// Set the given bit to 1 whose position is given as "bitPosition".
/// @brief Set a given bit to 1.
APInt& set(uint32_t bitPosition);
/// @brief Set every bit to 0.
APInt& clear();
/// Set the given bit to 0 whose position is given as "bitPosition".
/// @brief Set a given bit to 0.
APInt& clear(uint32_t bitPosition);
/// @brief Toggle every bit to its opposite value.
APInt& flip();
/// Toggle a given bit to its opposite value whose position is given
/// as "bitPosition".
/// @brief Toggles a given bit to its opposite value.
APInt& flip(uint32_t bitPosition);
/// This function returns the number of active bits which is defined as the
/// bit width minus the number of leading zeros. This is used in several
/// computations to see how "wide" the value is.
/// @brief Compute the number of active bits in the value
inline uint32_t getActiveBits() const {
return getNumWords() * APINT_BITS_PER_WORD - countLeadingZeros();
}
/// @returns a uint64_t value from this APInt. If this APInt contains a single
/// word, just returns VAL, otherwise pVal[0].
inline uint64_t getValue(bool isSigned = false) const {
if (isSingleWord())
return isSigned ? int64_t(VAL << (64 - BitWidth)) >>
(64 - BitWidth) : VAL;
uint32_t n = getActiveBits();
if (n <= 64)
return pVal[0];
assert(0 && "This APInt's bitwidth > 64");
}
/// @returns the largest value for an APInt of the specified bit-width and
/// if isSign == true, it should be largest signed value, otherwise largest
/// unsigned value.
/// @brief Gets max value of the APInt with bitwidth <= 64.
static APInt getMaxValue(uint32_t numBits, bool isSign);
/// @returns the smallest value for an APInt of the given bit-width and
/// if isSign == true, it should be smallest signed value, otherwise zero.
/// @brief Gets min value of the APInt with bitwidth <= 64.
static APInt getMinValue(uint32_t numBits, bool isSign);
/// @returns the all-ones value for an APInt of the specified bit-width.
/// @brief Get the all-ones value.
static APInt getAllOnesValue(uint32_t numBits);
/// @returns the '0' value for an APInt of the specified bit-width.
/// @brief Get the '0' value.
static APInt getNullValue(uint32_t numBits);
/// This converts the APInt to a boolean valy as a test against zero.
/// @brief Boolean conversion function.
inline bool getBoolValue() const {
return countLeadingZeros() != BitWidth;
}
/// @returns a character interpretation of the APInt.
std::string toString(uint8_t radix = 10, bool wantSigned = true) const;
/// Get an APInt with the same BitWidth as this APInt, just zero mask
/// the low bits and right shift to the least significant bit.
/// @returns the high "numBits" bits of this APInt.
APInt getHiBits(uint32_t numBits) const;
/// Get an APInt with the same BitWidth as this APInt, just zero mask
/// the high bits.
/// @returns the low "numBits" bits of this APInt.
APInt getLoBits(uint32_t numBits) const;
/// @returns true if the argument APInt value is a power of two > 0.
bool isPowerOf2() const;
/// @returns the number of zeros from the most significant bit to the first
/// one bits.
uint32_t countLeadingZeros() const;
/// @returns the number of zeros from the least significant bit to the first
/// one bit.
uint32_t countTrailingZeros() const;
/// @returns the number of set bits.
uint32_t countPopulation() const;
/// @returns the total number of bits.
inline uint32_t getBitWidth() const {
return BitWidth;
}
/// @brief Check if this APInt has a N-bits integer value.
inline bool isIntN(uint32_t N) const {
assert(N && "N == 0 ???");
if (isSingleWord()) {
return VAL == (VAL & (~0ULL >> (64 - N)));
} else {
APInt Tmp(N, getNumWords(), pVal);
return Tmp == (*this);
}
}
/// @returns a byte-swapped representation of this APInt Value.
