mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239056 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			8151 lines
		
	
	
		
			315 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			8151 lines
		
	
	
		
			315 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements routines for translating from LLVM IR into SelectionDAG IR.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "SelectionDAGBuilder.h"
 | |
| #include "SDNodeDbgValue.h"
 | |
| #include "llvm/ADT/BitVector.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/BranchProbabilityInfo.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/CodeGen/FastISel.h"
 | |
| #include "llvm/CodeGen/FunctionLoweringInfo.h"
 | |
| #include "llvm/CodeGen/GCMetadata.h"
 | |
| #include "llvm/CodeGen/GCStrategy.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineJumpTableInfo.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/CodeGen/StackMaps.h"
 | |
| #include "llvm/CodeGen/WinEHFuncInfo.h"
 | |
| #include "llvm/IR/CallingConv.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DebugInfo.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/InlineAsm.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Statepoint.h"
 | |
| #include "llvm/MC/MCSymbol.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetFrameLowering.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetIntrinsicInfo.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Target/TargetSelectionDAGInfo.h"
 | |
| #include "llvm/Target/TargetSubtargetInfo.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "isel"
 | |
| 
 | |
| /// LimitFloatPrecision - Generate low-precision inline sequences for
 | |
| /// some float libcalls (6, 8 or 12 bits).
 | |
| static unsigned LimitFloatPrecision;
 | |
| 
 | |
| static cl::opt<unsigned, true>
 | |
| LimitFPPrecision("limit-float-precision",
 | |
|                  cl::desc("Generate low-precision inline sequences "
 | |
|                           "for some float libcalls"),
 | |
|                  cl::location(LimitFloatPrecision),
 | |
|                  cl::init(0));
 | |
| 
 | |
| // Limit the width of DAG chains. This is important in general to prevent
 | |
| // prevent DAG-based analysis from blowing up. For example, alias analysis and
 | |
| // load clustering may not complete in reasonable time. It is difficult to
 | |
| // recognize and avoid this situation within each individual analysis, and
 | |
| // future analyses are likely to have the same behavior. Limiting DAG width is
 | |
| // the safe approach, and will be especially important with global DAGs.
 | |
| //
 | |
| // MaxParallelChains default is arbitrarily high to avoid affecting
 | |
| // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
 | |
| // sequence over this should have been converted to llvm.memcpy by the
 | |
| // frontend. It easy to induce this behavior with .ll code such as:
 | |
| // %buffer = alloca [4096 x i8]
 | |
| // %data = load [4096 x i8]* %argPtr
 | |
| // store [4096 x i8] %data, [4096 x i8]* %buffer
 | |
| static const unsigned MaxParallelChains = 64;
 | |
| 
 | |
| static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
 | |
|                                       const SDValue *Parts, unsigned NumParts,
 | |
|                                       MVT PartVT, EVT ValueVT, const Value *V);
 | |
| 
 | |
| /// getCopyFromParts - Create a value that contains the specified legal parts
 | |
| /// combined into the value they represent.  If the parts combine to a type
 | |
| /// larger then ValueVT then AssertOp can be used to specify whether the extra
 | |
| /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
 | |
| /// (ISD::AssertSext).
 | |
| static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
 | |
|                                 const SDValue *Parts,
 | |
|                                 unsigned NumParts, MVT PartVT, EVT ValueVT,
 | |
|                                 const Value *V,
 | |
|                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
 | |
|   if (ValueVT.isVector())
 | |
|     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
 | |
|                                   PartVT, ValueVT, V);
 | |
| 
 | |
|   assert(NumParts > 0 && "No parts to assemble!");
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   SDValue Val = Parts[0];
 | |
| 
 | |
|   if (NumParts > 1) {
 | |
|     // Assemble the value from multiple parts.
 | |
|     if (ValueVT.isInteger()) {
 | |
|       unsigned PartBits = PartVT.getSizeInBits();
 | |
|       unsigned ValueBits = ValueVT.getSizeInBits();
 | |
| 
 | |
|       // Assemble the power of 2 part.
 | |
|       unsigned RoundParts = NumParts & (NumParts - 1) ?
 | |
|         1 << Log2_32(NumParts) : NumParts;
 | |
|       unsigned RoundBits = PartBits * RoundParts;
 | |
|       EVT RoundVT = RoundBits == ValueBits ?
 | |
|         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
 | |
|       SDValue Lo, Hi;
 | |
| 
 | |
|       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
 | |
| 
 | |
|       if (RoundParts > 2) {
 | |
|         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
 | |
|                               PartVT, HalfVT, V);
 | |
|         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
 | |
|                               RoundParts / 2, PartVT, HalfVT, V);
 | |
|       } else {
 | |
|         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
 | |
|         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
 | |
|       }
 | |
| 
 | |
|       if (TLI.isBigEndian())
 | |
|         std::swap(Lo, Hi);
 | |
| 
 | |
|       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
 | |
| 
 | |
|       if (RoundParts < NumParts) {
 | |
|         // Assemble the trailing non-power-of-2 part.
 | |
|         unsigned OddParts = NumParts - RoundParts;
 | |
|         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
 | |
|         Hi = getCopyFromParts(DAG, DL,
 | |
|                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
 | |
| 
 | |
|         // Combine the round and odd parts.
 | |
|         Lo = Val;
 | |
|         if (TLI.isBigEndian())
 | |
|           std::swap(Lo, Hi);
 | |
|         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
 | |
|         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
 | |
|         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
 | |
|                          DAG.getConstant(Lo.getValueType().getSizeInBits(), DL,
 | |
|                                          TLI.getPointerTy()));
 | |
|         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
 | |
|         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
 | |
|       }
 | |
|     } else if (PartVT.isFloatingPoint()) {
 | |
|       // FP split into multiple FP parts (for ppcf128)
 | |
|       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
 | |
|              "Unexpected split");
 | |
|       SDValue Lo, Hi;
 | |
|       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
 | |
|       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
 | |
|       if (TLI.hasBigEndianPartOrdering(ValueVT))
 | |
|         std::swap(Lo, Hi);
 | |
|       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
 | |
|     } else {
 | |
|       // FP split into integer parts (soft fp)
 | |
|       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
 | |
|              !PartVT.isVector() && "Unexpected split");
 | |
|       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
 | |
|       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // There is now one part, held in Val.  Correct it to match ValueVT.
 | |
|   EVT PartEVT = Val.getValueType();
 | |
| 
 | |
|   if (PartEVT == ValueVT)
 | |
|     return Val;
 | |
| 
 | |
|   if (PartEVT.isInteger() && ValueVT.isInteger()) {
 | |
|     if (ValueVT.bitsLT(PartEVT)) {
 | |
|       // For a truncate, see if we have any information to
 | |
|       // indicate whether the truncated bits will always be
 | |
|       // zero or sign-extension.
 | |
|       if (AssertOp != ISD::DELETED_NODE)
 | |
|         Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
 | |
|                           DAG.getValueType(ValueVT));
 | |
|       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
 | |
|     }
 | |
|     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
 | |
|   }
 | |
| 
 | |
|   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
 | |
|     // FP_ROUND's are always exact here.
 | |
|     if (ValueVT.bitsLT(Val.getValueType()))
 | |
|       return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
 | |
|                          DAG.getTargetConstant(1, DL, TLI.getPointerTy()));
 | |
| 
 | |
|     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
 | |
|   }
 | |
| 
 | |
|   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
 | |
|     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
 | |
| 
 | |
|   llvm_unreachable("Unknown mismatch!");
 | |
| }
 | |
| 
 | |
| static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
 | |
|                                               const Twine &ErrMsg) {
 | |
|   const Instruction *I = dyn_cast_or_null<Instruction>(V);
 | |
|   if (!V)
 | |
|     return Ctx.emitError(ErrMsg);
 | |
| 
 | |
|   const char *AsmError = ", possible invalid constraint for vector type";
 | |
|   if (const CallInst *CI = dyn_cast<CallInst>(I))
 | |
|     if (isa<InlineAsm>(CI->getCalledValue()))
 | |
|       return Ctx.emitError(I, ErrMsg + AsmError);
 | |
| 
 | |
|   return Ctx.emitError(I, ErrMsg);
 | |
| }
 | |
| 
 | |
| /// getCopyFromPartsVector - Create a value that contains the specified legal
 | |
| /// parts combined into the value they represent.  If the parts combine to a
 | |
| /// type larger then ValueVT then AssertOp can be used to specify whether the
 | |
| /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
 | |
| /// ValueVT (ISD::AssertSext).
 | |
| static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
 | |
|                                       const SDValue *Parts, unsigned NumParts,
 | |
|                                       MVT PartVT, EVT ValueVT, const Value *V) {
 | |
|   assert(ValueVT.isVector() && "Not a vector value");
 | |
|   assert(NumParts > 0 && "No parts to assemble!");
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   SDValue Val = Parts[0];
 | |
| 
 | |
|   // Handle a multi-element vector.
 | |
|   if (NumParts > 1) {
 | |
|     EVT IntermediateVT;
 | |
|     MVT RegisterVT;
 | |
|     unsigned NumIntermediates;
 | |
|     unsigned NumRegs =
 | |
|     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
 | |
|                                NumIntermediates, RegisterVT);
 | |
|     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
 | |
|     NumParts = NumRegs; // Silence a compiler warning.
 | |
|     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
 | |
|     assert(RegisterVT == Parts[0].getSimpleValueType() &&
 | |
|            "Part type doesn't match part!");
 | |
| 
 | |
|     // Assemble the parts into intermediate operands.
 | |
|     SmallVector<SDValue, 8> Ops(NumIntermediates);
 | |
|     if (NumIntermediates == NumParts) {
 | |
|       // If the register was not expanded, truncate or copy the value,
 | |
|       // as appropriate.
 | |
|       for (unsigned i = 0; i != NumParts; ++i)
 | |
|         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
 | |
|                                   PartVT, IntermediateVT, V);
 | |
|     } else if (NumParts > 0) {
 | |
|       // If the intermediate type was expanded, build the intermediate
 | |
|       // operands from the parts.
 | |
|       assert(NumParts % NumIntermediates == 0 &&
 | |
|              "Must expand into a divisible number of parts!");
 | |
|       unsigned Factor = NumParts / NumIntermediates;
 | |
|       for (unsigned i = 0; i != NumIntermediates; ++i)
 | |
|         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
 | |
|                                   PartVT, IntermediateVT, V);
 | |
|     }
 | |
| 
 | |
|     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
 | |
|     // intermediate operands.
 | |
|     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
 | |
|                                                 : ISD::BUILD_VECTOR,
 | |
|                       DL, ValueVT, Ops);
 | |
|   }
 | |
| 
 | |
|   // There is now one part, held in Val.  Correct it to match ValueVT.
 | |
|   EVT PartEVT = Val.getValueType();
 | |
| 
 | |
|   if (PartEVT == ValueVT)
 | |
|     return Val;
 | |
| 
 | |
|   if (PartEVT.isVector()) {
 | |
|     // If the element type of the source/dest vectors are the same, but the
 | |
|     // parts vector has more elements than the value vector, then we have a
 | |
|     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
 | |
|     // elements we want.
 | |
|     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
 | |
|       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
 | |
|              "Cannot narrow, it would be a lossy transformation");
 | |
|       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
 | |
|                          DAG.getConstant(0, DL, TLI.getVectorIdxTy()));
 | |
|     }
 | |
| 
 | |
|     // Vector/Vector bitcast.
 | |
|     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
 | |
|       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
 | |
| 
 | |
|     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
 | |
|       "Cannot handle this kind of promotion");
 | |
|     // Promoted vector extract
 | |
|     bool Smaller = ValueVT.bitsLE(PartEVT);
 | |
|     return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
 | |
|                        DL, ValueVT, Val);
 | |
| 
 | |
|   }
 | |
| 
 | |
|   // Trivial bitcast if the types are the same size and the destination
 | |
|   // vector type is legal.
 | |
|   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
 | |
|       TLI.isTypeLegal(ValueVT))
 | |
|     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
 | |
| 
 | |
|   // Handle cases such as i8 -> <1 x i1>
 | |
|   if (ValueVT.getVectorNumElements() != 1) {
 | |
|     diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
 | |
|                                       "non-trivial scalar-to-vector conversion");
 | |
|     return DAG.getUNDEF(ValueVT);
 | |
|   }
 | |
| 
 | |
|   if (ValueVT.getVectorNumElements() == 1 &&
 | |
|       ValueVT.getVectorElementType() != PartEVT) {
 | |
|     bool Smaller = ValueVT.bitsLE(PartEVT);
 | |
|     Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
 | |
|                        DL, ValueVT.getScalarType(), Val);
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
 | |
| }
 | |
| 
 | |
| static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
 | |
|                                  SDValue Val, SDValue *Parts, unsigned NumParts,
 | |
|                                  MVT PartVT, const Value *V);
 | |
| 
 | |
| /// getCopyToParts - Create a series of nodes that contain the specified value
 | |
| /// split into legal parts.  If the parts contain more bits than Val, then, for
 | |
| /// integers, ExtendKind can be used to specify how to generate the extra bits.
 | |
| static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
 | |
|                            SDValue Val, SDValue *Parts, unsigned NumParts,
 | |
|                            MVT PartVT, const Value *V,
 | |
|                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
 | |
|   EVT ValueVT = Val.getValueType();
 | |
| 
 | |
|   // Handle the vector case separately.
 | |
|   if (ValueVT.isVector())
 | |
|     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
 | |
| 
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   unsigned PartBits = PartVT.getSizeInBits();
 | |
|   unsigned OrigNumParts = NumParts;
 | |
|   assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
 | |
| 
 | |
|   if (NumParts == 0)
 | |
|     return;
 | |
| 
 | |
|   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
 | |
|   EVT PartEVT = PartVT;
 | |
|   if (PartEVT == ValueVT) {
 | |
|     assert(NumParts == 1 && "No-op copy with multiple parts!");
 | |
|     Parts[0] = Val;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
 | |
|     // If the parts cover more bits than the value has, promote the value.
 | |
|     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
 | |
|       assert(NumParts == 1 && "Do not know what to promote to!");
 | |
|       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
 | |
|     } else {
 | |
|       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
 | |
|              ValueVT.isInteger() &&
 | |
|              "Unknown mismatch!");
 | |
|       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
 | |
|       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
 | |
|       if (PartVT == MVT::x86mmx)
 | |
|         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
 | |
|     }
 | |
|   } else if (PartBits == ValueVT.getSizeInBits()) {
 | |
|     // Different types of the same size.
 | |
|     assert(NumParts == 1 && PartEVT != ValueVT);
 | |
|     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
 | |
|   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
 | |
|     // If the parts cover less bits than value has, truncate the value.
 | |
|     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
 | |
|            ValueVT.isInteger() &&
 | |
|            "Unknown mismatch!");
 | |
|     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
 | |
|     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
 | |
|     if (PartVT == MVT::x86mmx)
 | |
|       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
 | |
|   }
 | |
| 
 | |
|   // The value may have changed - recompute ValueVT.
