mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149849 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			504 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			504 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the BitVector class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_ADT_BITVECTOR_H
 | |
| #define LLVM_ADT_BITVECTOR_H
 | |
| 
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <climits>
 | |
| #include <cstdlib>
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| class BitVector {
 | |
|   typedef unsigned long BitWord;
 | |
| 
 | |
|   enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT };
 | |
| 
 | |
|   BitWord  *Bits;        // Actual bits.
 | |
|   unsigned Size;         // Size of bitvector in bits.
 | |
|   unsigned Capacity;     // Size of allocated memory in BitWord.
 | |
| 
 | |
| public:
 | |
|   // Encapsulation of a single bit.
 | |
|   class reference {
 | |
|     friend class BitVector;
 | |
| 
 | |
|     BitWord *WordRef;
 | |
|     unsigned BitPos;
 | |
| 
 | |
|     reference();  // Undefined
 | |
| 
 | |
|   public:
 | |
|     reference(BitVector &b, unsigned Idx) {
 | |
|       WordRef = &b.Bits[Idx / BITWORD_SIZE];
 | |
|       BitPos = Idx % BITWORD_SIZE;
 | |
|     }
 | |
| 
 | |
|     ~reference() {}
 | |
| 
 | |
|     reference &operator=(reference t) {
 | |
|       *this = bool(t);
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     reference& operator=(bool t) {
 | |
|       if (t)
 | |
|         *WordRef |= 1L << BitPos;
 | |
|       else
 | |
|         *WordRef &= ~(1L << BitPos);
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     operator bool() const {
 | |
|       return ((*WordRef) & (1L << BitPos)) ? true : false;
 | |
|     }
 | |
|   };
 | |
| 
 | |
| 
 | |
|   /// BitVector default ctor - Creates an empty bitvector.
 | |
|   BitVector() : Size(0), Capacity(0) {
 | |
|     Bits = 0;
 | |
|   }
 | |
| 
 | |
|   /// BitVector ctor - Creates a bitvector of specified number of bits. All
 | |
|   /// bits are initialized to the specified value.
 | |
|   explicit BitVector(unsigned s, bool t = false) : Size(s) {
 | |
|     Capacity = NumBitWords(s);
 | |
|     Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
 | |
|     init_words(Bits, Capacity, t);
 | |
|     if (t)
 | |
|       clear_unused_bits();
 | |
|   }
 | |
| 
 | |
|   /// BitVector copy ctor.
 | |
|   BitVector(const BitVector &RHS) : Size(RHS.size()) {
 | |
|     if (Size == 0) {
 | |
|       Bits = 0;
 | |
|       Capacity = 0;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     Capacity = NumBitWords(RHS.size());
 | |
|     Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
 | |
|     std::memcpy(Bits, RHS.Bits, Capacity * sizeof(BitWord));
 | |
|   }
 | |
| 
 | |
|   ~BitVector() {
 | |
|     std::free(Bits);
 | |
|   }
 | |
| 
 | |
|   /// empty - Tests whether there are no bits in this bitvector.
 | |
|   bool empty() const { return Size == 0; }
 | |
| 
 | |
|   /// size - Returns the number of bits in this bitvector.
 | |
|   unsigned size() const { return Size; }
 | |
| 
 | |
|   /// count - Returns the number of bits which are set.
 | |
|   unsigned count() const {
 | |
|     unsigned NumBits = 0;
 | |
|     for (unsigned i = 0; i < NumBitWords(size()); ++i)
 | |
|       if (sizeof(BitWord) == 4)
 | |
|         NumBits += CountPopulation_32((uint32_t)Bits[i]);
 | |
|       else if (sizeof(BitWord) == 8)
 | |
|         NumBits += CountPopulation_64(Bits[i]);
 | |
|       else
 | |
|         llvm_unreachable("Unsupported!");
 | |
|     return NumBits;
 | |
|   }
 | |
| 
 | |
|   /// any - Returns true if any bit is set.
