mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234385 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1434 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1434 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- LiveInterval.cpp - Live Interval Representation -------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the LiveRange and LiveInterval classes.  Given some
 | |
| // numbering of each the machine instructions an interval [i, j) is said to be a
 | |
| // live range for register v if there is no instruction with number j' >= j
 | |
| // such that v is live at j' and there is no instruction with number i' < i such
 | |
| // that v is live at i'. In this implementation ranges can have holes,
 | |
| // i.e. a range might look like [1,20), [50,65), [1000,1001).  Each
 | |
| // individual segment is represented as an instance of LiveRange::Segment,
 | |
| // and the whole range is represented as an instance of LiveRange.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/LiveInterval.h"
 | |
| #include "RegisterCoalescer.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/Format.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Implementation of various methods necessary for calculation of live ranges.
 | |
| // The implementation of the methods abstracts from the concrete type of the
 | |
| // segment collection.
 | |
| //
 | |
| // Implementation of the class follows the Template design pattern. The base
 | |
| // class contains generic algorithms that call collection-specific methods,
 | |
| // which are provided in concrete subclasses. In order to avoid virtual calls
 | |
| // these methods are provided by means of C++ template instantiation.
 | |
| // The base class calls the methods of the subclass through method impl(),
 | |
| // which casts 'this' pointer to the type of the subclass.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| template <typename ImplT, typename IteratorT, typename CollectionT>
 | |
| class CalcLiveRangeUtilBase {
 | |
| protected:
 | |
|   LiveRange *LR;
 | |
| 
 | |
| protected:
 | |
|   CalcLiveRangeUtilBase(LiveRange *LR) : LR(LR) {}
 | |
| 
 | |
| public:
 | |
|   typedef LiveRange::Segment Segment;
 | |
|   typedef IteratorT iterator;
 | |
| 
 | |
|   VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNInfoAllocator) {
 | |
|     assert(!Def.isDead() && "Cannot define a value at the dead slot");
 | |
| 
 | |
|     iterator I = impl().find(Def);
 | |
|     if (I == segments().end()) {
 | |
|       VNInfo *VNI = LR->getNextValue(Def, VNInfoAllocator);
 | |
|       impl().insertAtEnd(Segment(Def, Def.getDeadSlot(), VNI));
 | |
|       return VNI;
 | |
|     }
 | |
| 
 | |
|     Segment *S = segmentAt(I);
 | |
|     if (SlotIndex::isSameInstr(Def, S->start)) {
 | |
|       assert(S->valno->def == S->start && "Inconsistent existing value def");
 | |
| 
 | |
|       // It is possible to have both normal and early-clobber defs of the same
 | |
|       // register on an instruction. It doesn't make a lot of sense, but it is
 | |
|       // possible to specify in inline assembly.
 | |
|       //
 | |
|       // Just convert everything to early-clobber.
 | |
|       Def = std::min(Def, S->start);
 | |
|       if (Def != S->start)
 | |
|         S->start = S->valno->def = Def;
 | |
|       return S->valno;
 | |
|     }
 | |
|     assert(SlotIndex::isEarlierInstr(Def, S->start) && "Already live at def");
 | |
|     VNInfo *VNI = LR->getNextValue(Def, VNInfoAllocator);
 | |
|     segments().insert(I, Segment(Def, Def.getDeadSlot(), VNI));
 | |
|     return VNI;
 | |
|   }
 | |
| 
 | |
|   VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Use) {
 | |
|     if (segments().empty())
 | |
|       return nullptr;
 | |
|     iterator I =
 | |
|         impl().findInsertPos(Segment(Use.getPrevSlot(), Use, nullptr));
 | |
|     if (I == segments().begin())
 | |
|       return nullptr;
 | |
|     --I;
 | |
|     if (I->end <= StartIdx)
 | |
|       return nullptr;
 | |
|     if (I->end < Use)
 | |
|       extendSegmentEndTo(I, Use);
 | |
|     return I->valno;
 | |
|   }
 | |
| 
 | |
|   /// This method is used when we want to extend the segment specified
 | |
|   /// by I to end at the specified endpoint. To do this, we should
 | |
|   /// merge and eliminate all segments that this will overlap
 | |
|   /// with. The iterator is not invalidated.
 | |
|   void extendSegmentEndTo(iterator I, SlotIndex NewEnd) {
 | |
|     assert(I != segments().end() && "Not a valid segment!");
 | |
|     Segment *S = segmentAt(I);
 | |
|     VNInfo *ValNo = I->valno;
 | |
| 
 | |
|     // Search for the first segment that we can't merge with.
 | |
|     iterator MergeTo = std::next(I);
 | |
|     for (; MergeTo != segments().end() && NewEnd >= MergeTo->end; ++MergeTo)
 | |
|       assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
 | |
| 
 | |
|     // If NewEnd was in the middle of a segment, make sure to get its endpoint.
 | |
|     S->end = std::max(NewEnd, std::prev(MergeTo)->end);
 | |
| 
 | |
|     // If the newly formed segment now touches the segment after it and if they
 | |
|     // have the same value number, merge the two segments into one segment.
 | |
|     if (MergeTo != segments().end() && MergeTo->start <= I->end &&
 | |
|         MergeTo->valno == ValNo) {
 | |
|       S->end = MergeTo->end;
 | |
|       ++MergeTo;
 | |
|     }
 | |
| 
 | |
|     // Erase any dead segments.
 | |
|     segments().erase(std::next(I), MergeTo);
 | |
|   }
 | |
| 
 | |
|   /// This method is used when we want to extend the segment specified
 | |
|   /// by I to start at the specified endpoint.  To do this, we should
 | |
|   /// merge and eliminate all segments that this will overlap with.
 | |
|   iterator extendSegmentStartTo(iterator I, SlotIndex NewStart) {
 | |
|     assert(I != segments().end() && "Not a valid segment!");
 | |
|     Segment *S = segmentAt(I);
 | |
|     VNInfo *ValNo = I->valno;
 | |
| 
 | |
|     // Search for the first segment that we can't merge with.
 | |
|     iterator MergeTo = I;
 | |
|     do {
 | |
|       if (MergeTo == segments().begin()) {
 | |
|         S->start = NewStart;
 | |
|         segments().erase(MergeTo, I);
 | |
|         return I;
 | |
|       }
 | |
|       assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
 | |
|       --MergeTo;
 | |
|     } while (NewStart <= MergeTo->start);
 | |
| 
 | |
|     // If we start in the middle of another segment, just delete a range and
 | |
|     // extend that segment.
 | |
|     if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) {
 | |
|       segmentAt(MergeTo)->end = S->end;
 | |
|     } else {
 | |
|       // Otherwise, extend the segment right after.
 | |
|       ++MergeTo;
 | |
|       Segment *MergeToSeg = segmentAt(MergeTo);
 | |
|       MergeToSeg->start = NewStart;
 | |
|       MergeToSeg->end = S->end;
 | |
|     }
 | |
| 
 | |
|     segments().erase(std::next(MergeTo), std::next(I));
 | |
|     return MergeTo;
 | |
|   }
 | |
| 
 | |
|   iterator addSegment(Segment S) {
 | |
|     SlotIndex Start = S.start, End = S.end;
 | |
|     iterator I = impl().findInsertPos(S);
 | |
| 
 | |
|     // If the inserted segment starts in the middle or right at the end of
 | |
|     // another segment, just extend that segment to contain the segment of S.
 | |
|     if (I != segments().begin()) {
 | |
|       iterator B = std::prev(I);
 | |
|       if (S.valno == B->valno) {
 | |
|         if (B->start <= Start && B->end >= Start) {
 | |
|           extendSegmentEndTo(B, End);
 | |
|           return B;
 | |
|         }
 | |
|       } else {
 | |
|         // Check to make sure that we are not overlapping two live segments with
 | |
|         // different valno's.
