mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12275 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			325 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			325 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- InductionVariable.cpp - Induction variable classification ----------===//
 | |
| // 
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| // 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements identification and classification of induction 
 | |
| // variables.  Induction variables must contain a PHI node that exists in a 
 | |
| // loop header.  Because of this, they are identified an managed by this PHI 
 | |
| // node.
 | |
| //
 | |
| // Induction variables are classified into a type.  Knowing that an induction
 | |
| // variable is of a specific type can constrain the values of the start and
 | |
| // step.  For example, a SimpleLinear induction variable must have a start and
 | |
| // step values that are constants.
 | |
| //
 | |
| // Induction variables can be created with or without loop information.  If no
 | |
| // loop information is available, induction variables cannot be recognized to be
 | |
| // more than SimpleLinear variables.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/InductionVariable.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/Expressions.h"
 | |
| #include "llvm/BasicBlock.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Assembly/Writer.h"
 | |
| #include "Support/Debug.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| static bool isLoopInvariant(const Value *V, const Loop *L) {
 | |
|   if (const Instruction *I = dyn_cast<Instruction>(V))
 | |
|     return !L->contains(I->getParent());
 | |
|   // non-instructions all dominate instructions/blocks
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| enum InductionVariable::iType
 | |
| InductionVariable::Classify(const Value *Start, const Value *Step,
 | |
|                             const Loop *L) {
 | |
|   // Check for canonical and simple linear expressions now...
 | |
|   if (const ConstantInt *CStart = dyn_cast<ConstantInt>(Start))
 | |
|     if (const ConstantInt *CStep = dyn_cast<ConstantInt>(Step)) {
 | |
|       if (CStart->isNullValue() && CStep->equalsInt(1))
 | |
|         return Canonical;
 | |
|       else
 | |
|         return SimpleLinear;
 | |
|     }
 | |
| 
 | |
|   // Without loop information, we cannot do any better, so bail now...
 | |
|   if (L == 0) return Unknown;
 | |
| 
 | |
|   if (isLoopInvariant(Start, L) && isLoopInvariant(Step, L))
 | |
|     return Linear;
 | |
|   return Unknown;
 | |
| }
 | |
| 
 | |
| // Create an induction variable for the specified value.  If it is a PHI, and
 | |
| // if it's recognizable, classify it and fill in instance variables.
 | |
| //
 | |
| InductionVariable::InductionVariable(PHINode *P, LoopInfo *LoopInfo): End(0) {
 | |
|   InductionType = Unknown;     // Assume the worst
 | |
|   Phi = P;
 | |
|   
 | |
|   // If the PHI node has more than two predecessors, we don't know how to
 | |
|   // handle it.
 | |
|   //
 | |
|   if (Phi->getNumIncomingValues() != 2) return;
 | |
| 
 | |
|   // FIXME: Handle FP induction variables.
 | |
|   if (Phi->getType() == Type::FloatTy || Phi->getType() == Type::DoubleTy)
 | |
|     return;
 | |
| 
 | |
|   // If we have loop information, make sure that this PHI node is in the header
 | |
|   // of a loop...
 | |
|   //
 | |
|   const Loop *L = LoopInfo ? LoopInfo->getLoopFor(Phi->getParent()) : 0;
 | |
|   if (L && L->getHeader() != Phi->getParent())
 | |
|     return;
 | |
| 
 | |
|   Value *V1 = Phi->getIncomingValue(0);
 | |
|   Value *V2 = Phi->getIncomingValue(1);
 | |
| 
 | |
|   if (L == 0) {  // No loop information?  Base everything on expression analysis
 | |
|     ExprType E1 = ClassifyExpr(V1);
 | |
|     ExprType E2 = ClassifyExpr(V2);
 | |
| 
 | |
|     if (E1.ExprTy > E2.ExprTy)        // Make E1 be the simpler expression
 | |
|       std::swap(E1, E2);
 | |
|     
 | |
|     // E1 must be a constant incoming value, and E2 must be a linear expression
 | |
|     // with respect to the PHI node.
 | |
|     //
 | |
|     if (E1.ExprTy > ExprType::Constant || E2.ExprTy != ExprType::Linear ||
 | |
|         E2.Var != Phi)
 | |
|       return;
 | |
| 
 | |
|     // Okay, we have found an induction variable. Save the start and step values
 | |
|     const Type *ETy = Phi->getType();
 | |
|     if (isa<PointerType>(ETy)) ETy = Type::ULongTy;
 | |
| 
 | |
|     Start = (Value*)(E1.Offset ? E1.Offset : ConstantInt::get(ETy, 0));
 | |
|     Step  = (Value*)(E2.Offset ? E2.Offset : ConstantInt::get(ETy, 0));
 | |
|   } else {
 | |
|     // Okay, at this point, we know that we have loop information...
 | |
| 
 | |
|     // Make sure that V1 is the incoming value, and V2 is from the backedge of
 | |
|     // the loop.
 | |
|     if (L->contains(Phi->getIncomingBlock(0)))     // Wrong order.  Swap now.