 | |
|   bool any() const {
 | |
|     for (unsigned i = 0; i < NumBitWords(size()); ++i)
 | |
|       if (Bits[i] != 0)
 | |
|         return true;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// all - Returns true if all bits are set.
 | |
|   bool all() const {
 | |
|     // TODO: Optimize this.
 | |
|     return count() == size();
 | |
|   }
 | |
| 
 | |
|   /// none - Returns true if none of the bits are set.
 | |
|   bool none() const {
 | |
|     return !any();
 | |
|   }
 | |
| 
 | |
|   /// find_first - Returns the index of the first set bit, -1 if none
 | |
|   /// of the bits are set.
 | |
|   int find_first() const {
 | |
|     for (unsigned i = 0; i < NumBitWords(size()); ++i)
 | |
|       if (Bits[i] != 0) {
 | |
|         if (sizeof(BitWord) == 4)
 | |
|           return i * BITWORD_SIZE + CountTrailingZeros_32((uint32_t)Bits[i]);
 | |
|         if (sizeof(BitWord) == 8)
 | |
|           return i * BITWORD_SIZE + CountTrailingZeros_64(Bits[i]);
 | |
|         llvm_unreachable("Unsupported!");
 | |
|       }
 | |
|     return -1;
 | |
|   }
 | |
| 
 | |
|   /// find_next - Returns the index of the next set bit following the
 | |
|   /// "Prev" bit. Returns -1 if the next set bit is not found.
 | |
|   int find_next(unsigned Prev) const {
 | |
|     ++Prev;
 | |
|     if (Prev >= Size)
 | |
|       return -1;
 | |
| 
 | |
|     unsigned WordPos = Prev / BITWORD_SIZE;
 | |
|     unsigned BitPos = Prev % BITWORD_SIZE;
 | |
|     BitWord Copy = Bits[WordPos];
 | |
|     // Mask off previous bits.
 | |
|     Copy &= ~0L << BitPos;
 | |
| 
 | |
|     if (Copy != 0) {
 | |
|       if (sizeof(BitWord) == 4)
 | |
|         return WordPos * BITWORD_SIZE + CountTrailingZeros_32((uint32_t)Copy);
 | |
|       if (sizeof(BitWord) == 8)
 | |
|         return WordPos * BITWORD_SIZE + CountTrailingZeros_64(Copy);
 | |
|       llvm_unreachable("Unsupported!");
 | |
|     }
 | |
| 
 | |
|     // Check subsequent words.
 | |
|     for (unsigned i = WordPos+1; i < NumBitWords(size()); ++i)
 | |
|       if (Bits[i] != 0) {
 | |
|         if (sizeof(BitWord) == 4)
 | |
|           return i * BITWORD_SIZE + CountTrailingZeros_32((uint32_t)Bits[i]);
 | |
|         if (sizeof(BitWord) == 8)
 | |
|           return i * BITWORD_SIZE + CountTrailingZeros_64(Bits[i]);
 | |
|         llvm_unreachable("Unsupported!");
 | |
|       }
 | |
|     return -1;
 | |
|   }
 | |
| 
 | |
|   /// clear - Clear all bits.
 | |
|   void clear() {
 | |
|     Size = 0;
 | |
|   }
 | |
| 
 | |
|   /// resize - Grow or shrink the bitvector.
 | |
|   void resize(unsigned N, bool t = false) {
 | |
|     if (N > Capacity * BITWORD_SIZE) {
 | |
|       unsigned OldCapacity = Capacity;
 | |
|       grow(N);
 | |
|       init_words(&Bits[OldCapacity], (Capacity-OldCapacity), t);
 | |
|     }
 | |
| 
 | |
|     // Set any old unused bits that are now included in the BitVector. This
 | |
|     // may set bits that are not included in the new vector, but we will clear
 | |
|     // them back out below.
