mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	"is sized". This prevents every query to isSized() from recursing over every sub-type of a struct type. This could get *very* slow for extremely deep nesting of structs, as in 177.mesa. This change is a 45% speedup for 'opt -O2' of 177.mesa.linked.bc, and likely a significant speedup for other cases as well. It even impacts -O0 cases because so many part of the code try to check whether a type is sized. Thanks for the review from Nick Lewycky and Benjamin Kramer on IRC. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152197 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			463 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			463 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- llvm/DerivedTypes.h - Classes for handling data types ---*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file contains the declarations of classes that represent "derived
 | 
						|
// types".  These are things like "arrays of x" or "structure of x, y, z" or
 | 
						|
// "function returning x taking (y,z) as parameters", etc...
 | 
						|
//
 | 
						|
// The implementations of these classes live in the Type.cpp file.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_DERIVED_TYPES_H
 | 
						|
#define LLVM_DERIVED_TYPES_H
 | 
						|
 | 
						|
#include "llvm/Type.h"
 | 
						|
#include "llvm/Support/DataTypes.h"
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
class Value;
 | 
						|
class APInt;
 | 
						|
class LLVMContext;
 | 
						|
template<typename T> class ArrayRef;
 | 
						|
class StringRef;
 | 
						|
 | 
						|
/// Class to represent integer types. Note that this class is also used to
 | 
						|
/// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and
 | 
						|
/// Int64Ty.
 | 
						|
/// @brief Integer representation type
 | 
						|
class IntegerType : public Type {
 | 
						|
  friend class LLVMContextImpl;
 | 
						|
  
 | 
						|
protected:
 | 
						|
  explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){
 | 
						|
    setSubclassData(NumBits);
 | 
						|
  }
 | 
						|
public:
 | 
						|
  /// This enum is just used to hold constants we need for IntegerType.
 | 
						|
  enum {
 | 
						|
    MIN_INT_BITS = 1,        ///< Minimum number of bits that can be specified
 | 
						|
    MAX_INT_BITS = (1<<23)-1 ///< Maximum number of bits that can be specified
 | 
						|
      ///< Note that bit width is stored in the Type classes SubclassData field
 | 
						|
      ///< which has 23 bits. This yields a maximum bit width of 8,388,607 bits.
 | 
						|
  };
 | 
						|
 | 
						|
  /// This static method is the primary way of constructing an IntegerType.
 | 
						|
  /// If an IntegerType with the same NumBits value was previously instantiated,
 | 
						|