 | |
|       std::swap(V1, V2);
 | |
|     
 | |
|     Start = V1;     // We know that Start has to be loop invariant...
 | |
|     Step = 0;
 | |
| 
 | |
|     if (V2 == Phi) {  // referencing the PHI directly?  Must have zero step
 | |
|       Step = Constant::getNullValue(Phi->getType());
 | |
|     } else if (BinaryOperator *I = dyn_cast<BinaryOperator>(V2)) {
 | |
|       if (I->getOpcode() == Instruction::Add) {
 | |
|         if (I->getOperand(0) == Phi)
 | |
|           Step = I->getOperand(1);
 | |
|         else if (I->getOperand(1) == Phi)
 | |
|           Step = I->getOperand(0);
 | |
|       } else if (I->getOpcode() == Instruction::Sub &&
 | |
|                  I->getOperand(0) == Phi) {
 | |
|         // If the incoming value is a constant, just form a constant negative
 | |
|         // step.  Otherwise, negate the step outside of the loop and use it.
 | |
|         Value *V = I->getOperand(1);
 | |
|         Constant *Zero = Constant::getNullValue(V->getType());
 | |
|         if (Constant *CV = dyn_cast<Constant>(V))
 | |
|           Step = ConstantExpr::get(Instruction::Sub, Zero, CV);
 | |
|         else if (Instruction *I = dyn_cast<Instruction>(V)) {
 | |
|           BasicBlock::iterator InsertPt = I;
 | |
|           for (++InsertPt; isa<PHINode>(InsertPt); ++InsertPt)
 | |
|             /*empty*/;
 | |
|           Step = BinaryOperator::create(Instruction::Sub, Zero, V,
 | |
|                                         V->getName()+".neg", InsertPt);
 | |
| 
 | |
|         } else {
 | |
|           // Must be loop invariant
 | |
|           Step = BinaryOperator::create(Instruction::Sub, Zero, V,
 | |
|                                         V->getName()+".neg", 
 | |
|                               Phi->getParent()->getParent()->begin()->begin());
 | |
|         }
 | |
|       }
 | |
|     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V2)) {
 | |
|       if (GEP->getNumOperands() == 2 &&
 | |
|           GEP->getOperand(0) == Phi)
 | |
|         Step = GEP->getOperand(1);
 | |
|     }
 | |
| 
 | |
|     if (Step == 0) {                  // Unrecognized step value...
 | |
|       ExprType StepE = ClassifyExpr(V2);
 | |
|       if (StepE.ExprTy != ExprType::Linear ||
 | |
|           StepE.Var != Phi) return;
 | |
| 
 | |
|       const Type *ETy = Phi->getType();
 | |
|       if (isa<PointerType>(ETy)) ETy = Type::ULongTy;
 | |
|       Step  = (Value*)(StepE.Offset ? StepE.Offset : ConstantInt::get(ETy, 0));
 | |
|     } else {   // We were able to get a step value, simplify with expr analysis
 | |
|       ExprType StepE = ClassifyExpr(Step);
 | |
|       if (StepE.ExprTy == ExprType::Linear && StepE.Offset == 0) {
 | |
|         // No offset from variable?  Grab the variable
 | |
|         Step = StepE.Var;
 | |
|       } else if (StepE.ExprTy == ExprType::Constant) {
 | |
|         if (StepE.Offset)
 | |
|           Step = (Value*)StepE.Offset;
 | |
|         else
 | |
|           Step = Constant::getNullValue(Step->getType());
 | |
|         const Type *ETy = Phi->getType();
 | |
|         if (isa<PointerType>(ETy)) ETy = Type::ULongTy;
 | |
|         Step  = (Value*)(StepE.Offset ? StepE.Offset : ConstantInt::get(ETy,0));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Classify the induction variable type now...