 | |
|         assert(B->end <= Start &&
 | |
|                "Cannot overlap two segments with differing ValID's"
 | |
|                " (did you def the same reg twice in a MachineInstr?)");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Otherwise, if this segment ends in the middle of, or right next
 | |
|     // to, another segment, merge it into that segment.
 | |
|     if (I != segments().end()) {
 | |
|       if (S.valno == I->valno) {
 | |
|         if (I->start <= End) {
 | |
|           I = extendSegmentStartTo(I, Start);
 | |
| 
 | |
|           // If S is a complete superset of a segment, we may need to grow its
 | |
|           // endpoint as well.
 | |
|           if (End > I->end)
 | |
|             extendSegmentEndTo(I, End);
 | |
|           return I;
 | |
|         }
 | |
|       } else {
 | |
|         // Check to make sure that we are not overlapping two live segments with
 | |
|         // different valno's.
 | |
|         assert(I->start >= End &&
 | |
|                "Cannot overlap two segments with differing ValID's");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Otherwise, this is just a new segment that doesn't interact with
 | |
|     // anything.
 | |
|     // Insert it.
 | |
|     return segments().insert(I, S);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   ImplT &impl() { return *static_cast<ImplT *>(this); }
 | |
| 
 | |
|   CollectionT &segments() { return impl().segmentsColl(); }
 | |
| 
 | |
|   Segment *segmentAt(iterator I) { return const_cast<Segment *>(&(*I)); }
 | |
| };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //   Instantiation of the methods for calculation of live ranges
 | |
| //   based on a segment vector.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| class CalcLiveRangeUtilVector;
 | |
| typedef CalcLiveRangeUtilBase<CalcLiveRangeUtilVector, LiveRange::iterator,
 | |
|                               LiveRange::Segments> CalcLiveRangeUtilVectorBase;
 | |
| 
 | |
| class CalcLiveRangeUtilVector : public CalcLiveRangeUtilVectorBase {
 | |
| public:
 | |
|   CalcLiveRangeUtilVector(LiveRange *LR) : CalcLiveRangeUtilVectorBase(LR) {}
 | |
| 
 | |
| private:
 | |
|   friend CalcLiveRangeUtilVectorBase;
 | |
| 
 | |
|   LiveRange::Segments &segmentsColl() { return LR->segments; }
 | |
| 
 | |
|   void insertAtEnd(const Segment &S) { LR->segments.push_back(S); }
 | |
| 
 | |
|   iterator find(SlotIndex Pos) { return LR->find(Pos); }
 | |
| 
 | |
|   iterator findInsertPos(Segment S) {
 | |
|     return std::upper_bound(LR->begin(), LR->end(), S.start);
 | |
|   }
 | |
| };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //   Instantiation of the methods for calculation of live ranges
 | |
| //   based on a segment set.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| class CalcLiveRangeUtilSet;
 | |
| typedef CalcLiveRangeUtilBase<CalcLiveRangeUtilSet,
 | |
|                               LiveRange::SegmentSet::iterator,
 | |
|                               LiveRange::SegmentSet> CalcLiveRangeUtilSetBase;
 | |
| 
 | |
| class CalcLiveRangeUtilSet : public CalcLiveRangeUtilSetBase {
 | |
| public:
 | |
|   CalcLiveRangeUtilSet(LiveRange *LR) : CalcLiveRangeUtilSetBase(LR) {}
 | |
| 
 | |
| private:
 | |
|   friend CalcLiveRangeUtilSetBase;
 | |
| 
 | |
|   LiveRange::SegmentSet &segmentsColl() { return *LR->segmentSet; }
 | |
| 
 | |
|   void insertAtEnd(const Segment &S) {
 | |
|     LR->segmentSet->insert(LR->segmentSet->end(), S);
 | |
|   }
 | |
| 
 | |
|   iterator find(SlotIndex Pos) {
 | |
|     iterator I =
 | |
|         LR->segmentSet->upper_bound(Segment(Pos, Pos.getNextSlot(), nullptr));
 | |
|     if (I == LR->segmentSet->begin())
 | |
|       return I;
 | |
|     iterator PrevI = std::prev(I);
 | |
|     if (Pos < (*PrevI).end)
 | |
|       return PrevI;
 | |
|     return I;
 | |
|   }
 | |
| 
 | |
|   iterator findInsertPos(Segment S) {
 | |
|     iterator I = LR->segmentSet->upper_bound(S);
 | |
|     if (I != LR->segmentSet->end() && !(S.start < *I))
 | |
|       ++I;
 | |
|     return I;
 | |
|   }
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //   LiveRange methods
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| LiveRange::iterator LiveRange::find(SlotIndex Pos) {
 | |
|   // This algorithm is basically std::upper_bound.
 | |
|   // Unfortunately, std::upper_bound cannot be used with mixed types until we
 | |
|   // adopt C++0x. Many libraries can do it, but not all.
 | |
|   if (empty() || Pos >= endIndex())
 | |
|     return end();
 | |
|   iterator I = begin();
 | |
|   size_t Len = size();
 | |
|   do {
 | |
|     size_t Mid = Len >> 1;
 | |
|     if (Pos < I[Mid].end)
 | |
|       Len = Mid;
 | |
|     else
 | |
|       I += Mid + 1, Len -= Mid + 1;
 | |
|   } while (Len);
 | |
|   return I;
 | |
| }
 | |
| 
 | |
| VNInfo *LiveRange::createDeadDef(SlotIndex Def,
 | |
|                                   VNInfo::Allocator &VNInfoAllocator) {
 | |
|   // Use the segment set, if it is available.
 | |
|   if (segmentSet != nullptr)
 | |
|     return CalcLiveRangeUtilSet(this).createDeadDef(Def, VNInfoAllocator);
 | |
|   // Otherwise use the segment vector.
 | |
|   return CalcLiveRangeUtilVector(this).createDeadDef(Def, VNInfoAllocator);
 | |
| }
 | |
| 
 | |
| // overlaps - Return true if the intersection of the two live ranges is
 | |
| // not empty.
 | |
| //
 | |
| // An example for overlaps():
 | |
| //
 | |
| // 0: A = ...
 | |
| // 4: B = ...
 | |
| // 8: C = A + B ;; last use of A
 | |
| //
 | |
| // The live ranges should look like:
 | |
| //
 | |
| // A = [3, 11)
 | |
| // B = [7, x)
 | |
| // C = [11, y)
 | |
| //
 | |
| // A->overlaps(C) should return false since we want to be able to join
 | |
| // A and C.
 | |
| //
 | |
| bool LiveRange::overlapsFrom(const LiveRange& other,
 | |
|                              const_iterator StartPos) const {
 | |
|   assert(!empty() && "empty range");
 | |
|   const_iterator i = begin();
 | |
|   const_iterator ie = end();
 | |
|   const_iterator j = StartPos;
 | |
|   const_iterator je = other.end();
 | |
| 
 | |
|   assert((StartPos->start <= i->start || StartPos == other.begin()) &&
 | |
|          StartPos != other.end() && "Bogus start position hint!");
 | |
| 
 | |
|   if (i->start < j->start) {
 | |
|     i = std::upper_bound(i, ie, j->start);
 | |
|     if (i != begin()) --i;
 | |
|   } else if (j->start < i->start) {
 | |
|     ++StartPos;
 | |
|     if (StartPos != other.end() && StartPos->start <= i->start) {
 | |
|       assert(StartPos < other.end() && i < end());
 | |
|       j = std::upper_bound(j, je, i->start);
 | |
|       if (j != other.begin()) --j;
 | |
|     }
 | |
|   } else {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (j == je) return false;
 | |
| 
 | |
|   while (i != ie) {
 | |
|     if (i->start > j->start) {
 | |
|       std::swap(i, j);
 | |
|       std::swap(ie, je);
 | |
|     }
 | |
| 
 | |
|     if (i->end > j->start)
 | |
|       return true;
 | |
|     ++i;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP,
 | |
|                          const SlotIndexes &Indexes) const {
 | |
|   assert(!empty() && "empty range");
 | |
|   if (Other.empty())
 | |
|     return false;
 | |
| 
 | |
|   // Use binary searches to find initial positions.
