mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	register number. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134309 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1795 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1795 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the generic RegisterCoalescer interface which
 | 
						|
// is used as the common interface used by all clients and
 | 
						|
// implementations of register coalescing.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "regcoalescing"
 | 
						|
#include "RegisterCoalescer.h"
 | 
						|
#include "VirtRegMap.h"
 | 
						|
#include "LiveDebugVariables.h"
 | 
						|
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Value.h"
 | 
						|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineLoopInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/ADT/OwningPtr.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cmath>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(numJoins    , "Number of interval joins performed");
 | 
						|
STATISTIC(numCrossRCs , "Number of cross class joins performed");
 | 
						|
STATISTIC(numCommutes , "Number of instruction commuting performed");
 | 
						|
STATISTIC(numExtends  , "Number of copies extended");
 | 
						|
STATISTIC(NumReMats   , "Number of instructions re-materialized");
 | 
						|
STATISTIC(numPeep     , "Number of identity moves eliminated after coalescing");
 | 
						|
STATISTIC(numAborts   , "Number of times interval joining aborted");
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
EnableJoining("join-liveintervals",
 | 
						|
              cl::desc("Coalesce copies (default=true)"),
 | 
						|
              cl::init(true));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
DisableCrossClassJoin("disable-cross-class-join",
 | 
						|
               cl::desc("Avoid coalescing cross register class copies"),
 | 
						|
               cl::init(false), cl::Hidden);
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
EnablePhysicalJoin("join-physregs",
 | 
						|
                   cl::desc("Join physical register copies"),
 | 
						|
                   cl::init(false), cl::Hidden);
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
VerifyCoalescing("verify-coalescing",
 | 
						|
         cl::desc("Verify machine instrs before and after register coalescing"),
 | 
						|
         cl::Hidden);
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
 | 
						|
                      "Simple Register Coalescing", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(PHIElimination)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TwoAddressInstructionPass)
 | 
						|
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | 
						|
INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
 | 
						|
                    "Simple Register Coalescing", false, false)
 | 
						|
 | 
						|
char RegisterCoalescer::ID = 0;
 | 
						|
 | 
						|
static unsigned compose(const TargetRegisterInfo &tri, unsigned a, unsigned b) {
 | 
						|
  if (!a) return b;
 | 
						|
  if (!b) return a;
 | 
						|
  return tri.composeSubRegIndices(a, b);
 | 
						|
}
 | 
						|
 | 
						|
static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
 | 
						|
                        unsigned &Src, unsigned &Dst,
 | 
						|
                        unsigned &SrcSub, unsigned &DstSub) {
 | 
						|
  if (MI->isCopy()) {
 | 
						|
    Dst = MI->getOperand(0).getReg();
 | 
						|
    DstSub = MI->getOperand(0).getSubReg();
 | 
						|
    Src = MI->getOperand(1).getReg();
 | 
						|
    SrcSub = MI->getOperand(1).getSubReg();
 | 
						|
  } else if (MI->isSubregToReg()) {
 | 
						|
    Dst = MI->getOperand(0).getReg();
 | 
						|
    DstSub = compose(tri, MI->getOperand(0).getSubReg(),
 | 
						|
                     MI->getOperand(3).getImm());
 | 
						|
    Src = MI->getOperand(2).getReg();
 | 
						|
    SrcSub = MI->getOperand(2).getSubReg();
 | 
						|
  } else
 | 
						|
    return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool CoalescerPair::setRegisters(const MachineInstr *MI) {
 | 
						|
  srcReg_ = dstReg_ = subIdx_ = 0;
 | 
						|
  newRC_ = 0;
 | 
						|
  flipped_ = crossClass_ = false;
 | 
						|
 | 
						|
  unsigned Src, Dst, SrcSub, DstSub;
 | 
						|
  if (!isMoveInstr(tri_, MI, Src, Dst, SrcSub, DstSub))
 | 
						|
    return false;
 | 
						|
  partial_ = SrcSub || DstSub;
 | 
						|
 | 
						|
  // If one register is a physreg, it must be Dst.
 | 
						|
  if (TargetRegisterInfo::isPhysicalRegister(Src)) {
 | 
						|
    if (TargetRegisterInfo::isPhysicalRegister(Dst))
 | 
						|
      return false;
 | 
						|
    std::swap(Src, Dst);
 | 
						|
    std::swap(SrcSub, DstSub);
 | 
						|
    flipped_ = true;
 | 
						|
  }
 | 
						|
 | 
						|
  const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
 | 
						|
 | 
						|
  if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
 | 
						|
    // Eliminate DstSub on a physreg.
 | 
						|
    if (DstSub) {
 | 
						|
      Dst = tri_.getSubReg(Dst, DstSub);
 | 
						|
      if (!Dst) return false;
 | 
						|
      DstSub = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    // Eliminate SrcSub by picking a corresponding Dst superregister.
 | 
						|
    if (SrcSub) {
 | 
						|
      Dst = tri_.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
 | 
						|
      if (!Dst) return false;
 | 
						|
      SrcSub = 0;
 | 
						|
    } else if (!MRI.getRegClass(Src)->contains(Dst)) {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Both registers are virtual.
 | 
						|
 | 
						|
    // Both registers have subreg indices.
 | 
						|
    if (SrcSub && DstSub) {
 | 
						|
      // For now we only handle the case of identical indices in commensurate
 | 
						|
      // registers: Dreg:ssub_1 + Dreg:ssub_1 -> Dreg
 | 
						|
      // FIXME: Handle Qreg:ssub_3 + Dreg:ssub_1 as QReg:dsub_1 + Dreg.
 | 
						|
      if (SrcSub != DstSub)
 | 
						|
        return false;
 | 
						|
      const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
 | 
						|
      const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
 | 
						|
      if (!getCommonSubClass(DstRC, SrcRC))
 | 
						|
        return false;
 | 
						|
      SrcSub = DstSub = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    // There can be no SrcSub.
 | 
						|
    if (SrcSub) {
 | 
						|
      std::swap(Src, Dst);
 | 
						|
      DstSub = SrcSub;
 | 
						|
      SrcSub = 0;
 | 
						|
      assert(!flipped_ && "Unexpected flip");
 | 
						|
      flipped_ = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Find the new register class.
 | 
						|
    const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
 | 
						|
    const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
 | 
						|
    if (DstSub)
 | 
						|
      newRC_ = tri_.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
 | 
						|
    else
 | 
						|
      newRC_ = getCommonSubClass(DstRC, SrcRC);
 | 
						|
    if (!newRC_)
 | 
						|
      return false;
 | 
						|
    crossClass_ = newRC_ != DstRC || newRC_ != SrcRC;
 | 
						|
  }
 | 
						|
  // Check our invariants
 | 
						|
  assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
 | 
						|
  assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
 | 
						|
         "Cannot have a physical SubIdx");
 | 
						|
  srcReg_ = Src;
 | 
						|
  dstReg_ = Dst;
 | 
						|
  subIdx_ = DstSub;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool CoalescerPair::flip() {
 | 
						|
  if (subIdx_ || TargetRegisterInfo::isPhysicalRegister(dstReg_))
 | 
						|
    return false;
 | 
						|
  std::swap(srcReg_, dstReg_);
 | 
						|
  flipped_ = !flipped_;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
 | 
						|
  if (!MI)
 | 
						|
    return false;
 | 
						|
  unsigned Src, Dst, SrcSub, DstSub;
 | 
						|
  if (!isMoveInstr(tri_, MI, Src, Dst, SrcSub, DstSub))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Find the virtual register that is srcReg_.
 | 
						|
  if (Dst == srcReg_) {
 | 
						|
    std::swap(Src, Dst);
 | 
						|
    std::swap(SrcSub, DstSub);
 | 
						|
  } else if (Src != srcReg_) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Now check that Dst matches dstReg_.
 | 
						|
  if (TargetRegisterInfo::isPhysicalRegister(dstReg_)) {
 | 
						|
    if (!TargetRegisterInfo::isPhysicalRegister(Dst))
 | 
						|
      return false;
 | 
						|
    assert(!subIdx_ && "Inconsistent CoalescerPair state.");
 | 
						|
    // DstSub could be set for a physreg from INSERT_SUBREG.
 | 
						|
    if (DstSub)
 | 
						|
      Dst = tri_.getSubReg(Dst, DstSub);
 | 
						|
    // Full copy of Src.
 | 
						|
    if (!SrcSub)
 | 
						|
      return dstReg_ == Dst;
 | 
						|
    // This is a partial register copy. Check that the parts match.
 | 
						|
    return tri_.getSubReg(dstReg_, SrcSub) == Dst;
 | 
						|
  } else {
 | 
						|
    // dstReg_ is virtual.
 | 
						|
    if (dstReg_ != Dst)
 | 
						|
      return false;
 | 
						|
    // Registers match, do the subregisters line up?
 | 
						|
    return compose(tri_, subIdx_, SrcSub) == DstSub;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.setPreservesCFG();
 | 
						|
  AU.addRequired<AliasAnalysis>();
 | 
						|
  AU.addRequired<LiveIntervals>();
 | 
						|
  AU.addPreserved<LiveIntervals>();
 | 
						|
  AU.addRequired<LiveDebugVariables>();
 | 
						|
  AU.addPreserved<LiveDebugVariables>();
 | 
						|
  AU.addPreserved<SlotIndexes>();
 | 
						|
  AU.addRequired<MachineLoopInfo>();
 | 
						|
  AU.addPreserved<MachineLoopInfo>();
 | 
						|
  AU.addPreservedID(MachineDominatorsID);
 | 
						|
  AU.addPreservedID(StrongPHIEliminationID);
 | 
						|
  AU.addPreservedID(PHIEliminationID);
 | 
						|
  AU.addPreservedID(TwoAddressInstructionPassID);
 | 
						|
  MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
}
 | 
						|
 | 
						|
void RegisterCoalescer::markAsJoined(MachineInstr *CopyMI) {
 | 
						|
  /// Joined copies are not deleted immediately, but kept in JoinedCopies.
 | 
						|
  JoinedCopies.insert(CopyMI);
 | 
						|
 | 
						|
  /// Mark all register operands of CopyMI as <undef> so they won't affect dead
 | 
						|
  /// code elimination.
 | 
						|
  for (MachineInstr::mop_iterator I = CopyMI->operands_begin(),
 | 
						|
       E = CopyMI->operands_end(); I != E; ++I)
 | 
						|
    if (I->isReg())
 | 
						|
      I->setIsUndef(true);
 | 
						|
}
 | 
						|
 | 
						|
/// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
 | 
						|
/// being the source and IntB being the dest, thus this defines a value number
 | 
						|
/// in IntB.  If the source value number (in IntA) is defined by a copy from B,
 | 
						|
/// see if we can merge these two pieces of B into a single value number,
 | 
						|
/// eliminating a copy.  For example:
 | 
						|
///
 | 
						|
///  A3 = B0
 | 
						|
///    ...
