mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	I haven't looked closely at exactly why the side effect is required, but this seems better than not mentioning it at all. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226030 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			294 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			294 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// \file
 | 
						|
///
 | 
						|
/// Generic dominator tree construction - This file provides routines to
 | 
						|
/// construct immediate dominator information for a flow-graph based on the
 | 
						|
/// algorithm described in this document:
 | 
						|
///
 | 
						|
///   A Fast Algorithm for Finding Dominators in a Flowgraph
 | 
						|
///   T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141.
 | 
						|
///
 | 
						|
/// This implements the O(n*log(n)) versions of EVAL and LINK, because it turns
 | 
						|
/// out that the theoretically slower O(n*log(n)) implementation is actually
 | 
						|
/// faster than the almost-linear O(n*alpha(n)) version, even for large CFGs.
 | 
						|
///
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
 | 
						|
#ifndef LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
 | 
						|
#define LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
 | 
						|
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/Support/GenericDomTree.h"
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
template<class GraphT>
 | 
						|
unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
 | 
						|
                 typename GraphT::NodeType* V, unsigned N) {
 | 
						|
  // This is more understandable as a recursive algorithm, but we can't use the
 | 
						|
  // recursive algorithm due to stack depth issues.  Keep it here for
 | 
						|
  // documentation purposes.
 | 
						|
#if 0
 | 
						|
  InfoRec &VInfo = DT.Info[DT.Roots[i]];
 | 
						|
  VInfo.DFSNum = VInfo.Semi = ++N;
 | 
						|
  VInfo.Label = V;
 | 
						|
 | 
						|
  Vertex.push_back(V);        // Vertex[n] = V;
 | 
						|
 | 
						|
  for (succ_iterator SI = succ_begin(V), E = succ_end(V); SI != E; ++SI) {
 | 
						|
    InfoRec &SuccVInfo = DT.Info[*SI];
 | 
						|
    if (SuccVInfo.Semi == 0) {
 | 
						|
      SuccVInfo.Parent = V;
 | 
						|
      N = DTDFSPass(DT, *SI, N);
 | 
						|
    }
 | 
						|
  }
 | 
						|
#else
 | 
						|
  bool IsChildOfArtificialExit = (N != 0);
 | 
						|
 | 
						|
  SmallVector<std::pair<typename GraphT::NodeType*,
 | 
						|
                        typename GraphT::ChildIteratorType>, 32> Worklist;
 | 
						|
  Worklist.push_back(std::make_pair(V, GraphT::child_begin(V)));
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    typename GraphT::NodeType* BB = Worklist.back().first;
 | 
						|
    typename GraphT::ChildIteratorType NextSucc = Worklist.back().second;
 | 
						|
 | 
						|
    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo =
 | 
						|
                                                                    DT.Info[BB];
 | 
						|
 | 
						|
    // First time we visited this BB?
 | 
						|
    if (NextSucc == GraphT::child_begin(BB)) {
 | 
						|
      BBInfo.DFSNum = BBInfo.Semi = ++N;
 | 
						|
      BBInfo.Label = BB;
 | 
						|
 | 
						|
      DT.Vertex.push_back(BB);       // Vertex[n] = V;
 | 
						|
 | 
						|
      if (IsChildOfArtificialExit)
 | 
						|
        BBInfo.Parent = 1;
 | 
						|
 | 
						|
      IsChildOfArtificialExit = false;
 | 
						|
    }
 | 
						|
 | 
						|
    // store the DFS number of the current BB - the reference to BBInfo might
 | 
						|
    // get invalidated when processing the successors.
 | 
						|
    unsigned BBDFSNum = BBInfo.DFSNum;
 | 
						|
 | 
						|
    // If we are done with this block, remove it from the worklist.
 | 
						|
    if (NextSucc == GraphT::child_end(BB)) {
 | 
						|
      Worklist.pop_back();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Increment the successor number for the next time we get to it.
 | 
						|
    ++Worklist.back().second;
 | 
						|
    
 | 
						|
    // Visit the successor next, if it isn't already visited.