 | |
|   const_iterator I = find(Other.beginIndex());
 | |
|   const_iterator IE = end();
 | |
|   if (I == IE)
 | |
|     return false;
 | |
|   const_iterator J = Other.find(I->start);
 | |
|   const_iterator JE = Other.end();
 | |
|   if (J == JE)
 | |
|     return false;
 | |
| 
 | |
|   for (;;) {
 | |
|     // J has just been advanced to satisfy:
 | |
|     assert(J->end >= I->start);
 | |
|     // Check for an overlap.
 | |
|     if (J->start < I->end) {
 | |
|       // I and J are overlapping. Find the later start.
 | |
|       SlotIndex Def = std::max(I->start, J->start);
 | |
|       // Allow the overlap if Def is a coalescable copy.
 | |
|       if (Def.isBlock() ||
 | |
|           !CP.isCoalescable(Indexes.getInstructionFromIndex(Def)))
 | |
|         return true;
 | |
|     }
 | |
|     // Advance the iterator that ends first to check for more overlaps.
 | |
|     if (J->end > I->end) {
 | |
|       std::swap(I, J);
 | |
|       std::swap(IE, JE);
 | |
|     }
 | |
|     // Advance J until J->end >= I->start.
 | |
|     do
 | |
|       if (++J == JE)
 | |
|         return false;
 | |
|     while (J->end < I->start);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// overlaps - Return true if the live range overlaps an interval specified
 | |
| /// by [Start, End).
 | |
| bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const {
 | |
|   assert(Start < End && "Invalid range");
 | |
|   const_iterator I = std::lower_bound(begin(), end(), End);
 | |
|   return I != begin() && (--I)->end > Start;
 | |
| }
 | |
| 
 | |
| bool LiveRange::covers(const LiveRange &Other) const {
 | |
|   if (empty())
 | |
|     return Other.empty();
 | |
| 
 | |
|   const_iterator I = begin();
 | |
|   for (const Segment &O : Other.segments) {
 | |
|     I = advanceTo(I, O.start);
 | |
|     if (I == end() || I->start > O.start)
 | |
|       return false;
 | |
| 
 | |
|     // Check adjacent live segments and see if we can get behind O.end.
 | |
|     while (I->end < O.end) {
 | |
|       const_iterator Last = I;
 | |
|       // Get next segment and abort if it was not adjacent.
 | |
|       ++I;
 | |
|       if (I == end() || Last->end != I->start)
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// ValNo is dead, remove it.  If it is the largest value number, just nuke it
 | |
| /// (and any other deleted values neighboring it), otherwise mark it as ~1U so
 | |
| /// it can be nuked later.
 | |
| void LiveRange::markValNoForDeletion(VNInfo *ValNo) {
 | |
|   if (ValNo->id == getNumValNums()-1) {
 | |
|     do {
 | |
|       valnos.pop_back();
 | |
|     } while (!valnos.empty() && valnos.back()->isUnused());
 | |
|   } else {
 | |
|     ValNo->markUnused();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// RenumberValues - Renumber all values in order of appearance and delete the
 | |
| /// remaining unused values.
 | |
| void LiveRange::RenumberValues() {
 | |
|   SmallPtrSet<VNInfo*, 8> Seen;
 | |
|   valnos.clear();
 | |
|   for (const Segment &S : segments) {
 | |
|     VNInfo *VNI = S.valno;
 | |
|     if (!Seen.insert(VNI).second)
 | |
|       continue;
 | |
|     assert(!VNI->isUnused() && "Unused valno used by live segment");
 | |
|     VNI->id = (unsigned)valnos.size();
 | |
|     valnos.push_back(VNI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void LiveRange::addSegmentToSet(Segment S) {
 | |
|   CalcLiveRangeUtilSet(this).addSegment(S);
 | |
| }
 | |
| 
 | |
| LiveRange::iterator LiveRange::addSegment(Segment S) {
 | |
|   // Use the segment set, if it is available.
 | |
|   if (segmentSet != nullptr) {
 | |
|     addSegmentToSet(S);
 | |
|     return end();
 | |
|   }
 | |
|   // Otherwise use the segment vector.
 | |
|   return CalcLiveRangeUtilVector(this).addSegment(S);
 | |
| }
 | |
| 
 | |
| void LiveRange::append(const Segment S) {
 | |
|   // Check that the segment belongs to the back of the list.
 | |
|   assert(segments.empty() || segments.back().end <= S.start);
 | |
|   segments.push_back(S);
 | |
| }
 | |
| 
 | |
| /// extendInBlock - If this range is live before Kill in the basic
 | |
| /// block that starts at StartIdx, extend it to be live up to Kill and return
 | |
| /// the value. If there is no live range before Kill, return NULL.
 | |
| VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) {
 | |
|   // Use the segment set, if it is available.
 | |
|   if (segmentSet != nullptr)
 | |
|     return CalcLiveRangeUtilSet(this).extendInBlock(StartIdx, Kill);
 | |
|   // Otherwise use the segment vector.
 | |
|   return CalcLiveRangeUtilVector(this).extendInBlock(StartIdx, Kill);
 | |
| }
 | |
| 
 | |
| /// Remove the specified segment from this range.  Note that the segment must
 | |
| /// be in a single Segment in its entirety.
 | |
| void LiveRange::removeSegment(SlotIndex Start, SlotIndex End,
 | |
|                               bool RemoveDeadValNo) {
 | |
|   // Find the Segment containing this span.
 | |
|   iterator I = find(Start);
 | |
|   assert(I != end() && "Segment is not in range!");
 | |
|   assert(I->containsInterval(Start, End)
 | |
|          && "Segment is not entirely in range!");
 | |
| 
 | |
|   // If the span we are removing is at the start of the Segment, adjust it.
 | |
|   VNInfo *ValNo = I->valno;
 | |
|   if (I->start == Start) {
 | |
|     if (I->end == End) {
 | |
|       if (RemoveDeadValNo) {
 | |
|         // Check if val# is dead.
 | |
|         bool isDead = true;
 | |
|         for (const_iterator II = begin(), EE = end(); II != EE; ++II)
 | |
|           if (II != I && II->valno == ValNo) {
 | |
|             isDead = false;
 | |
|             break;
 | |
|           }
 | |
|         if (isDead) {
 | |
|           // Now that ValNo is dead, remove it.
 | |
|           markValNoForDeletion(ValNo);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       segments.erase(I);  // Removed the whole Segment.
 | |
|     } else
 | |
|       I->start = End;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise if the span we are removing is at the end of the Segment,
 | |
|   // adjust the other way.
 | |
|   if (I->end == End) {
 | |
|     I->end = Start;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we are splitting the Segment into two pieces.
 | |
|   SlotIndex OldEnd = I->end;
 | |
|   I->end = Start;   // Trim the old segment.
 | |
| 
 | |
|   // Insert the new one.
 | |
|   segments.insert(std::next(I), Segment(End, OldEnd, ValNo));
 | |
| }
 | |
| 
 | |
| /// removeValNo - Remove all the segments defined by the specified value#.