  /// that instance will be returned. Otherwise a new one will be created. Only
 | 
						|
  /// one instance with a given NumBits value is ever created.
 | 
						|
  /// @brief Get or create an IntegerType instance.
 | 
						|
  static IntegerType *get(LLVMContext &C, unsigned NumBits);
 | 
						|
 | 
						|
  /// @brief Get the number of bits in this IntegerType
 | 
						|
  unsigned getBitWidth() const { return getSubclassData(); }
 | 
						|
 | 
						|
  /// getBitMask - Return a bitmask with ones set for all of the bits
 | 
						|
  /// that can be set by an unsigned version of this type.  This is 0xFF for
 | 
						|
  /// i8, 0xFFFF for i16, etc.
 | 
						|
  uint64_t getBitMask() const {
 | 
						|
    return ~uint64_t(0UL) >> (64-getBitWidth());
 | 
						|
  }
 | 
						|
 | 
						|
  /// getSignBit - Return a uint64_t with just the most significant bit set (the
 | 
						|
  /// sign bit, if the value is treated as a signed number).
 | 
						|
  uint64_t getSignBit() const {
 | 
						|
    return 1ULL << (getBitWidth()-1);
 | 
						|
  }
 | 
						|
 | 
						|
  /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
 | 
						|
  /// @returns a bit mask with ones set for all the bits of this type.
 | 
						|
  /// @brief Get a bit mask for this type.
 | 
						|
  APInt getMask() const;
 | 
						|
 | 
						|
  /// This method determines if the width of this IntegerType is a power-of-2
 | 
						|
  /// in terms of 8 bit bytes.
 | 
						|
  /// @returns true if this is a power-of-2 byte width.
 | 
						|
  /// @brief Is this a power-of-2 byte-width IntegerType ?
 | 
						|
  bool isPowerOf2ByteWidth() const;
 | 
						|
 | 
						|
  // Methods for support type inquiry through isa, cast, and dyn_cast.
 | 
						|
  static inline bool classof(const IntegerType *) { return true; }
 | 
						|
  static inline bool classof(const Type *T) {
 | 
						|
    return T->getTypeID() == IntegerTyID;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/// FunctionType - Class to represent function types
 | 
						|
///
 | 
						|
class FunctionType : public Type {
 | 
						|
  FunctionType(const FunctionType &);                   // Do not implement
 | 
						|
  const FunctionType &operator=(const FunctionType &);  // Do not implement
 | 
						|
  FunctionType(Type *Result, ArrayRef<Type*> Params, bool IsVarArgs);
 | 
						|
 | 
						|
public:
 | 
						|
  /// FunctionType::get - This static method is the primary way of constructing
 | 
						|
  /// a FunctionType.
 | 
						|
  ///
 | 
						|
  static FunctionType *get(Type *Result,
 | 
						|
                           ArrayRef<Type*> Params, bool isVarArg);
 | 
						|
 | 
						|
  /// FunctionType::get - Create a FunctionType taking no parameters.
 | 
						|
  ///
 | 
						|
  static FunctionType *get(Type *Result, bool isVarArg);
 | 
						|
  