 | |
|   ValueVT = Val.getValueType();
 | |
|   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
 | |
|          "Failed to tile the value with PartVT!");
 | |
| 
 | |
|   if (NumParts == 1) {
 | |
|     if (PartEVT != ValueVT)
 | |
|       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
 | |
|                                         "scalar-to-vector conversion failed");
 | |
| 
 | |
|     Parts[0] = Val;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Expand the value into multiple parts.
 | |
|   if (NumParts & (NumParts - 1)) {
 | |
|     // The number of parts is not a power of 2.  Split off and copy the tail.
 | |
|     assert(PartVT.isInteger() && ValueVT.isInteger() &&
 | |
|            "Do not know what to expand to!");
 | |
|     unsigned RoundParts = 1 << Log2_32(NumParts);
 | |
|     unsigned RoundBits = RoundParts * PartBits;
 | |
|     unsigned OddParts = NumParts - RoundParts;
 | |
|     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
 | |
|                                  DAG.getIntPtrConstant(RoundBits, DL));
 | |
|     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
 | |
| 
 | |
|     if (TLI.isBigEndian())
 | |
|       // The odd parts were reversed by getCopyToParts - unreverse them.
 | |
|       std::reverse(Parts + RoundParts, Parts + NumParts);
 | |
| 
 | |
|     NumParts = RoundParts;
 | |
|     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
 | |
|     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
 | |
|   }
 | |
| 
 | |
|   // The number of parts is a power of 2.  Repeatedly bisect the value using
 | |
|   // EXTRACT_ELEMENT.
 | |
|   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
 | |
|                          EVT::getIntegerVT(*DAG.getContext(),
 | |
|                                            ValueVT.getSizeInBits()),
 | |
|                          Val);
 | |
| 
 | |
|   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
 | |
|     for (unsigned i = 0; i < NumParts; i += StepSize) {
 | |
|       unsigned ThisBits = StepSize * PartBits / 2;
 | |
|       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
 | |
|       SDValue &Part0 = Parts[i];
 | |
|       SDValue &Part1 = Parts[i+StepSize/2];
 | |
| 
 | |
|       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
 | |
|                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
 | |
|       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
 | |
|                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
 | |
| 
 | |
|       if (ThisBits == PartBits && ThisVT != PartVT) {
 | |
|         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
 | |
|         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (TLI.isBigEndian())
 | |
|     std::reverse(Parts, Parts + OrigNumParts);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getCopyToPartsVector - Create a series of nodes that contain the specified
 | |
| /// value split into legal parts.
 | |
| static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
 | |
|                                  SDValue Val, SDValue *Parts, unsigned NumParts,
 | |
|                                  MVT PartVT, const Value *V) {
 | |
|   EVT ValueVT = Val.getValueType();
 | |
|   assert(ValueVT.isVector() && "Not a vector");
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
| 
 | |
|   if (NumParts == 1) {
 | |
|     EVT PartEVT = PartVT;
 | |
|     if (PartEVT == ValueVT) {
 | |
|       // Nothing to do.
 | |
|     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
 | |
|       // Bitconvert vector->vector case.
 | |
|       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
 | |
|     } else if (PartVT.isVector() &&
 | |
|                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
 | |
|                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
 | |
|       EVT ElementVT = PartVT.getVectorElementType();
 | |
|       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
 | |
|       // undef elements.
 | |
|       SmallVector<SDValue, 16> Ops;
 | |
|       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
 | |
|         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
 | |
|                                   ElementVT, Val, DAG.getConstant(i, DL,
 | |
|                                                   TLI.getVectorIdxTy())));
 | |
| 
 | |
|       for (unsigned i = ValueVT.getVectorNumElements(),
 | |
|            e = PartVT.getVectorNumElements(); i != e; ++i)
 | |
|         Ops.push_back(DAG.getUNDEF(ElementVT));
 | |
| 
 | |
|       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
 | |
| 
 | |
|       // FIXME: Use CONCAT for 2x -> 4x.
 | |
| 
 | |
|       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
 | |
|       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
 | |
|     } else if (PartVT.isVector() &&
 | |
|                PartEVT.getVectorElementType().bitsGE(
 | |
|                  ValueVT.getVectorElementType()) &&
 | |
|                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
 | |
| 
 | |
|       // Promoted vector extract
 | |
|       bool Smaller = PartEVT.bitsLE(ValueVT);
 | |
|       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
 | |
|                         DL, PartVT, Val);
 | |
|     } else{
 | |
|       // Vector -> scalar conversion.
 | |
|       assert(ValueVT.getVectorNumElements() == 1 &&
 | |
|              "Only trivial vector-to-scalar conversions should get here!");
 | |
|       Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
 | |
|                         PartVT, Val,
 | |
|                         DAG.getConstant(0, DL, TLI.getVectorIdxTy()));
 | |
| 
 | |
|       bool Smaller = ValueVT.bitsLE(PartVT);
 | |
|       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
 | |
|                          DL, PartVT, Val);
 | |
|     }
 | |
| 
 | |
|     Parts[0] = Val;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Handle a multi-element vector.
 | |
|   EVT IntermediateVT;
 | |
|   MVT RegisterVT;
 | |
|   unsigned NumIntermediates;
 | |
|   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
 | |
|                                                 IntermediateVT,
 | |
|                                                 NumIntermediates, RegisterVT);
 | |
|   unsigned NumElements = ValueVT.getVectorNumElements();
 | |
| 
 | |
|   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
 | |
|   NumParts = NumRegs; // Silence a compiler warning.
 | |
|   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
 | |
| 
 | |
|   // Split the vector into intermediate operands.
 | |
|   SmallVector<SDValue, 8> Ops(NumIntermediates);
 | |
|   for (unsigned i = 0; i != NumIntermediates; ++i) {
 | |
|     if (IntermediateVT.isVector())
 | |
|       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
 | |
|                            IntermediateVT, Val,
 | |
|                    DAG.getConstant(i * (NumElements / NumIntermediates), DL,
 | |
|                                    TLI.getVectorIdxTy()));
 | |
|     else
 | |
|       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
 | |
|                            IntermediateVT, Val,
 | |
|                            DAG.getConstant(i, DL, TLI.getVectorIdxTy()));
 | |
|   }
 | |
| 
 | |
|   // Split the intermediate operands into legal parts.
 | |
|   if (NumParts == NumIntermediates) {
 | |
|     // If the register was not expanded, promote or copy the value,
 | |
|     // as appropriate.
 | |
|     for (unsigned i = 0; i != NumParts; ++i)
 | |
|       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
 | |
|   } else if (NumParts > 0) {
 | |
|     // If the intermediate type was expanded, split each the value into
 | |
|     // legal parts.
 | |
|     assert(NumIntermediates != 0 && "division by zero");
 | |
|     assert(NumParts % NumIntermediates == 0 &&
 | |
|            "Must expand into a divisible number of parts!");
 | |
|     unsigned Factor = NumParts / NumIntermediates;
 | |
|     for (unsigned i = 0; i != NumIntermediates; ++i)
 | |
|       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
 | |
|   }
 | |
| }
 | |
| 
 | |
| RegsForValue::RegsForValue() {}
 | |
| 
 | |
| RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt,
 | |
|                            EVT valuevt)
 | |
|     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
 | |
| 
 | |
| RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &tli,
 | |
|                            unsigned Reg, Type *Ty) {
 | |
|   ComputeValueVTs(tli, Ty, ValueVTs);
 | |
| 
 | |
|   for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
 | |
|     EVT ValueVT = ValueVTs[Value];
 | |
|     unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
 | |
|     MVT RegisterVT = tli.getRegisterType(Context, ValueVT);
 | |
|     for (unsigned i = 0; i != NumRegs; ++i)
 | |
|       Regs.push_back(Reg + i);
 | |
|     RegVTs.push_back(RegisterVT);
 | |
|     Reg += NumRegs;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
 | |
| /// this value and returns the result as a ValueVT value.  This uses
 | |
| /// Chain/Flag as the input and updates them for the output Chain/Flag.
 | |
| /// If the Flag pointer is NULL, no flag is used.
 | |
| SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
 | |
|                                       FunctionLoweringInfo &FuncInfo,
 | |
|                                       SDLoc dl,
 | |
|                                       SDValue &Chain, SDValue *Flag,
 | |
|                                       const Value *V) const {
 | |
|   // A Value with type {} or [0 x %t] needs no registers.
 | |
|   if (ValueVTs.empty())
 | |
|     return SDValue();
 | |
| 
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
| 
 | |
|   // Assemble the legal parts into the final values.
 | |
|   SmallVector<SDValue, 4> Values(ValueVTs.size());
 | |
|   SmallVector<SDValue, 8> Parts;
 | |
|   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
 | |
|     // Copy the legal parts from the registers.
 | |
|     EVT ValueVT = ValueVTs[Value];
 | |
|     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
 | |
|     MVT RegisterVT = RegVTs[Value];
 | |
| 
 | |
|     Parts.resize(NumRegs);
 | |
|     for (unsigned i = 0; i != NumRegs; ++i) {
 | |
|       SDValue P;
 | |
|       if (!Flag) {
 | |
|         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
 | |
|       } else {
 | |
|         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
 | |
|         *Flag = P.getValue(2);
 | |
|       }
 | |
| 
 | |
|       Chain = P.getValue(1);
 | |
|       Parts[i] = P;
 | |
| 
 | |
|       // If the source register was virtual and if we know something about it,
 | |
|       // add an assert node.
 | |
|       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
 | |
|           !RegisterVT.isInteger() || RegisterVT.isVector())
 | |
|         continue;
 | |
| 
 | |
|       const FunctionLoweringInfo::LiveOutInfo *LOI =
 | |
|         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
 | |
|       if (!LOI)
 | |
|         continue;
 | |
| 
 | |
|       unsigned RegSize = RegisterVT.getSizeInBits();
 | |
|       unsigned NumSignBits = LOI->NumSignBits;
 | |
|       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
 | |
| 
 | |
|       if (NumZeroBits == RegSize) {
 | |
|         // The current value is a zero.
 | |
|         // Explicitly express that as it would be easier for
 | |
|         // optimizations to kick in.
 | |
|         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // FIXME: We capture more information than the dag can represent.  For
 | |
|       // now, just use the tightest assertzext/assertsext possible.
 | |
|       bool isSExt = true;
 | |
|       EVT FromVT(MVT::Other);
 | |
|       if (NumSignBits == RegSize)
 | |
|         isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
 | |
|       else if (NumZeroBits >= RegSize-1)
 | |
|         isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
 | |
|       else if (NumSignBits > RegSize-8)
 | |
|         isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
 | |
|       else if (NumZeroBits >= RegSize-8)
 | |
|         isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
 | |
|       else if (NumSignBits > RegSize-16)
 | |
|         isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
 | |
|       else if (NumZeroBits >= RegSize-16)
 | |
|         isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
 | |
|       else if (NumSignBits > RegSize-32)
 | |
|         isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
 | |
|       else if (NumZeroBits >= RegSize-32)
 | |
|         isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
 | |
|       else
 | |
|         continue;
 | |
| 
 | |
|       // Add an assertion node.
 | |
|       assert(FromVT != MVT::Other);
 | |
|       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
 | |
|                              RegisterVT, P, DAG.getValueType(FromVT));
 | |
|     }
 | |
| 
 | |
|     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
 | |
|                                      NumRegs, RegisterVT, ValueVT, V);
 | |
|     Part += NumRegs;
 | |
|     Parts.clear();
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
 | |
| }
 | |
| 
 | |
| /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
 | |
| /// specified value into the registers specified by this object.  This uses
 | |
| /// Chain/Flag as the input and updates them for the output Chain/Flag.
 | |
| /// If the Flag pointer is NULL, no flag is used.
 | |
| void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
 | |
|                                  SDValue &Chain, SDValue *Flag, const Value *V,
 | |
|                                  ISD::NodeType PreferredExtendType) const {
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   ISD::NodeType ExtendKind = PreferredExtendType;
 | |
| 
 | |
|   // Get the list of the values's legal parts.
 | |
|   unsigned NumRegs = Regs.size();
 | |
|   SmallVector<SDValue, 8> Parts(NumRegs);
 | |
|   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
 | |
|     EVT ValueVT = ValueVTs[Value];
 | |
|     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
 | |
|     MVT RegisterVT = RegVTs[Value];
 | |
| 
 | |
|     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
 | |
|       ExtendKind = ISD::ZERO_EXTEND;
 | |
| 
 | |
|     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
 | |
|                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
 | |
|     Part += NumParts;
 | |
|   }
 | |
| 
 | |
|   // Copy the parts into the registers.
 | |
|   SmallVector<SDValue, 8> Chains(NumRegs);
 | |
|   for (unsigned i = 0; i != NumRegs; ++i) {
 | |
|     SDValue Part;
 | |
|     if (!Flag) {
 | |
|       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
 | |
|     } else {
 | |
|       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
 | |
|       *Flag = Part.getValue(1);
 | |
|     }
 | |
| 
 | |
|     Chains[i] = Part.getValue(0);
 | |
|   }
 | |
| 
 | |
|   if (NumRegs == 1 || Flag)
 | |
|     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
 | |
|     // flagged to it. That is the CopyToReg nodes and the user are considered
 | |
|     // a single scheduling unit. If we create a TokenFactor and return it as
 | |
|     // chain, then the TokenFactor is both a predecessor (operand) of the
 | |
|     // user as well as a successor (the TF operands are flagged to the user).
 | |
|     // c1, f1 = CopyToReg
 | |
|     // c2, f2 = CopyToReg
 | |
|     // c3     = TokenFactor c1, c2
 | |
|     // ...
 | |
|     //        = op c3, ..., f2
 | |
|     Chain = Chains[NumRegs-1];
 | |
|   else
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
 | |
| }
 | |
| 
 | |
| /// AddInlineAsmOperands - Add this value to the specified inlineasm node
 | |
| /// operand list.  This adds the code marker and includes the number of
 | |
| /// values added into it.
 | |
| void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
 | |
|                                         unsigned MatchingIdx, SDLoc dl,
 | |
|                                         SelectionDAG &DAG,
 | |
|                                         std::vector<SDValue> &Ops) const {
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
| 
 | |
|   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
 | |
|   if (HasMatching)
 | |
|     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
 | |
|   else if (!Regs.empty() &&
 | |
|            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
 | |
|     // Put the register class of the virtual registers in the flag word.  That
 | |
|     // way, later passes can recompute register class constraints for inline
 | |
|     // assembly as well as normal instructions.
 | |
|     // Don't do this for tied operands that can use the regclass information
 | |
|     // from the def.