 | 
						|
    typename GraphT::NodeType* Succ = *NextSucc;
 | 
						|
 | 
						|
    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &SuccVInfo =
 | 
						|
                                                                  DT.Info[Succ];
 | 
						|
    if (SuccVInfo.Semi == 0) {
 | 
						|
      SuccVInfo.Parent = BBDFSNum;
 | 
						|
      Worklist.push_back(std::make_pair(Succ, GraphT::child_begin(Succ)));
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif
 | 
						|
    return N;
 | 
						|
}
 | 
						|
 | 
						|
template<class GraphT>
 | 
						|
typename GraphT::NodeType* 
 | 
						|
Eval(DominatorTreeBase<typename GraphT::NodeType>& DT,
 | 
						|
     typename GraphT::NodeType *VIn, unsigned LastLinked) {
 | 
						|
  typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInInfo =
 | 
						|
                                                                  DT.Info[VIn];
 | 
						|
  if (VInInfo.DFSNum < LastLinked)
 | 
						|
    return VIn;
 | 
						|
 | 
						|
  SmallVector<typename GraphT::NodeType*, 32> Work;
 | 
						|
  SmallPtrSet<typename GraphT::NodeType*, 32> Visited;
 | 
						|
 | 
						|
  if (VInInfo.Parent >= LastLinked)
 | 
						|
    Work.push_back(VIn);
 | 
						|
  
 | 
						|
  while (!Work.empty()) {
 | 
						|
    typename GraphT::NodeType* V = Work.back();
 | 
						|
    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInfo =
 | 
						|
                                                                     DT.Info[V];
 | 
						|
    typename GraphT::NodeType* VAncestor = DT.Vertex[VInfo.Parent];
 | 
						|
 | 
						|
    // Process Ancestor first
 | 
						|
    if (Visited.insert(VAncestor).second && VInfo.Parent >= LastLinked) {
 | 
						|
      Work.push_back(VAncestor);
 | 
						|
      continue;
 | 
						|
    } 
 | 
						|
    Work.pop_back(); 
 | 
						|
 | 
						|
    // Update VInfo based on Ancestor info
 | 
						|
    if (VInfo.Parent < LastLinked)
 | 
						|
      continue;
 | 
						|
 | 
						|
    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VAInfo =
 | 
						|
                                                             DT.Info[VAncestor];
 | 
						|
    typename GraphT::NodeType* VAncestorLabel = VAInfo.Label;
 | 
						|
    typename GraphT::NodeType* VLabel = VInfo.Label;
 | 
						|
    if (DT.Info[VAncestorLabel].Semi < DT.Info[VLabel].Semi)
 | 
						|
      VInfo.Label = VAncestorLabel;
 | 
						|
    VInfo.Parent = VAInfo.Parent;
 | 
						|
  }
 | 
						|
 | 
						|
  return VInInfo.Label;
 | 
						|
}
 | 
						|
 | 
						|
template<class FuncT, class NodeT>
 | 
						|
void Calculate(DominatorTreeBase<typename GraphTraits<NodeT>::NodeType>& DT,
 | 
						|
               FuncT& F) {
 | 
						|
  typedef GraphTraits<NodeT> GraphT;
 | 
						|
 | 
						|
  unsigned N = 0;
 | 
						|
  bool MultipleRoots = (DT.Roots.size() > 1);
 | 
						|
  if (MultipleRoots) {
 | 
						|
    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo =
 | 
						|
        DT.Info[nullptr];
 | 
						|
    BBInfo.DFSNum = BBInfo.Semi = ++N;
 | 
						|
    BBInfo.Label = nullptr;
 | 
						|
 | 
						|
    DT.Vertex.push_back(nullptr);       // Vertex[n] = V;
 | 
						|
  }
 | 
						|
 | 
						|
  // Step #1: Number blocks in depth-first order and initialize variables used
 | 
						|
  // in later stages of the algorithm.
 | 
						|
  for (unsigned i = 0, e = static_cast<unsigned>(DT.Roots.size());
 | 
						|
       i != e; ++i)
 | 
						|
    N = DFSPass<GraphT>(DT, DT.Roots[i], N);
 | 
						|
 | 
						|
  // it might be that some blocks did not get a DFS number (e.g., blocks of 
 | 
						|
  // infinite loops). In these cases an artificial exit node is required.
 | 
						|
  MultipleRoots |= (DT.isPostDominator() && N != GraphTraits<FuncT*>::size(&F));
 | 
						|
 | 
						|
  // When naively implemented, the Lengauer-Tarjan algorithm requires a separate
 | 
						|
  // bucket for each vertex. However, this is unnecessary, because each vertex
 | 
						|
  // is only placed into a single bucket (that of its semidominator), and each
 | 
						|
  // vertex's bucket is processed before it is added to any bucket itself.
 | 
						|
  //
 | 
						|
  // Instead of using a bucket per vertex, we use a single array Buckets that
 | 
						|
  // has two purposes. Before the vertex V with preorder number i is processed,
 | 
						|
  // Buckets[i] stores the index of the first element in V's bucket. After V's
 | 
						|
  // bucket is processed, Buckets[i] stores the index of the next element in the
 | 
						|
  // bucket containing V, if any.