 | |
| /// Also remove the value# from value# list.
 | |
| void LiveRange::removeValNo(VNInfo *ValNo) {
 | |
|   if (empty()) return;
 | |
|   segments.erase(std::remove_if(begin(), end(), [ValNo](const Segment &S) {
 | |
|     return S.valno == ValNo;
 | |
|   }), end());
 | |
|   // Now that ValNo is dead, remove it.
 | |
|   markValNoForDeletion(ValNo);
 | |
| }
 | |
| 
 | |
| void LiveRange::join(LiveRange &Other,
 | |
|                      const int *LHSValNoAssignments,
 | |
|                      const int *RHSValNoAssignments,
 | |
|                      SmallVectorImpl<VNInfo *> &NewVNInfo) {
 | |
|   verify();
 | |
| 
 | |
|   // Determine if any of our values are mapped.  This is uncommon, so we want
 | |
|   // to avoid the range scan if not.
 | |
|   bool MustMapCurValNos = false;
 | |
|   unsigned NumVals = getNumValNums();
 | |
|   unsigned NumNewVals = NewVNInfo.size();
 | |
|   for (unsigned i = 0; i != NumVals; ++i) {
 | |
|     unsigned LHSValID = LHSValNoAssignments[i];
 | |
|     if (i != LHSValID ||
 | |
|         (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) {
 | |
|       MustMapCurValNos = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we have to apply a mapping to our base range assignment, rewrite it now.
 | |
|   if (MustMapCurValNos && !empty()) {
 | |
|     // Map the first live range.
 | |
| 
 | |
|     iterator OutIt = begin();
 | |
|     OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]];
 | |
|     for (iterator I = std::next(OutIt), E = end(); I != E; ++I) {
 | |
|       VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]];
 | |
|       assert(nextValNo && "Huh?");
 | |
| 
 | |
|       // If this live range has the same value # as its immediate predecessor,
 | |
|       // and if they are neighbors, remove one Segment.  This happens when we
 | |
|       // have [0,4:0)[4,7:1) and map 0/1 onto the same value #.
 | |
|       if (OutIt->valno == nextValNo && OutIt->end == I->start) {
 | |
|         OutIt->end = I->end;
 | |
|       } else {
 | |
|         // Didn't merge. Move OutIt to the next segment,
 | |
|         ++OutIt;
 | |
|         OutIt->valno = nextValNo;
 | |
|         if (OutIt != I) {
 | |
|           OutIt->start = I->start;
 | |
|           OutIt->end = I->end;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     // If we merge some segments, chop off the end.
 | |
|     ++OutIt;
 | |
|     segments.erase(OutIt, end());
 | |
|   }
 | |
| 
 | |
|   // Rewrite Other values before changing the VNInfo ids.
 | |
|   // This can leave Other in an invalid state because we're not coalescing
 | |
|   // touching segments that now have identical values. That's OK since Other is
 | |
|   // not supposed to be valid after calling join();
 | |
|   for (Segment &S : Other.segments)
 | |
|     S.valno = NewVNInfo[RHSValNoAssignments[S.valno->id]];
 | |
| 
 | |
|   // Update val# info. Renumber them and make sure they all belong to this
 | |
|   // LiveRange now. Also remove dead val#'s.
 | |
|   unsigned NumValNos = 0;
 | |
|   for (unsigned i = 0; i < NumNewVals; ++i) {
 | |
|     VNInfo *VNI = NewVNInfo[i];
 | |
|     if (VNI) {
 | |
|       if (NumValNos >= NumVals)
 | |
|         valnos.push_back(VNI);
 | |
|       else
 | |
|         valnos[NumValNos] = VNI;
 | |
|       VNI->id = NumValNos++;  // Renumber val#.
 | |
|     }
 | |
|   }
 | |
|   if (NumNewVals < NumVals)
 | |
|     valnos.resize(NumNewVals);  // shrinkify
 | |
| 
 | |
|   // Okay, now insert the RHS live segments into the LHS.
 | |
|   LiveRangeUpdater Updater(this);
 | |
|   for (Segment &S : Other.segments)
 | |
|     Updater.add(S);
 | |
| }
 | |
| 
 | |
| /// Merge all of the segments in RHS into this live range as the specified
 | |
| /// value number.  The segments in RHS are allowed to overlap with segments in
 | |
| /// the current range, but only if the overlapping segments have the
 | |
| /// specified value number.
 | |
| void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS,
 | |
|                                        VNInfo *LHSValNo) {
 | |
|   LiveRangeUpdater Updater(this);
 | |
|   for (const Segment &S : RHS.segments)
 | |
|     Updater.add(S.start, S.end, LHSValNo);
 | |
| }
 | |
| 
 | |
| /// MergeValueInAsValue - Merge all of the live segments of a specific val#
 | |
| /// in RHS into this live range as the specified value number.
 | |
| /// The segments in RHS are allowed to overlap with segments in the
 | |
| /// current range, it will replace the value numbers of the overlaped
 | |
| /// segments with the specified value number.
 | |
| void LiveRange::MergeValueInAsValue(const LiveRange &RHS,
 | |
|                                     const VNInfo *RHSValNo,
 | |
|                                     VNInfo *LHSValNo) {
 | |
|   LiveRangeUpdater Updater(this);
 | |
|   for (const Segment &S : RHS.segments)
 | |
|     if (S.valno == RHSValNo)
 | |
|       Updater.add(S.start, S.end, LHSValNo);
 | |
| }
 | |
| 
 | |
| /// MergeValueNumberInto - This method is called when two value nubmers
 | |
| /// are found to be equivalent.  This eliminates V1, replacing all
 | |
| /// segments with the V1 value number with the V2 value number.  This can
 | |
| /// cause merging of V1/V2 values numbers and compaction of the value space.
 | |
| VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
 | |
|   assert(V1 != V2 && "Identical value#'s are always equivalent!");
 | |
| 
 | |
|   // This code actually merges the (numerically) larger value number into the
 | |
|   // smaller value number, which is likely to allow us to compactify the value
 | |
|   // space.  The only thing we have to be careful of is to preserve the
 | |
|   // instruction that defines the result value.
 | |
| 
 | |
|   // Make sure V2 is smaller than V1.
 | |
|   if (V1->id < V2->id) {
 | |
|     V1->copyFrom(*V2);
 | |
|     std::swap(V1, V2);
 | |
|   }
 | |
| 
 | |
|   // Merge V1 segments into V2.
 | |
|   for (iterator I = begin(); I != end(); ) {
 | |
|     iterator S = I++;
 | |
|     if (S->valno != V1) continue;  // Not a V1 Segment.
 | |
| 
 | |
|     // Okay, we found a V1 live range.  If it had a previous, touching, V2 live
 | |
|     // range, extend it.
 | |
|     if (S != begin()) {
 | |
|       iterator Prev = S-1;
 | |
|       if (Prev->valno == V2 && Prev->end == S->start) {
 | |
|         Prev->end = S->end;
 | |
| 
 | |
|         // Erase this live-range.
 | |
|         segments.erase(S);
 | |
|         I = Prev+1;
 | |
|         S = Prev;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Okay, now we have a V1 or V2 live range that is maximally merged forward.
 | |
|     // Ensure that it is a V2 live-range.
 | |
|     S->valno = V2;
 | |
| 
 | |
|     // If we can merge it into later V2 segments, do so now.  We ignore any
 | |
|     // following V1 segments, as they will be merged in subsequent iterations
 | |
|     // of the loop.
 | |
|     if (I != end()) {
 | |
|       if (I->start == S->end && I->valno == V2) {
 | |
|         S->end = I->end;
 | |
|         segments.erase(I);
 | |
|         I = S+1;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now that V1 is dead, remove it.