APInt byteSwap() const;
/// @returns the floor log base 2 of this APInt.
inline uint32_t logBase2() const {
return getNumWords() * APINT_BITS_PER_WORD - 1 - countLeadingZeros();
}
/// @brief Converts this APInt to a double value.
double roundToDouble(bool isSigned = false) const;
};
namespace APIntOps {
/// @brief Check if the specified APInt has a N-bits integer value.
inline bool isIntN(uint32_t N, const APInt& APIVal) {
return APIVal.isIntN(N);
}
/// @returns true if the argument APInt value is a sequence of ones
/// starting at the least significant bit with the remainder zero.
inline const bool isMask(uint32_t numBits, const APInt& APIVal) {
return APIVal.getBoolValue() && ((APIVal + APInt(numBits,1)) & APIVal) == 0;
}
/// @returns true if the argument APInt value contains a sequence of ones
/// with the remainder zero.
inline const bool isShiftedMask(uint32_t numBits, const APInt& APIVal) {
return isMask(numBits, (APIVal - APInt(numBits,1)) | APIVal);
}
/// @returns a byte-swapped representation of the specified APInt Value.
inline APInt byteSwap(const APInt& APIVal) {
return APIVal.byteSwap();
}
/// @returns the floor log base 2 of the specified APInt value.
inline uint32_t logBase2(const APInt& APIVal) {
return APIVal.logBase2();
}
/// @returns the greatest common divisor of the two values
/// using Euclid's algorithm.
APInt GreatestCommonDivisor(const APInt& API1, const APInt& API2);
/// @brief Converts the given APInt to a double value.
inline double RoundAPIntToDouble(const APInt& APIVal, bool isSigned = false) {
return APIVal.roundToDouble(isSigned);
}
/// @brief Converts the given APInt to a float vlalue.
inline float RoundAPIntToFloat(const APInt& APIVal) {
return float(RoundAPIntToDouble(APIVal));
}
/// @brief Converts the given double value into a APInt.
APInt RoundDoubleToAPInt(double Double);
/// @brief Converts the given float value into a APInt.
inline APInt RoundFloatToAPInt(float Float) {
return RoundDoubleToAPInt(double(Float));
}
/// Arithmetic right-shift the APInt by shiftAmt.
/// @brief Arithmetic right-shift function.
inline APInt ashr(const APInt& LHS, uint32_t shiftAmt) {
return LHS.ashr(shiftAmt);
}
/// Logical right-shift the APInt by shiftAmt.
/// @brief Logical right-shift function.
inline APInt lshr(const APInt& LHS, uint32_t shiftAmt) {
return LHS.lshr(shiftAmt);
}
/// Left-shift the APInt by shiftAmt.
/// @brief Left-shift function.
inline APInt shl(const APInt& LHS, uint32_t shiftAmt) {
return LHS.shl(shiftAmt);
}
/// Signed divide APInt LHS by APInt RHS.
/// @brief Signed division function for APInt.
inline APInt sdiv(const APInt& LHS, const APInt& RHS) {
return LHS.sdiv(RHS);
}
/// Unsigned divide APInt LHS by APInt RHS.
/// @brief Unsigned division function for APInt.
inline APInt udiv(const APInt& LHS, const APInt& RHS) {
return LHS.udiv(RHS);
}
/// Signed remainder operation on APInt.
/// @brief Function for signed remainder operation.
inline APInt srem(const APInt& LHS, const APInt& RHS) {
return LHS.srem(RHS);
}
/// Unsigned remainder operation on APInt.
/// @brief Function for unsigned remainder operation.
inline APInt urem(const APInt& LHS, const APInt& RHS) {
return LHS.urem(RHS);
}
/// Performs multiplication on APInt values.
/// @brief Function for multiplication operation.
inline APInt mul(const APInt& LHS, const APInt& RHS) {
return LHS * RHS;
}
/// Performs addition on APInt values.
/// @brief Function for addition operation.
inline APInt add(const APInt& LHS, const APInt& RHS) {
return LHS + RHS;
}
/// Performs subtraction on APInt values.
/// @brief Function for subtraction operation.
inline APInt sub(const APInt& LHS, const APInt& RHS) {
return LHS - RHS;
}
/// Performs bitwise AND operation on APInt LHS and
/// APInt RHS.
/// @brief Bitwise AND function for APInt.
inline APInt And(const APInt& LHS, const APInt& RHS) {
return LHS & RHS;
}
/// Performs bitwise OR operation on APInt LHS and APInt RHS.
/// @brief Bitwise OR function for APInt.
inline APInt Or(const APInt& LHS, const APInt& RHS) {
return LHS | RHS;
}
/// Performs bitwise XOR operation on APInt.
/// @brief Bitwise XOR function for APInt.
inline APInt Xor(const APInt& LHS, const APInt& RHS) {
return LHS ^ RHS;
}
/// Performs a bitwise complement operation on APInt.
/// @brief Bitwise complement function.
inline APInt Not(const APInt& APIVal) {
return ~APIVal;
}
} // End of APIntOps namespace
} // End of llvm namespace
#endif