 | 
						|
  /// isValidReturnType - Return true if the specified type is valid as a return
 | 
						|
  /// type.
 | 
						|
  static bool isValidReturnType(Type *RetTy);
 | 
						|
 | 
						|
  /// isValidArgumentType - Return true if the specified type is valid as an
 | 
						|
  /// argument type.
 | 
						|
  static bool isValidArgumentType(Type *ArgTy);
 | 
						|
 | 
						|
  bool isVarArg() const { return getSubclassData(); }
 | 
						|
  Type *getReturnType() const { return ContainedTys[0]; }
 | 
						|
 | 
						|
  typedef Type::subtype_iterator param_iterator;
 | 
						|
  param_iterator param_begin() const { return ContainedTys + 1; }
 | 
						|
  param_iterator param_end() const { return &ContainedTys[NumContainedTys]; }
 | 
						|
 | 
						|
  // Parameter type accessors.
 | 
						|
  Type *getParamType(unsigned i) const { return ContainedTys[i+1]; }
 | 
						|
 | 
						|
  /// getNumParams - Return the number of fixed parameters this function type
 | 
						|
  /// requires.  This does not consider varargs.
 | 
						|
  ///
 | 
						|
  unsigned getNumParams() const { return NumContainedTys - 1; }
 | 
						|
 | 
						|
  // Methods for support type inquiry through isa, cast, and dyn_cast.
 | 
						|
  static inline bool classof(const FunctionType *) { return true; }
 | 
						|
  static inline bool classof(const Type *T) {
 | 
						|
    return T->getTypeID() == FunctionTyID;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/// CompositeType - Common super class of ArrayType, StructType, PointerType
 | 
						|
/// and VectorType.
 | 
						|
class CompositeType : public Type {
 | 
						|
protected:
 | 
						|
  explicit CompositeType(LLVMContext &C, TypeID tid) : Type(C, tid) { }
 | 
						|
public:
 | 
						|
 | 
						|
  /// getTypeAtIndex - Given an index value into the type, return the type of
 | 
						|
  /// the element.
 | 
						|
  ///
 | 
						|
  Type *getTypeAtIndex(const Value *V);
 | 
						|
  Type *getTypeAtIndex(unsigned Idx);
 | 
						|
  bool indexValid(const Value *V) const;
 | 
						|
  bool indexValid(unsigned Idx) const;
 | 
						|
 | 
						|
  // Methods for support type inquiry through isa, cast, and dyn_cast.
 | 
						|
  static inline bool classof(const CompositeType *) { return true; }
 | 
						|
  static inline bool classof(const Type *T) {
 | 
						|
    return T->getTypeID() == ArrayTyID ||
 | 
						|
           T->getTypeID() == StructTyID ||
 | 
						|
           T->getTypeID() == PointerTyID ||
 | 
						|
           T->getTypeID() == VectorTyID;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/// StructType - Class to represent struct types.  There are two different kinds
 | 
						|
/// of struct types: Literal structs and Identified structs.
 | 
						|
///
 | 
						|
/// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must
 | 
						|
/// always have a body when created.  You can get one of these by using one of
 | 
						|
/// the StructType::get() forms.
 | 
						|
///  
 | 
						|
/// Identified structs (e.g. %foo or %42) may optionally have a name and are not
 | 
						|
/// uniqued.  The names for identified structs are managed at the LLVMContext
 | 
						|
/// level, so there can only be a single identified struct with a given name in
 | 
						|
/// a particular LLVMContext.  Identified structs may also optionally be opaque
 | 
						|
/// (have no body specified).  You get one of these by using one of the
 | 
						|
/// StructType::create() forms.
 | 
						|
///
 | 
						|
/// Independent of what kind of struct you have, the body of a struct type are
 | 
						|
/// laid out in memory consequtively with the elements directly one after the
 | 
						|
/// other (if the struct is packed) or (if not packed) with padding between the
 | 
						|
/// elements as defined by TargetData (which is required to match what the code
 | 
						|
/// generator for a target expects).
 | 
						|
///
 | 
						|
class StructType : public CompositeType {
 | 
						|
  StructType(const StructType &);                   // Do not implement
 | 
						|
  const StructType &operator=(const StructType &);  // Do not implement
 | 
						|
  StructType(LLVMContext &C)
 | 
						|
    : CompositeType(C, StructTyID), SymbolTableEntry(0) {}
 | 
						|
  enum {
 | 
						|
    // This is the contents of the SubClassData field.
 | 
						|
    SCDB_HasBody = 1,
 | 
						|
    SCDB_Packed = 2,
 | 
						|
    SCDB_IsLiteral = 4,
 | 
						|
    SCDB_IsSized = 8
 | 
						|
  };
 | 
						|
 | 
						|
  /// SymbolTableEntry - For a named struct that actually has a name, this is a
 | 
						|
  /// pointer to the symbol table entry (maintained by LLVMContext) for the
 | 
						|
  /// struct.  This is null if the type is an literal struct or if it is
 | 
						|
  /// a identified type that has an empty name.
 | 
						|
  /// 
 | 
						|
  void *SymbolTableEntry;
 | 
						|
public:
 | 
						|
  ~StructType() {
 | 
						|
    delete [] ContainedTys; // Delete the body.
 | 
						|
  }
 | 
						|
 | 
						|
  /// StructType::create - This creates an identified struct.
 | 
						|
  static StructType *create(LLVMContext &Context, StringRef Name);
 | 
						|
  static StructType *create(LLVMContext &Context);
 | 
						|
  