 | |
|   markValNoForDeletion(V1);
 | |
| 
 | |
|   return V2;
 | |
| }
 | |
| 
 | |
| void LiveRange::flushSegmentSet() {
 | |
|   assert(segmentSet != nullptr && "segment set must have been created");
 | |
|   assert(
 | |
|       segments.empty() &&
 | |
|       "segment set can be used only initially before switching to the array");
 | |
|   segments.append(segmentSet->begin(), segmentSet->end());
 | |
|   segmentSet = nullptr;
 | |
|   verify();
 | |
| }
 | |
| 
 | |
| void LiveInterval::freeSubRange(SubRange *S) {
 | |
|   S->~SubRange();
 | |
|   // Memory was allocated with BumpPtr allocator and is not freed here.
 | |
| }
 | |
| 
 | |
| void LiveInterval::removeEmptySubRanges() {
 | |
|   SubRange **NextPtr = &SubRanges;
 | |
|   SubRange *I = *NextPtr;
 | |
|   while (I != nullptr) {
 | |
|     if (!I->empty()) {
 | |
|       NextPtr = &I->Next;
 | |
|       I = *NextPtr;
 | |
|       continue;
 | |
|     }
 | |
|     // Skip empty subranges until we find the first nonempty one.
 | |
|     do {
 | |
|       SubRange *Next = I->Next;
 | |
|       freeSubRange(I);
 | |
|       I = Next;
 | |
|     } while (I != nullptr && I->empty());
 | |
|     *NextPtr = I;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void LiveInterval::clearSubRanges() {
 | |
|   for (SubRange *I = SubRanges, *Next; I != nullptr; I = Next) {
 | |
|     Next = I->Next;
 | |
|     freeSubRange(I);
 | |
|   }
 | |
|   SubRanges = nullptr;
 | |
| }
 | |
| 
 | |
| /// Helper function for constructMainRangeFromSubranges(): Search the CFG
 | |
| /// backwards until we find a place covered by a LiveRange segment that actually
 | |
| /// has a valno set.
 | |
| static VNInfo *searchForVNI(const SlotIndexes &Indexes, LiveRange &LR,
 | |
|     const MachineBasicBlock *MBB,
 | |
|     SmallPtrSetImpl<const MachineBasicBlock*> &Visited) {
 | |
|   // We start the search at the end of MBB.
 | |
|   SlotIndex EndIdx = Indexes.getMBBEndIdx(MBB);
 | |
|   // In our use case we can't live the area covered by the live segments without
 | |
|   // finding an actual VNI def.
 | |
|   LiveRange::iterator I = LR.find(EndIdx.getPrevSlot());
 | |
|   assert(I != LR.end());
 | |
|   LiveRange::Segment &S = *I;
 | |
|   if (S.valno != nullptr)
 | |
|     return S.valno;
 | |
| 
 | |
|   VNInfo *VNI = nullptr;
 | |
|   // Continue at predecessors (we could even go to idom with domtree available).
 | |
|   for (const MachineBasicBlock *Pred : MBB->predecessors()) {
 | |
|     // Avoid going in circles.
 | |
|     if (!Visited.insert(Pred).second)
 | |
|       continue;
 | |
| 
 | |
|     VNI = searchForVNI(Indexes, LR, Pred, Visited);
 | |
|     if (VNI != nullptr) {
 | |
|       S.valno = VNI;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return VNI;
 | |
| }
 | |
| 
 | |
| static void determineMissingVNIs(const SlotIndexes &Indexes, LiveInterval &LI) {
 | |
|   SmallPtrSet<const MachineBasicBlock*, 5> Visited;
 | |
| 
 | |
|   LiveRange::iterator OutIt;
 | |
|   VNInfo *PrevValNo = nullptr;
 | |
|   for (LiveRange::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
 | |
|     LiveRange::Segment &S = *I;
 | |
|     // Determine final VNI if necessary.
 | |
|     if (S.valno == nullptr) {
 | |
|       // This can only happen at the begin of a basic block.
 | |
|       assert(S.start.isBlock() && "valno should only be missing at block begin");
 | |
| 
 | |
|       Visited.clear();
 | |
|       const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(S.start);
 | |
|       for (const MachineBasicBlock *Pred : MBB->predecessors()) {
 | |
|         VNInfo *VNI = searchForVNI(Indexes, LI, Pred, Visited);
 | |
|         if (VNI != nullptr) {
 | |
|           S.valno = VNI;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       assert(S.valno != nullptr && "could not determine valno");
 | |
|     }
 | |
|     // Merge with previous segment if it has the same VNI.
 | |
|     if (PrevValNo == S.valno && OutIt->end == S.start) {
 | |
|       OutIt->end = S.end;
 | |
|     } else {
 | |
|       // Didn't merge. Move OutIt to next segment.
 | |
|       if (PrevValNo == nullptr)
 | |
|         OutIt = LI.begin();
 | |
|       else
 | |
|         ++OutIt;
 | |
| 
 | |
|       if (OutIt != I)
 | |
|         *OutIt = *I;
 | |
|       PrevValNo = S.valno;
 | |
|     }
 | |
|   }
 | |
|   // If we merged some segments chop off the end.
 | |
|   ++OutIt;
 | |
|   LI.segments.erase(OutIt, LI.end());
 | |
| }
 | |
| 
 | |
| void LiveInterval::constructMainRangeFromSubranges(
 | |
|     const SlotIndexes &Indexes, VNInfo::Allocator &VNIAllocator) {
 | |
|   // The basic observations on which this algorithm is based:
 | |
|   // - Each Def/ValNo in a subrange must have a corresponding def on the main
 | |
|   //   range, but not further defs/valnos are necessary.
 | |
|   // - If any of the subranges is live at a point the main liverange has to be
 | |
|   //   live too, conversily if no subrange is live the main range mustn't be
 | |
|   //   live either.
 | |
|   // We do this by scannig through all the subranges simultaneously creating new
 | |
|   // segments in the main range as segments start/ends come up in the subranges.
 | |
|   assert(hasSubRanges() && "expected subranges to be present");
 | |
|   assert(segments.empty() && valnos.empty() && "expected empty main range");
 | |
| 
 | |
|   // Collect subrange, iterator pairs for the walk and determine first and last
 | |
|   // SlotIndex involved.
 | |
|   SmallVector<std::pair<const SubRange*, const_iterator>, 4> SRs;
 | |
|   SlotIndex First;
 | |
|   SlotIndex Last;
 | |
|   for (const SubRange &SR : subranges()) {
 | |
|     if (SR.empty())
 | |
|       continue;
 | |
|     SRs.push_back(std::make_pair(&SR, SR.begin()));
 | |
|     if (!First.isValid() || SR.segments.front().start < First)
 | |
|       First = SR.segments.front().start;
 | |
|     if (!Last.isValid() || SR.segments.back().end > Last)
 | |
|       Last = SR.segments.back().end;
 | |
|   }
 | |
| 
 | |
|   // Walk over all subranges simultaneously.
 | |
|   Segment CurrentSegment;
 | |
|   bool ConstructingSegment = false;
 | |
|   bool NeedVNIFixup = false;
 | |
|   unsigned ActiveMask = 0;
 | |
|   SlotIndex Pos = First;
 | |
|   while (true) {
 | |
|     SlotIndex NextPos = Last;
 | |
|     enum {
 | |
|       NOTHING,
 | |
|       BEGIN_SEGMENT,
 | |
|       END_SEGMENT,
 | |
|     } Event = NOTHING;
 | |
|     // Which subregister lanes are affected by the current event.