 | |
|     if (N > Size)
 | |
|       set_unused_bits(t);
 | |
| 
 | |
|     // Update the size, and clear out any bits that are now unused
 | |
|     unsigned OldSize = Size;
 | |
|     Size = N;
 | |
|     if (t || N < OldSize)
 | |
|       clear_unused_bits();
 | |
|   }
 | |
| 
 | |
|   void reserve(unsigned N) {
 | |
|     if (N > Capacity * BITWORD_SIZE)
 | |
|       grow(N);
 | |
|   }
 | |
| 
 | |
|   // Set, reset, flip
 | |
|   BitVector &set() {
 | |
|     init_words(Bits, Capacity, true);
 | |
|     clear_unused_bits();
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   BitVector &set(unsigned Idx) {
 | |
|     Bits[Idx / BITWORD_SIZE] |= 1L << (Idx % BITWORD_SIZE);
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   BitVector &reset() {
 | |
|     init_words(Bits, Capacity, false);
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   BitVector &reset(unsigned Idx) {
 | |
|     Bits[Idx / BITWORD_SIZE] &= ~(1L << (Idx % BITWORD_SIZE));
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   BitVector &flip() {
 | |
|     for (unsigned i = 0; i < NumBitWords(size()); ++i)
 | |
|       Bits[i] = ~Bits[i];
 | |
|     clear_unused_bits();
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   BitVector &flip(unsigned Idx) {
 | |
|     Bits[Idx / BITWORD_SIZE] ^= 1L << (Idx % BITWORD_SIZE);
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   // No argument flip.
 | |
|   BitVector operator~() const {
 | |
|     return BitVector(*this).flip();
 | |
|   }
 | |
| 
 | |
|   // Indexing.
 | |
|   reference operator[](unsigned Idx) {
 | |
|     assert (Idx < Size && "Out-of-bounds Bit access.");
 | |
|     return reference(*this, Idx);
 | |
|   }
 | |
| 
 | |
|   bool operator[](unsigned Idx) const {
 | |
|     assert (Idx < Size && "Out-of-bounds Bit access.");
 | |
|     BitWord Mask = 1L << (Idx % BITWORD_SIZE);
 | |
|     return (Bits[Idx / BITWORD_SIZE] & Mask) != 0;
 | |
|   }
 | |
| 
 | |
|   bool test(unsigned Idx) const {
 | |
|     return (*this)[Idx];
 | |
|   }
 | |
| 
 | |
|   // Comparison operators.
 | |
|   bool operator==(const BitVector &RHS) const {
 | |
|     unsigned ThisWords = NumBitWords(size());
 | |
|     unsigned RHSWords  = NumBitWords(RHS.size());
 | |
|     unsigned i;
 | |
|     for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
 | |
|       if (Bits[i] != RHS.Bits[i])
 | |
|         return false;
 | |
| 
 | |
|     // Verify that any extra words are all zeros.
 | |
|     if (i != ThisWords) {
 | |
|       for (; i != ThisWords; ++i)
 | |
|         if (Bits[i])
 | |
|           return false;
 | |
|     } else if (i != RHSWords) {
 | |
|       for (; i != RHSWords; ++i)
 | |
|         if (RHS.Bits[i])
 | |
|           return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool operator!=(const BitVector &RHS) const {
 | |
|     return !(*this == RHS);
 | |
|   }
 | |
| 
 | |
|   // Intersection, union, disjoint union.
 | |
|   BitVector &operator&=(const BitVector &RHS) {
 | |
|     unsigned ThisWords = NumBitWords(size());
 | |
|     unsigned RHSWords  = NumBitWords(RHS.size());
 | |
|     unsigned i;
 | |
|     for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
 | |
|       Bits[i] &= RHS.Bits[i];
 | |
| 
 | |
|     // Any bits that are just in this bitvector become zero, because they aren't
 | |
|     // in the RHS bit vector.  Any words only in RHS are ignored because they
 | |
|     // are already zero in the LHS.