 | 
						|
  SmallVector<unsigned, 32> Buckets;
 | 
						|
  Buckets.resize(N + 1);
 | 
						|
  for (unsigned i = 1; i <= N; ++i)
 | 
						|
    Buckets[i] = i;
 | 
						|
 | 
						|
  for (unsigned i = N; i >= 2; --i) {
 | 
						|
    typename GraphT::NodeType* W = DT.Vertex[i];
 | 
						|
    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo =
 | 
						|
                                                                     DT.Info[W];
 | 
						|
 | 
						|
    // Step #2: Implicitly define the immediate dominator of vertices
 | 
						|
    for (unsigned j = i; Buckets[j] != i; j = Buckets[j]) {
 | 
						|
      typename GraphT::NodeType* V = DT.Vertex[Buckets[j]];
 | 
						|
      typename GraphT::NodeType* U = Eval<GraphT>(DT, V, i + 1);
 | 
						|
      DT.IDoms[V] = DT.Info[U].Semi < i ? U : W;
 | 
						|
    }
 | 
						|
 | 
						|
    // Step #3: Calculate the semidominators of all vertices
 | 
						|
 | 
						|
    // initialize the semi dominator to point to the parent node
 | 
						|
    WInfo.Semi = WInfo.Parent;
 | 
						|
    typedef GraphTraits<Inverse<NodeT> > InvTraits;
 | 
						|
    for (typename InvTraits::ChildIteratorType CI =
 | 
						|
         InvTraits::child_begin(W),
 | 
						|
         E = InvTraits::child_end(W); CI != E; ++CI) {
 | 
						|
      typename InvTraits::NodeType *N = *CI;
 | 
						|
      if (DT.Info.count(N)) {  // Only if this predecessor is reachable!
 | 
						|
        unsigned SemiU = DT.Info[Eval<GraphT>(DT, N, i + 1)].Semi;
 | 
						|
        if (SemiU < WInfo.Semi)
 | 
						|
          WInfo.Semi = SemiU;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If V is a non-root vertex and sdom(V) = parent(V), then idom(V) is
 | 
						|
    // necessarily parent(V). In this case, set idom(V) here and avoid placing
 | 
						|
    // V into a bucket.
 | 
						|
    if (WInfo.Semi == WInfo.Parent) {
 | 
						|
      DT.IDoms[W] = DT.Vertex[WInfo.Parent];
 | 
						|
    } else {
 | 
						|
      Buckets[i] = Buckets[WInfo.Semi];
 | 
						|
      Buckets[WInfo.Semi] = i;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (N >= 1) {
 | 
						|
    typename GraphT::NodeType* Root = DT.Vertex[1];
 | 
						|
    for (unsigned j = 1; Buckets[j] != 1; j = Buckets[j]) {
 | 
						|
      typename GraphT::NodeType* V = DT.Vertex[Buckets[j]];
 | 
						|
      DT.IDoms[V] = Root;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Step #4: Explicitly define the immediate dominator of each vertex
 | 
						|
  for (unsigned i = 2; i <= N; ++i) {
 | 
						|
    typename GraphT::NodeType* W = DT.Vertex[i];
 | 
						|
    typename GraphT::NodeType*& WIDom = DT.IDoms[W];
 | 
						|
    if (WIDom != DT.Vertex[DT.Info[W].Semi])
 | 
						|
      WIDom = DT.IDoms[WIDom];
 | 
						|
  }
 | 
						|
 | 
						|
  if (DT.Roots.empty()) return;
 | 
						|
 | 
						|
  // Add a node for the root.  This node might be the actual root, if there is
 | 
						|
  // one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0)
 | 
						|
  // which postdominates all real exits if there are multiple exit blocks, or
 | 
						|
  // an infinite loop.
 | 
						|
  typename GraphT::NodeType* Root = !MultipleRoots ? DT.Roots[0] : nullptr;
 | 
						|
 | 
						|
  DT.RootNode =
 | 
						|
      (DT.DomTreeNodes[Root] =
 | 
						|
           llvm::make_unique<DomTreeNodeBase<typename GraphT::NodeType>>(
 | 
						|
               Root, nullptr)).get();
 | 
						|
 | 
						|
  // Loop over all of the reachable blocks in the function...
 | 
						|
  for (unsigned i = 2; i <= N; ++i) {
 | 
						|
    typename GraphT::NodeType* W = DT.Vertex[i];
 | 
						|
 | 
						|
    // Don't replace this with 'count', the insertion side effect is important
 | 
						|
    if (DT.DomTreeNodes[W])
 | 
						|
      continue; // Haven't calculated this node yet?
 | 
						|
 | 
						|
    typename GraphT::NodeType* ImmDom = DT.getIDom(W);
 | 
						|
 | 
						|
    assert(ImmDom || DT.DomTreeNodes[nullptr]);
 | 
						|
 | 
						|
    // Get or calculate the node for the immediate dominator
 | 
						|
    DomTreeNodeBase<typename GraphT::NodeType> *IDomNode =
 | 
						|
                                                     DT.getNodeForBlock(ImmDom);
 | 
						|
 | 
						|
    // Add a new tree node for this BasicBlock, and link it as a child of
 | 
						|
    // IDomNode
 | 
						|
    DT.DomTreeNodes[W] = IDomNode->addChild(
 | 
						|
        llvm::make_unique<DomTreeNodeBase<typename GraphT::NodeType>>(
 | 
						|
            W, IDomNode));
 | 
						|
  }
 | 
						|
 | 
						|
  // Free temporary memory used to construct idom's
 | 
						|
  DT.IDoms.clear();
 | 
						|
  DT.Info.clear();
 | 
						|
  DT.Vertex.clear();
 | 
						|
  DT.Vertex.shrink_to_fit();
 | 
						|
 | 
						|
  DT.updateDFSNumbers();
 | 
						|
}
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
#endif
 |