 | |
|     unsigned EventMask = 0;
 | |
|     // Whether a BEGIN_SEGMENT is also a valno definition point.
 | |
|     bool IsDef = false;
 | |
|     // Find the next begin or end of a subrange segment. Combine masks if we
 | |
|     // have multiple begins/ends at the same position. Ends take precedence over
 | |
|     // Begins.
 | |
|     for (auto &SRP : SRs) {
 | |
|       const SubRange &SR = *SRP.first;
 | |
|       const_iterator &I = SRP.second;
 | |
|       // Advance iterator of subrange to a segment involving Pos; the earlier
 | |
|       // segments are already merged at this point.
 | |
|       while (I != SR.end() &&
 | |
|              (I->end < Pos ||
 | |
|               (I->end == Pos && (ActiveMask & SR.LaneMask) == 0)))
 | |
|         ++I;
 | |
|       if (I == SR.end())
 | |
|         continue;
 | |
|       if ((ActiveMask & SR.LaneMask) == 0 &&
 | |
|           Pos <= I->start && I->start <= NextPos) {
 | |
|         // Merge multiple begins at the same position.
 | |
|         if (I->start == NextPos && Event == BEGIN_SEGMENT) {
 | |
|           EventMask |= SR.LaneMask;
 | |
|           IsDef |= I->valno->def == I->start;
 | |
|         } else if (I->start < NextPos || Event != END_SEGMENT) {
 | |
|           Event = BEGIN_SEGMENT;
 | |
|           NextPos = I->start;
 | |
|           EventMask = SR.LaneMask;
 | |
|           IsDef = I->valno->def == I->start;
 | |
|         }
 | |
|       }
 | |
|       if ((ActiveMask & SR.LaneMask) != 0 &&
 | |
|           Pos <= I->end && I->end <= NextPos) {
 | |
|         // Merge multiple ends at the same position.
 | |
|         if (I->end == NextPos && Event == END_SEGMENT)
 | |
|           EventMask |= SR.LaneMask;
 | |
|         else {
 | |
|           Event = END_SEGMENT;
 | |
|           NextPos = I->end;
 | |
|           EventMask = SR.LaneMask;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Advance scan position.
 | |
|     Pos = NextPos;
 | |
|     if (Event == BEGIN_SEGMENT) {
 | |
|       if (ConstructingSegment && IsDef) {
 | |
|         // Finish previous segment because we have to start a new one.
 | |
|         CurrentSegment.end = Pos;
 | |
|         append(CurrentSegment);
 | |
|         ConstructingSegment = false;
 | |
|       }
 | |
| 
 | |
|       // Start a new segment if necessary.
 | |
|       if (!ConstructingSegment) {
 | |
|         // Determine value number for the segment.
 | |
|         VNInfo *VNI;
 | |
|         if (IsDef) {
 | |
|           VNI = getNextValue(Pos, VNIAllocator);
 | |
|         } else {
 | |
|           // We have to reuse an existing value number, if we are lucky
 | |
|           // then we already passed one of the predecessor blocks and determined
 | |
|           // its value number (with blocks in reverse postorder this would be
 | |
|           // always true but we have no such guarantee).
 | |
|           assert(Pos.isBlock());
 | |
|           const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(Pos);
 | |
|           // See if any of the predecessor blocks has a lower number and a VNI
 | |
|           for (const MachineBasicBlock *Pred : MBB->predecessors()) {
 | |
|             SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred);
 | |
|             VNI = getVNInfoBefore(PredEnd);
 | |
|             if (VNI != nullptr)
 | |
|               break;
 | |
|           }
 | |
|           // Def will come later: We have to do an extra fixup pass.
 | |
|           if (VNI == nullptr)
 | |
|             NeedVNIFixup = true;
 | |
|         }
 | |
| 
 | |
|         // In rare cases we can produce adjacent segments with the same value
 | |
|         // number (if they come from different subranges, but happen to have
 | |
|         // the same defining instruction). VNIFixup will fix those cases.
 | |
|         if (!empty() && segments.back().end == Pos &&
 | |
|             segments.back().valno == VNI)
 | |
|           NeedVNIFixup = true;
 | |
|         CurrentSegment.start = Pos;
 | |
|         CurrentSegment.valno = VNI;
 | |
|         ConstructingSegment = true;
 | |
|       }
 | |
|       ActiveMask |= EventMask;
 | |
|     } else if (Event == END_SEGMENT) {
 | |
|       assert(ConstructingSegment);
 | |
|       // Finish segment if no lane is active anymore.
 | |
|       ActiveMask &= ~EventMask;
 | |
|       if (ActiveMask == 0) {
 | |
|         CurrentSegment.end = Pos;
 | |
|         append(CurrentSegment);
 | |
|         ConstructingSegment = false;
 | |
|       }
 | |
|     } else {
 | |
|       // We reached the end of the last subranges and can stop.
 | |
|       assert(Event == NOTHING);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We might not be able to assign new valnos for all segments if the basic
 | |
|   // block containing the definition comes after a segment using the valno.
 | |
|   // Do a fixup pass for this uncommon case.
 | |
|   if (NeedVNIFixup)
 | |
|     determineMissingVNIs(Indexes, *this);
 | |
| 
 | |
|   assert(ActiveMask == 0 && !ConstructingSegment && "all segments ended");
 | |
|   verify();
 | |
| }
 | |
| 
 | |
| unsigned LiveInterval::getSize() const {
 | |
|   unsigned Sum = 0;
 | |
|   for (const Segment &S : segments)
 | |
|     Sum += S.start.distance(S.end);
 | |
|   return Sum;
 | |
| }
 | |
| 
 | |
| raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange::Segment &S) {
 | |
|   return os << '[' << S.start << ',' << S.end << ':' << S.valno->id << ")";
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| void LiveRange::Segment::dump() const {
 | |
|   dbgs() << *this << "\n";
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void LiveRange::print(raw_ostream &OS) const {
 | |
|   if (empty())
 | |
|     OS << "EMPTY";
 | |
|   else {
 | |
|     for (const Segment &S : segments) {
 | |
|       OS << S;
 | |
|       assert(S.valno == getValNumInfo(S.valno->id) && "Bad VNInfo");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Print value number info.
 | |
|   if (getNumValNums()) {
 | |
|     OS << "  ";
 | |
|     unsigned vnum = 0;
 | |
|     for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e;
 | |
|          ++i, ++vnum) {
 | |
|       const VNInfo *vni = *i;
 | |
|       if (vnum) OS << " ";
 | |
|       OS << vnum << "@";
 | |
|       if (vni->isUnused()) {
 | |
|         OS << "x";
 | |
|       } else {
 | |
|         OS << vni->def;
 | |
|         if (vni->isPHIDef())
 | |
|           OS << "-phi";
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void LiveInterval::print(raw_ostream &OS) const {
 | |
|   OS << PrintReg(reg) << ' ';
 | |
|   super::print(OS);
 | |
|   // Print subranges
 | |
|   for (const SubRange &SR : subranges()) {
 | |
|     OS << format(" L%04X ", SR.LaneMask) << SR;
 | |
|   }
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| void LiveRange::dump() const {
 | |
|   dbgs() << *this << "\n";
 | |
| }
 | |
| 
 | |
| void LiveInterval::dump() const {
 | |
|   dbgs() << *this << "\n";
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| void LiveRange::verify() const {
 | |
|   for (const_iterator I = begin(), E = end(); I != E; ++I) {
 | |
|     assert(I->start.isValid());
 | |
|     assert(I->end.isValid());
 | |
|     assert(I->start < I->end);
 | |
|     assert(I->valno != nullptr);
 | |
|     assert(I->valno->id < valnos.size());
 | |
|     assert(I->valno == valnos[I->valno->id]);
 | |
|     if (std::next(I) != E) {
 | |
|       assert(I->end <= std::next(I)->start);
 | |
|       if (I->end == std::next(I)->start)
 | |
|         assert(I->valno != std::next(I)->valno);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void LiveInterval::verify(const MachineRegisterInfo *MRI) const {
 | |
|   super::verify();
 | |
| 
 | |
|   // Make sure SubRanges are fine and LaneMasks are disjunct.