 | |
|   InductionType = InductionVariable::Classify(Start, Step, L);
 | |
| }
 | |
| 
 | |
| 
 | |
| Value *InductionVariable::getExecutionCount(LoopInfo *LoopInfo) {
 | |
|   if (InductionType != Canonical) return 0;
 | |
| 
 | |
|   DEBUG(std::cerr << "entering getExecutionCount\n");
 | |
| 
 | |
|   // Don't recompute if already available
 | |
|   if (End) {
 | |
|     DEBUG(std::cerr << "returning cached End value.\n");
 | |
|     return End;
 | |
|   }
 | |
| 
 | |
|   const Loop *L = LoopInfo ? LoopInfo->getLoopFor(Phi->getParent()) : 0;
 | |
|   if (!L) {
 | |
|     DEBUG(std::cerr << "null loop. oops\n");
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // >1 backedge => cannot predict number of iterations
 | |
|   if (Phi->getNumIncomingValues() != 2) {
 | |
|     DEBUG(std::cerr << ">2 incoming values. oops\n");
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // Find final node: predecessor of the loop header that's also an exit
 | |
|   BasicBlock *terminator = 0;
 | |
|   for (pred_iterator PI = pred_begin(L->getHeader()),
 | |
|          PE = pred_end(L->getHeader()); PI != PE; ++PI)
 | |
|     if (L->isLoopExit(*PI)) {
 | |
|       terminator = *PI;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   // Break in the loop => cannot predict number of iterations
 | |
|   // break: any block which is an exit node whose successor is not in loop,
 | |
|   // and this block is not marked as the terminator
 | |
|   //
 | |
|   const std::vector<BasicBlock*> &blocks = L->getBlocks();
 | |
|   for (std::vector<BasicBlock*>::const_iterator I = blocks.begin(),
 | |
|          e = blocks.end(); I != e; ++I)
 | |
|     if (L->isLoopExit(*I) && *I != terminator)
 | |
|       for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
 | |
|         if (!L->contains(*SI)) {
 | |
|           DEBUG(std::cerr << "break found in loop");
 | |
|           return 0;
 | |
|         }
 | |
| 
 | |
|   BranchInst *B = dyn_cast<BranchInst>(terminator->getTerminator());
 | |
|   if (!B) {
 | |
|     DEBUG(std::cerr << "Terminator is not a cond branch!");
 | |
|     return 0; 
 | |
|   }
 | |
|   SetCondInst *SCI = dyn_cast<SetCondInst>(B->getCondition());
 | |
|   if (!SCI) {
 | |
|     DEBUG(std::cerr << "Not a cond branch on setcc!\n");
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   DEBUG(std::cerr << "sci:" << *SCI);
 | |
|   Value *condVal0 = SCI->getOperand(0);
 | |
|   Value *condVal1 = SCI->getOperand(1);
 | |
| 
 | |
|   // The induction variable is the one coming from the backedge
 | |
|   Value *indVar = Phi->getIncomingValue(L->contains(Phi->getIncomingBlock(1)));
 | |
| 
 | |
| 
 | |
|   // Check to see if indVar is one of the parameters in SCI and if the other is
 | |
|   // loop-invariant, it is the UB
 | |
|   if (indVar == condVal0) {
 | |
|     if (isLoopInvariant(condVal1, L))
 | |
|       End = condVal1;
 | |
|     else {
 | |
|       DEBUG(std::cerr << "not loop invariant 1\n");
 | |
|       return 0;
 | |
|     }
 | |
|   } else if (indVar == condVal1) {
 | |
|     if (isLoopInvariant(condVal0, L))
 | |
|       End = condVal0;
 | |
|     else {
 | |
|       DEBUG(std::cerr << "not loop invariant 0\n");
 | |
|       return 0;
 | |
|     }
 | |
|   } else {
 | |
|     DEBUG(std::cerr << "Loop condition doesn't directly uses indvar\n");
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   switch (SCI->getOpcode()) {
 | |
|   case Instruction::SetLT:
 | |
|   case Instruction::SetNE: return End; // already done
 | |
|   case Instruction::SetLE:
 | |
|     // if compared to a constant int N, then predict N+1 iterations
 | |
|     if (ConstantSInt *ubSigned = dyn_cast<ConstantSInt>(End)) {
 | |
|       DEBUG(std::cerr << "signed int constant\n");
 | |
|       return ConstantSInt::get(ubSigned->getType(), ubSigned->getValue()+1);
 | |
|     } else if (ConstantUInt *ubUnsigned = dyn_cast<ConstantUInt>(End)) {
 | |
|       DEBUG(std::cerr << "unsigned int constant\n");
 | |
|       return ConstantUInt::get(ubUnsigned->getType(),
 | |
|                                ubUnsigned->getValue()+1);
 | |
|     } else {
 | |
|       DEBUG(std::cerr << "symbolic bound\n");
 | |
|       // new expression N+1, insert right before the SCI.  FIXME: If End is loop
 | |
|       // invariant, then so is this expression.  We should insert it in the loop
 | |
|       // preheader if it exists.
 | |
|       return BinaryOperator::create(Instruction::Add, End, 
 | |
|                                     ConstantInt::get(End->getType(), 1),
 | |
|                                     "tripcount", SCI);
 | |
|     }
 | |
| 
 | |
|   default:
 | |
|     return 0; // cannot predict
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void InductionVariable::print(std::ostream &o) const {
 | |
|   switch (InductionType) {
 | |
|   case InductionVariable::Canonical:    o << "Canonical ";    break;
 | |
|   case InductionVariable::SimpleLinear: o << "SimpleLinear "; break;
 | |
|   case InductionVariable::Linear:       o << "Linear ";       break;
 | |
|   case InductionVariable::Unknown:      o << "Unrecognized "; break;
 | |
|   }
 | |
|   o << "Induction Variable: ";
 | |
|   if (Phi) {
 | |
|     WriteAsOperand(o, Phi);
 | |
|     o << ":\n" << Phi;
 | |
|   } else {
 | |
|     o << "\n";
 | |
|   }
 | |
|   if (InductionType == InductionVariable::Unknown) return;
 | |
| 
 | |
|   o << "  Start = "; WriteAsOperand(o, Start);
 | |
|   o << "  Step = " ; WriteAsOperand(o, Step);
 | |
|   if (End) { 
 | |
|     o << "  End = " ; WriteAsOperand(o, End);
 | |
|   }
 | |
|   o << "\n";
 | |
| }
 |