 | |
|     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
 | |
|     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
 | |
|     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
 | |
|   }
 | |
| 
 | |
|   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
 | |
|   Ops.push_back(Res);
 | |
| 
 | |
|   unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
 | |
|   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
 | |
|     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
 | |
|     MVT RegisterVT = RegVTs[Value];
 | |
|     for (unsigned i = 0; i != NumRegs; ++i) {
 | |
|       assert(Reg < Regs.size() && "Mismatch in # registers expected");
 | |
|       unsigned TheReg = Regs[Reg++];
 | |
|       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
 | |
| 
 | |
|       if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
 | |
|         // If we clobbered the stack pointer, MFI should know about it.
 | |
|         assert(DAG.getMachineFunction().getFrameInfo()->
 | |
|             hasInlineAsmWithSPAdjust());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
 | |
|                                const TargetLibraryInfo *li) {
 | |
|   AA = &aa;
 | |
|   GFI = gfi;
 | |
|   LibInfo = li;
 | |
|   DL = DAG.getTarget().getDataLayout();
 | |
|   Context = DAG.getContext();
 | |
|   LPadToCallSiteMap.clear();
 | |
| }
 | |
| 
 | |
| /// clear - Clear out the current SelectionDAG and the associated
 | |
| /// state and prepare this SelectionDAGBuilder object to be used
 | |
| /// for a new block. This doesn't clear out information about
 | |
| /// additional blocks that are needed to complete switch lowering
 | |
| /// or PHI node updating; that information is cleared out as it is
 | |
| /// consumed.
 | |
| void SelectionDAGBuilder::clear() {
 | |
|   NodeMap.clear();
 | |
|   UnusedArgNodeMap.clear();
 | |
|   PendingLoads.clear();
 | |
|   PendingExports.clear();
 | |
|   CurInst = nullptr;
 | |
|   HasTailCall = false;
 | |
|   SDNodeOrder = LowestSDNodeOrder;
 | |
|   StatepointLowering.clear();
 | |
| }
 | |
| 
 | |
| /// clearDanglingDebugInfo - Clear the dangling debug information
 | |
| /// map. This function is separated from the clear so that debug
 | |
| /// information that is dangling in a basic block can be properly
 | |
| /// resolved in a different basic block. This allows the
 | |
| /// SelectionDAG to resolve dangling debug information attached
 | |
| /// to PHI nodes.
 | |
| void SelectionDAGBuilder::clearDanglingDebugInfo() {
 | |
|   DanglingDebugInfoMap.clear();
 | |
| }
 | |
| 
 | |
| /// getRoot - Return the current virtual root of the Selection DAG,
 | |
| /// flushing any PendingLoad items. This must be done before emitting
 | |
| /// a store or any other node that may need to be ordered after any
 | |
| /// prior load instructions.
 | |
| ///
 | |
| SDValue SelectionDAGBuilder::getRoot() {
 | |
|   if (PendingLoads.empty())
 | |
|     return DAG.getRoot();
 | |
| 
 | |
|   if (PendingLoads.size() == 1) {
 | |
|     SDValue Root = PendingLoads[0];
 | |
|     DAG.setRoot(Root);
 | |
|     PendingLoads.clear();
 | |
|     return Root;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we have to make a token factor node.
 | |
|   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
 | |
|                              PendingLoads);
 | |
|   PendingLoads.clear();
 | |
|   DAG.setRoot(Root);
 | |
|   return Root;
 | |
| }
 | |
| 
 | |
| /// getControlRoot - Similar to getRoot, but instead of flushing all the
 | |
| /// PendingLoad items, flush all the PendingExports items. It is necessary
 | |
| /// to do this before emitting a terminator instruction.
 | |
| ///
 | |
| SDValue SelectionDAGBuilder::getControlRoot() {
 | |
|   SDValue Root = DAG.getRoot();
 | |
| 
 | |
|   if (PendingExports.empty())
 | |
|     return Root;
 | |
| 
 | |
|   // Turn all of the CopyToReg chains into one factored node.
 | |
|   if (Root.getOpcode() != ISD::EntryToken) {
 | |
|     unsigned i = 0, e = PendingExports.size();
 | |
|     for (; i != e; ++i) {
 | |
|       assert(PendingExports[i].getNode()->getNumOperands() > 1);
 | |
|       if (PendingExports[i].getNode()->getOperand(0) == Root)
 | |
|         break;  // Don't add the root if we already indirectly depend on it.
 | |
|     }
 | |
| 
 | |
|     if (i == e)
 | |
|       PendingExports.push_back(Root);
 | |
|   }
 | |
| 
 | |
|   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
 | |
|                      PendingExports);
 | |
|   PendingExports.clear();
 | |
|   DAG.setRoot(Root);
 | |
|   return Root;
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visit(const Instruction &I) {
 | |
|   // Set up outgoing PHI node register values before emitting the terminator.
 | |
|   if (isa<TerminatorInst>(&I))
 | |
|     HandlePHINodesInSuccessorBlocks(I.getParent());
 | |
| 
 | |
|   ++SDNodeOrder;
 | |
| 
 | |
|   CurInst = &I;
 | |
| 
 | |
|   visit(I.getOpcode(), I);
 | |
| 
 | |
|   if (!isa<TerminatorInst>(&I) && !HasTailCall)
 | |
|     CopyToExportRegsIfNeeded(&I);
 | |
| 
 | |
|   CurInst = nullptr;
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitPHI(const PHINode &) {
 | |
|   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
 | |
|   // Note: this doesn't use InstVisitor, because it has to work with
 | |
|   // ConstantExpr's in addition to instructions.
 | |
|   switch (Opcode) {
 | |
|   default: llvm_unreachable("Unknown instruction type encountered!");
 | |
|     // Build the switch statement using the Instruction.def file.
 | |
| #define HANDLE_INST(NUM, OPCODE, CLASS) \
 | |
|     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
 | |
| #include "llvm/IR/Instruction.def"
 | |
|   }
 | |
| }
 | |
| 
 | |
| // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
 | |
| // generate the debug data structures now that we've seen its definition.
 | |
| void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
 | |
|                                                    SDValue Val) {
 | |
|   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
 | |
|   if (DDI.getDI()) {
 | |
|     const DbgValueInst *DI = DDI.getDI();
 | |
|     DebugLoc dl = DDI.getdl();
 | |
|     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
 | |
|     DILocalVariable *Variable = DI->getVariable();
 | |
|     DIExpression *Expr = DI->getExpression();
 | |
|     assert(Variable->isValidLocationForIntrinsic(dl) &&
 | |
|            "Expected inlined-at fields to agree");
 | |
|     uint64_t Offset = DI->getOffset();
 | |
|     // A dbg.value for an alloca is always indirect.
 | |
|     bool IsIndirect = isa<AllocaInst>(V) || Offset != 0;
 | |
|     SDDbgValue *SDV;
 | |
|     if (Val.getNode()) {
 | |
|       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect,
 | |
|                                     Val)) {
 | |
|         SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(),
 | |
|                               IsIndirect, Offset, dl, DbgSDNodeOrder);
 | |
|         DAG.AddDbgValue(SDV, Val.getNode(), false);
 | |
|       }
 | |
|     } else
 | |
|       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
 | |
|     DanglingDebugInfoMap[V] = DanglingDebugInfo();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getCopyFromRegs - If there was virtual register allocated for the value V
 | |
| /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
 | |
| SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
 | |
|   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
 | |
|   SDValue Result;
 | |
| 
 | |
|   if (It != FuncInfo.ValueMap.end()) {
 | |
|     unsigned InReg = It->second;
 | |
|     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg,
 | |
|                      Ty);
 | |
|     SDValue Chain = DAG.getEntryNode();
 | |
|     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
 | |
|     resolveDanglingDebugInfo(V, Result);
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// getValue - Return an SDValue for the given Value.
 | |
| SDValue SelectionDAGBuilder::getValue(const Value *V) {
 | |
|   // If we already have an SDValue for this value, use it. It's important
 | |
|   // to do this first, so that we don't create a CopyFromReg if we already
 | |
|   // have a regular SDValue.
 | |
|   SDValue &N = NodeMap[V];
 | |
|   if (N.getNode()) return N;
 | |
| 
 | |
|   // If there's a virtual register allocated and initialized for this
 | |
|   // value, use it.
 | |
|   SDValue copyFromReg = getCopyFromRegs(V, V->getType());
 | |
|   if (copyFromReg.getNode()) {
 | |
|     return copyFromReg;
 | |
|   }
 | |
| 
 | |
|   // Otherwise create a new SDValue and remember it.
 | |
|   SDValue Val = getValueImpl(V);
 | |
|   NodeMap[V] = Val;
 | |
|   resolveDanglingDebugInfo(V, Val);
 | |
|   return Val;
 | |
| }
 | |
| 
 | |
| // Return true if SDValue exists for the given Value
 | |
| bool SelectionDAGBuilder::findValue(const Value *V) const {
 | |
|   return (NodeMap.find(V) != NodeMap.end()) ||
 | |
|     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
 | |
| }
 | |
| 
 | |
| /// getNonRegisterValue - Return an SDValue for the given Value, but
 | |
| /// don't look in FuncInfo.ValueMap for a virtual register.
 | |
| SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
 | |
|   // If we already have an SDValue for this value, use it.
 | |
|   SDValue &N = NodeMap[V];
 | |
|   if (N.getNode()) return N;
 | |
| 
 | |
|   // Otherwise create a new SDValue and remember it.
 | |
|   SDValue Val = getValueImpl(V);
 | |
|   NodeMap[V] = Val;
 | |
|   resolveDanglingDebugInfo(V, Val);
 | |
|   return Val;
 | |
| }
 | |
| 
 | |
| /// getValueImpl - Helper function for getValue and getNonRegisterValue.
 | |
| /// Create an SDValue for the given value.
 | |
| SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
| 
 | |
|   if (const Constant *C = dyn_cast<Constant>(V)) {
 | |
|     EVT VT = TLI.getValueType(V->getType(), true);
 | |
| 
 | |
|     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
 | |
|       return DAG.getConstant(*CI, getCurSDLoc(), VT);
 | |
| 
 | |
|     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
 | |
|       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
 | |
| 
 | |
|     if (isa<ConstantPointerNull>(C)) {
 | |
|       unsigned AS = V->getType()->getPointerAddressSpace();
 | |
|       return DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(AS));
 | |
|     }
 | |
| 
 | |
|     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
 | |
|       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
 | |
| 
 | |
|     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
 | |
|       return DAG.getUNDEF(VT);
 | |
| 
 | |
|     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
 | |
|       visit(CE->getOpcode(), *CE);
 | |
|       SDValue N1 = NodeMap[V];
 | |
|       assert(N1.getNode() && "visit didn't populate the NodeMap!");
 | |
|       return N1;
 | |
|     }
 | |
| 
 | |
|     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
 | |
|       SmallVector<SDValue, 4> Constants;
 | |
|       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
 | |
|            OI != OE; ++OI) {
 | |
|         SDNode *Val = getValue(*OI).getNode();
 | |
|         // If the operand is an empty aggregate, there are no values.
 | |
|         if (!Val) continue;
 | |
|         // Add each leaf value from the operand to the Constants list
 | |
|         // to form a flattened list of all the values.
 | |
|         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
 | |
|           Constants.push_back(SDValue(Val, i));
 | |
|       }
 | |
| 
 | |
|       return DAG.getMergeValues(Constants, getCurSDLoc());
 | |
|     }
 | |
| 
 | |
|     if (const ConstantDataSequential *CDS =
 | |
|           dyn_cast<ConstantDataSequential>(C)) {
 | |
|       SmallVector<SDValue, 4> Ops;
 | |
|       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
 | |
|         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
 | |
|         // Add each leaf value from the operand to the Constants list
 | |
|         // to form a flattened list of all the values.
 | |
|         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
 | |
|           Ops.push_back(SDValue(Val, i));
 | |
|       }
 | |
| 
 | |
|       if (isa<ArrayType>(CDS->getType()))
 | |
|         return DAG.getMergeValues(Ops, getCurSDLoc());
 | |
|       return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
 | |
|                                       VT, Ops);
 | |
|     }
 | |
| 
 | |
|     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
 | |
|       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
 | |
|              "Unknown struct or array constant!");
 | |
| 
 | |
|       SmallVector<EVT, 4> ValueVTs;
 | |
|       ComputeValueVTs(TLI, C->getType(), ValueVTs);
 | |
|       unsigned NumElts = ValueVTs.size();
 | |
|       if (NumElts == 0)
 | |
|         return SDValue(); // empty struct
 | |
|       SmallVector<SDValue, 4> Constants(NumElts);
 | |
|       for (unsigned i = 0; i != NumElts; ++i) {
 | |
|         EVT EltVT = ValueVTs[i];
 | |
|         if (isa<UndefValue>(C))
 | |
|           Constants[i] = DAG.getUNDEF(EltVT);
 | |
|         else if (EltVT.isFloatingPoint())
 | |
|           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
 | |
|         else
 | |
|           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
 | |
|       }
 | |
| 
 | |
|       return DAG.getMergeValues(Constants, getCurSDLoc());
 | |
|     }
 | |
| 
 | |
|     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
 | |
|       return DAG.getBlockAddress(BA, VT);
 | |
| 
 | |
|     VectorType *VecTy = cast<VectorType>(V->getType());
 | |
|     unsigned NumElements = VecTy->getNumElements();
 | |
| 
 | |
|     // Now that we know the number and type of the elements, get that number of
 | |
|     // elements into the Ops array based on what kind of constant it is.
 | |
|     SmallVector<SDValue, 16> Ops;
 | |
|     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
 | |
|       for (unsigned i = 0; i != NumElements; ++i)
 | |
|         Ops.push_back(getValue(CV->getOperand(i)));
 | |
|     } else {
 | |
|       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
 | |
|       EVT EltVT = TLI.getValueType(VecTy->getElementType());
 | |
| 
 | |
|       SDValue Op;
 | |
|       if (EltVT.isFloatingPoint())
 | |
|         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
 | |
|       else
 | |
|         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
 | |
|       Ops.assign(NumElements, Op);
 | |
|     }
 | |
| 
 | |
|     // Create a BUILD_VECTOR node.
 | |
|     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
 | |
|   }
 | |
| 
 | |
|   // If this is a static alloca, generate it as the frameindex instead of
 | |
|   // computation.
 | |
|   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
 | |
|     DenseMap<const AllocaInst*, int>::iterator SI =
 | |
|       FuncInfo.StaticAllocaMap.find(AI);
 | |
|     if (SI != FuncInfo.StaticAllocaMap.end())
 | |
|       return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
 | |
|   }
 | |
| 
 | |
|   // If this is an instruction which fast-isel has deferred, select it now.
 | |
|   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
 | |
|     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
 | |
|     RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
 | |
|     SDValue Chain = DAG.getEntryNode();
 | |
|     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Can't get register for value!");
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   SDValue Chain = getControlRoot();
 | |
|   SmallVector<ISD::OutputArg, 8> Outs;
 | |
|   SmallVector<SDValue, 8> OutVals;
 | |
| 
 | |
|   if (!FuncInfo.CanLowerReturn) {
 | |
|     unsigned DemoteReg = FuncInfo.DemoteRegister;
 | |
|     const Function *F = I.getParent()->getParent();
 | |
| 
 | |
|     // Emit a store of the return value through the virtual register.