 | 
						|
///  B1 = A3      <- this copy
 | 
						|
///
 | 
						|
/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
 | 
						|
/// value number to be replaced with B0 (which simplifies the B liveinterval).
 | 
						|
///
 | 
						|
/// This returns true if an interval was modified.
 | 
						|
///
 | 
						|
bool RegisterCoalescer::AdjustCopiesBackFrom(const CoalescerPair &CP,
 | 
						|
                                                    MachineInstr *CopyMI) {
 | 
						|
  // Bail if there is no dst interval - can happen when merging physical subreg
 | 
						|
  // operations.
 | 
						|
  if (!li_->hasInterval(CP.getDstReg()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  LiveInterval &IntA =
 | 
						|
    li_->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
 | 
						|
  LiveInterval &IntB =
 | 
						|
    li_->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
 | 
						|
  SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getDefIndex();
 | 
						|
 | 
						|
  // BValNo is a value number in B that is defined by a copy from A.  'B3' in
 | 
						|
  // the example above.
 | 
						|
  LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
 | 
						|
  if (BLR == IntB.end()) return false;
 | 
						|
  VNInfo *BValNo = BLR->valno;
 | 
						|
 | 
						|
  // Get the location that B is defined at.  Two options: either this value has
 | 
						|
  // an unknown definition point or it is defined at CopyIdx.  If unknown, we
 | 
						|
  // can't process it.
 | 
						|
  if (!BValNo->isDefByCopy()) return false;
 | 
						|
  assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
 | 
						|
 | 
						|
  // AValNo is the value number in A that defines the copy, A3 in the example.
 | 
						|
  SlotIndex CopyUseIdx = CopyIdx.getUseIndex();
 | 
						|
  LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
 | 
						|
  // The live range might not exist after fun with physreg coalescing.
 | 
						|
  if (ALR == IntA.end()) return false;
 | 
						|
  VNInfo *AValNo = ALR->valno;
 | 
						|
  // If it's re-defined by an early clobber somewhere in the live range, then
 | 
						|
  // it's not safe to eliminate the copy. FIXME: This is a temporary workaround.
 | 
						|
  // See PR3149:
 | 
						|
  // 172     %ECX<def> = MOV32rr %reg1039<kill>
 | 
						|
  // 180     INLINEASM <es:subl $5,$1
 | 
						|
  //         sbbl $3,$0>, 10, %EAX<def>, 14, %ECX<earlyclobber,def>, 9,
 | 
						|
  //         %EAX<kill>,
 | 
						|
  // 36, <fi#0>, 1, %reg0, 0, 9, %ECX<kill>, 36, <fi#1>, 1, %reg0, 0
 | 
						|
  // 188     %EAX<def> = MOV32rr %EAX<kill>
 | 
						|
  // 196     %ECX<def> = MOV32rr %ECX<kill>
 | 
						|
  // 204     %ECX<def> = MOV32rr %ECX<kill>
 | 
						|
  // 212     %EAX<def> = MOV32rr %EAX<kill>
 | 
						|
  // 220     %EAX<def> = MOV32rr %EAX
 | 
						|
  // 228     %reg1039<def> = MOV32rr %ECX<kill>
 | 
						|
  // The early clobber operand ties ECX input to the ECX def.
 | 
						|
  //
 | 
						|
  // The live interval of ECX is represented as this:
 | 
						|
  // %reg20,inf = [46,47:1)[174,230:0)  0@174-(230) 1@46-(47)
 | 
						|
  // The coalescer has no idea there was a def in the middle of [174,230].
 | 
						|
  if (AValNo->hasRedefByEC())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If AValNo is defined as a copy from IntB, we can potentially process this.
 | 
						|
  // Get the instruction that defines this value number.
 | 
						|
  if (!CP.isCoalescable(AValNo->getCopy()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Get the LiveRange in IntB that this value number starts with.
 | 
						|
  LiveInterval::iterator ValLR =
 | 
						|
    IntB.FindLiveRangeContaining(AValNo->def.getPrevSlot());
 | 
						|
  if (ValLR == IntB.end())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Make sure that the end of the live range is inside the same block as
 | 
						|
  // CopyMI.
 | 
						|
  MachineInstr *ValLREndInst =
 | 
						|
    li_->getInstructionFromIndex(ValLR->end.getPrevSlot());
 | 
						|
  if (!ValLREndInst || ValLREndInst->getParent() != CopyMI->getParent())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Okay, we now know that ValLR ends in the same block that the CopyMI
 | 
						|
  // live-range starts.  If there are no intervening live ranges between them in
 | 
						|
  // IntB, we can merge them.
 | 
						|
  if (ValLR+1 != BLR) return false;
 | 
						|
 | 
						|
  // If a live interval is a physical register, conservatively check if any
 | 
						|
  // of its aliases is overlapping the live interval of the virtual register.
 | 
						|
  // If so, do not coalesce.
 | 
						|
  if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
 | 
						|
    for (const unsigned *AS = tri_->getAliasSet(IntB.reg); *AS; ++AS)
 | 
						|
      if (li_->hasInterval(*AS) && IntA.overlaps(li_->getInterval(*AS))) {
 | 
						|
        DEBUG({
 | 
						|
            dbgs() << "\t\tInterfere with alias ";
 | 
						|
            li_->getInterval(*AS).print(dbgs(), tri_);
 | 
						|
          });
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG({
 | 
						|
      dbgs() << "Extending: ";
 | 
						|
      IntB.print(dbgs(), tri_);
 | 
						|
    });
 | 
						|
 | 
						|
  SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
 | 
						|
  // We are about to delete CopyMI, so need to remove it as the 'instruction
 | 
						|
  // that defines this value #'. Update the valnum with the new defining
 | 
						|
  // instruction #.
 | 
						|
  BValNo->def  = FillerStart;
 | 
						|
  BValNo->setCopy(0);
 | 
						|
 | 
						|
  // Okay, we can merge them.  We need to insert a new liverange:
 | 
						|
  // [ValLR.end, BLR.begin) of either value number, then we merge the
 | 
						|
  // two value numbers.
 | 
						|
  IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
 | 
						|
 | 
						|
  // If the IntB live range is assigned to a physical register, and if that
 | 
						|
  // physreg has sub-registers, update their live intervals as well.
 | 
						|
  if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
 | 
						|
    for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
 | 
						|
      if (!li_->hasInterval(*SR))
 | 
						|
        continue;
 | 
						|
      LiveInterval &SRLI = li_->getInterval(*SR);
 | 
						|
      SRLI.addRange(LiveRange(FillerStart, FillerEnd,
 | 
						|
                              SRLI.getNextValue(FillerStart, 0,
 | 
						|
                                                li_->getVNInfoAllocator())));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, merge "B1" into the same value number as "B0".
 | 
						|
  if (BValNo != ValLR->valno) {
 | 
						|
    // If B1 is killed by a PHI, then the merged live range must also be killed
 | 
						|
    // by the same PHI, as B0 and B1 can not overlap.
 | 
						|
    bool HasPHIKill = BValNo->hasPHIKill();
 | 
						|
    IntB.MergeValueNumberInto(BValNo, ValLR->valno);
 | 
						|
    if (HasPHIKill)
 | 
						|
      ValLR->valno->setHasPHIKill(true);
 | 
						|
  }
 | 
						|
  DEBUG({
 | 
						|
      dbgs() << "   result = ";
 | 
						|
      IntB.print(dbgs(), tri_);
 | 
						|
      dbgs() << "\n";
 | 
						|
    });
 | 
						|
 | 
						|
  // If the source instruction was killing the source register before the
 | 
						|
  // merge, unset the isKill marker given the live range has been extended.
 | 
						|
  int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
 | 
						|
  if (UIdx != -1) {
 | 
						|
    ValLREndInst->getOperand(UIdx).setIsKill(false);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the copy instruction was killing the destination register before the
 | 
						|
  // merge, find the last use and trim the live range. That will also add the
 | 
						|
  // isKill marker.
 | 
						|
  if (ALR->end == CopyIdx)
 | 
						|
    li_->shrinkToUses(&IntA);
 | 
						|
 | 
						|
  ++numExtends;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// HasOtherReachingDefs - Return true if there are definitions of IntB
 | 
						|
/// other than BValNo val# that can reach uses of AValno val# of IntA.
 | 
						|
bool RegisterCoalescer::HasOtherReachingDefs(LiveInterval &IntA,
 | 
						|
                                                    LiveInterval &IntB,
 | 
						|
                                                    VNInfo *AValNo,
 | 
						|
                                                    VNInfo *BValNo) {
 | 
						|
  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
 | 
						|
       AI != AE; ++AI) {
 | 
						|
    if (AI->valno != AValNo) continue;
 | 
						|
    LiveInterval::Ranges::iterator BI =
 | 
						|
      std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
 | 
						|
    if (BI != IntB.ranges.begin())
 | 
						|
      --BI;
 | 
						|
    for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
 | 
						|
      if (BI->valno == BValNo)
 | 
						|
        continue;
 | 
						|
      if (BI->start <= AI->start && BI->end > AI->start)
 | 
						|
        return true;
 | 
						|
      if (BI->start > AI->start && BI->start < AI->end)
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with
 | 
						|
/// IntA being the source and IntB being the dest, thus this defines a value
 | 
						|
/// number in IntB.  If the source value number (in IntA) is defined by a
 | 
						|
/// commutable instruction and its other operand is coalesced to the copy dest
 | 
						|
/// register, see if we can transform the copy into a noop by commuting the
 | 
						|
/// definition. For example,
 | 
						|
///
 | 
						|
///  A3 = op A2 B0<kill>
 | 
						|
///    ...
 | 
						|
///  B1 = A3      <- this copy
 | 
						|
///    ...
 | 
						|
///     = op A3   <- more uses
 | 
						|
///
 | 
						|
/// ==>
 | 
						|
///
 | 
						|
///  B2 = op B0 A2<kill>
 | 
						|
///    ...
 | 
						|
///  B1 = B2      <- now an identify copy
 | 
						|
///    ...
 | 
						|
///     = op B2   <- more uses
 | 
						|
///
 | 
						|
/// This returns true if an interval was modified.
 | 
						|
///
 | 
						|
bool RegisterCoalescer::RemoveCopyByCommutingDef(const CoalescerPair &CP,
 | 
						|
                                                        MachineInstr *CopyMI) {
 | 
						|
  // FIXME: For now, only eliminate the copy by commuting its def when the
 | 
						|
  // source register is a virtual register. We want to guard against cases
 | 
						|
  // where the copy is a back edge copy and commuting the def lengthen the
 | 
						|
  // live interval of the source register to the entire loop.