 | |
|     for (; i != ThisWords; ++i)
 | |
|       Bits[i] = 0;
 | |
| 
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   // reset - Reset bits that are set in RHS. Same as *this &= ~RHS.
 | |
|   BitVector &reset(const BitVector &RHS) {
 | |
|     unsigned ThisWords = NumBitWords(size());
 | |
|     unsigned RHSWords  = NumBitWords(RHS.size());
 | |
|     unsigned i;
 | |
|     for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
 | |
|       Bits[i] &= ~RHS.Bits[i];
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   BitVector &operator|=(const BitVector &RHS) {
 | |
|     if (size() < RHS.size())
 | |
|       resize(RHS.size());
 | |
|     for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
 | |
|       Bits[i] |= RHS.Bits[i];
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   BitVector &operator^=(const BitVector &RHS) {
 | |
|     if (size() < RHS.size())
 | |
|       resize(RHS.size());
 | |
|     for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
 | |
|       Bits[i] ^= RHS.Bits[i];
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   // Assignment operator.
 | |
|   const BitVector &operator=(const BitVector &RHS) {
 | |
|     if (this == &RHS) return *this;
 | |
| 
 | |
|     Size = RHS.size();
 | |
|     unsigned RHSWords = NumBitWords(Size);
 | |
|     if (Size <= Capacity * BITWORD_SIZE) {
 | |
|       if (Size)
 | |
|         std::memcpy(Bits, RHS.Bits, RHSWords * sizeof(BitWord));
 | |
|       clear_unused_bits();
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     // Grow the bitvector to have enough elements.
 | |
|     Capacity = RHSWords;
 | |
|     BitWord *NewBits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
 | |
|     std::memcpy(NewBits, RHS.Bits, Capacity * sizeof(BitWord));
 | |
| 
 | |
|     // Destroy the old bits.
 | |
|     std::free(Bits);
 | |
|     Bits = NewBits;
 | |
| 
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   void swap(BitVector &RHS) {
 | |
|     std::swap(Bits, RHS.Bits);
 | |
|     std::swap(Size, RHS.Size);
 | |
|     std::swap(Capacity, RHS.Capacity);
 | |
|   }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Portable bit mask operations.
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   //
 | |
|   // These methods all operate on arrays of uint32_t, each holding 32 bits. The
 | |
|   // fixed word size makes it easier to work with literal bit vector constants
 | |
|   // in portable code.
 | |
|   //
 | |
|   // The LSB in each word is the lowest numbered bit.  The size of a portable
 | |
|   // bit mask is always a whole multiple of 32 bits.  If no bit mask size is
 | |
|   // given, the bit mask is assumed to cover the entire BitVector.
 | |
| 
 | |
|   /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize.
 | |
|   /// This computes "*this |= Mask".
 | |
|   void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
 | |
|     applyMask<true, false>(Mask, MaskWords);
 | |
|   }
 | |
| 
 | |
|   /// clearBitsInMask - Clear any bits in this vector that are set in Mask.
 | |
|   /// Don't resize. This computes "*this &= ~Mask".
 | |
|   void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
 | |
|     applyMask<false, false>(Mask, MaskWords);
 | |
|   }
 | |
| 
 | |
|   /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask.
 | |
|   /// Don't resize.  This computes "*this |= ~Mask".
 | |
|   void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
 | |
|     applyMask<true, true>(Mask, MaskWords);
 | |
|   }
 | |
| 
 | |
|   /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask.
 | |
|   /// Don't resize.  This computes "*this &= Mask".
 | |
|   void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
 | |
|     applyMask<false, true>(Mask, MaskWords);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   unsigned NumBitWords(unsigned S) const {
 | |
|     return (S + BITWORD_SIZE-1) / BITWORD_SIZE;
 | |
|   }
 | |
| 
 | |
|   // Set the unused bits in the high words.