 | |
|     // Leave Outs empty so that LowerReturn won't try to load return
 | |
|     // registers the usual way.
 | |
|     SmallVector<EVT, 1> PtrValueVTs;
 | |
|     ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
 | |
|                     PtrValueVTs);
 | |
| 
 | |
|     SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
 | |
|     SDValue RetOp = getValue(I.getOperand(0));
 | |
| 
 | |
|     SmallVector<EVT, 4> ValueVTs;
 | |
|     SmallVector<uint64_t, 4> Offsets;
 | |
|     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
 | |
|     unsigned NumValues = ValueVTs.size();
 | |
| 
 | |
|     SmallVector<SDValue, 4> Chains(NumValues);
 | |
|     for (unsigned i = 0; i != NumValues; ++i) {
 | |
|       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
 | |
|                                 RetPtr.getValueType(), RetPtr,
 | |
|                                 DAG.getIntPtrConstant(Offsets[i],
 | |
|                                                       getCurSDLoc()));
 | |
|       Chains[i] =
 | |
|         DAG.getStore(Chain, getCurSDLoc(),
 | |
|                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
 | |
|                      // FIXME: better loc info would be nice.
 | |
|                      Add, MachinePointerInfo(), false, false, 0);
 | |
|     }
 | |
| 
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
 | |
|                         MVT::Other, Chains);
 | |
|   } else if (I.getNumOperands() != 0) {
 | |
|     SmallVector<EVT, 4> ValueVTs;
 | |
|     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
 | |
|     unsigned NumValues = ValueVTs.size();
 | |
|     if (NumValues) {
 | |
|       SDValue RetOp = getValue(I.getOperand(0));
 | |
| 
 | |
|       const Function *F = I.getParent()->getParent();
 | |
| 
 | |
|       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
 | |
|       if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
 | |
|                                           Attribute::SExt))
 | |
|         ExtendKind = ISD::SIGN_EXTEND;
 | |
|       else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
 | |
|                                                Attribute::ZExt))
 | |
|         ExtendKind = ISD::ZERO_EXTEND;
 | |
| 
 | |
|       LLVMContext &Context = F->getContext();
 | |
|       bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
 | |
|                                                       Attribute::InReg);
 | |
| 
 | |
|       for (unsigned j = 0; j != NumValues; ++j) {
 | |
|         EVT VT = ValueVTs[j];
 | |
| 
 | |
|         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
 | |
|           VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind);
 | |
| 
 | |
|         unsigned NumParts = TLI.getNumRegisters(Context, VT);
 | |
|         MVT PartVT = TLI.getRegisterType(Context, VT);
 | |
|         SmallVector<SDValue, 4> Parts(NumParts);
 | |
|         getCopyToParts(DAG, getCurSDLoc(),
 | |
|                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
 | |
|                        &Parts[0], NumParts, PartVT, &I, ExtendKind);
 | |
| 
 | |
|         // 'inreg' on function refers to return value
 | |
|         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
 | |
|         if (RetInReg)
 | |
|           Flags.setInReg();
 | |
| 
 | |
|         // Propagate extension type if any
 | |
|         if (ExtendKind == ISD::SIGN_EXTEND)
 | |
|           Flags.setSExt();
 | |
|         else if (ExtendKind == ISD::ZERO_EXTEND)
 | |
|           Flags.setZExt();
 | |
| 
 | |
|         for (unsigned i = 0; i < NumParts; ++i) {
 | |
|           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
 | |
|                                         VT, /*isfixed=*/true, 0, 0));
 | |
|           OutVals.push_back(Parts[i]);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
 | |
|   CallingConv::ID CallConv =
 | |
|     DAG.getMachineFunction().getFunction()->getCallingConv();
 | |
|   Chain = DAG.getTargetLoweringInfo().LowerReturn(
 | |
|       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
 | |
| 
 | |
|   // Verify that the target's LowerReturn behaved as expected.
 | |
|   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
 | |
|          "LowerReturn didn't return a valid chain!");
 | |
| 
 | |
|   // Update the DAG with the new chain value resulting from return lowering.
 | |
|   DAG.setRoot(Chain);
 | |
| }
 | |
| 
 | |
| /// CopyToExportRegsIfNeeded - If the given value has virtual registers
 | |
| /// created for it, emit nodes to copy the value into the virtual
 | |
| /// registers.
 | |
| void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
 | |
|   // Skip empty types
 | |
|   if (V->getType()->isEmptyTy())
 | |
|     return;
 | |
| 
 | |
|   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
 | |
|   if (VMI != FuncInfo.ValueMap.end()) {
 | |
|     assert(!V->use_empty() && "Unused value assigned virtual registers!");
 | |
|     CopyValueToVirtualRegister(V, VMI->second);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ExportFromCurrentBlock - If this condition isn't known to be exported from
 | |
| /// the current basic block, add it to ValueMap now so that we'll get a
 | |
| /// CopyTo/FromReg.
 | |
| void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
 | |
|   // No need to export constants.
 | |
|   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
 | |
| 
 | |
|   // Already exported?
 | |
|   if (FuncInfo.isExportedInst(V)) return;
 | |
| 
 | |
|   unsigned Reg = FuncInfo.InitializeRegForValue(V);
 | |
|   CopyValueToVirtualRegister(V, Reg);
 | |
| }
 | |
| 
 | |
| bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
 | |
|                                                      const BasicBlock *FromBB) {
 | |
|   // The operands of the setcc have to be in this block.  We don't know
 | |
|   // how to export them from some other block.
 | |
|   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
 | |
|     // Can export from current BB.
 | |
|     if (VI->getParent() == FromBB)
 | |
|       return true;
 | |
| 
 | |
|     // Is already exported, noop.
 | |
|     return FuncInfo.isExportedInst(V);
 | |
|   }
 | |
| 
 | |
|   // If this is an argument, we can export it if the BB is the entry block or
 | |
|   // if it is already exported.
 | |
|   if (isa<Argument>(V)) {
 | |
|     if (FromBB == &FromBB->getParent()->getEntryBlock())
 | |
|       return true;
 | |
| 
 | |
|     // Otherwise, can only export this if it is already exported.
 | |
|     return FuncInfo.isExportedInst(V);
 | |
|   }
 | |
| 
 | |
|   // Otherwise, constants can always be exported.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
 | |
| uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
 | |
|                                             const MachineBasicBlock *Dst) const {
 | |
|   BranchProbabilityInfo *BPI = FuncInfo.BPI;
 | |
|   if (!BPI)
 | |
|     return 0;
 | |
|   const BasicBlock *SrcBB = Src->getBasicBlock();
 | |
|   const BasicBlock *DstBB = Dst->getBasicBlock();
 | |
|   return BPI->getEdgeWeight(SrcBB, DstBB);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::
 | |
| addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
 | |
|                        uint32_t Weight /* = 0 */) {
 | |
|   if (!Weight)
 | |
|     Weight = getEdgeWeight(Src, Dst);
 | |
|   Src->addSuccessor(Dst, Weight);
 | |
| }
 | |
| 
 | |
| 
 | |
| static bool InBlock(const Value *V, const BasicBlock *BB) {
 | |
|   if (const Instruction *I = dyn_cast<Instruction>(V))
 | |
|     return I->getParent() == BB;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
 | |
| /// This function emits a branch and is used at the leaves of an OR or an
 | |
| /// AND operator tree.
 | |
| ///
 | |
| void
 | |
| SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
 | |
|                                                   MachineBasicBlock *TBB,
 | |
|                                                   MachineBasicBlock *FBB,
 | |
|                                                   MachineBasicBlock *CurBB,
 | |
|                                                   MachineBasicBlock *SwitchBB,
 | |
|                                                   uint32_t TWeight,
 | |
|                                                   uint32_t FWeight) {
 | |
|   const BasicBlock *BB = CurBB->getBasicBlock();
 | |
| 
 | |
|   // If the leaf of the tree is a comparison, merge the condition into
 | |
|   // the caseblock.
 | |
|   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
 | |
|     // The operands of the cmp have to be in this block.  We don't know
 | |
|     // how to export them from some other block.  If this is the first block
 | |
|     // of the sequence, no exporting is needed.
 | |
|     if (CurBB == SwitchBB ||
 | |
|         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
 | |
|          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
 | |
|       ISD::CondCode Condition;
 | |
|       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
 | |
|         Condition = getICmpCondCode(IC->getPredicate());
 | |
|       } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
 | |
|         Condition = getFCmpCondCode(FC->getPredicate());
 | |
|         if (TM.Options.NoNaNsFPMath)
 | |
|           Condition = getFCmpCodeWithoutNaN(Condition);
 | |
|       } else {
 | |
|         (void)Condition; // silence warning.
 | |
|         llvm_unreachable("Unknown compare instruction");
 | |
|       }
 | |
| 
 | |
|       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
 | |
|                    TBB, FBB, CurBB, TWeight, FWeight);
 | |
|       SwitchCases.push_back(CB);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Create a CaseBlock record representing this branch.
 | |
|   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
 | |
|                nullptr, TBB, FBB, CurBB, TWeight, FWeight);
 | |
|   SwitchCases.push_back(CB);
 | |
| }
 | |
| 
 | |
| /// Scale down both weights to fit into uint32_t.
 | |
| static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
 | |
|   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
 | |
|   uint32_t Scale = (NewMax / UINT32_MAX) + 1;
 | |
|   NewTrue = NewTrue / Scale;
 | |
|   NewFalse = NewFalse / Scale;
 | |
| }
 | |
| 
 | |
| /// FindMergedConditions - If Cond is an expression like
 | |
| void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
 | |
|                                                MachineBasicBlock *TBB,
 | |
|                                                MachineBasicBlock *FBB,
 | |
|                                                MachineBasicBlock *CurBB,
 | |
|                                                MachineBasicBlock *SwitchBB,
 | |
|                                                unsigned Opc, uint32_t TWeight,
 | |
|                                                uint32_t FWeight) {
 | |
|   // If this node is not part of the or/and tree, emit it as a branch.
 | |
|   const Instruction *BOp = dyn_cast<Instruction>(Cond);
 | |
|   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
 | |
|       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
 | |
|       BOp->getParent() != CurBB->getBasicBlock() ||
 | |
|       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
 | |
|       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
 | |
|     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
 | |
|                                  TWeight, FWeight);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   //  Create TmpBB after CurBB.
 | |
|   MachineFunction::iterator BBI = CurBB;
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
 | |
|   CurBB->getParent()->insert(++BBI, TmpBB);
 | |
| 
 | |
|   if (Opc == Instruction::Or) {
 | |
|     // Codegen X | Y as:
 | |
|     // BB1:
 | |
|     //   jmp_if_X TBB
 | |
|     //   jmp TmpBB
 | |
|     // TmpBB:
 | |
|     //   jmp_if_Y TBB
 | |
|     //   jmp FBB
 | |
|     //
 | |
| 
 | |
|     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
 | |
|     // The requirement is that
 | |
|     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
 | |
|     //     = TrueProb for orignal BB.
 | |
|     // Assuming the orignal weights are A and B, one choice is to set BB1's
 | |
|     // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
 | |
|     // assumes that
 | |
|     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
 | |
|     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
 | |
|     // TmpBB, but the math is more complicated.
 | |
| 
 | |
|     uint64_t NewTrueWeight = TWeight;
 | |
|     uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight;
 | |
|     ScaleWeights(NewTrueWeight, NewFalseWeight);
 | |
|     // Emit the LHS condition.
 | |
|     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
 | |
|                          NewTrueWeight, NewFalseWeight);
 | |
| 
 | |
|     NewTrueWeight = TWeight;
 | |
|     NewFalseWeight = 2 * (uint64_t)FWeight;
 | |
|     ScaleWeights(NewTrueWeight, NewFalseWeight);
 | |
|     // Emit the RHS condition into TmpBB.
 | |
|     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
 | |
|                          NewTrueWeight, NewFalseWeight);
 | |
|   } else {
 | |
|     assert(Opc == Instruction::And && "Unknown merge op!");
 | |
|     // Codegen X & Y as:
 | |
|     // BB1:
 | |
|     //   jmp_if_X TmpBB
 | |
|     //   jmp FBB
 | |
|     // TmpBB:
 | |
|     //   jmp_if_Y TBB
 | |
|     //   jmp FBB
 | |
|     //
 | |
|     //  This requires creation of TmpBB after CurBB.
 | |
| 
 | |
|     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
 | |
|     // The requirement is that
 | |
|     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
 | |
|     //     = FalseProb for orignal BB.
 | |
|     // Assuming the orignal weights are A and B, one choice is to set BB1's
 | |
|     // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
 | |
|     // assumes that
 | |
|     //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
 | |
| 
 | |
|     uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight;
 | |
|     uint64_t NewFalseWeight = FWeight;
 | |
|     ScaleWeights(NewTrueWeight, NewFalseWeight);
 | |
|     // Emit the LHS condition.
 | |
|     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
 | |
|                          NewTrueWeight, NewFalseWeight);
 | |
| 
 | |
|     NewTrueWeight = 2 * (uint64_t)TWeight;
 | |
|     NewFalseWeight = FWeight;
 | |
|     ScaleWeights(NewTrueWeight, NewFalseWeight);
 | |
|     // Emit the RHS condition into TmpBB.
 | |
|     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
 | |
|                          NewTrueWeight, NewFalseWeight);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// If the set of cases should be emitted as a series of branches, return true.
 | |
| /// If we should emit this as a bunch of and/or'd together conditions, return
 | |
| /// false.
 | |
| bool
 | |
| SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
 | |
|   if (Cases.size() != 2) return true;
 | |
| 
 | |
|   // If this is two comparisons of the same values or'd or and'd together, they
 | |
|   // will get folded into a single comparison, so don't emit two blocks.
 | |
|   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
 | |
|        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
 | |
|       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
 | |
|        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
 | |
|   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
 | |
|   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
 | |
|       Cases[0].CC == Cases[1].CC &&
 | |
|       isa<Constant>(Cases[0].CmpRHS) &&
 | |
|       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
 | |
|     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
 | |
|       return false;
 | |
|     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitBr(const BranchInst &I) {
 | |
|   MachineBasicBlock *BrMBB = FuncInfo.MBB;
 | |
| 
 | |
|   // Update machine-CFG edges.
 | |
|   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
 | |
| 
 | |
|   if (I.isUnconditional()) {
 | |
|     // Update machine-CFG edges.
 | |
|     BrMBB->addSuccessor(Succ0MBB);
 | |
| 
 | |
|     // If this is not a fall-through branch or optimizations are switched off,
 | |
|     // emit the branch.
 | |
|     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
 | |
|       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
 | |
|                               MVT::Other, getControlRoot(),
 | |
|                               DAG.getBasicBlock(Succ0MBB)));
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If this condition is one of the special cases we handle, do special stuff
 | |
|   // now.