 | 
						|
  if (CP.isPhys() && CP.isFlipped())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Bail if there is no dst interval.
 | 
						|
  if (!li_->hasInterval(CP.getDstReg()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getDefIndex();
 | 
						|
 | 
						|
  LiveInterval &IntA =
 | 
						|
    li_->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
 | 
						|
  LiveInterval &IntB =
 | 
						|
    li_->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
 | 
						|
 | 
						|
  // BValNo is a value number in B that is defined by a copy from A. 'B3' in
 | 
						|
  // the example above.
 | 
						|
  VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
 | 
						|
  if (!BValNo || !BValNo->isDefByCopy())
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
 | 
						|
 | 
						|
  // AValNo is the value number in A that defines the copy, A3 in the example.
 | 
						|
  VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getUseIndex());
 | 
						|
  assert(AValNo && "COPY source not live");
 | 
						|
 | 
						|
  // If other defs can reach uses of this def, then it's not safe to perform
 | 
						|
  // the optimization.
 | 
						|
  if (AValNo->isPHIDef() || AValNo->isUnused() || AValNo->hasPHIKill())
 | 
						|
    return false;
 | 
						|
  MachineInstr *DefMI = li_->getInstructionFromIndex(AValNo->def);
 | 
						|
  if (!DefMI)
 | 
						|
    return false;
 | 
						|
  const MCInstrDesc &MCID = DefMI->getDesc();
 | 
						|
  if (!MCID.isCommutable())
 | 
						|
    return false;
 | 
						|
  // If DefMI is a two-address instruction then commuting it will change the
 | 
						|
  // destination register.
 | 
						|
  int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
 | 
						|
  assert(DefIdx != -1);
 | 
						|
  unsigned UseOpIdx;
 | 
						|
  if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
 | 
						|
    return false;
 | 
						|
  unsigned Op1, Op2, NewDstIdx;
 | 
						|
  if (!tii_->findCommutedOpIndices(DefMI, Op1, Op2))
 | 
						|
    return false;
 | 
						|
  if (Op1 == UseOpIdx)
 | 
						|
    NewDstIdx = Op2;
 | 
						|
  else if (Op2 == UseOpIdx)
 | 
						|
    NewDstIdx = Op1;
 | 
						|
  else
 | 
						|
    return false;
 | 
						|
 | 
						|
  MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
 | 
						|
  unsigned NewReg = NewDstMO.getReg();
 | 
						|
  if (NewReg != IntB.reg || !NewDstMO.isKill())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Make sure there are no other definitions of IntB that would reach the
 | 
						|
  // uses which the new definition can reach.
 | 
						|
  if (HasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Abort if the aliases of IntB.reg have values that are not simply the
 | 
						|
  // clobbers from the superreg.
 | 
						|
  if (TargetRegisterInfo::isPhysicalRegister(IntB.reg))
 | 
						|
    for (const unsigned *AS = tri_->getAliasSet(IntB.reg); *AS; ++AS)
 | 
						|
      if (li_->hasInterval(*AS) &&
 | 
						|
          HasOtherReachingDefs(IntA, li_->getInterval(*AS), AValNo, 0))
 | 
						|
        return false;
 | 
						|
 | 
						|
  // If some of the uses of IntA.reg is already coalesced away, return false.
 | 
						|
  // It's not possible to determine whether it's safe to perform the coalescing.
 | 
						|
  for (MachineRegisterInfo::use_nodbg_iterator UI = 
 | 
						|
         mri_->use_nodbg_begin(IntA.reg), 
 | 
						|
       UE = mri_->use_nodbg_end(); UI != UE; ++UI) {
 | 
						|
    MachineInstr *UseMI = &*UI;
 | 
						|
    SlotIndex UseIdx = li_->getInstructionIndex(UseMI);
 | 
						|
    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
 | 
						|
    if (ULR == IntA.end())
 | 
						|
      continue;
 | 
						|
    if (ULR->valno == AValNo && JoinedCopies.count(UseMI))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "\tRemoveCopyByCommutingDef: " << AValNo->def << '\t'
 | 
						|
               << *DefMI);
 | 
						|
 | 
						|
  // At this point we have decided that it is legal to do this
 | 
						|
  // transformation.  Start by commuting the instruction.
 | 
						|
  MachineBasicBlock *MBB = DefMI->getParent();
 | 
						|
  MachineInstr *NewMI = tii_->commuteInstruction(DefMI);
 | 
						|
  if (!NewMI)
 | 
						|
    return false;
 | 
						|
  if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
 | 
						|
      TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
 | 
						|
      !mri_->constrainRegClass(IntB.reg, mri_->getRegClass(IntA.reg)))
 | 
						|
    return false;
 | 
						|
  if (NewMI != DefMI) {
 | 
						|
    li_->ReplaceMachineInstrInMaps(DefMI, NewMI);
 | 
						|
    MBB->insert(DefMI, NewMI);
 | 
						|
    MBB->erase(DefMI);
 | 
						|
  }
 | 
						|
  unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
 | 
						|
  NewMI->getOperand(OpIdx).setIsKill();
 | 
						|
 | 
						|
  // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
 | 
						|
  // A = or A, B
 | 
						|
  // ...
 | 
						|
  // B = A
 | 
						|
  // ...
 | 
						|
  // C = A<kill>
 | 
						|
  // ...
 | 
						|
  //   = B
 | 
						|
 | 
						|
  // Update uses of IntA of the specific Val# with IntB.
 | 
						|
  for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg),
 | 
						|
         UE = mri_->use_end(); UI != UE;) {
 | 
						|
    MachineOperand &UseMO = UI.getOperand();
 | 
						|
    MachineInstr *UseMI = &*UI;
 | 
						|
    ++UI;
 | 
						|
    if (JoinedCopies.count(UseMI))
 | 
						|
      continue;
 | 
						|
    if (UseMI->isDebugValue()) {
 | 
						|
      // FIXME These don't have an instruction index.  Not clear we have enough
 | 
						|
      // info to decide whether to do this replacement or not.  For now do it.
 | 
						|
      UseMO.setReg(NewReg);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    SlotIndex UseIdx = li_->getInstructionIndex(UseMI).getUseIndex();
 | 
						|
    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
 | 
						|
    if (ULR == IntA.end() || ULR->valno != AValNo)
 | 
						|
      continue;
 | 
						|
    if (TargetRegisterInfo::isPhysicalRegister(NewReg))
 | 
						|
      UseMO.substPhysReg(NewReg, *tri_);
 | 
						|
    else
 | 
						|
      UseMO.setReg(NewReg);
 | 
						|
    if (UseMI == CopyMI)
 | 
						|
      continue;
 | 
						|
    if (!UseMI->isCopy())
 | 
						|
      continue;
 | 
						|
    if (UseMI->getOperand(0).getReg() != IntB.reg ||
 | 
						|
        UseMI->getOperand(0).getSubReg())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // This copy will become a noop. If it's defining a new val#, merge it into
 | 
						|
    // BValNo.
 | 
						|
    SlotIndex DefIdx = UseIdx.getDefIndex();
 | 
						|
    VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
 | 
						|
    if (!DVNI)
 | 
						|
      continue;
 | 
						|
    DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
 | 
						|
    assert(DVNI->def == DefIdx);
 | 
						|
    BValNo = IntB.MergeValueNumberInto(BValNo, DVNI);
 | 
						|
    markAsJoined(UseMI);
 | 
						|
  }
 | 
						|
 | 
						|
  // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
 | 
						|
  // is updated.
 | 
						|
  VNInfo *ValNo = BValNo;
 | 
						|
  ValNo->def = AValNo->def;
 | 
						|
  ValNo->setCopy(0);
 | 
						|
  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
 | 
						|
       AI != AE; ++AI) {
 | 
						|
    if (AI->valno != AValNo) continue;
 | 
						|
    IntB.addRange(LiveRange(AI->start, AI->end, ValNo));
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
 | 
						|
 | 
						|
  IntA.removeValNo(AValNo);
 | 
						|
  DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
 | 
						|
  ++numCommutes;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial
 | 
						|
/// computation, replace the copy by rematerialize the definition.
 | 
						|
bool RegisterCoalescer::ReMaterializeTrivialDef(LiveInterval &SrcInt,
 | 
						|
                                                       bool preserveSrcInt,
 | 
						|
                                                       unsigned DstReg,
 | 
						|
                                                       unsigned DstSubIdx,
 | 
						|
                                                       MachineInstr *CopyMI) {
 | 
						|
  SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getUseIndex();
 | 
						|
  LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
 | 
						|
  assert(SrcLR != SrcInt.end() && "Live range not found!");
 | 
						|
  VNInfo *ValNo = SrcLR->valno;
 | 
						|
  // If other defs can reach uses of this def, then it's not safe to perform
 | 
						|
  // the optimization.
 | 
						|
  if (ValNo->isPHIDef() || ValNo->isUnused() || ValNo->hasPHIKill())
 | 
						|
    return false;
 | 
						|
  MachineInstr *DefMI = li_->getInstructionFromIndex(ValNo->def);
 | 
						|
  if (!DefMI)
 | 
						|
    return false;
 | 
						|
  assert(DefMI && "Defining instruction disappeared");
 | 
						|
  const MCInstrDesc &MCID = DefMI->getDesc();
 | 
						|
  if (!MCID.isAsCheapAsAMove())
 | 
						|
    return false;
 | 
						|
  if (!tii_->isTriviallyReMaterializable(DefMI, AA))
 | 
						|
    return false;
 | 
						|
  bool SawStore = false;
 | 
						|
  if (!DefMI->isSafeToMove(tii_, AA, SawStore))
 | 
						|
    return false;
 | 
						|
  if (MCID.getNumDefs() != 1)
 | 
						|
    return false;
 | 
						|
  if (!DefMI->isImplicitDef()) {
 | 
						|
    // Make sure the copy destination register class fits the instruction
 | 
						|
    // definition register class. The mismatch can happen as a result of earlier
 | 
						|
    // extract_subreg, insert_subreg, subreg_to_reg coalescing.
 | 
						|
    const TargetRegisterClass *RC = tii_->getRegClass(MCID, 0, tri_);
 | 
						|
    if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
 | 
						|
      if (mri_->getRegClass(DstReg) != RC)
 | 
						|
        return false;
 | 
						|
    } else if (!RC->contains(DstReg))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If destination register has a sub-register index on it, make sure it
 | 
						|
  // matches the instruction register class.