 | |
|   void set_unused_bits(bool t = true) {
 | |
|     //  Set high words first.
 | |
|     unsigned UsedWords = NumBitWords(Size);
 | |
|     if (Capacity > UsedWords)
 | |
|       init_words(&Bits[UsedWords], (Capacity-UsedWords), t);
 | |
| 
 | |
|     //  Then set any stray high bits of the last used word.
 | |
|     unsigned ExtraBits = Size % BITWORD_SIZE;
 | |
|     if (ExtraBits) {
 | |
|       Bits[UsedWords-1] &= ~(~0L << ExtraBits);
 | |
|       Bits[UsedWords-1] |= (0 - (BitWord)t) << ExtraBits;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Clear the unused bits in the high words.
 | |
|   void clear_unused_bits() {
 | |
|     set_unused_bits(false);
 | |
|   }
 | |
| 
 | |
|   void grow(unsigned NewSize) {
 | |
|     Capacity = std::max(NumBitWords(NewSize), Capacity * 2);
 | |
|     Bits = (BitWord *)std::realloc(Bits, Capacity * sizeof(BitWord));
 | |
| 
 | |
|     clear_unused_bits();
 | |
|   }
 | |
| 
 | |
|   void init_words(BitWord *B, unsigned NumWords, bool t) {
 | |
|     memset(B, 0 - (int)t, NumWords*sizeof(BitWord));
 | |
|   }
 | |
| 
 | |
|   template<bool AddBits, bool InvertMask>
 | |
|   void applyMask(const uint32_t *Mask, unsigned MaskWords) {
 | |
|     assert(BITWORD_SIZE % 32 == 0 && "Unsupported BitWord size.");
 | |
|     MaskWords = std::min(MaskWords, (size() + 31) / 32);
 | |
|     const unsigned Scale = BITWORD_SIZE / 32;
 | |
|     unsigned i;
 | |
|     for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) {
 | |
|       BitWord BW = Bits[i];
 | |
|       // This inner loop should unroll completely when BITWORD_SIZE > 32.
 | |
|       for (unsigned b = 0; b != BITWORD_SIZE; b += 32) {
 | |
|         uint32_t M = *Mask++;
 | |
|         if (InvertMask) M = ~M;
 | |
|         if (AddBits) BW |=   BitWord(M) << b;
 | |
|         else         BW &= ~(BitWord(M) << b);
 | |
|       }
 | |
|       Bits[i] = BW;
 | |
|     }
 | |
|     for (unsigned b = 0; MaskWords; b += 32, --MaskWords) {
 | |
|       uint32_t M = *Mask++;
 | |
|       if (InvertMask) M = ~M;
 | |
|       if (AddBits) Bits[i] |=   BitWord(M) << b;
 | |
|       else         Bits[i] &= ~(BitWord(M) << b);
 | |
|     }
 | |
|     if (AddBits)
 | |
|       clear_unused_bits();
 | |
|   }
 | |
| };
 | |
| 
 | |
| inline BitVector operator&(const BitVector &LHS, const BitVector &RHS) {
 | |
|   BitVector Result(LHS);
 | |
|   Result &= RHS;
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| inline BitVector operator|(const BitVector &LHS, const BitVector &RHS) {
 | |
|   BitVector Result(LHS);
 | |
|   Result |= RHS;
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| inline BitVector operator^(const BitVector &LHS, const BitVector &RHS) {
 | |
|   BitVector Result(LHS);
 | |
|   Result ^= RHS;
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| } // End llvm namespace
 | |
| 
 | |
| namespace std {
 | |
|   /// Implement std::swap in terms of BitVector swap.
 | |
|   inline void
 | |
|   swap(llvm::BitVector &LHS, llvm::BitVector &RHS) {
 | |
|     LHS.swap(RHS);
 | |
|   }
 | |
| }
 | |
| 
 | |
| #endif
 |