 | |
|   const Value *CondVal = I.getCondition();
 | |
|   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
 | |
| 
 | |
|   // If this is a series of conditions that are or'd or and'd together, emit
 | |
|   // this as a sequence of branches instead of setcc's with and/or operations.
 | |
|   // As long as jumps are not expensive, this should improve performance.
 | |
|   // For example, instead of something like:
 | |
|   //     cmp A, B
 | |
|   //     C = seteq
 | |
|   //     cmp D, E
 | |
|   //     F = setle
 | |
|   //     or C, F
 | |
|   //     jnz foo
 | |
|   // Emit:
 | |
|   //     cmp A, B
 | |
|   //     je foo
 | |
|   //     cmp D, E
 | |
|   //     jle foo
 | |
|   //
 | |
|   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
 | |
|     if (!DAG.getTargetLoweringInfo().isJumpExpensive() &&
 | |
|         BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And ||
 | |
|                              BOp->getOpcode() == Instruction::Or)) {
 | |
|       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
 | |
|                            BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB),
 | |
|                            getEdgeWeight(BrMBB, Succ1MBB));
 | |
|       // If the compares in later blocks need to use values not currently
 | |
|       // exported from this block, export them now.  This block should always
 | |
|       // be the first entry.
 | |
|       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
 | |
| 
 | |
|       // Allow some cases to be rejected.
 | |
|       if (ShouldEmitAsBranches(SwitchCases)) {
 | |
|         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
 | |
|           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
 | |
|           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
 | |
|         }
 | |
| 
 | |
|         // Emit the branch for this block.
 | |
|         visitSwitchCase(SwitchCases[0], BrMBB);
 | |
|         SwitchCases.erase(SwitchCases.begin());
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       // Okay, we decided not to do this, remove any inserted MBB's and clear
 | |
|       // SwitchCases.
 | |
|       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
 | |
|         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
 | |
| 
 | |
|       SwitchCases.clear();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Create a CaseBlock record representing this branch.
 | |
|   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
 | |
|                nullptr, Succ0MBB, Succ1MBB, BrMBB);
 | |
| 
 | |
|   // Use visitSwitchCase to actually insert the fast branch sequence for this
 | |
|   // cond branch.
 | |
|   visitSwitchCase(CB, BrMBB);
 | |
| }
 | |
| 
 | |
| /// visitSwitchCase - Emits the necessary code to represent a single node in
 | |
| /// the binary search tree resulting from lowering a switch instruction.
 | |
| void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
 | |
|                                           MachineBasicBlock *SwitchBB) {
 | |
|   SDValue Cond;
 | |
|   SDValue CondLHS = getValue(CB.CmpLHS);
 | |
|   SDLoc dl = getCurSDLoc();
 | |
| 
 | |
|   // Build the setcc now.
 | |
|   if (!CB.CmpMHS) {
 | |
|     // Fold "(X == true)" to X and "(X == false)" to !X to
 | |
|     // handle common cases produced by branch lowering.
 | |
|     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
 | |
|         CB.CC == ISD::SETEQ)
 | |
|       Cond = CondLHS;
 | |
|     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
 | |
|              CB.CC == ISD::SETEQ) {
 | |
|       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
 | |
|       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
 | |
|     } else
 | |
|       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
 | |
|   } else {
 | |
|     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
 | |
| 
 | |
|     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
 | |
|     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
 | |
| 
 | |
|     SDValue CmpOp = getValue(CB.CmpMHS);
 | |
|     EVT VT = CmpOp.getValueType();
 | |
| 
 | |
|     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
 | |
|       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
 | |
|                           ISD::SETLE);
 | |
|     } else {
 | |
|       SDValue SUB = DAG.getNode(ISD::SUB, dl,
 | |
|                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
 | |
|       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
 | |
|                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Update successor info
 | |
|   addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
 | |
|   // TrueBB and FalseBB are always different unless the incoming IR is
 | |
|   // degenerate. This only happens when running llc on weird IR.
 | |
|   if (CB.TrueBB != CB.FalseBB)
 | |
|     addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
 | |
| 
 | |
|   // If the lhs block is the next block, invert the condition so that we can
 | |
|   // fall through to the lhs instead of the rhs block.
 | |
|   if (CB.TrueBB == NextBlock(SwitchBB)) {
 | |
|     std::swap(CB.TrueBB, CB.FalseBB);
 | |
|     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
 | |
|     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
 | |
|   }
 | |
| 
 | |
|   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
 | |
|                                MVT::Other, getControlRoot(), Cond,
 | |
|                                DAG.getBasicBlock(CB.TrueBB));
 | |
| 
 | |
|   // Insert the false branch. Do this even if it's a fall through branch,
 | |
|   // this makes it easier to do DAG optimizations which require inverting
 | |
|   // the branch condition.
 | |
|   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
 | |
|                        DAG.getBasicBlock(CB.FalseBB));
 | |
| 
 | |
|   DAG.setRoot(BrCond);
 | |
| }
 | |
| 
 | |
| /// visitJumpTable - Emit JumpTable node in the current MBB
 | |
| void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
 | |
|   // Emit the code for the jump table
 | |
|   assert(JT.Reg != -1U && "Should lower JT Header first!");
 | |
|   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy();
 | |
|   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
 | |
|                                      JT.Reg, PTy);
 | |
|   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
 | |
|   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
 | |
|                                     MVT::Other, Index.getValue(1),
 | |
|                                     Table, Index);
 | |
|   DAG.setRoot(BrJumpTable);
 | |
| }
 | |
| 
 | |
| /// visitJumpTableHeader - This function emits necessary code to produce index
 | |
| /// in the JumpTable from switch case.
 | |
| void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
 | |
|                                                JumpTableHeader &JTH,
 | |
|                                                MachineBasicBlock *SwitchBB) {
 | |
|   SDLoc dl = getCurSDLoc();
 | |
| 
 | |
|   // Subtract the lowest switch case value from the value being switched on and
 | |
|   // conditional branch to default mbb if the result is greater than the
 | |
|   // difference between smallest and largest cases.
 | |
|   SDValue SwitchOp = getValue(JTH.SValue);
 | |
|   EVT VT = SwitchOp.getValueType();
 | |
|   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
 | |
|                             DAG.getConstant(JTH.First, dl, VT));
 | |
| 
 | |
|   // The SDNode we just created, which holds the value being switched on minus
 | |
|   // the smallest case value, needs to be copied to a virtual register so it
 | |
|   // can be used as an index into the jump table in a subsequent basic block.
 | |
|   // This value may be smaller or larger than the target's pointer type, and
 | |
|   // therefore require extension or truncating.
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy());
 | |
| 
 | |
|   unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
 | |
|   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
 | |
|                                     JumpTableReg, SwitchOp);
 | |
|   JT.Reg = JumpTableReg;
 | |
| 
 | |
|   // Emit the range check for the jump table, and branch to the default block
 | |
|   // for the switch statement if the value being switched on exceeds the largest
 | |
|   // case in the switch.
 | |
|   SDValue CMP =
 | |
|       DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(),
 | |
|                                               Sub.getValueType()),
 | |
|                    Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT),
 | |
|                    ISD::SETUGT);
 | |
| 
 | |
|   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
 | |
|                                MVT::Other, CopyTo, CMP,
 | |
|                                DAG.getBasicBlock(JT.Default));
 | |
| 
 | |
|   // Avoid emitting unnecessary branches to the next block.
 | |
|   if (JT.MBB != NextBlock(SwitchBB))
 | |
|     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
 | |
|                          DAG.getBasicBlock(JT.MBB));
 | |
| 
 | |
|   DAG.setRoot(BrCond);
 | |
| }
 | |
| 
 | |
| /// Codegen a new tail for a stack protector check ParentMBB which has had its
 | |
| /// tail spliced into a stack protector check success bb.
 | |
| ///
 | |
| /// For a high level explanation of how this fits into the stack protector
 | |
| /// generation see the comment on the declaration of class
 | |
| /// StackProtectorDescriptor.
 | |
| void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
 | |
|                                                   MachineBasicBlock *ParentBB) {
 | |
| 
 | |
|   // First create the loads to the guard/stack slot for the comparison.
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   EVT PtrTy = TLI.getPointerTy();
 | |
| 
 | |
|   MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
 | |
|   int FI = MFI->getStackProtectorIndex();
 | |
| 
 | |
|   const Value *IRGuard = SPD.getGuard();
 | |
|   SDValue GuardPtr = getValue(IRGuard);
 | |
|   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
 | |
| 
 | |
|   unsigned Align =
 | |
|     TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType());
 | |
| 
 | |
|   SDValue Guard;
 | |
|   SDLoc dl = getCurSDLoc();
 | |
| 
 | |
|   // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the
 | |
|   // guard value from the virtual register holding the value. Otherwise, emit a
 | |
|   // volatile load to retrieve the stack guard value.
 | |
|   unsigned GuardReg = SPD.getGuardReg();
 | |
| 
 | |
|   if (GuardReg && TLI.useLoadStackGuardNode())
 | |
|     Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg,
 | |
|                                PtrTy);
 | |
|   else
 | |
|     Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(),
 | |
|                         GuardPtr, MachinePointerInfo(IRGuard, 0),
 | |
|                         true, false, false, Align);
 | |
| 
 | |
|   SDValue StackSlot = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(),
 | |
|                                   StackSlotPtr,
 | |
|                                   MachinePointerInfo::getFixedStack(FI),
 | |
|                                   true, false, false, Align);
 | |
| 
 | |
|   // Perform the comparison via a subtract/getsetcc.
 | |
|   EVT VT = Guard.getValueType();
 | |
|   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot);
 | |
| 
 | |
|   SDValue Cmp =
 | |
|       DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(),
 | |
|                                                          Sub.getValueType()),
 | |
|                    Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
 | |
| 
 | |
|   // If the sub is not 0, then we know the guard/stackslot do not equal, so
 | |
|   // branch to failure MBB.
 | |
|   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
 | |
|                                MVT::Other, StackSlot.getOperand(0),
 | |
|                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
 | |
|   // Otherwise branch to success MBB.
 | |
|   SDValue Br = DAG.getNode(ISD::BR, dl,
 | |
|                            MVT::Other, BrCond,
 | |
|                            DAG.getBasicBlock(SPD.getSuccessMBB()));
 | |
| 
 | |
|   DAG.setRoot(Br);
 | |
| }
 | |
| 
 | |
| /// Codegen the failure basic block for a stack protector check.
 | |
| ///
 | |
| /// A failure stack protector machine basic block consists simply of a call to
 | |
| /// __stack_chk_fail().
 | |
| ///
 | |
| /// For a high level explanation of how this fits into the stack protector
 | |
| /// generation see the comment on the declaration of class
 | |
| /// StackProtectorDescriptor.
 | |
| void
 | |
| SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   SDValue Chain =
 | |
|       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
 | |
|                       nullptr, 0, false, getCurSDLoc(), false, false).second;
 | |
|   DAG.setRoot(Chain);
 | |
| }
 | |
| 
 | |
| /// visitBitTestHeader - This function emits necessary code to produce value
 | |
| /// suitable for "bit tests"
 | |
| void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
 | |
|                                              MachineBasicBlock *SwitchBB) {
 | |
|   SDLoc dl = getCurSDLoc();
 | |
| 
 | |
|   // Subtract the minimum value
 | |
|   SDValue SwitchOp = getValue(B.SValue);
 | |
|   EVT VT = SwitchOp.getValueType();
 | |
|   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
 | |
|                             DAG.getConstant(B.First, dl, VT));
 | |
| 
 | |
|   // Check range
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   SDValue RangeCmp =
 | |
|       DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(),
 | |
|                                               Sub.getValueType()),
 | |
|                    Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
 | |
| 
 | |
|   // Determine the type of the test operands.
 | |
|   bool UsePtrType = false;
 | |
|   if (!TLI.isTypeLegal(VT))
 | |
|     UsePtrType = true;
 | |
|   else {
 | |
|     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
 | |
|       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
 | |
|         // Switch table case range are encoded into series of masks.
 | |
|         // Just use pointer type, it's guaranteed to fit.
 | |
|         UsePtrType = true;
 | |
|         break;
 | |
|       }
 | |
|   }
 | |
|   if (UsePtrType) {
 | |
|     VT = TLI.getPointerTy();
 | |
|     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
 | |
|   }
 | |
| 
 | |
|   B.RegVT = VT.getSimpleVT();
 | |
|   B.Reg = FuncInfo.CreateReg(B.RegVT);
 | |
|   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
 | |
| 
 | |
|   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
 | |
| 
 | |
|   addSuccessorWithWeight(SwitchBB, B.Default);
 | |
|   addSuccessorWithWeight(SwitchBB, MBB);
 | |
| 
 | |
|   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
 | |
|                                 MVT::Other, CopyTo, RangeCmp,
 | |
|                                 DAG.getBasicBlock(B.Default));
 | |
| 
 | |
|   // Avoid emitting unnecessary branches to the next block.
 | |
|   if (MBB != NextBlock(SwitchBB))
 | |
|     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
 | |
|                           DAG.getBasicBlock(MBB));
 | |
| 
 | |
|   DAG.setRoot(BrRange);
 | |
| }
 | |
| 
 | |
| /// visitBitTestCase - this function produces one "bit test"
 | |
| void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
 | |
|                                            MachineBasicBlock* NextMBB,
 | |
|                                            uint32_t BranchWeightToNext,
 | |
|                                            unsigned Reg,
 | |
|                                            BitTestCase &B,
 | |
|                                            MachineBasicBlock *SwitchBB) {
 | |
|   SDLoc dl = getCurSDLoc();
 | |
|   MVT VT = BB.RegVT;
 | |
|   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
 | |
|   SDValue Cmp;
 | |
|   unsigned PopCount = countPopulation(B.Mask);
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   if (PopCount == 1) {
 | |
|     // Testing for a single bit; just compare the shift count with what it
 | |
|     // would need to be to shift a 1 bit in that position.
 | |
|     Cmp = DAG.getSetCC(
 | |
|         dl, TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp,
 | |
|         DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), ISD::SETEQ);
 | |
|   } else if (PopCount == BB.Range) {
 | |
|     // There is only one zero bit in the range, test for it directly.
 | |
|     Cmp = DAG.getSetCC(
 | |
|         dl, TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp,
 | |
|         DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), ISD::SETNE);
 | |
|   } else {
 | |
|     // Make desired shift
 | |
|     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
 | |
|                                     DAG.getConstant(1, dl, VT), ShiftOp);
 | |
| 
 | |
|     // Emit bit tests and jumps
 | |
|     SDValue AndOp = DAG.getNode(ISD::AND, dl,
 | |
|                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
 | |
|     Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp,
 | |
|                        DAG.getConstant(0, dl, VT), ISD::SETNE);
 | |
|   }
 | |
| 
 | |
|   // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
 | |
|   addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
 | |
|   // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
 | |
|   addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
 | |
| 
 | |
|   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
 | |
|                               MVT::Other, getControlRoot(),
 | |
|                               Cmp, DAG.getBasicBlock(B.TargetBB));
 | |
| 
 | |
|   // Avoid emitting unnecessary branches to the next block.