 | 
						|
  static StructType *create(ArrayRef<Type*> Elements,
 | 
						|
                            StringRef Name,
 | 
						|
                            bool isPacked = false);
 | 
						|
  static StructType *create(ArrayRef<Type*> Elements);
 | 
						|
  static StructType *create(LLVMContext &Context,
 | 
						|
                            ArrayRef<Type*> Elements,
 | 
						|
                            StringRef Name,
 | 
						|
                            bool isPacked = false);
 | 
						|
  static StructType *create(LLVMContext &Context, ArrayRef<Type*> Elements);
 | 
						|
  static StructType *create(StringRef Name, Type *elt1, ...) END_WITH_NULL;
 | 
						|
 | 
						|
  /// StructType::get - This static method is the primary way to create a
 | 
						|
  /// literal StructType.
 | 
						|
  static StructType *get(LLVMContext &Context, ArrayRef<Type*> Elements,
 | 
						|
                         bool isPacked = false);
 | 
						|
 | 
						|
  /// StructType::get - Create an empty structure type.
 | 
						|
  ///
 | 
						|
  static StructType *get(LLVMContext &Context, bool isPacked = false);
 | 
						|
  
 | 
						|
  /// StructType::get - This static method is a convenience method for creating
 | 
						|
  /// structure types by specifying the elements as arguments.  Note that this
 | 
						|
  /// method always returns a non-packed struct, and requires at least one
 | 
						|
  /// element type.
 | 
						|
  static StructType *get(Type *elt1, ...) END_WITH_NULL;
 | 
						|
 | 
						|
  bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; }
 | 
						|
  
 | 
						|
  /// isLiteral - Return true if this type is uniqued by structural
 | 
						|
  /// equivalence, false if it is a struct definition.
 | 
						|
  bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; }
 | 
						|
  
 | 
						|
  /// isOpaque - Return true if this is a type with an identity that has no body
 | 
						|
  /// specified yet.  These prints as 'opaque' in .ll files.
 | 
						|
  bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; }
 | 
						|
 | 
						|
  /// isSized - Return true if this is a sized type.
 | 
						|
  bool isSized() const;
 | 
						|
  
 | 
						|
  /// hasName - Return true if this is a named struct that has a non-empty name.
 | 
						|
  bool hasName() const { return SymbolTableEntry != 0; }
 | 
						|
  
 | 
						|
  /// getName - Return the name for this struct type if it has an identity.
 | 
						|
  /// This may return an empty string for an unnamed struct type.  Do not call
 | 
						|
  /// this on an literal type.
 | 
						|
  StringRef getName() const;
 | 
						|
  
 | 
						|
  /// setName - Change the name of this type to the specified name, or to a name
 | 
						|
  /// with a suffix if there is a collision.  Do not call this on an literal
 | 
						|
  /// type.
 | 
						|
  void setName(StringRef Name);
 | 
						|
 | 
						|
  /// setBody - Specify a body for an opaque identified type.
 | 
						|
  void setBody(ArrayRef<Type*> Elements, bool isPacked = false);
 | 
						|
  void setBody(Type *elt1, ...) END_WITH_NULL;
 | 
						|
  
 | 
						|
  /// isValidElementType - Return true if the specified type is valid as a
 | 
						|
  /// element type.
 | 
						|
  static bool isValidElementType(Type *ElemTy);
 | 
						|
  
 | 
						|
 | 
						|
  // Iterator access to the elements.
 | 
						|
  typedef Type::subtype_iterator element_iterator;
 | 
						|
  element_iterator element_begin() const { return ContainedTys; }
 | 
						|
  element_iterator element_end() const { return &ContainedTys[NumContainedTys];}
 | 
						|
 | 
						|
  /// isLayoutIdentical - Return true if this is layout identical to the
 | 
						|
  /// specified struct.
 | 
						|
  bool isLayoutIdentical(StructType *Other) const;  
 | 
						|
  