 | 
						|
  if (DstSubIdx) {
 | 
						|
    const MCInstrDesc &MCID = DefMI->getDesc();
 | 
						|
    if (MCID.getNumDefs() != 1)
 | 
						|
      return false;
 | 
						|
    const TargetRegisterClass *DstRC = mri_->getRegClass(DstReg);
 | 
						|
    const TargetRegisterClass *DstSubRC =
 | 
						|
      DstRC->getSubRegisterRegClass(DstSubIdx);
 | 
						|
    const TargetRegisterClass *DefRC = tii_->getRegClass(MCID, 0, tri_);
 | 
						|
    if (DefRC == DstRC)
 | 
						|
      DstSubIdx = 0;
 | 
						|
    else if (DefRC != DstSubRC)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  RemoveCopyFlag(DstReg, CopyMI);
 | 
						|
 | 
						|
  MachineBasicBlock *MBB = CopyMI->getParent();
 | 
						|
  MachineBasicBlock::iterator MII =
 | 
						|
    llvm::next(MachineBasicBlock::iterator(CopyMI));
 | 
						|
  tii_->reMaterialize(*MBB, MII, DstReg, DstSubIdx, DefMI, *tri_);
 | 
						|
  MachineInstr *NewMI = prior(MII);
 | 
						|
 | 
						|
  // CopyMI may have implicit operands, transfer them over to the newly
 | 
						|
  // rematerialized instruction. And update implicit def interval valnos.
 | 
						|
  for (unsigned i = CopyMI->getDesc().getNumOperands(),
 | 
						|
         e = CopyMI->getNumOperands(); i != e; ++i) {
 | 
						|
    MachineOperand &MO = CopyMI->getOperand(i);
 | 
						|
    if (MO.isReg() && MO.isImplicit())
 | 
						|
      NewMI->addOperand(MO);
 | 
						|
    if (MO.isDef())
 | 
						|
      RemoveCopyFlag(MO.getReg(), CopyMI);
 | 
						|
  }
 | 
						|
 | 
						|
  NewMI->copyImplicitOps(CopyMI);
 | 
						|
  li_->ReplaceMachineInstrInMaps(CopyMI, NewMI);
 | 
						|
  CopyMI->eraseFromParent();
 | 
						|
  ReMatCopies.insert(CopyMI);
 | 
						|
  ReMatDefs.insert(DefMI);
 | 
						|
  DEBUG(dbgs() << "Remat: " << *NewMI);
 | 
						|
  ++NumReMats;
 | 
						|
 | 
						|
  // The source interval can become smaller because we removed a use.
 | 
						|
  if (preserveSrcInt)
 | 
						|
    li_->shrinkToUses(&SrcInt);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
 | 
						|
/// update the subregister number if it is not zero. If DstReg is a
 | 
						|
/// physical register and the existing subregister number of the def / use
 | 
						|
/// being updated is not zero, make sure to set it to the correct physical
 | 
						|
/// subregister.
 | 
						|
void
 | 
						|
RegisterCoalescer::UpdateRegDefsUses(const CoalescerPair &CP) {
 | 
						|
  bool DstIsPhys = CP.isPhys();
 | 
						|
  unsigned SrcReg = CP.getSrcReg();
 | 
						|
  unsigned DstReg = CP.getDstReg();
 | 
						|
  unsigned SubIdx = CP.getSubIdx();
 | 
						|
 | 
						|
  // Update LiveDebugVariables.
 | 
						|
  ldv_->renameRegister(SrcReg, DstReg, SubIdx);
 | 
						|
 | 
						|
  for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(SrcReg);
 | 
						|
       MachineInstr *UseMI = I.skipInstruction();) {
 | 
						|
    // A PhysReg copy that won't be coalesced can perhaps be rematerialized
 | 
						|
    // instead.
 | 
						|
    if (DstIsPhys) {
 | 
						|
      if (UseMI->isCopy() &&
 | 
						|
          !UseMI->getOperand(1).getSubReg() &&
 | 
						|
          !UseMI->getOperand(0).getSubReg() &&
 | 
						|
          UseMI->getOperand(1).getReg() == SrcReg &&
 | 
						|
          UseMI->getOperand(0).getReg() != SrcReg &&
 | 
						|
          UseMI->getOperand(0).getReg() != DstReg &&
 | 
						|
          !JoinedCopies.count(UseMI) &&
 | 
						|
          ReMaterializeTrivialDef(li_->getInterval(SrcReg), false,
 | 
						|
                                  UseMI->getOperand(0).getReg(), 0, UseMI))
 | 
						|
        continue;
 | 
						|
    }
 | 
						|
 | 
						|
    SmallVector<unsigned,8> Ops;
 | 
						|
    bool Reads, Writes;
 | 
						|
    tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
 | 
						|
    bool Kills = false, Deads = false;
 | 
						|
 | 
						|
    // Replace SrcReg with DstReg in all UseMI operands.
 | 
						|
    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
 | 
						|
      MachineOperand &MO = UseMI->getOperand(Ops[i]);
 | 
						|
      Kills |= MO.isKill();
 | 
						|
      Deads |= MO.isDead();
 | 
						|
 | 
						|
      if (DstIsPhys)
 | 
						|
        MO.substPhysReg(DstReg, *tri_);
 | 
						|
      else
 | 
						|
        MO.substVirtReg(DstReg, SubIdx, *tri_);
 | 
						|
    }
 | 
						|
 | 
						|
    // This instruction is a copy that will be removed.
 | 
						|
    if (JoinedCopies.count(UseMI))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (SubIdx) {
 | 
						|
      // If UseMI was a simple SrcReg def, make sure we didn't turn it into a
 | 
						|
      // read-modify-write of DstReg.
 | 
						|
      if (Deads)
 | 
						|
        UseMI->addRegisterDead(DstReg, tri_);
 | 
						|
      else if (!Reads && Writes)
 | 
						|
        UseMI->addRegisterDefined(DstReg, tri_);
 | 
						|
 | 
						|
      // Kill flags apply to the whole physical register.
 | 
						|
      if (DstIsPhys && Kills)
 | 
						|
        UseMI->addRegisterKilled(DstReg, tri_);
 | 
						|
    }
 | 
						|
 | 
						|
    DEBUG({
 | 
						|
        dbgs() << "\t\tupdated: ";
 | 
						|
        if (!UseMI->isDebugValue())
 | 
						|
          dbgs() << li_->getInstructionIndex(UseMI) << "\t";
 | 
						|
        dbgs() << *UseMI;
 | 
						|
      });
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// removeIntervalIfEmpty - Check if the live interval of a physical register
 | 
						|
/// is empty, if so remove it and also remove the empty intervals of its
 | 
						|
/// sub-registers. Return true if live interval is removed.
 | 
						|
static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *li_,
 | 
						|
                                  const TargetRegisterInfo *tri_) {
 | 
						|
  if (li.empty()) {
 | 
						|
    if (TargetRegisterInfo::isPhysicalRegister(li.reg))
 | 
						|
      for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
 | 
						|
        if (!li_->hasInterval(*SR))
 | 
						|
          continue;
 | 
						|
        LiveInterval &sli = li_->getInterval(*SR);
 | 
						|
        if (sli.empty())
 | 
						|
          li_->removeInterval(*SR);
 | 
						|
      }
 | 
						|
    li_->removeInterval(li.reg);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// RemoveDeadDef - If a def of a live interval is now determined dead, remove
 | 
						|
/// the val# it defines. If the live interval becomes empty, remove it as well.
 | 
						|
bool RegisterCoalescer::RemoveDeadDef(LiveInterval &li,
 | 
						|
                                             MachineInstr *DefMI) {
 | 
						|
  SlotIndex DefIdx = li_->getInstructionIndex(DefMI).getDefIndex();
 | 
						|
  LiveInterval::iterator MLR = li.FindLiveRangeContaining(DefIdx);
 | 
						|
  if (DefIdx != MLR->valno->def)
 | 
						|
    return false;
 | 
						|
  li.removeValNo(MLR->valno);
 | 
						|
  return removeIntervalIfEmpty(li, li_, tri_);
 | 
						|
}
 | 
						|
 | 
						|
void RegisterCoalescer::RemoveCopyFlag(unsigned DstReg,
 | 
						|
                                              const MachineInstr *CopyMI) {
 | 
						|
  SlotIndex DefIdx = li_->getInstructionIndex(CopyMI).getDefIndex();
 | 
						|
  if (li_->hasInterval(DstReg)) {
 | 
						|
    LiveInterval &LI = li_->getInterval(DstReg);
 | 
						|
    if (const LiveRange *LR = LI.getLiveRangeContaining(DefIdx))
 | 
						|
      if (LR->valno->def == DefIdx)
 | 
						|
        LR->valno->setCopy(0);
 | 
						|
  }
 | 
						|
  if (!TargetRegisterInfo::isPhysicalRegister(DstReg))
 | 
						|
    return;
 | 
						|
  for (const unsigned* AS = tri_->getAliasSet(DstReg); *AS; ++AS) {
 | 
						|
    if (!li_->hasInterval(*AS))
 | 
						|
      continue;
 | 
						|
    LiveInterval &LI = li_->getInterval(*AS);
 | 
						|
    if (const LiveRange *LR = LI.getLiveRangeContaining(DefIdx))
 | 
						|
      if (LR->valno->def == DefIdx)
 | 
						|
        LR->valno->setCopy(0);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// shouldJoinPhys - Return true if a copy involving a physreg should be joined.
 | 
						|
/// We need to be careful about coalescing a source physical register with a
 | 
						|
/// virtual register. Once the coalescing is done, it cannot be broken and these
 | 
						|
/// are not spillable! If the destination interval uses are far away, think
 | 
						|
/// twice about coalescing them!
 | 
						|
bool RegisterCoalescer::shouldJoinPhys(CoalescerPair &CP) {
 | 
						|
  bool Allocatable = li_->isAllocatable(CP.getDstReg());
 | 
						|
  LiveInterval &JoinVInt = li_->getInterval(CP.getSrcReg());
 | 
						|
 | 
						|
  /// Always join simple intervals that are defined by a single copy from a
 | 
						|
  /// reserved register. This doesn't increase register pressure, so it is
 | 
						|
  /// always beneficial.
 | 
						|
  if (!Allocatable && CP.isFlipped() && JoinVInt.containsOneValue())
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (!EnablePhysicalJoin) {
 | 
						|
    DEBUG(dbgs() << "\tPhysreg joins disabled.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Only coalesce to allocatable physreg, we don't want to risk modifying
 | 
						|
  // reserved registers.
 | 
						|
  if (!Allocatable) {
 | 
						|
    DEBUG(dbgs() << "\tRegister is an unallocatable physreg.\n");
 | 
						|
    return false;  // Not coalescable.
 | 
						|
  }
 | 
						|
 | 
						|
  // Don't join with physregs that have a ridiculous number of live
 | 
						|
  // ranges. The data structure performance is really bad when that
 | 
						|
  // happens.