 | |
|   if (NextMBB != NextBlock(SwitchBB))
 | |
|     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
 | |
|                         DAG.getBasicBlock(NextMBB));
 | |
| 
 | |
|   DAG.setRoot(BrAnd);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
 | |
|   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
 | |
| 
 | |
|   // Retrieve successors.
 | |
|   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
 | |
|   MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
 | |
| 
 | |
|   const Value *Callee(I.getCalledValue());
 | |
|   const Function *Fn = dyn_cast<Function>(Callee);
 | |
|   if (isa<InlineAsm>(Callee))
 | |
|     visitInlineAsm(&I);
 | |
|   else if (Fn && Fn->isIntrinsic()) {
 | |
|     switch (Fn->getIntrinsicID()) {
 | |
|     default:
 | |
|       llvm_unreachable("Cannot invoke this intrinsic");
 | |
|     case Intrinsic::donothing:
 | |
|       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
 | |
|       break;
 | |
|     case Intrinsic::experimental_patchpoint_void:
 | |
|     case Intrinsic::experimental_patchpoint_i64:
 | |
|       visitPatchpoint(&I, LandingPad);
 | |
|       break;
 | |
|     case Intrinsic::experimental_gc_statepoint:
 | |
|       LowerStatepoint(ImmutableStatepoint(&I), LandingPad);
 | |
|       break;
 | |
|     }
 | |
|   } else
 | |
|     LowerCallTo(&I, getValue(Callee), false, LandingPad);
 | |
| 
 | |
|   // If the value of the invoke is used outside of its defining block, make it
 | |
|   // available as a virtual register.
 | |
|   // We already took care of the exported value for the statepoint instruction
 | |
|   // during call to the LowerStatepoint.
 | |
|   if (!isStatepoint(I)) {
 | |
|     CopyToExportRegsIfNeeded(&I);
 | |
|   }
 | |
| 
 | |
|   // Update successor info
 | |
|   addSuccessorWithWeight(InvokeMBB, Return);
 | |
|   addSuccessorWithWeight(InvokeMBB, LandingPad);
 | |
| 
 | |
|   // Drop into normal successor.
 | |
|   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
 | |
|                           MVT::Other, getControlRoot(),
 | |
|                           DAG.getBasicBlock(Return)));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
 | |
|   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
 | |
|   assert(FuncInfo.MBB->isLandingPad() &&
 | |
|          "Call to landingpad not in landing pad!");
 | |
| 
 | |
|   MachineBasicBlock *MBB = FuncInfo.MBB;
 | |
|   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
 | |
|   AddLandingPadInfo(LP, MMI, MBB);
 | |
| 
 | |
|   // If there aren't registers to copy the values into (e.g., during SjLj
 | |
|   // exceptions), then don't bother to create these DAG nodes.
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   if (TLI.getExceptionPointerRegister() == 0 &&
 | |
|       TLI.getExceptionSelectorRegister() == 0)
 | |
|     return;
 | |
| 
 | |
|   SmallVector<EVT, 2> ValueVTs;
 | |
|   SDLoc dl = getCurSDLoc();
 | |
|   ComputeValueVTs(TLI, LP.getType(), ValueVTs);
 | |
|   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
 | |
| 
 | |
|   // Get the two live-in registers as SDValues. The physregs have already been
 | |
|   // copied into virtual registers.
 | |
|   SDValue Ops[2];
 | |
|   if (FuncInfo.ExceptionPointerVirtReg) {
 | |
|     Ops[0] = DAG.getZExtOrTrunc(
 | |
|         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
 | |
|                            FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()),
 | |
|         dl, ValueVTs[0]);
 | |
|   } else {
 | |
|     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy());
 | |
|   }
 | |
|   Ops[1] = DAG.getZExtOrTrunc(
 | |
|       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
 | |
|                          FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()),
 | |
|       dl, ValueVTs[1]);
 | |
| 
 | |
|   // Merge into one.
 | |
|   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
 | |
|                             DAG.getVTList(ValueVTs), Ops);
 | |
|   setValue(&LP, Res);
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| SelectionDAGBuilder::visitLandingPadClauseBB(GlobalValue *ClauseGV,
 | |
|                                              MachineBasicBlock *LPadBB) {
 | |
|   SDValue Chain = getControlRoot();
 | |
|   SDLoc dl = getCurSDLoc();
 | |
| 
 | |
|   // Get the typeid that we will dispatch on later.
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy());
 | |
|   unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
 | |
|   unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(ClauseGV);
 | |
|   SDValue Sel = DAG.getConstant(TypeID, dl, TLI.getPointerTy());
 | |
|   Chain = DAG.getCopyToReg(Chain, dl, VReg, Sel);
 | |
| 
 | |
|   // Branch to the main landing pad block.
 | |
|   MachineBasicBlock *ClauseMBB = FuncInfo.MBB;
 | |
|   ClauseMBB->addSuccessor(LPadBB);
 | |
|   DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, Chain,
 | |
|                           DAG.getBasicBlock(LPadBB)));
 | |
|   return VReg;
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
 | |
| #ifndef NDEBUG
 | |
|   for (const CaseCluster &CC : Clusters)
 | |
|     assert(CC.Low == CC.High && "Input clusters must be single-case");
 | |
| #endif
 | |
| 
 | |
|   std::sort(Clusters.begin(), Clusters.end(),
 | |
|             [](const CaseCluster &a, const CaseCluster &b) {
 | |
|     return a.Low->getValue().slt(b.Low->getValue());
 | |
|   });
 | |
| 
 | |
|   // Merge adjacent clusters with the same destination.
 | |
|   const unsigned N = Clusters.size();
 | |
|   unsigned DstIndex = 0;
 | |
|   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
 | |
|     CaseCluster &CC = Clusters[SrcIndex];
 | |
|     const ConstantInt *CaseVal = CC.Low;
 | |
|     MachineBasicBlock *Succ = CC.MBB;
 | |
| 
 | |
|     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
 | |
|         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
 | |
|       // If this case has the same successor and is a neighbour, merge it into
 | |
|       // the previous cluster.
 | |
|       Clusters[DstIndex - 1].High = CaseVal;
 | |
|       Clusters[DstIndex - 1].Weight += CC.Weight;
 | |
|       assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!");
 | |
|     } else {
 | |
|       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
 | |
|                    sizeof(Clusters[SrcIndex]));
 | |
|     }
 | |
|   }
 | |
|   Clusters.resize(DstIndex);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
 | |
|                                            MachineBasicBlock *Last) {
 | |
|   // Update JTCases.
 | |
|   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
 | |
|     if (JTCases[i].first.HeaderBB == First)
 | |
|       JTCases[i].first.HeaderBB = Last;
 | |
| 
 | |
|   // Update BitTestCases.
 | |
|   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
 | |
|     if (BitTestCases[i].Parent == First)
 | |
|       BitTestCases[i].Parent = Last;
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
 | |
|   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
 | |
| 
 | |
|   // Update machine-CFG edges with unique successors.
 | |
|   SmallSet<BasicBlock*, 32> Done;
 | |
|   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
 | |
|     BasicBlock *BB = I.getSuccessor(i);
 | |
|     bool Inserted = Done.insert(BB).second;
 | |
|     if (!Inserted)
 | |
|         continue;
 | |
| 
 | |
|     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
 | |
|     addSuccessorWithWeight(IndirectBrMBB, Succ);
 | |
|   }
 | |
| 
 | |
|   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
 | |
|                           MVT::Other, getControlRoot(),
 | |
|                           getValue(I.getAddress())));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
 | |
|   if (DAG.getTarget().Options.TrapUnreachable)
 | |
|     DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitFSub(const User &I) {
 | |
|   // -0.0 - X --> fneg
 | |
|   Type *Ty = I.getType();
 | |
|   if (isa<Constant>(I.getOperand(0)) &&
 | |
|       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
 | |
|     SDValue Op2 = getValue(I.getOperand(1));
 | |
|     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
 | |
|                              Op2.getValueType(), Op2));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   visitBinary(I, ISD::FSUB);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
 | |
|   SDValue Op1 = getValue(I.getOperand(0));
 | |
|   SDValue Op2 = getValue(I.getOperand(1));
 | |
| 
 | |
|   bool nuw = false;
 | |
|   bool nsw = false;
 | |
|   bool exact = false;
 | |
|   if (const OverflowingBinaryOperator *OFBinOp =
 | |
|           dyn_cast<const OverflowingBinaryOperator>(&I)) {
 | |
|     nuw = OFBinOp->hasNoUnsignedWrap();
 | |
|     nsw = OFBinOp->hasNoSignedWrap();
 | |
|   }
 | |
|   if (const PossiblyExactOperator *ExactOp =
 | |
|           dyn_cast<const PossiblyExactOperator>(&I))
 | |
|     exact = ExactOp->isExact();
 | |
| 
 | |
|   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
 | |
|                                      Op1, Op2, nuw, nsw, exact);
 | |
|   setValue(&I, BinNodeValue);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
 | |
|   SDValue Op1 = getValue(I.getOperand(0));
 | |
|   SDValue Op2 = getValue(I.getOperand(1));
 | |
| 
 | |
|   EVT ShiftTy =
 | |
|       DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType());
 | |
| 
 | |
|   // Coerce the shift amount to the right type if we can.
 | |
|   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
 | |
|     unsigned ShiftSize = ShiftTy.getSizeInBits();
 | |
|     unsigned Op2Size = Op2.getValueType().getSizeInBits();
 | |
|     SDLoc DL = getCurSDLoc();
 | |
| 
 | |
|     // If the operand is smaller than the shift count type, promote it.
 | |
|     if (ShiftSize > Op2Size)
 | |
|       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
 | |
| 
 | |
|     // If the operand is larger than the shift count type but the shift
 | |
|     // count type has enough bits to represent any shift value, truncate
 | |
|     // it now. This is a common case and it exposes the truncate to
 | |
|     // optimization early.
 | |
|     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
 | |
|       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
 | |
|     // Otherwise we'll need to temporarily settle for some other convenient
 | |
|     // type.  Type legalization will make adjustments once the shiftee is split.
 | |
|     else
 | |
|       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
 | |
|   }
 | |
| 
 | |
|   bool nuw = false;
 | |
|   bool nsw = false;
 | |
|   bool exact = false;
 | |
| 
 | |
|   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
 | |
| 
 | |
|     if (const OverflowingBinaryOperator *OFBinOp =
 | |
|             dyn_cast<const OverflowingBinaryOperator>(&I)) {
 | |
|       nuw = OFBinOp->hasNoUnsignedWrap();
 | |
|       nsw = OFBinOp->hasNoSignedWrap();
 | |
|     }
 | |
|     if (const PossiblyExactOperator *ExactOp =
 | |
|             dyn_cast<const PossiblyExactOperator>(&I))
 | |
|       exact = ExactOp->isExact();
 | |
|   }
 | |
| 
 | |
|   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
 | |
|                             nuw, nsw, exact);
 | |
|   setValue(&I, Res);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitSDiv(const User &I) {
 | |
|   SDValue Op1 = getValue(I.getOperand(0));
 | |
|   SDValue Op2 = getValue(I.getOperand(1));
 | |
| 
 | |
|   // Turn exact SDivs into multiplications.
 | |
|   // FIXME: This should be in DAGCombiner, but it doesn't have access to the
 | |
|   // exact bit.
 | |
|   if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
 | |
|       !isa<ConstantSDNode>(Op1) &&
 | |
|       isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
 | |
|     setValue(&I, DAG.getTargetLoweringInfo()
 | |
|                      .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG));
 | |
|   else
 | |
|     setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(),
 | |
|                              Op1, Op2));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitICmp(const User &I) {
 | |
|   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
 | |
|   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
 | |
|     predicate = IC->getPredicate();
 | |
|   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
 | |
|     predicate = ICmpInst::Predicate(IC->getPredicate());
 | |
|   SDValue Op1 = getValue(I.getOperand(0));
 | |
|   SDValue Op2 = getValue(I.getOperand(1));
 | |
|   ISD::CondCode Opcode = getICmpCondCode(predicate);
 | |
| 
 | |
|   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
 | |
|   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitFCmp(const User &I) {
 | |
|   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
 | |
|   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
 | |
|     predicate = FC->getPredicate();
 | |
|   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
 | |
|     predicate = FCmpInst::Predicate(FC->getPredicate());
 | |
|   SDValue Op1 = getValue(I.getOperand(0));
 | |
|   SDValue Op2 = getValue(I.getOperand(1));
 | |
|   ISD::CondCode Condition = getFCmpCondCode(predicate);
 | |
|   if (TM.Options.NoNaNsFPMath)
 | |
|     Condition = getFCmpCodeWithoutNaN(Condition);
 | |
|   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
 | |
|   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitSelect(const User &I) {
 | |
|   SmallVector<EVT, 4> ValueVTs;
 | |
|   ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs);
 | |
|   unsigned NumValues = ValueVTs.size();
 | |
|   if (NumValues == 0) return;
 | |
| 
 | |
|   SmallVector<SDValue, 4> Values(NumValues);
 | |
|   SDValue Cond     = getValue(I.getOperand(0));
 | |
|   SDValue LHSVal   = getValue(I.getOperand(1));
 | |
|   SDValue RHSVal   = getValue(I.getOperand(2));
 | |
|   auto BaseOps = {Cond};
 | |
|   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
 | |
|     ISD::VSELECT : ISD::SELECT;
 | |
| 
 | |
|   // Min/max matching is only viable if all output VTs are the same.
 | |
|   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
 | |
|     Value *LHS, *RHS;
 | |
|     SelectPatternFlavor SPF = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
 | |
|     ISD::NodeType Opc = ISD::DELETED_NODE;
 | |
|     switch (SPF) {
 | |
|     case SPF_UMAX: Opc = ISD::UMAX; break;
 | |
|     case SPF_UMIN: Opc = ISD::UMIN; break;
 | |
|     case SPF_SMAX: Opc = ISD::SMAX; break;
 | |
|     case SPF_SMIN: Opc = ISD::SMIN; break;
 | |
|     default: break;
 | |
|     }
 | |
| 
 | |
|     EVT VT = ValueVTs[0];
 | |
|     LLVMContext &Ctx = *DAG.getContext();
 | |
|     auto &TLI = DAG.getTargetLoweringInfo();
 | |
|     while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector)
 | |
|       VT = TLI.getTypeToTransformTo(Ctx, VT);
 | |
| 
 | |
|     if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) &&
 | |
|         // If the underlying comparison instruction is used by any other instruction,
 | |
|         // the consumed instructions won't be destroyed, so it is not profitable
 | |
|         // to convert to a min/max.