 | 
						|
  // Random access to the elements
 | 
						|
  unsigned getNumElements() const { return NumContainedTys; }
 | 
						|
  Type *getElementType(unsigned N) const {
 | 
						|
    assert(N < NumContainedTys && "Element number out of range!");
 | 
						|
    return ContainedTys[N];
 | 
						|
  }
 | 
						|
 | 
						|
  // Methods for support type inquiry through isa, cast, and dyn_cast.
 | 
						|
  static inline bool classof(const StructType *) { return true; }
 | 
						|
  static inline bool classof(const Type *T) {
 | 
						|
    return T->getTypeID() == StructTyID;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// SequentialType - This is the superclass of the array, pointer and vector
 | 
						|
/// type classes.  All of these represent "arrays" in memory.  The array type
 | 
						|
/// represents a specifically sized array, pointer types are unsized/unknown
 | 
						|
/// size arrays, vector types represent specifically sized arrays that
 | 
						|
/// allow for use of SIMD instructions.  SequentialType holds the common
 | 
						|
/// features of all, which stem from the fact that all three lay their
 | 
						|
/// components out in memory identically.
 | 
						|
///
 | 
						|
class SequentialType : public CompositeType {
 | 
						|
  Type *ContainedType;               ///< Storage for the single contained type.
 | 
						|
  SequentialType(const SequentialType &);                  // Do not implement!
 | 
						|
  const SequentialType &operator=(const SequentialType &); // Do not implement!
 | 
						|
 | 
						|
protected:
 | 
						|
  SequentialType(TypeID TID, Type *ElType)
 | 
						|
    : CompositeType(ElType->getContext(), TID), ContainedType(ElType) {
 | 
						|
    ContainedTys = &ContainedType;
 | 
						|
    NumContainedTys = 1;
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  Type *getElementType() const { return ContainedTys[0]; }
 | 
						|
 | 
						|
  // Methods for support type inquiry through isa, cast, and dyn_cast.
 | 
						|
  static inline bool classof(const SequentialType *) { return true; }
 | 
						|
  static inline bool classof(const Type *T) {
 | 
						|
    return T->getTypeID() == ArrayTyID ||
 | 
						|
           T->getTypeID() == PointerTyID ||
 | 
						|
           T->getTypeID() == VectorTyID;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/// ArrayType - Class to represent array types.
 | 
						|
///
 | 
						|
class ArrayType : public SequentialType {
 | 
						|
  uint64_t NumElements;
 | 
						|
 | 
						|
  ArrayType(const ArrayType &);                   // Do not implement
 | 
						|
  const ArrayType &operator=(const ArrayType &);  // Do not implement
 | 
						|
  ArrayType(Type *ElType, uint64_t NumEl);
 | 
						|
public:
 | 
						|
  /// ArrayType::get - This static method is the primary way to construct an
 | 
						|
  /// ArrayType
 | 
						|
  ///
 | 
						|
  static ArrayType *get(Type *ElementType, uint64_t NumElements);
 | 
						|
 | 
						|
  /// isValidElementType - Return true if the specified type is valid as a
 | 
						|
  /// element type.
 | 
						|
  static bool isValidElementType(Type *ElemTy);
 | 
						|
 | 
						|
  uint64_t getNumElements() const { return NumElements; }
 | 
						|
 | 
						|
  // Methods for support type inquiry through isa, cast, and dyn_cast.
 | 
						|
  static inline bool classof(const ArrayType *) { return true; }
 | 
						|
  static inline bool classof(const Type *T) {
 | 
						|
    return T->getTypeID() == ArrayTyID;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// VectorType - Class to represent vector types.
 | 
						|
///
 | 
						|
class VectorType : public SequentialType {
 | 
						|
  unsigned NumElements;
 | 
						|
 | 
						|
  VectorType(const VectorType &);                   // Do not implement
 | 
						|
  const VectorType &operator=(const VectorType &);  // Do not implement
 | 
						|
  VectorType(Type *ElType, unsigned NumEl);
 | 
						|
public:
 | 
						|
  /// VectorType::get - This static method is the primary way to construct an
 | 
						|
  /// VectorType.
 | 
						|
  ///
 | 
						|
  static VectorType *get(Type *ElementType, unsigned NumElements);
 | 
						|
 | 
						|
  /// VectorType::getInteger - This static method gets a VectorType with the
 | 
						|
  /// same number of elements as the input type, and the element type is an