 | |
|   unsigned Mask = 0;
 | |
|   unsigned MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg) : ~0u;
 | |
|   for (const SubRange &SR : subranges()) {
 | |
|     // Subrange lanemask should be disjunct to any previous subrange masks.
 | |
|     assert((Mask & SR.LaneMask) == 0);
 | |
|     Mask |= SR.LaneMask;
 | |
| 
 | |
|     // subrange mask should not contained in maximum lane mask for the vreg.
 | |
|     assert((Mask & ~MaxMask) == 0);
 | |
| 
 | |
|     SR.verify();
 | |
|     // Main liverange should cover subrange.
 | |
|     assert(covers(SR));
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           LiveRangeUpdater class
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // The LiveRangeUpdater class always maintains these invariants:
 | |
| //
 | |
| // - When LastStart is invalid, Spills is empty and the iterators are invalid.
 | |
| //   This is the initial state, and the state created by flush().
 | |
| //   In this state, isDirty() returns false.
 | |
| //
 | |
| // Otherwise, segments are kept in three separate areas:
 | |
| //
 | |
| // 1. [begin; WriteI) at the front of LR.
 | |
| // 2. [ReadI; end) at the back of LR.
 | |
| // 3. Spills.
 | |
| //
 | |
| // - LR.begin() <= WriteI <= ReadI <= LR.end().
 | |
| // - Segments in all three areas are fully ordered and coalesced.
 | |
| // - Segments in area 1 precede and can't coalesce with segments in area 2.
 | |
| // - Segments in Spills precede and can't coalesce with segments in area 2.
 | |
| // - No coalescing is possible between segments in Spills and segments in area
 | |
| //   1, and there are no overlapping segments.
 | |
| //
 | |
| // The segments in Spills are not ordered with respect to the segments in area
 | |
| // 1. They need to be merged.
 | |
| //
 | |
| // When they exist, Spills.back().start <= LastStart,
 | |
| //                 and WriteI[-1].start <= LastStart.
 | |
| 
 | |
| void LiveRangeUpdater::print(raw_ostream &OS) const {
 | |
|   if (!isDirty()) {
 | |
|     if (LR)
 | |
|       OS << "Clean updater: " << *LR << '\n';
 | |
|     else
 | |
|       OS << "Null updater.\n";
 | |
|     return;
 | |
|   }
 | |
|   assert(LR && "Can't have null LR in dirty updater.");
 | |
|   OS << " updater with gap = " << (ReadI - WriteI)
 | |
|      << ", last start = " << LastStart
 | |
|      << ":\n  Area 1:";
 | |
|   for (const auto &S : make_range(LR->begin(), WriteI))
 | |
|     OS << ' ' << S;
 | |
|   OS << "\n  Spills:";
 | |
|   for (unsigned I = 0, E = Spills.size(); I != E; ++I)
 | |
|     OS << ' ' << Spills[I];
 | |
|   OS << "\n  Area 2:";
 | |
|   for (const auto &S : make_range(ReadI, LR->end()))
 | |
|     OS << ' ' << S;
 | |
|   OS << '\n';
 | |
| }
 | |
| 
 | |
| void LiveRangeUpdater::dump() const
 | |
| {
 | |
|   print(errs());
 | |
| }
 | |
| 
 | |
| // Determine if A and B should be coalesced.
 | |
| static inline bool coalescable(const LiveRange::Segment &A,
 | |
|                                const LiveRange::Segment &B) {
 | |
|   assert(A.start <= B.start && "Unordered live segments.");
 | |
|   if (A.end == B.start)
 | |
|     return A.valno == B.valno;
 | |
|   if (A.end < B.start)
 | |
|     return false;
 | |
|   assert(A.valno == B.valno && "Cannot overlap different values");
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void LiveRangeUpdater::add(LiveRange::Segment Seg) {
 | |
|   assert(LR && "Cannot add to a null destination");
 | |
| 
 | |
|   // Fall back to the regular add method if the live range
 | |
|   // is using the segment set instead of the segment vector.
 | |
|   if (LR->segmentSet != nullptr) {
 | |
|     LR->addSegmentToSet(Seg);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Flush the state if Start moves backwards.
 | |
|   if (!LastStart.isValid() || LastStart > Seg.start) {
 | |
|     if (isDirty())
 | |
|       flush();
 | |
|     // This brings us to an uninitialized state. Reinitialize.
 | |
|     assert(Spills.empty() && "Leftover spilled segments");
 | |
|     WriteI = ReadI = LR->begin();
 | |
|   }
 | |
| 
 | |
|   // Remember start for next time.
 | |
|   LastStart = Seg.start;
 | |
| 
 | |
|   // Advance ReadI until it ends after Seg.start.
 | |
|   LiveRange::iterator E = LR->end();
 | |
|   if (ReadI != E && ReadI->end <= Seg.start) {
 | |
|     // First try to close the gap between WriteI and ReadI with spills.
 | |
|     if (ReadI != WriteI)
 | |
|       mergeSpills();
 | |
|     // Then advance ReadI.
 | |
|     if (ReadI == WriteI)
 | |
|       ReadI = WriteI = LR->find(Seg.start);
 | |
|     else
 | |
|       while (ReadI != E && ReadI->end <= Seg.start)
 | |
|         *WriteI++ = *ReadI++;
 | |
|   }
 | |
| 
 | |
|   assert(ReadI == E || ReadI->end > Seg.start);
 | |
| 
 | |
|   // Check if the ReadI segment begins early.
 | |
|   if (ReadI != E && ReadI->start <= Seg.start) {
 | |
|     assert(ReadI->valno == Seg.valno && "Cannot overlap different values");
 | |
|     // Bail if Seg is completely contained in ReadI.
 | |
|     if (ReadI->end >= Seg.end)
 | |
|       return;
 | |
|     // Coalesce into Seg.
 | |
|     Seg.start = ReadI->start;
 | |
|     ++ReadI;
 | |
|   }
 | |
| 
 | |
|   // Coalesce as much as possible from ReadI into Seg.
 | |
|   while (ReadI != E && coalescable(Seg, *ReadI)) {
 | |
|     Seg.end = std::max(Seg.end, ReadI->end);
 | |
|     ++ReadI;
 | |
|   }
 | |
| 
 | |
|   // Try coalescing Spills.back() into Seg.
 | |
|   if (!Spills.empty() && coalescable(Spills.back(), Seg)) {
 | |
|     Seg.start = Spills.back().start;
 | |
|     Seg.end = std::max(Spills.back().end, Seg.end);
 | |
|     Spills.pop_back();
 | |
|   }
 | |
| 
 | |
|   // Try coalescing Seg into WriteI[-1].
 | |
|   if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) {
 | |
|     WriteI[-1].end = std::max(WriteI[-1].end, Seg.end);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Seg doesn't coalesce with anything, and needs to be inserted somewhere.
 | |
|   if (WriteI != ReadI) {
 | |
|     *WriteI++ = Seg;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Finally, append to LR or Spills.
 | |
|   if (WriteI == E) {
 | |
|     LR->segments.push_back(Seg);
 | |
|     WriteI = ReadI = LR->end();
 | |
|   } else
 | |
|     Spills.push_back(Seg);
 | |
| }
 | |
| 
 | |
| // Merge as many spilled segments as possible into the gap between WriteI
 | |
| // and ReadI. Advance WriteI to reflect the inserted instructions.