 | |
|         cast<SelectInst>(&I)->getCondition()->hasOneUse()) {
 | |
|       OpCode = Opc;
 | |
|       LHSVal = getValue(LHS);
 | |
|       RHSVal = getValue(RHS);
 | |
|       BaseOps = {};
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0; i != NumValues; ++i) {
 | |
|     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
 | |
|     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
 | |
|     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
 | |
|     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
 | |
|                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
 | |
|                             Ops);
 | |
|   }
 | |
| 
 | |
|   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
 | |
|                            DAG.getVTList(ValueVTs), Values));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitTrunc(const User &I) {
 | |
|   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
 | |
|   SDValue N = getValue(I.getOperand(0));
 | |
|   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
 | |
|   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitZExt(const User &I) {
 | |
|   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
 | |
|   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
 | |
|   SDValue N = getValue(I.getOperand(0));
 | |
|   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
 | |
|   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitSExt(const User &I) {
 | |
|   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
 | |
|   // SExt also can't be a cast to bool for same reason. So, nothing much to do
 | |
|   SDValue N = getValue(I.getOperand(0));
 | |
|   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
 | |
|   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitFPTrunc(const User &I) {
 | |
|   // FPTrunc is never a no-op cast, no need to check
 | |
|   SDValue N = getValue(I.getOperand(0));
 | |
|   SDLoc dl = getCurSDLoc();
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   EVT DestVT = TLI.getValueType(I.getType());
 | |
|   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
 | |
|                            DAG.getTargetConstant(0, dl, TLI.getPointerTy())));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitFPExt(const User &I) {
 | |
|   // FPExt is never a no-op cast, no need to check
 | |
|   SDValue N = getValue(I.getOperand(0));
 | |
|   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
 | |
|   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitFPToUI(const User &I) {
 | |
|   // FPToUI is never a no-op cast, no need to check
 | |
|   SDValue N = getValue(I.getOperand(0));
 | |
|   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
 | |
|   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitFPToSI(const User &I) {
 | |
|   // FPToSI is never a no-op cast, no need to check
 | |
|   SDValue N = getValue(I.getOperand(0));
 | |
|   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
 | |
|   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitUIToFP(const User &I) {
 | |
|   // UIToFP is never a no-op cast, no need to check
 | |
|   SDValue N = getValue(I.getOperand(0));
 | |
|   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
 | |
|   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitSIToFP(const User &I) {
 | |
|   // SIToFP is never a no-op cast, no need to check
 | |
|   SDValue N = getValue(I.getOperand(0));
 | |
|   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
 | |
|   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitPtrToInt(const User &I) {
 | |
|   // What to do depends on the size of the integer and the size of the pointer.
 | |
|   // We can either truncate, zero extend, or no-op, accordingly.
 | |
|   SDValue N = getValue(I.getOperand(0));
 | |
|   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
 | |
|   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitIntToPtr(const User &I) {
 | |
|   // What to do depends on the size of the integer and the size of the pointer.
 | |
|   // We can either truncate, zero extend, or no-op, accordingly.
 | |
|   SDValue N = getValue(I.getOperand(0));
 | |
|   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
 | |
|   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitBitCast(const User &I) {
 | |
|   SDValue N = getValue(I.getOperand(0));
 | |
|   SDLoc dl = getCurSDLoc();
 | |
|   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
 | |
| 
 | |
|   // BitCast assures us that source and destination are the same size so this is
 | |
|   // either a BITCAST or a no-op.
 | |
|   if (DestVT != N.getValueType())
 | |
|     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
 | |
|                              DestVT, N)); // convert types.
 | |
|   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
 | |
|   // might fold any kind of constant expression to an integer constant and that
 | |
|   // is not what we are looking for. Only regcognize a bitcast of a genuine
 | |
|   // constant integer as an opaque constant.
 | |
|   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
 | |
|     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
 | |
|                                  /*isOpaque*/true));
 | |
|   else
 | |
|     setValue(&I, N);            // noop cast.
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   const Value *SV = I.getOperand(0);
 | |
|   SDValue N = getValue(SV);
 | |
|   EVT DestVT = TLI.getValueType(I.getType());
 | |
| 
 | |
|   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
 | |
|   unsigned DestAS = I.getType()->getPointerAddressSpace();
 | |
| 
 | |
|   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
 | |
|     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
 | |
| 
 | |
|   setValue(&I, N);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitInsertElement(const User &I) {
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   SDValue InVec = getValue(I.getOperand(0));
 | |
|   SDValue InVal = getValue(I.getOperand(1));
 | |
|   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)),
 | |
|                                      getCurSDLoc(), TLI.getVectorIdxTy());
 | |
|   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
 | |
|                            TLI.getValueType(I.getType()), InVec, InVal, InIdx));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitExtractElement(const User &I) {
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   SDValue InVec = getValue(I.getOperand(0));
 | |
|   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)),
 | |
|                                      getCurSDLoc(), TLI.getVectorIdxTy());
 | |
|   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
 | |
|                            TLI.getValueType(I.getType()), InVec, InIdx));
 | |
| }
 | |
| 
 | |
| // Utility for visitShuffleVector - Return true if every element in Mask,
 | |
| // beginning from position Pos and ending in Pos+Size, falls within the
 | |
| // specified sequential range [L, L+Pos). or is undef.
 | |
| static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
 | |
|                                 unsigned Pos, unsigned Size, int Low) {
 | |
|   for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
 | |
|     if (Mask[i] >= 0 && Mask[i] != Low)
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitShuffleVector(const User &I) {
 | |
|   SDValue Src1 = getValue(I.getOperand(0));
 | |
|   SDValue Src2 = getValue(I.getOperand(1));
 | |
| 
 | |
|   SmallVector<int, 8> Mask;
 | |
|   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
 | |
|   unsigned MaskNumElts = Mask.size();
 | |
| 
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   EVT VT = TLI.getValueType(I.getType());
 | |
|   EVT SrcVT = Src1.getValueType();
 | |
|   unsigned SrcNumElts = SrcVT.getVectorNumElements();
 | |
| 
 | |
|   if (SrcNumElts == MaskNumElts) {
 | |
|     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
 | |
|                                       &Mask[0]));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Normalize the shuffle vector since mask and vector length don't match.
 | |
|   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
 | |
|     // Mask is longer than the source vectors and is a multiple of the source
 | |
|     // vectors.  We can use concatenate vector to make the mask and vectors
 | |
|     // lengths match.
 | |
|     if (SrcNumElts*2 == MaskNumElts) {
 | |
|       // First check for Src1 in low and Src2 in high
 | |
|       if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
 | |
|           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
 | |
|         // The shuffle is concatenating two vectors together.
 | |
|         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
 | |
|                                  VT, Src1, Src2));
 | |
|         return;
 | |
|       }
 | |
|       // Then check for Src2 in low and Src1 in high
 | |
|       if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
 | |
|           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
 | |
|         // The shuffle is concatenating two vectors together.
 | |
|         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
 | |
|                                  VT, Src2, Src1));
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Pad both vectors with undefs to make them the same length as the mask.
 | |
|     unsigned NumConcat = MaskNumElts / SrcNumElts;
 | |
|     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
 | |
|     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
 | |
|     SDValue UndefVal = DAG.getUNDEF(SrcVT);
 | |
| 
 | |
|     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
 | |
|     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
 | |
|     MOps1[0] = Src1;
 | |
|     MOps2[0] = Src2;
 | |
| 
 | |
|     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
 | |
|                                                   getCurSDLoc(), VT, MOps1);
 | |
|     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
 | |
|                                                   getCurSDLoc(), VT, MOps2);
 | |
| 
 | |
|     // Readjust mask for new input vector length.
 | |
|     SmallVector<int, 8> MappedOps;
 | |
|     for (unsigned i = 0; i != MaskNumElts; ++i) {
 | |
|       int Idx = Mask[i];
 | |
|       if (Idx >= (int)SrcNumElts)
 | |
|         Idx -= SrcNumElts - MaskNumElts;
 | |
|       MappedOps.push_back(Idx);
 | |
|     }
 | |
| 
 | |
|     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
 | |
|                                       &MappedOps[0]));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (SrcNumElts > MaskNumElts) {
 | |
|     // Analyze the access pattern of the vector to see if we can extract
 | |
|     // two subvectors and do the shuffle. The analysis is done by calculating
 | |
|     // the range of elements the mask access on both vectors.
 | |
|     int MinRange[2] = { static_cast<int>(SrcNumElts),
 | |
|                         static_cast<int>(SrcNumElts)};
 | |
|     int MaxRange[2] = {-1, -1};
 | |
| 
 | |
|     for (unsigned i = 0; i != MaskNumElts; ++i) {
 | |
|       int Idx = Mask[i];
 | |
|       unsigned Input = 0;
 | |
|       if (Idx < 0)
 | |
|         continue;
 | |
| 
 | |
|       if (Idx >= (int)SrcNumElts) {
 | |
|         Input = 1;
 | |
|         Idx -= SrcNumElts;
 | |
|       }
 | |
|       if (Idx > MaxRange[Input])
 | |
|         MaxRange[Input] = Idx;
 | |
|       if (Idx < MinRange[Input])
 | |
|         MinRange[Input] = Idx;
 | |
|     }
 | |
| 
 | |
|     // Check if the access is smaller than the vector size and can we find
 | |
|     // a reasonable extract index.
 | |
|     int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
 | |
|                                    // Extract.
 | |
|     int StartIdx[2];  // StartIdx to extract from
 | |
|     for (unsigned Input = 0; Input < 2; ++Input) {
 | |
|       if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
 | |
|         RangeUse[Input] = 0; // Unused
 | |
|         StartIdx[Input] = 0;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Find a good start index that is a multiple of the mask length. Then
 | |
|       // see if the rest of the elements are in range.
 | |
|       StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
 | |
|       if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
 | |
|           StartIdx[Input] + MaskNumElts <= SrcNumElts)
 | |
|         RangeUse[Input] = 1; // Extract from a multiple of the mask length.
 | |
|     }
 | |
| 
 | |
|     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
 | |
|       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
 | |
|       return;
 | |
|     }
 | |
|     if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
 | |
|       // Extract appropriate subvector and generate a vector shuffle
 | |
|       for (unsigned Input = 0; Input < 2; ++Input) {
 | |
|         SDValue &Src = Input == 0 ? Src1 : Src2;
 | |
|         if (RangeUse[Input] == 0)
 | |
|           Src = DAG.getUNDEF(VT);
 | |
|         else {
 | |
|           SDLoc dl = getCurSDLoc();
 | |
|           Src = DAG.getNode(
 | |
|               ISD::EXTRACT_SUBVECTOR, dl, VT, Src,
 | |
|               DAG.getConstant(StartIdx[Input], dl, TLI.getVectorIdxTy()));
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Calculate new mask.
 | |
|       SmallVector<int, 8> MappedOps;
 | |
|       for (unsigned i = 0; i != MaskNumElts; ++i) {
 | |
|         int Idx = Mask[i];
 | |
|         if (Idx >= 0) {
 | |
|           if (Idx < (int)SrcNumElts)
 | |
|             Idx -= StartIdx[0];
 | |
|           else
 | |
|             Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
 | |
|         }
 | |
|         MappedOps.push_back(Idx);
 | |
|       }
 | |
| 
 | |
|       setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
 | |
|                                         &MappedOps[0]));
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We can't use either concat vectors or extract subvectors so fall back to
 | |
|   // replacing the shuffle with extract and build vector.
 | |
|   // to insert and build vector.
 | |
|   EVT EltVT = VT.getVectorElementType();
 | |
|   EVT IdxVT = TLI.getVectorIdxTy();
 | |
|   SDLoc dl = getCurSDLoc();
 | |
|   SmallVector<SDValue,8> Ops;
 | |
|   for (unsigned i = 0; i != MaskNumElts; ++i) {
 | |
|     int Idx = Mask[i];
 | |
|     SDValue Res;
 | |
| 
 | |
|     if (Idx < 0) {
 | |
|       Res = DAG.getUNDEF(EltVT);
 | |
|     } else {
 | |
|       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
 | |
|       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
 | |
| 
 | |
|       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
 | |
|                         EltVT, Src, DAG.getConstant(Idx, dl, IdxVT));
 | |
|     }
 | |
| 
 | |
|     Ops.push_back(Res);
 | |
|   }
 | |
| 
 | |
|   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
 | |
|   const Value *Op0 = I.getOperand(0);
 | |
|   const Value *Op1 = I.getOperand(1);
 | |
|   Type *AggTy = I.getType();
 | |
|   Type *ValTy = Op1->getType();
 | |
|   bool IntoUndef = isa<UndefValue>(Op0);
 | |
|   bool FromUndef = isa<UndefValue>(Op1);
 | |
| 
 | |
|   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
 | |
| 
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   SmallVector<EVT, 4> AggValueVTs;
 | |
|   ComputeValueVTs(TLI, AggTy, AggValueVTs);
 | |
|   SmallVector<EVT, 4> ValValueVTs;
 | |
|   ComputeValueVTs(TLI, ValTy, ValValueVTs);
 | |
| 
 | |
|   unsigned NumAggValues = AggValueVTs.size();
 | |
|   unsigned NumValValues = ValValueVTs.size();
 | |
|   SmallVector<SDValue, 4> Values(NumAggValues);
 | |
| 
 | |
|   // Ignore an insertvalue that produces an empty object
 | |
|   if (!NumAggValues) {
 | |
|     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   SDValue Agg = getValue(Op0);
 | |
|   unsigned i = 0;
 | |
|   // Copy the beginning value(s) from the original aggregate.
 | |
|   for (; i != LinearIndex; ++i)
 | |
|     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
 | |
|                 SDValue(Agg.getNode(), Agg.getResNo() + i);
 | |
|   // Copy values from the inserted value(s).
 | |
|   if (NumValValues) {
 | |
|     SDValue Val = getValue(Op1);
 | |
|     for (; i != LinearIndex + NumValValues; ++i)
 | |
|       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
 | |
|                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
 | |
|   }
 | |
|   // Copy remaining value(s) from the original aggregate.
 | |
|   for (; i != NumAggValues; ++i)
 | |
|     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
 | |
|                 SDValue(Agg.getNode(), Agg.getResNo() + i);
 | |
| 
 | |
|   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
 | |
|                            DAG.getVTList(AggValueVTs), Values));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
 | |
|   const Value *Op0 = I.getOperand(0);
 | |
|   Type *AggTy = Op0->getType();
 | |
|   Type *ValTy = I.getType();
 | |
|   bool OutOfUndef = isa<UndefValue>(Op0);
 | |
| 
 | |
|   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
 | |
| 
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   SmallVector<EVT, 4> ValValueVTs;
 | |
|   ComputeValueVTs(TLI, ValTy, ValValueVTs);
 | |
| 
 | |
|   unsigned NumValValues = ValValueVTs.size();
 | |
| 
 | |
|   // Ignore a extractvalue that produces an empty object
 | |
|   if (!NumValValues) {
 | |
|     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   SmallVector<SDValue, 4> Values(NumValValues);
 | |
| 
 | |
|   SDValue Agg = getValue(Op0);
 | |
|   // Copy out the selected value(s).