 | 
						|
  if (li_->hasInterval(CP.getDstReg()) &&
 | 
						|
      li_->getInterval(CP.getDstReg()).ranges.size() > 1000) {
 | 
						|
    ++numAborts;
 | 
						|
    DEBUG(dbgs()
 | 
						|
          << "\tPhysical register live interval too complicated, abort!\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Why are we skipping this test for partial copies?
 | 
						|
  //        CodeGen/X86/phys_subreg_coalesce-3.ll needs it.
 | 
						|
  if (!CP.isPartial()) {
 | 
						|
    const TargetRegisterClass *RC = mri_->getRegClass(CP.getSrcReg());
 | 
						|
    unsigned Threshold = RegClassInfo.getNumAllocatableRegs(RC) * 2;
 | 
						|
    unsigned Length = li_->getApproximateInstructionCount(JoinVInt);
 | 
						|
    if (Length > Threshold) {
 | 
						|
      ++numAborts;
 | 
						|
      DEBUG(dbgs() << "\tMay tie down a physical register, abort!\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isWinToJoinCrossClass - Return true if it's profitable to coalesce
 | 
						|
/// two virtual registers from different register classes.
 | 
						|
bool
 | 
						|
RegisterCoalescer::isWinToJoinCrossClass(unsigned SrcReg,
 | 
						|
                                             unsigned DstReg,
 | 
						|
                                             const TargetRegisterClass *SrcRC,
 | 
						|
                                             const TargetRegisterClass *DstRC,
 | 
						|
                                             const TargetRegisterClass *NewRC) {
 | 
						|
  unsigned NewRCCount = RegClassInfo.getNumAllocatableRegs(NewRC);
 | 
						|
  // This heuristics is good enough in practice, but it's obviously not *right*.
 | 
						|
  // 4 is a magic number that works well enough for x86, ARM, etc. It filter
 | 
						|
  // out all but the most restrictive register classes.
 | 
						|
  if (NewRCCount > 4 ||
 | 
						|
      // Early exit if the function is fairly small, coalesce aggressively if
 | 
						|
      // that's the case. For really special register classes with 3 or
 | 
						|
      // fewer registers, be a bit more careful.
 | 
						|
      (li_->getFuncInstructionCount() / NewRCCount) < 8)
 | 
						|
    return true;
 | 
						|
  LiveInterval &SrcInt = li_->getInterval(SrcReg);
 | 
						|
  LiveInterval &DstInt = li_->getInterval(DstReg);
 | 
						|
  unsigned SrcSize = li_->getApproximateInstructionCount(SrcInt);
 | 
						|
  unsigned DstSize = li_->getApproximateInstructionCount(DstInt);
 | 
						|
 | 
						|
  // Coalesce aggressively if the intervals are small compared to the number of
 | 
						|
  // registers in the new class. The number 4 is fairly arbitrary, chosen to be
 | 
						|
  // less aggressive than the 8 used for the whole function size.
 | 
						|
  const unsigned ThresSize = 4 * NewRCCount;
 | 
						|
  if (SrcSize <= ThresSize && DstSize <= ThresSize)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Estimate *register use density*. If it doubles or more, abort.
 | 
						|
  unsigned SrcUses = std::distance(mri_->use_nodbg_begin(SrcReg),
 | 
						|
                                   mri_->use_nodbg_end());
 | 
						|
  unsigned DstUses = std::distance(mri_->use_nodbg_begin(DstReg),
 | 
						|
                                   mri_->use_nodbg_end());
 | 
						|
  unsigned NewUses = SrcUses + DstUses;
 | 
						|
  unsigned NewSize = SrcSize + DstSize;
 | 
						|
  if (SrcRC != NewRC && SrcSize > ThresSize) {
 | 
						|
    unsigned SrcRCCount = RegClassInfo.getNumAllocatableRegs(SrcRC);
 | 
						|
    if (NewUses*SrcSize*SrcRCCount > 2*SrcUses*NewSize*NewRCCount)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  if (DstRC != NewRC && DstSize > ThresSize) {
 | 
						|
    unsigned DstRCCount = RegClassInfo.getNumAllocatableRegs(DstRC);
 | 
						|
    if (NewUses*DstSize*DstRCCount > 2*DstUses*NewSize*NewRCCount)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
 | 
						|
/// which are the src/dst of the copy instruction CopyMI.  This returns true
 | 
						|
/// if the copy was successfully coalesced away. If it is not currently
 | 
						|
/// possible to coalesce this interval, but it may be possible if other
 | 
						|
/// things get coalesced, then it returns true by reference in 'Again'.
 | 
						|
bool RegisterCoalescer::JoinCopy(MachineInstr *CopyMI, bool &Again) {
 | 
						|
 | 
						|
  Again = false;
 | 
						|
  if (JoinedCopies.count(CopyMI) || ReMatCopies.count(CopyMI))
 | 
						|
    return false; // Already done.
 | 
						|
 | 
						|
  DEBUG(dbgs() << li_->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
 | 
						|
 | 
						|
  CoalescerPair CP(*tii_, *tri_);
 | 
						|
  if (!CP.setRegisters(CopyMI)) {
 | 
						|
    DEBUG(dbgs() << "\tNot coalescable.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If they are already joined we continue.
 | 
						|
  if (CP.getSrcReg() == CP.getDstReg()) {
 | 
						|
    markAsJoined(CopyMI);
 | 
						|
    DEBUG(dbgs() << "\tCopy already coalesced.\n");
 | 
						|
    return false;  // Not coalescable.
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), tri_)
 | 
						|
               << " with " << PrintReg(CP.getDstReg(), tri_, CP.getSubIdx())
 | 
						|
               << "\n");
 | 
						|
 | 
						|
  // Enforce policies.
 | 
						|
  if (CP.isPhys()) {
 | 
						|
    if (!shouldJoinPhys(CP)) {
 | 
						|
      // Before giving up coalescing, if definition of source is defined by
 | 
						|
      // trivial computation, try rematerializing it.
 | 
						|
      if (!CP.isFlipped() &&
 | 
						|
          ReMaterializeTrivialDef(li_->getInterval(CP.getSrcReg()), true,
 | 
						|
                                  CP.getDstReg(), 0, CopyMI))
 | 
						|
        return true;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Avoid constraining virtual register regclass too much.
 | 
						|
    if (CP.isCrossClass()) {
 | 
						|
      DEBUG(dbgs() << "\tCross-class to " << CP.getNewRC()->getName() << ".\n");
 | 
						|
      if (DisableCrossClassJoin) {
 | 
						|
        DEBUG(dbgs() << "\tCross-class joins disabled.\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      if (!isWinToJoinCrossClass(CP.getSrcReg(), CP.getDstReg(),
 | 
						|
                                 mri_->getRegClass(CP.getSrcReg()),
 | 
						|
                                 mri_->getRegClass(CP.getDstReg()),
 | 
						|
                                 CP.getNewRC())) {
 | 
						|
        DEBUG(dbgs() << "\tAvoid coalescing to constrained register class.\n");
 | 
						|
        Again = true;  // May be possible to coalesce later.
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // When possible, let DstReg be the larger interval.
 | 
						|
    if (!CP.getSubIdx() && li_->getInterval(CP.getSrcReg()).ranges.size() >
 | 
						|
                           li_->getInterval(CP.getDstReg()).ranges.size())
 | 
						|
      CP.flip();
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, attempt to join these two intervals.  On failure, this returns false.
 | 
						|
  // Otherwise, if one of the intervals being joined is a physreg, this method
 | 
						|
  // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
 | 
						|
  // been modified, so we can use this information below to update aliases.
 | 
						|
  if (!JoinIntervals(CP)) {
 | 
						|
    // Coalescing failed.
 | 
						|
 | 
						|
    // If definition of source is defined by trivial computation, try
 | 
						|
    // rematerializing it.
 | 
						|
    if (!CP.isFlipped() &&
 | 
						|
        ReMaterializeTrivialDef(li_->getInterval(CP.getSrcReg()), true,
 | 
						|
                                CP.getDstReg(), 0, CopyMI))
 | 
						|
      return true;
 | 
						|
 | 
						|
    // If we can eliminate the copy without merging the live ranges, do so now.
 | 
						|
    if (!CP.isPartial()) {
 | 
						|
      if (AdjustCopiesBackFrom(CP, CopyMI) ||
 | 
						|
          RemoveCopyByCommutingDef(CP, CopyMI)) {
 | 
						|
        markAsJoined(CopyMI);
 | 
						|
        DEBUG(dbgs() << "\tTrivial!\n");
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, we are unable to join the intervals.
 | 
						|
    DEBUG(dbgs() << "\tInterference!\n");
 | 
						|
    Again = true;  // May be possible to coalesce later.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Coalescing to a virtual register that is of a sub-register class of the
 | 
						|
  // other. Make sure the resulting register is set to the right register class.
 | 
						|
  if (CP.isCrossClass()) {
 | 
						|
    ++numCrossRCs;
 | 
						|
    mri_->setRegClass(CP.getDstReg(), CP.getNewRC());
 | 
						|
  }
 | 
						|
 | 
						|
  // Remember to delete the copy instruction.
 | 
						|
  markAsJoined(CopyMI);
 | 
						|
 | 
						|
  UpdateRegDefsUses(CP);
 | 
						|
 | 
						|
  // If we have extended the live range of a physical register, make sure we
 | 
						|
  // update live-in lists as well.
 | 
						|
  if (CP.isPhys()) {
 | 
						|
    SmallVector<MachineBasicBlock*, 16> BlockSeq;
 | 
						|
    // JoinIntervals invalidates the VNInfos in SrcInt, but we only need the
 | 
						|
    // ranges for this, and they are preserved.
 | 
						|
    LiveInterval &SrcInt = li_->getInterval(CP.getSrcReg());
 | 
						|
    for (LiveInterval::const_iterator I = SrcInt.begin(), E = SrcInt.end();
 | 
						|
         I != E; ++I ) {
 | 
						|
      li_->findLiveInMBBs(I->start, I->end, BlockSeq);
 | 
						|
      for (unsigned idx = 0, size = BlockSeq.size(); idx != size; ++idx) {
 | 
						|
        MachineBasicBlock &block = *BlockSeq[idx];
 | 
						|
        if (!block.isLiveIn(CP.getDstReg()))
 | 
						|
          block.addLiveIn(CP.getDstReg());
 | 
						|
      }
 | 
						|
      BlockSeq.clear();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // SrcReg is guarateed to be the register whose live interval that is
 | 
						|
  // being merged.
 | 
						|
  li_->removeInterval(CP.getSrcReg());
 | 
						|
 | 
						|
  // Update regalloc hint.