 | |
| void LiveRangeUpdater::mergeSpills() {
 | |
|   // Perform a backwards merge of Spills and [SpillI;WriteI).
 | |
|   size_t GapSize = ReadI - WriteI;
 | |
|   size_t NumMoved = std::min(Spills.size(), GapSize);
 | |
|   LiveRange::iterator Src = WriteI;
 | |
|   LiveRange::iterator Dst = Src + NumMoved;
 | |
|   LiveRange::iterator SpillSrc = Spills.end();
 | |
|   LiveRange::iterator B = LR->begin();
 | |
| 
 | |
|   // This is the new WriteI position after merging spills.
 | |
|   WriteI = Dst;
 | |
| 
 | |
|   // Now merge Src and Spills backwards.
 | |
|   while (Src != Dst) {
 | |
|     if (Src != B && Src[-1].start > SpillSrc[-1].start)
 | |
|       *--Dst = *--Src;
 | |
|     else
 | |
|       *--Dst = *--SpillSrc;
 | |
|   }
 | |
|   assert(NumMoved == size_t(Spills.end() - SpillSrc));
 | |
|   Spills.erase(SpillSrc, Spills.end());
 | |
| }
 | |
| 
 | |
| void LiveRangeUpdater::flush() {
 | |
|   if (!isDirty())
 | |
|     return;
 | |
|   // Clear the dirty state.
 | |
|   LastStart = SlotIndex();
 | |
| 
 | |
|   assert(LR && "Cannot add to a null destination");
 | |
| 
 | |
|   // Nothing to merge?
 | |
|   if (Spills.empty()) {
 | |
|     LR->segments.erase(WriteI, ReadI);
 | |
|     LR->verify();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Resize the WriteI - ReadI gap to match Spills.
 | |
|   size_t GapSize = ReadI - WriteI;
 | |
|   if (GapSize < Spills.size()) {
 | |
|     // The gap is too small. Make some room.
 | |
|     size_t WritePos = WriteI - LR->begin();
 | |
|     LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment());
 | |
|     // This also invalidated ReadI, but it is recomputed below.
 | |
|     WriteI = LR->begin() + WritePos;
 | |
|   } else {
 | |
|     // Shrink the gap if necessary.
 | |
|     LR->segments.erase(WriteI + Spills.size(), ReadI);
 | |
|   }
 | |
|   ReadI = WriteI + Spills.size();
 | |
|   mergeSpills();
 | |
|   LR->verify();
 | |
| }
 | |
| 
 | |
| unsigned ConnectedVNInfoEqClasses::Classify(const LiveInterval *LI) {
 | |
|   // Create initial equivalence classes.
 | |
|   EqClass.clear();
 | |
|   EqClass.grow(LI->getNumValNums());
 | |
| 
 | |
|   const VNInfo *used = nullptr, *unused = nullptr;
 | |
| 
 | |
|   // Determine connections.
 | |
|   for (const VNInfo *VNI : LI->valnos) {
 | |
|     // Group all unused values into one class.
 | |
|     if (VNI->isUnused()) {
 | |
|       if (unused)
 | |
|         EqClass.join(unused->id, VNI->id);
 | |
|       unused = VNI;
 | |
|       continue;
 | |
|     }
 | |
|     used = VNI;
 | |
|     if (VNI->isPHIDef()) {
 | |
|       const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
 | |
|       assert(MBB && "Phi-def has no defining MBB");
 | |
|       // Connect to values live out of predecessors.
 | |
|       for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
 | |
|            PE = MBB->pred_end(); PI != PE; ++PI)
 | |
|         if (const VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI)))
 | |
|           EqClass.join(VNI->id, PVNI->id);
 | |
|     } else {
 | |
|       // Normal value defined by an instruction. Check for two-addr redef.
 | |
|       // FIXME: This could be coincidental. Should we really check for a tied
 | |
|       // operand constraint?
 | |
|       // Note that VNI->def may be a use slot for an early clobber def.
 | |
|       if (const VNInfo *UVNI = LI->getVNInfoBefore(VNI->def))
 | |
|         EqClass.join(VNI->id, UVNI->id);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Lump all the unused values in with the last used value.
 | |
|   if (used && unused)
 | |
|     EqClass.join(used->id, unused->id);
 | |
| 
 | |
|   EqClass.compress();
 | |
|   return EqClass.getNumClasses();
 | |
| }
 | |
| 
 | |
| void ConnectedVNInfoEqClasses::Distribute(LiveInterval *LIV[],
 | |
|                                           MachineRegisterInfo &MRI) {
 | |
|   assert(LIV[0] && "LIV[0] must be set");
 | |
|   LiveInterval &LI = *LIV[0];
 | |
| 
 | |
|   // Rewrite instructions.
 | |
|   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg),
 | |
|        RE = MRI.reg_end(); RI != RE;) {
 | |
|     MachineOperand &MO = *RI;
 | |
|     MachineInstr *MI = RI->getParent();
 | |
|     ++RI;
 | |
|     // DBG_VALUE instructions don't have slot indexes, so get the index of the
 | |
|     // instruction before them.
 | |
|     // Normally, DBG_VALUE instructions are removed before this function is
 | |
|     // called, but it is not a requirement.
 | |
|     SlotIndex Idx;
 | |
|     if (MI->isDebugValue())
 | |
|       Idx = LIS.getSlotIndexes()->getIndexBefore(MI);
 | |
|     else
 | |
|       Idx = LIS.getInstructionIndex(MI);
 | |
|     LiveQueryResult LRQ = LI.Query(Idx);
 | |
|     const VNInfo *VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined();
 | |
|     // In the case of an <undef> use that isn't tied to any def, VNI will be
 | |
|     // NULL. If the use is tied to a def, VNI will be the defined value.
 | |
|     if (!VNI)
 | |
|       continue;
 | |
|     MO.setReg(LIV[getEqClass(VNI)]->reg);
 | |
|   }
 | |
| 
 | |
|   // Move runs to new intervals.
 | |
|   LiveInterval::iterator J = LI.begin(), E = LI.end();
 | |
|   while (J != E && EqClass[J->valno->id] == 0)
 | |
|     ++J;
 | |
|   for (LiveInterval::iterator I = J; I != E; ++I) {
 | |
|     if (unsigned eq = EqClass[I->valno->id]) {
 | |
|       assert((LIV[eq]->empty() || LIV[eq]->expiredAt(I->start)) &&
 | |
|              "New intervals should be empty");
 | |
|       LIV[eq]->segments.push_back(*I);
 | |
|     } else
 | |
|       *J++ = *I;
 | |
|   }
 | |
|   // TODO: do not cheat anymore by simply cleaning all subranges
 | |
|   LI.clearSubRanges();
 | |
|   LI.segments.erase(J, E);
 | |
| 
 | |
|   // Transfer VNInfos to their new owners and renumber them.
 | |
|   unsigned j = 0, e = LI.getNumValNums();
 | |
|   while (j != e && EqClass[j] == 0)
 | |
|     ++j;
 | |
|   for (unsigned i = j; i != e; ++i) {
 | |
|     VNInfo *VNI = LI.getValNumInfo(i);
 | |
|     if (unsigned eq = EqClass[i]) {
 | |
|       VNI->id = LIV[eq]->getNumValNums();
 | |
|       LIV[eq]->valnos.push_back(VNI);
 | |
|     } else {
 | |
|       VNI->id = j;
 | |
|       LI.valnos[j++] = VNI;
 | |
|     }
 | |
|   }
 | |
|   LI.valnos.resize(j);
 | |
| }
 |