 | 
						|
  /// integer type of the same width as the input element type.
 | 
						|
  ///
 | 
						|
  static VectorType *getInteger(VectorType *VTy) {
 | 
						|
    unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
 | 
						|
    assert(EltBits && "Element size must be of a non-zero size");
 | 
						|
    Type *EltTy = IntegerType::get(VTy->getContext(), EltBits);
 | 
						|
    return VectorType::get(EltTy, VTy->getNumElements());
 | 
						|
  }
 | 
						|
 | 
						|
  /// VectorType::getExtendedElementVectorType - This static method is like
 | 
						|
  /// getInteger except that the element types are twice as wide as the
 | 
						|
  /// elements in the input type.
 | 
						|
  ///
 | 
						|
  static VectorType *getExtendedElementVectorType(VectorType *VTy) {
 | 
						|
    unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
 | 
						|
    Type *EltTy = IntegerType::get(VTy->getContext(), EltBits * 2);
 | 
						|
    return VectorType::get(EltTy, VTy->getNumElements());
 | 
						|
  }
 | 
						|
 | 
						|
  /// VectorType::getTruncatedElementVectorType - This static method is like
 | 
						|
  /// getInteger except that the element types are half as wide as the
 | 
						|
  /// elements in the input type.
 | 
						|
  ///
 | 
						|
  static VectorType *getTruncatedElementVectorType(VectorType *VTy) {
 | 
						|
    unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
 | 
						|
    assert((EltBits & 1) == 0 &&
 | 
						|
           "Cannot truncate vector element with odd bit-width");
 | 
						|
    Type *EltTy = IntegerType::get(VTy->getContext(), EltBits / 2);
 | 
						|
    return VectorType::get(EltTy, VTy->getNumElements());
 | 
						|
  }
 | 
						|
 | 
						|
  /// isValidElementType - Return true if the specified type is valid as a
 | 
						|
  /// element type.
 | 
						|
  static bool isValidElementType(Type *ElemTy);
 | 
						|
 | 
						|
  /// @brief Return the number of elements in the Vector type.
 | 
						|
  unsigned getNumElements() const { return NumElements; }
 | 
						|
 | 
						|
  /// @brief Return the number of bits in the Vector type.
 | 
						|
  /// Returns zero when the vector is a vector of pointers.
 | 
						|
  unsigned getBitWidth() const {
 | 
						|
    return NumElements * getElementType()->getPrimitiveSizeInBits();
 | 
						|
  }
 | 
						|
 | 
						|
  // Methods for support type inquiry through isa, cast, and dyn_cast.
 | 
						|
  static inline bool classof(const VectorType *) { return true; }
 | 
						|
  static inline bool classof(const Type *T) {
 | 
						|
    return T->getTypeID() == VectorTyID;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/// PointerType - Class to represent pointers.
 | 
						|
///
 | 
						|
class PointerType : public SequentialType {
 | 
						|
  PointerType(const PointerType &);                   // Do not implement
 | 
						|
  const PointerType &operator=(const PointerType &);  // Do not implement
 | 
						|
  explicit PointerType(Type *ElType, unsigned AddrSpace);
 | 
						|
public:
 | 
						|
  /// PointerType::get - This constructs a pointer to an object of the specified
 | 
						|
  /// type in a numbered address space.
 | 
						|
  static PointerType *get(Type *ElementType, unsigned AddressSpace);
 | 
						|
 | 
						|
  /// PointerType::getUnqual - This constructs a pointer to an object of the
 | 
						|
  /// specified type in the generic address space (address space zero).
 | 
						|
  static PointerType *getUnqual(Type *ElementType) {
 | 
						|
    return PointerType::get(ElementType, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  /// isValidElementType - Return true if the specified type is valid as a
 | 
						|
  /// element type.
 | 
						|
  static bool isValidElementType(Type *ElemTy);
 | 
						|
 | 
						|
  /// @brief Return the address space of the Pointer type.
 | 
						|
  inline unsigned getAddressSpace() const { return getSubclassData(); }
 | 
						|
 | 
						|
  // Implement support type inquiry through isa, cast, and dyn_cast.
 | 
						|
  static inline bool classof(const PointerType *) { return true; }
 | 
						|
  static inline bool classof(const Type *T) {
 | 
						|
    return T->getTypeID() == PointerTyID;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // End llvm namespace
 | 
						|
 | 
						|
#endif
 |