 | 
						|
  tri_->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *mf_);
 | 
						|
 | 
						|
  DEBUG({
 | 
						|
    LiveInterval &DstInt = li_->getInterval(CP.getDstReg());
 | 
						|
    dbgs() << "\tJoined. Result = ";
 | 
						|
    DstInt.print(dbgs(), tri_);
 | 
						|
    dbgs() << "\n";
 | 
						|
  });
 | 
						|
 | 
						|
  ++numJoins;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// ComputeUltimateVN - Assuming we are going to join two live intervals,
 | 
						|
/// compute what the resultant value numbers for each value in the input two
 | 
						|
/// ranges will be.  This is complicated by copies between the two which can
 | 
						|
/// and will commonly cause multiple value numbers to be merged into one.
 | 
						|
///
 | 
						|
/// VN is the value number that we're trying to resolve.  InstDefiningValue
 | 
						|
/// keeps track of the new InstDefiningValue assignment for the result
 | 
						|
/// LiveInterval.  ThisFromOther/OtherFromThis are sets that keep track of
 | 
						|
/// whether a value in this or other is a copy from the opposite set.
 | 
						|
/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
 | 
						|
/// already been assigned.
 | 
						|
///
 | 
						|
/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
 | 
						|
/// contains the value number the copy is from.
 | 
						|
///
 | 
						|
static unsigned ComputeUltimateVN(VNInfo *VNI,
 | 
						|
                                  SmallVector<VNInfo*, 16> &NewVNInfo,
 | 
						|
                                  DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
 | 
						|
                                  DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
 | 
						|
                                  SmallVector<int, 16> &ThisValNoAssignments,
 | 
						|
                                  SmallVector<int, 16> &OtherValNoAssignments) {
 | 
						|
  unsigned VN = VNI->id;
 | 
						|
 | 
						|
  // If the VN has already been computed, just return it.
 | 
						|
  if (ThisValNoAssignments[VN] >= 0)
 | 
						|
    return ThisValNoAssignments[VN];
 | 
						|
  assert(ThisValNoAssignments[VN] != -2 && "Cyclic value numbers");
 | 
						|
 | 
						|
  // If this val is not a copy from the other val, then it must be a new value
 | 
						|
  // number in the destination.
 | 
						|
  DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
 | 
						|
  if (I == ThisFromOther.end()) {
 | 
						|
    NewVNInfo.push_back(VNI);
 | 
						|
    return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
 | 
						|
  }
 | 
						|
  VNInfo *OtherValNo = I->second;
 | 
						|
 | 
						|
  // Otherwise, this *is* a copy from the RHS.  If the other side has already
 | 
						|
  // been computed, return it.
 | 
						|
  if (OtherValNoAssignments[OtherValNo->id] >= 0)
 | 
						|
    return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
 | 
						|
 | 
						|
  // Mark this value number as currently being computed, then ask what the
 | 
						|
  // ultimate value # of the other value is.
 | 
						|
  ThisValNoAssignments[VN] = -2;
 | 
						|
  unsigned UltimateVN =
 | 
						|
    ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
 | 
						|
                      OtherValNoAssignments, ThisValNoAssignments);
 | 
						|
  return ThisValNoAssignments[VN] = UltimateVN;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Find out if we have something like
 | 
						|
// A = X
 | 
						|
// B = X
 | 
						|
// if so, we can pretend this is actually
 | 
						|
// A = X
 | 
						|
// B = A
 | 
						|
// which allows us to coalesce A and B.
 | 
						|
// VNI is the definition of B. LR is the life range of A that includes
 | 
						|
// the slot just before B. If we return true, we add "B = X" to DupCopies.
 | 
						|
static bool RegistersDefinedFromSameValue(LiveIntervals &li,
 | 
						|
                                          const TargetRegisterInfo &tri,
 | 
						|
                                          CoalescerPair &CP,
 | 
						|
                                          VNInfo *VNI,
 | 
						|
                                          LiveRange *LR,
 | 
						|
                                     SmallVector<MachineInstr*, 8> &DupCopies) {
 | 
						|
  // FIXME: This is very conservative. For example, we don't handle
 | 
						|
  // physical registers.
 | 
						|
 | 
						|
  MachineInstr *MI = VNI->getCopy();
 | 
						|
 | 
						|
  if (!MI->isFullCopy() || CP.isPartial() || CP.isPhys())
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned Dst = MI->getOperand(0).getReg();
 | 
						|
  unsigned Src = MI->getOperand(1).getReg();
 | 
						|
 | 
						|
  // FIXME: If "B = X" kills X, we have to move the kill back to its
 | 
						|
  // previous use. For now we just avoid the optimization in that case.
 | 
						|
  LiveInterval &SrcInt = li.getInterval(Src);
 | 
						|
  if (SrcInt.killedAt(VNI->def))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!TargetRegisterInfo::isVirtualRegister(Src) ||
 | 
						|
      !TargetRegisterInfo::isVirtualRegister(Dst))
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned A = CP.getDstReg();
 | 
						|
  unsigned B = CP.getSrcReg();
 | 
						|
 | 
						|
  if (B == Dst)
 | 
						|
    std::swap(A, B);
 | 
						|
  assert(Dst == A);
 | 
						|
 | 
						|
  VNInfo *Other = LR->valno;
 | 
						|
  if (!Other->isDefByCopy())
 | 
						|
    return false;
 | 
						|
  const MachineInstr *OtherMI = Other->getCopy();
 | 
						|
 | 
						|
  if (!OtherMI->isFullCopy())
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned OtherDst = OtherMI->getOperand(0).getReg();
 | 
						|
  unsigned OtherSrc = OtherMI->getOperand(1).getReg();
 | 
						|
 | 
						|
  if (!TargetRegisterInfo::isVirtualRegister(OtherSrc) ||
 | 
						|
      !TargetRegisterInfo::isVirtualRegister(OtherDst))
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert(OtherDst == B);
 | 
						|
 | 
						|
  if (Src != OtherSrc)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the copies use two different value numbers of X, we cannot merge
 | 
						|
  // A and B.
 | 
						|
  if (SrcInt.FindLiveRangeContaining(Other->def)->valno !=
 | 
						|
      SrcInt.FindLiveRangeContaining(VNI->def)->valno)
 | 
						|
    return false;
 | 
						|
 | 
						|
  DupCopies.push_back(MI);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// JoinIntervals - Attempt to join these two intervals.  On failure, this
 | 
						|
/// returns false.
 | 
						|
bool RegisterCoalescer::JoinIntervals(CoalescerPair &CP) {
 | 
						|
  LiveInterval &RHS = li_->getInterval(CP.getSrcReg());
 | 
						|
  DEBUG({ dbgs() << "\t\tRHS = "; RHS.print(dbgs(), tri_); dbgs() << "\n"; });
 | 
						|
 | 
						|
  // If a live interval is a physical register, check for interference with any
 | 
						|
  // aliases. The interference check implemented here is a bit more conservative
 | 
						|
  // than the full interfeence check below. We allow overlapping live ranges
 | 
						|
  // only when one is a copy of the other.
 | 
						|
  if (CP.isPhys()) {
 | 
						|
    for (const unsigned *AS = tri_->getAliasSet(CP.getDstReg()); *AS; ++AS){
 | 
						|
      if (!li_->hasInterval(*AS))
 | 
						|
        continue;
 | 
						|
      const LiveInterval &LHS = li_->getInterval(*AS);
 | 
						|
      LiveInterval::const_iterator LI = LHS.begin();
 | 
						|
      for (LiveInterval::const_iterator RI = RHS.begin(), RE = RHS.end();
 | 
						|
           RI != RE; ++RI) {
 | 
						|
        LI = std::lower_bound(LI, LHS.end(), RI->start);
 | 
						|
        // Does LHS have an overlapping live range starting before RI?
 | 
						|
        if ((LI != LHS.begin() && LI[-1].end > RI->start) &&
 | 
						|
            (RI->start != RI->valno->def ||
 | 
						|
             !CP.isCoalescable(li_->getInstructionFromIndex(RI->start)))) {
 | 
						|
          DEBUG({
 | 
						|
            dbgs() << "\t\tInterference from alias: ";
 | 
						|
            LHS.print(dbgs(), tri_);
 | 
						|
            dbgs() << "\n\t\tOverlap at " << RI->start << " and no copy.\n";
 | 
						|
          });
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
 | 
						|
        // Check that LHS ranges beginning in this range are copies.
 | 
						|
        for (; LI != LHS.end() && LI->start < RI->end; ++LI) {
 | 
						|
          if (LI->start != LI->valno->def ||
 | 
						|
              !CP.isCoalescable(li_->getInstructionFromIndex(LI->start))) {
 | 
						|
            DEBUG({
 | 
						|
              dbgs() << "\t\tInterference from alias: ";
 | 
						|
              LHS.print(dbgs(), tri_);
 | 
						|
              dbgs() << "\n\t\tDef at " << LI->start << " is not a copy.\n";
 | 
						|
            });
 | 
						|
            return false;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Compute the final value assignment, assuming that the live ranges can be
 | 
						|
  // coalesced.
 | 
						|
  SmallVector<int, 16> LHSValNoAssignments;
 | 
						|
  SmallVector<int, 16> RHSValNoAssignments;
 | 
						|
  DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
 | 
						|
  DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
 | 
						|
  SmallVector<VNInfo*, 16> NewVNInfo;
 | 
						|
 | 
						|
  SmallVector<MachineInstr*, 8> DupCopies;
 | 
						|
 | 
						|
  LiveInterval &LHS = li_->getOrCreateInterval(CP.getDstReg());
 | 
						|
  DEBUG({ dbgs() << "\t\tLHS = "; LHS.print(dbgs(), tri_); dbgs() << "\n"; });
 | 
						|
 | 
						|
  // Loop over the value numbers of the LHS, seeing if any are defined from
 | 
						|
  // the RHS.
 | 
						|
  for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
 | 
						|
       i != e; ++i) {
 | 
						|
    VNInfo *VNI = *i;
 | 
						|
    if (VNI->isUnused() || !VNI->isDefByCopy())  // Src not defined by a copy?
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Never join with a register that has EarlyClobber redefs.
 | 
						|
    if (VNI->hasRedefByEC())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Figure out the value # from the RHS.
 | 
						|
    LiveRange *lr = RHS.getLiveRangeContaining(VNI->def.getPrevSlot());
 | 
						|
    // The copy could be to an aliased physreg.
 | 
						|
    if (!lr) continue;
 | 
						|
 | 
						|
    // DstReg is known to be a register in the LHS interval.  If the src is
 | 
						|
    // from the RHS interval, we can use its value #.
 | 
						|
    MachineInstr *MI = VNI->getCopy();
 | 
						|
    if (!CP.isCoalescable(MI) &&
 | 
						|
        !RegistersDefinedFromSameValue(*li_, *tri_, CP, VNI, lr, DupCopies))
 | 
						|
      continue;
 | 
						|
 | 
						|
    LHSValsDefinedFromRHS[VNI] = lr->valno;
 | 
						|
  }
 | 
						|
 | 
						|
  // Loop over the value numbers of the RHS, seeing if any are defined from
 | 
						|
  // the LHS.
 | 
						|
  for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
 | 
						|
       i != e; ++i) {
 | 
						|
    VNInfo *VNI = *i;
 | 
						|
    if (VNI->isUnused() || !VNI->isDefByCopy())  // Src not defined by a copy?
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Never join with a register that has EarlyClobber redefs.
 | 
						|
    if (VNI->hasRedefByEC())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Figure out the value # from the LHS.
 | 
						|
    LiveRange *lr = LHS.getLiveRangeContaining(VNI->def.getPrevSlot());
 | 
						|
    // The copy could be to an aliased physreg.
 | 
						|
    if (!lr) continue;
 | 
						|
 | 
						|
    // DstReg is known to be a register in the RHS interval.  If the src is
 | 
						|
    // from the LHS interval, we can use its value #.
 | 
						|
    MachineInstr *MI = VNI->getCopy();
 | 
						|
    if (!CP.isCoalescable(MI) &&
 | 
						|
        !RegistersDefinedFromSameValue(*li_, *tri_, CP, VNI, lr, DupCopies))
 | 
						|
        continue;
 | 
						|
 | 
						|
    RHSValsDefinedFromLHS[VNI] = lr->valno;
 | 
						|
  }
 | 
						|
 | 
						|
  LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
 | 
						|
  RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
 | 
						|
  NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
 | 
						|
 | 
						|
  for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
 | 
						|
       i != e; ++i) {
 | 
						|
    VNInfo *VNI = *i;
 | 
						|
    unsigned VN = VNI->id;
 | 
						|
    if (LHSValNoAssignments[VN] >= 0 || VNI->isUnused())
 | 
						|
      continue;
 | 
						|
    ComputeUltimateVN(VNI, NewVNInfo,
 | 
						|
                      LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
 | 
						|
                      LHSValNoAssignments, RHSValNoAssignments);
 | 
						|
  }
 | 
						|
  for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
 | 
						|
       i != e; ++i) {
 | 
						|
    VNInfo *VNI = *i;
 | 
						|
    unsigned VN = VNI->id;
 | 
						|
    if (RHSValNoAssignments[VN] >= 0 || VNI->isUnused())
 | 
						|
      continue;
 | 
						|
    // If this value number isn't a copy from the LHS, it's a new number.
 | 
						|
    if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
 | 
						|
      NewVNInfo.push_back(VNI);
 | 
						|
      RHSValNoAssignments[VN] = NewVNInfo.size()-1;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    ComputeUltimateVN(VNI, NewVNInfo,
 | 
						|
                      RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
 | 
						|
                      RHSValNoAssignments, LHSValNoAssignments);
 | 
						|
  }
 | 
						|
 | 
						|
  // Armed with the mappings of LHS/RHS values to ultimate values, walk the
 | 
						|
  // interval lists to see if these intervals are coalescable.
 | 
						|
  LiveInterval::const_iterator I = LHS.begin();
 | 
						|
  LiveInterval::const_iterator IE = LHS.end();
 | 
						|
  LiveInterval::const_iterator J = RHS.begin();
 | 
						|
  LiveInterval::const_iterator JE = RHS.end();
 | 
						|
 | 
						|
  // Skip ahead until the first place of potential sharing.
 | 
						|
  if (I != IE && J != JE) {
 | 
						|
    if (I->start < J->start) {
 | 
						|
      I = std::upper_bound(I, IE, J->start);
 | 
						|
      if (I != LHS.begin()) --I;
 | 
						|
    } else if (J->start < I->start) {
 | 
						|
      J = std::upper_bound(J, JE, I->start);
 | 
						|
      if (J != RHS.begin()) --J;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  while (I != IE && J != JE) {
 | 
						|
    // Determine if these two live ranges overlap.
 | 
						|
    bool Overlaps;
 | 
						|
    if (I->start < J->start) {
 | 
						|
      Overlaps = I->end > J->start;
 | 
						|
    } else {
 | 
						|
      Overlaps = J->end > I->start;
 | 
						|
    }
 | 
						|
 | 
						|
    // If so, check value # info to determine if they are really different.
 | 
						|
    if (Overlaps) {
 | 
						|
      // If the live range overlap will map to the same value number in the
 | 
						|
      // result liverange, we can still coalesce them.  If not, we can't.
 | 
						|
      if (LHSValNoAssignments[I->valno->id] !=
 | 
						|
          RHSValNoAssignments[J->valno->id])
 | 
						|
        return false;
 | 
						|
      // If it's re-defined by an early clobber somewhere in the live range,
 | 
						|
      // then conservatively abort coalescing.
 | 
						|
      if (NewVNInfo[LHSValNoAssignments[I->valno->id]]->hasRedefByEC())
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (I->end < J->end)
 | 
						|
      ++I;
 | 
						|
    else
 | 
						|
      ++J;
 | 
						|
  }
 | 
						|
 | 
						|
  // Update kill info. Some live ranges are extended due to copy coalescing.
 | 
						|
  for (DenseMap<VNInfo*, VNInfo*>::iterator I = LHSValsDefinedFromRHS.begin(),
 | 
						|
         E = LHSValsDefinedFromRHS.end(); I != E; ++I) {
 | 
						|
    VNInfo *VNI = I->first;
 | 
						|
    unsigned LHSValID = LHSValNoAssignments[VNI->id];
 | 
						|
    if (VNI->hasPHIKill())
 | 
						|
      NewVNInfo[LHSValID]->setHasPHIKill(true);
 | 
						|
  }
 | 
						|
 | 
						|
  // Update kill info. Some live ranges are extended due to copy coalescing.
 | 
						|
  for (DenseMap<VNInfo*, VNInfo*>::iterator I = RHSValsDefinedFromLHS.begin(),
 | 
						|
         E = RHSValsDefinedFromLHS.end(); I != E; ++I) {
 | 
						|
    VNInfo *VNI = I->first;
 | 
						|
    unsigned RHSValID = RHSValNoAssignments[VNI->id];
 | 
						|
    if (VNI->hasPHIKill())
 | 
						|
      NewVNInfo[RHSValID]->setHasPHIKill(true);
 | 
						|
  }
 | 
						|
 | 
						|
  if (LHSValNoAssignments.empty())
 | 
						|
    LHSValNoAssignments.push_back(-1);
 | 
						|
  if (RHSValNoAssignments.empty())
 | 
						|
    RHSValNoAssignments.push_back(-1);
 | 
						|
 | 
						|
  for (SmallVector<MachineInstr*, 8>::iterator I = DupCopies.begin(),
 | 
						|
         E = DupCopies.end(); I != E; ++I) {
 | 
						|
    MachineInstr *MI = *I;
 | 
						|
 | 
						|
    // We have pretended that the assignment to B in
 | 
						|
    // A = X
 | 
						|
    // B = X
 | 
						|
    // was actually a copy from A. Now that we decided to coalesce A and B,
 | 
						|
    // transform the code into
 | 
						|
    // A = X
 | 
						|
    // X = X
 | 
						|
    // and mark the X as coalesced to keep the illusion.
 | 
						|
    unsigned Src = MI->getOperand(1).getReg();
 | 
						|
    MI->getOperand(0).substVirtReg(Src, 0, *tri_);
 | 
						|
 | 
						|
    markAsJoined(MI);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we get here, we know that we can coalesce the live ranges.  Ask the
 | 
						|
  // intervals to coalesce themselves now.
 | 
						|
  LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo,
 | 
						|
           mri_);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  // DepthMBBCompare - Comparison predicate that sort first based on the loop
 | 
						|
  // depth of the basic block (the unsigned), and then on the MBB number.
 | 
						|
  struct DepthMBBCompare {
 | 
						|
    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
 | 
						|
    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
 | 
						|
      // Deeper loops first
 | 
						|
      if (LHS.first != RHS.first)
 | 
						|
        return LHS.first > RHS.first;
 | 
						|
 | 
						|
      // Prefer blocks that are more connected in the CFG. This takes care of
 | 
						|
      // the most difficult copies first while intervals are short.
 | 
						|
      unsigned cl = LHS.second->pred_size() + LHS.second->succ_size();
 | 
						|
      unsigned cr = RHS.second->pred_size() + RHS.second->succ_size();
 | 
						|
      if (cl != cr)
 | 
						|
        return cl > cr;
 | 
						|
 | 
						|
      // As a last resort, sort by block number.
 | 
						|
      return LHS.second->getNumber() < RHS.second->getNumber();
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
void RegisterCoalescer::CopyCoalesceInMBB(MachineBasicBlock *MBB,
 | 
						|
                                            std::vector<MachineInstr*> &TryAgain) {
 | 
						|
  DEBUG(dbgs() << MBB->getName() << ":\n");
 | 
						|
 | 
						|
  SmallVector<MachineInstr*, 8> VirtCopies;
 | 
						|
  SmallVector<MachineInstr*, 8> PhysCopies;
 | 
						|
  SmallVector<MachineInstr*, 8> ImpDefCopies;
 | 
						|
  for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
 | 
						|
       MII != E;) {
 | 
						|
    MachineInstr *Inst = MII++;
 | 
						|
 | 
						|
    // If this isn't a copy nor a extract_subreg, we can't join intervals.
 | 
						|
    unsigned SrcReg, DstReg;
 | 
						|
    if (Inst->isCopy()) {
 | 
						|
      DstReg = Inst->getOperand(0).getReg();
 | 
						|
      SrcReg = Inst->getOperand(1).getReg();
 | 
						|
    } else if (Inst->isSubregToReg()) {
 | 
						|
      DstReg = Inst->getOperand(0).getReg();
 | 
						|
      SrcReg = Inst->getOperand(2).getReg();
 | 
						|
    } else
 | 
						|
      continue;
 | 
						|
 | 
						|
    bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
 | 
						|
    bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
 | 
						|
    if (li_->hasInterval(SrcReg) && li_->getInterval(SrcReg).empty())
 | 
						|
      ImpDefCopies.push_back(Inst);
 | 
						|
    else if (SrcIsPhys || DstIsPhys)
 | 
						|
      PhysCopies.push_back(Inst);
 | 
						|
    else
 | 
						|
      VirtCopies.push_back(Inst);
 | 
						|
  }
 | 
						|
 | 
						|
  // Try coalescing implicit copies and insert_subreg <undef> first,
 | 
						|
  // followed by copies to / from physical registers, then finally copies
 | 
						|
  // from virtual registers to virtual registers.
 | 
						|
  for (unsigned i = 0, e = ImpDefCopies.size(); i != e; ++i) {
 | 
						|
    MachineInstr *TheCopy = ImpDefCopies[i];
 | 
						|
    bool Again = false;
 | 
						|
    if (!JoinCopy(TheCopy, Again))
 | 
						|
      if (Again)
 | 
						|
        TryAgain.push_back(TheCopy);
 | 
						|
  }
 | 
						|
  for (unsigned i = 0, e = PhysCopies.size(); i != e; ++i) {
 | 
						|
    MachineInstr *TheCopy = PhysCopies[i];
 | 
						|
    bool Again = false;
 | 
						|
    if (!JoinCopy(TheCopy, Again))
 | 
						|
      if (Again)
 | 
						|
        TryAgain.push_back(TheCopy);
 | 
						|
  }
 | 
						|
  for (unsigned i = 0, e = VirtCopies.size(); i != e; ++i) {
 | 
						|
    MachineInstr *TheCopy = VirtCopies[i];
 | 
						|
    bool Again = false;
 | 
						|
    if (!JoinCopy(TheCopy, Again))
 | 
						|
      if (Again)
 | 
						|
        TryAgain.push_back(TheCopy);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void RegisterCoalescer::joinIntervals() {
 | 
						|
  DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
 | 
						|
 | 
						|
  std::vector<MachineInstr*> TryAgainList;
 | 
						|
  if (loopInfo->empty()) {
 | 
						|
    // If there are no loops in the function, join intervals in function order.
 | 
						|
    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
 | 
						|
         I != E; ++I)
 | 
						|
      CopyCoalesceInMBB(I, TryAgainList);
 | 
						|
  } else {
 | 
						|
    // Otherwise, join intervals in inner loops before other intervals.
 | 
						|
    // Unfortunately we can't just iterate over loop hierarchy here because
 | 
						|
    // there may be more MBB's than BB's.  Collect MBB's for sorting.
 | 
						|
 | 
						|
    // Join intervals in the function prolog first. We want to join physical
 | 
						|
    // registers with virtual registers before the intervals got too long.
 | 
						|
    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
 | 
						|
    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();I != E;++I){
 | 
						|
      MachineBasicBlock *MBB = I;
 | 
						|
      MBBs.push_back(std::make_pair(loopInfo->getLoopDepth(MBB), I));
 | 
						|
    }
 | 
						|
 | 
						|
    // Sort by loop depth.
 | 
						|
    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
 | 
						|
 | 
						|
    // Finally, join intervals in loop nest order.
 | 
						|
    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
 | 
						|
      CopyCoalesceInMBB(MBBs[i].second, TryAgainList);
 | 
						|
  }
 | 
						|
 | 
						|
  // Joining intervals can allow other intervals to be joined.  Iteratively join
 | 
						|
  // until we make no progress.
 | 
						|
  bool ProgressMade = true;
 | 
						|
  while (ProgressMade) {
 | 
						|
    ProgressMade = false;
 | 
						|
 | 
						|
    for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
 | 
						|
      MachineInstr *&TheCopy = TryAgainList[i];
 | 
						|
      if (!TheCopy)
 | 
						|
        continue;
 | 
						|
 | 
						|
      bool Again = false;
 | 
						|
      bool Success = JoinCopy(TheCopy, Again);
 | 
						|
      if (Success || !Again) {
 | 
						|
        TheCopy= 0;   // Mark this one as done.
 | 
						|
        ProgressMade = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void RegisterCoalescer::releaseMemory() {
 | 
						|
  JoinedCopies.clear();
 | 
						|
  ReMatCopies.clear();
 | 
						|
  ReMatDefs.clear();
 | 
						|
}
 | 
						|
 | 
						|
bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
 | 
						|
  mf_ = &fn;
 | 
						|
  mri_ = &fn.getRegInfo();
 | 
						|
  tm_ = &fn.getTarget();
 | 
						|
  tri_ = tm_->getRegisterInfo();
 | 
						|
  tii_ = tm_->getInstrInfo();
 | 
						|
  li_ = &getAnalysis<LiveIntervals>();
 | 
						|
  ldv_ = &getAnalysis<LiveDebugVariables>();
 | 
						|
  AA = &getAnalysis<AliasAnalysis>();
 | 
						|
  loopInfo = &getAnalysis<MachineLoopInfo>();
 | 
						|
 | 
						|
  DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
 | 
						|
               << "********** Function: "
 | 
						|
               << ((Value*)mf_->getFunction())->getName() << '\n');
 | 
						|
 | 
						|
  if (VerifyCoalescing)
 | 
						|
    mf_->verify(this, "Before register coalescing");
 | 
						|
 | 
						|
  RegClassInfo.runOnMachineFunction(fn);
 | 
						|
 | 
						|
  // Join (coalesce) intervals if requested.
 | 
						|
  if (EnableJoining) {
 | 
						|
    joinIntervals();
 | 
						|
    DEBUG({
 | 
						|
        dbgs() << "********** INTERVALS POST JOINING **********\n";
 | 
						|
        for (LiveIntervals::iterator I = li_->begin(), E = li_->end();
 | 
						|
             I != E; ++I){
 | 
						|
          I->second->print(dbgs(), tri_);
 | 
						|
          dbgs() << "\n";
 | 
						|
        }
 | 
						|
      });
 | 
						|
  }
 | 
						|
 | 
						|
  // Perform a final pass over the instructions and compute spill weights
 | 
						|
  // and remove identity moves.
 | 
						|
  SmallVector<unsigned, 4> DeadDefs;
 | 
						|
  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
 | 
						|
       mbbi != mbbe; ++mbbi) {
 | 
						|
    MachineBasicBlock* mbb = mbbi;
 | 
						|
    for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
 | 
						|
         mii != mie; ) {
 | 
						|
      MachineInstr *MI = mii;
 | 
						|
      if (JoinedCopies.count(MI)) {
 | 
						|
        // Delete all coalesced copies.
 | 
						|
        bool DoDelete = true;
 | 
						|
        assert(MI->isCopyLike() && "Unrecognized copy instruction");
 | 
						|
        unsigned SrcReg = MI->getOperand(MI->isSubregToReg() ? 2 : 1).getReg();
 | 
						|
        if (TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
 | 
						|
            MI->getNumOperands() > 2)
 | 
						|
          // Do not delete extract_subreg, insert_subreg of physical
 | 
						|
          // registers unless the definition is dead. e.g.
 | 
						|
          // %DO<def> = INSERT_SUBREG %D0<undef>, %S0<kill>, 1
 | 
						|
          // or else the scavenger may complain. LowerSubregs will
 | 
						|
          // delete them later.
 | 
						|
          DoDelete = false;
 | 
						|
 | 
						|
        if (MI->allDefsAreDead()) {
 | 
						|
          if (TargetRegisterInfo::isVirtualRegister(SrcReg) &&
 | 
						|
              li_->hasInterval(SrcReg))
 | 
						|
            li_->shrinkToUses(&li_->getInterval(SrcReg));
 | 
						|
          DoDelete = true;
 | 
						|
        }
 | 
						|
        if (!DoDelete) {
 | 
						|
          // We need the instruction to adjust liveness, so make it a KILL.
 | 
						|
          if (MI->isSubregToReg()) {
 | 
						|
            MI->RemoveOperand(3);
 | 
						|
            MI->RemoveOperand(1);
 | 
						|
          }
 | 
						|
          MI->setDesc(tii_->get(TargetOpcode::KILL));
 | 
						|
          mii = llvm::next(mii);
 | 
						|
        } else {
 | 
						|
          li_->RemoveMachineInstrFromMaps(MI);
 | 
						|
          mii = mbbi->erase(mii);
 | 
						|
          ++numPeep;
 | 
						|
        }
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Now check if this is a remat'ed def instruction which is now dead.
 | 
						|
      if (ReMatDefs.count(MI)) {
 | 
						|
        bool isDead = true;
 | 
						|
        for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
          const MachineOperand &MO = MI->getOperand(i);
 | 
						|
          if (!MO.isReg())
 | 
						|
            continue;
 | 
						|
          unsigned Reg = MO.getReg();
 | 
						|
          if (!Reg)
 | 
						|
            continue;
 | 
						|
          if (TargetRegisterInfo::isVirtualRegister(Reg))
 | 
						|
            DeadDefs.push_back(Reg);
 | 
						|
          if (MO.isDead())
 | 
						|
            continue;
 | 
						|
          if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
 | 
						|
              !mri_->use_nodbg_empty(Reg)) {
 | 
						|
            isDead = false;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        if (isDead) {
 | 
						|
          while (!DeadDefs.empty()) {
 | 
						|
            unsigned DeadDef = DeadDefs.back();
 | 
						|
            DeadDefs.pop_back();
 | 
						|
            RemoveDeadDef(li_->getInterval(DeadDef), MI);
 | 
						|
          }
 | 
						|
          li_->RemoveMachineInstrFromMaps(mii);
 | 
						|
          mii = mbbi->erase(mii);
 | 
						|
          continue;
 | 
						|
        } else
 | 
						|
          DeadDefs.clear();
 | 
						|
      }
 | 
						|
 | 
						|
      ++mii;
 | 
						|
 | 
						|
      // Check for now unnecessary kill flags.
 | 
						|
      if (li_->isNotInMIMap(MI)) continue;
 | 
						|
      SlotIndex DefIdx = li_->getInstructionIndex(MI).getDefIndex();
 | 
						|
      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
        MachineOperand &MO = MI->getOperand(i);
 | 
						|
        if (!MO.isReg() || !MO.isKill()) continue;
 | 
						|
        unsigned reg = MO.getReg();
 | 
						|
        if (!reg || !li_->hasInterval(reg)) continue;
 | 
						|
        if (!li_->getInterval(reg).killedAt(DefIdx)) {
 | 
						|
          MO.setIsKill(false);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        // When leaving a kill flag on a physreg, check if any subregs should
 | 
						|
        // remain alive.
 | 
						|
        if (!TargetRegisterInfo::isPhysicalRegister(reg))
 | 
						|
          continue;
 | 
						|
        for (const unsigned *SR = tri_->getSubRegisters(reg);
 | 
						|
             unsigned S = *SR; ++SR)
 | 
						|
          if (li_->hasInterval(S) && li_->getInterval(S).liveAt(DefIdx))
 | 
						|
            MI->addRegisterDefined(S, tri_);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dump());
 | 
						|
  DEBUG(ldv_->dump());
 | 
						|
  if (VerifyCoalescing)
 | 
						|
    mf_->verify(this, "After register coalescing");
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// print - Implement the dump method.
 | 
						|
void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
 | 
						|
   li_->print(O, m);
 | 
						|
}
 | 
						|
 | 
						|
RegisterCoalescer *llvm::createRegisterCoalescer() {
 | 
						|
  return new RegisterCoalescer();
 | 
						|
}
 |