 | |
|   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
 | |
|     Values[i - LinearIndex] =
 | |
|       OutOfUndef ?
 | |
|         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
 | |
|         SDValue(Agg.getNode(), Agg.getResNo() + i);
 | |
| 
 | |
|   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
 | |
|                            DAG.getVTList(ValValueVTs), Values));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
 | |
|   Value *Op0 = I.getOperand(0);
 | |
|   // Note that the pointer operand may be a vector of pointers. Take the scalar
 | |
|   // element which holds a pointer.
 | |
|   Type *Ty = Op0->getType()->getScalarType();
 | |
|   unsigned AS = Ty->getPointerAddressSpace();
 | |
|   SDValue N = getValue(Op0);
 | |
|   SDLoc dl = getCurSDLoc();
 | |
| 
 | |
|   for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
 | |
|        OI != E; ++OI) {
 | |
|     const Value *Idx = *OI;
 | |
|     if (StructType *StTy = dyn_cast<StructType>(Ty)) {
 | |
|       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
 | |
|       if (Field) {
 | |
|         // N = N + Offset
 | |
|         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
 | |
|         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
 | |
|                         DAG.getConstant(Offset, dl, N.getValueType()));
 | |
|       }
 | |
| 
 | |
|       Ty = StTy->getElementType(Field);
 | |
|     } else {
 | |
|       Ty = cast<SequentialType>(Ty)->getElementType();
 | |
|       MVT PtrTy = DAG.getTargetLoweringInfo().getPointerTy(AS);
 | |
|       unsigned PtrSize = PtrTy.getSizeInBits();
 | |
|       APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty));
 | |
| 
 | |
|       // If this is a constant subscript, handle it quickly.
 | |
|       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
 | |
|         if (CI->isZero())
 | |
|           continue;
 | |
|         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
 | |
|         SDValue OffsVal = DAG.getConstant(Offs, dl, PtrTy);
 | |
|         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // N = N + Idx * ElementSize;
 | |
|       SDValue IdxN = getValue(Idx);
 | |
| 
 | |
|       // If the index is smaller or larger than intptr_t, truncate or extend
 | |
|       // it.
 | |
|       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
 | |
| 
 | |
|       // If this is a multiply by a power of two, turn it into a shl
 | |
|       // immediately.  This is a very common case.
 | |
|       if (ElementSize != 1) {
 | |
|         if (ElementSize.isPowerOf2()) {
 | |
|           unsigned Amt = ElementSize.logBase2();
 | |
|           IdxN = DAG.getNode(ISD::SHL, dl,
 | |
|                              N.getValueType(), IdxN,
 | |
|                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
 | |
|         } else {
 | |
|           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
 | |
|           IdxN = DAG.getNode(ISD::MUL, dl,
 | |
|                              N.getValueType(), IdxN, Scale);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       N = DAG.getNode(ISD::ADD, dl,
 | |
|                       N.getValueType(), N, IdxN);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   setValue(&I, N);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
 | |
|   // If this is a fixed sized alloca in the entry block of the function,
 | |
|   // allocate it statically on the stack.
 | |
|   if (FuncInfo.StaticAllocaMap.count(&I))
 | |
|     return;   // getValue will auto-populate this.
 | |
| 
 | |
|   SDLoc dl = getCurSDLoc();
 | |
|   Type *Ty = I.getAllocatedType();
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
 | |
|   unsigned Align =
 | |
|       std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty),
 | |
|                I.getAlignment());
 | |
| 
 | |
|   SDValue AllocSize = getValue(I.getArraySize());
 | |
| 
 | |
|   EVT IntPtr = TLI.getPointerTy();
 | |
|   if (AllocSize.getValueType() != IntPtr)
 | |
|     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
 | |
| 
 | |
|   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
 | |
|                           AllocSize,
 | |
|                           DAG.getConstant(TySize, dl, IntPtr));
 | |
| 
 | |
|   // Handle alignment.  If the requested alignment is less than or equal to
 | |
|   // the stack alignment, ignore it.  If the size is greater than or equal to
 | |
|   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
 | |
|   unsigned StackAlign =
 | |
|       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
 | |
|   if (Align <= StackAlign)
 | |
|     Align = 0;
 | |
| 
 | |
|   // Round the size of the allocation up to the stack alignment size
 | |
|   // by add SA-1 to the size.
 | |
|   AllocSize = DAG.getNode(ISD::ADD, dl,
 | |
|                           AllocSize.getValueType(), AllocSize,
 | |
|                           DAG.getIntPtrConstant(StackAlign - 1, dl));
 | |
| 
 | |
|   // Mask out the low bits for alignment purposes.
 | |
|   AllocSize = DAG.getNode(ISD::AND, dl,
 | |
|                           AllocSize.getValueType(), AllocSize,
 | |
|                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1),
 | |
|                                                 dl));
 | |
| 
 | |
|   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) };
 | |
|   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
 | |
|   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
 | |
|   setValue(&I, DSA);
 | |
|   DAG.setRoot(DSA.getValue(1));
 | |
| 
 | |
|   assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects());
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
 | |
|   if (I.isAtomic())
 | |
|     return visitAtomicLoad(I);
 | |
| 
 | |
|   const Value *SV = I.getOperand(0);
 | |
|   SDValue Ptr = getValue(SV);
 | |
| 
 | |
|   Type *Ty = I.getType();
 | |
| 
 | |
|   bool isVolatile = I.isVolatile();
 | |
|   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
 | |
| 
 | |
|   // The IR notion of invariant_load only guarantees that all *non-faulting*
 | |
|   // invariant loads result in the same value.  The MI notion of invariant load
 | |
|   // guarantees that the load can be legally moved to any location within its
 | |
|   // containing function.  The MI notion of invariant_load is stronger than the
 | |
|   // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load
 | |
|   // with a guarantee that the location being loaded from is dereferenceable
 | |
|   // throughout the function's lifetime.
 | |
| 
 | |
|   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr &&
 | |
|     isDereferenceablePointer(SV, *DAG.getTarget().getDataLayout());
 | |
|   unsigned Alignment = I.getAlignment();
 | |
| 
 | |
|   AAMDNodes AAInfo;
 | |
|   I.getAAMetadata(AAInfo);
 | |
|   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
 | |
| 
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   SmallVector<EVT, 4> ValueVTs;
 | |
|   SmallVector<uint64_t, 4> Offsets;
 | |
|   ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
 | |
|   unsigned NumValues = ValueVTs.size();
 | |
|   if (NumValues == 0)
 | |
|     return;
 | |
| 
 | |
|   SDValue Root;
 | |
|   bool ConstantMemory = false;
 | |
|   if (isVolatile || NumValues > MaxParallelChains)
 | |
|     // Serialize volatile loads with other side effects.
 | |
|     Root = getRoot();
 | |
|   else if (AA->pointsToConstantMemory(
 | |
|              AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) {
 | |
|     // Do not serialize (non-volatile) loads of constant memory with anything.
 | |
|     Root = DAG.getEntryNode();
 | |
|     ConstantMemory = true;
 | |
|   } else {
 | |
|     // Do not serialize non-volatile loads against each other.
 | |
|     Root = DAG.getRoot();
 | |
|   }
 | |
| 
 | |
|   SDLoc dl = getCurSDLoc();
 | |
| 
 | |
|   if (isVolatile)
 | |
|     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
 | |
| 
 | |
|   SmallVector<SDValue, 4> Values(NumValues);
 | |
|   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
 | |
|                                           NumValues));
 | |
|   EVT PtrVT = Ptr.getValueType();
 | |
|   unsigned ChainI = 0;
 | |
|   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
 | |
|     // Serializing loads here may result in excessive register pressure, and
 | |
|     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
 | |
|     // could recover a bit by hoisting nodes upward in the chain by recognizing
 | |
|     // they are side-effect free or do not alias. The optimizer should really
 | |
|     // avoid this case by converting large object/array copies to llvm.memcpy
 | |
|     // (MaxParallelChains should always remain as failsafe).
 | |
|     if (ChainI == MaxParallelChains) {
 | |
|       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
 | |
|       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | |
|                                   makeArrayRef(Chains.data(), ChainI));
 | |
|       Root = Chain;
 | |
|       ChainI = 0;
 | |
|     }
 | |
|     SDValue A = DAG.getNode(ISD::ADD, dl,
 | |
|                             PtrVT, Ptr,
 | |
|                             DAG.getConstant(Offsets[i], dl, PtrVT));
 | |
|     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root,
 | |
|                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
 | |
|                             isNonTemporal, isInvariant, Alignment, AAInfo,
 | |
|                             Ranges);
 | |
| 
 | |
|     Values[i] = L;
 | |
|     Chains[ChainI] = L.getValue(1);
 | |
|   }
 | |
| 
 | |
|   if (!ConstantMemory) {
 | |
|     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | |
|                                 makeArrayRef(Chains.data(), ChainI));
 | |
|     if (isVolatile)
 | |
|       DAG.setRoot(Chain);
 | |
|     else
 | |
|       PendingLoads.push_back(Chain);
 | |
|   }
 | |
| 
 | |
|   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
 | |
|                            DAG.getVTList(ValueVTs), Values));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitStore(const StoreInst &I) {
 | |
|   if (I.isAtomic())
 | |
|     return visitAtomicStore(I);
 | |
| 
 | |
|   const Value *SrcV = I.getOperand(0);
 | |
|   const Value *PtrV = I.getOperand(1);
 | |
| 
 | |
|   SmallVector<EVT, 4> ValueVTs;
 | |
|   SmallVector<uint64_t, 4> Offsets;
 | |
|   ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(),
 | |
|                   ValueVTs, &Offsets);
 | |
|   unsigned NumValues = ValueVTs.size();
 | |
|   if (NumValues == 0)
 | |
|     return;
 | |
| 
 | |
|   // Get the lowered operands. Note that we do this after
 | |
|   // checking if NumResults is zero, because with zero results
 | |
|   // the operands won't have values in the map.
 | |
|   SDValue Src = getValue(SrcV);
 | |
|   SDValue Ptr = getValue(PtrV);
 | |
| 
 | |
|   SDValue Root = getRoot();
 | |
|   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
 | |
|                                           NumValues));
 | |
|   EVT PtrVT = Ptr.getValueType();
 | |
|   bool isVolatile = I.isVolatile();
 | |
|   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
 | |
|   unsigned Alignment = I.getAlignment();
 | |
|   SDLoc dl = getCurSDLoc();
 | |
| 
 | |
|   AAMDNodes AAInfo;
 | |
|   I.getAAMetadata(AAInfo);
 | |
| 
 | |
|   unsigned ChainI = 0;
 | |
|   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
 | |
|     // See visitLoad comments.
 | |
|     if (ChainI == MaxParallelChains) {
 | |
|       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | |
|                                   makeArrayRef(Chains.data(), ChainI));
 | |
|       Root = Chain;
 | |
|       ChainI = 0;
 | |
|     }
 | |
|     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
 | |
|                               DAG.getConstant(Offsets[i], dl, PtrVT));
 | |
|     SDValue St = DAG.getStore(Root, dl,
 | |
|                               SDValue(Src.getNode(), Src.getResNo() + i),
 | |
|                               Add, MachinePointerInfo(PtrV, Offsets[i]),
 | |
|                               isVolatile, isNonTemporal, Alignment, AAInfo);
 | |
|     Chains[ChainI] = St;
 | |
|   }
 | |
| 
 | |
|   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | |
|                                   makeArrayRef(Chains.data(), ChainI));
 | |
|   DAG.setRoot(StoreNode);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) {
 | |
|   SDLoc sdl = getCurSDLoc();
 | |
| 
 | |
|   // llvm.masked.store.*(Src0, Ptr, alignemt, Mask)
 | |
|   Value  *PtrOperand = I.getArgOperand(1);
 | |
|   SDValue Ptr = getValue(PtrOperand);
 | |
|   SDValue Src0 = getValue(I.getArgOperand(0));
 | |
|   SDValue Mask = getValue(I.getArgOperand(3));
 | |
|   EVT VT = Src0.getValueType();
 | |
|   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
 | |
|   if (!Alignment)
 | |
|     Alignment = DAG.getEVTAlignment(VT);
 | |
| 
 | |
|   AAMDNodes AAInfo;
 | |
|   I.getAAMetadata(AAInfo);
 | |
| 
 | |
|   MachineMemOperand *MMO =
 | |
|     DAG.getMachineFunction().
 | |
|     getMachineMemOperand(MachinePointerInfo(PtrOperand),
 | |
|                           MachineMemOperand::MOStore,  VT.getStoreSize(),
 | |
|                           Alignment, AAInfo);
 | |
|   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
 | |
|                                          MMO, false);
 | |
|   DAG.setRoot(StoreNode);
 | |
|   setValue(&I, StoreNode);
 | |
| }
 | |
| 
 | |
| // Gather/scatter receive a vector of pointers.
 | |
| // This vector of pointers may be represented as a base pointer + vector of 
 | |
| // indices, it depends on GEP and instruction preceeding GEP
 | |
| // that calculates indices
 | |
| static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index,
 | |
|                            SelectionDAGBuilder* SDB) {
 | |
| 
 | |
|   assert (Ptr->getType()->isVectorTy() && "Uexpected pointer type");
 | |
|   GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
 | |
|   if (!Gep || Gep->getNumOperands() > 2)
 | |
|     return false;
 | |
|   ShuffleVectorInst *ShuffleInst = 
 | |
|     dyn_cast<ShuffleVectorInst>(Gep->getPointerOperand());
 | |
|   if (!ShuffleInst || !ShuffleInst->getMask()->isNullValue() ||
 | |
|       cast<Instruction>(ShuffleInst->getOperand(0))->getOpcode() !=
 | |
|       Instruction::InsertElement)
 | |
|     return false;
 | |
| 
 | |
|   Ptr = cast<InsertElementInst>(ShuffleInst->getOperand(0))->getOperand(1);
 | |
| 
 | |
|   SelectionDAG& DAG = SDB->DAG;
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   // Check is the Ptr is inside current basic block
 | |
|   // If not, look for the shuffle instruction
 | |
|   if (SDB->findValue(Ptr))
 | |
|     Base = SDB->getValue(Ptr);
 | |
|   else if (SDB->findValue(ShuffleInst)) {
 | |
|     SDValue ShuffleNode = SDB->getValue(ShuffleInst);
 | |
|     SDLoc sdl = ShuffleNode;
 | |
|     Base = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, sdl,
 | |
|                        ShuffleNode.getValueType().getScalarType(), ShuffleNode,
 | |
|                        DAG.getConstant(0, sdl, TLI.getVectorIdxTy()));
 | |
|     SDB->setValue(Ptr, Base);
 | |
|   }
 | |
|   else
 | |
|     return false;
 | |
| 
 | |
|   Value *IndexVal = Gep->getOperand(1);
 | |
|   if (SDB->findValue(IndexVal)) {
 | |
|     Index = SDB->getValue(IndexVal);
 | |
| 
 | |
|     if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) {
 | |
|       IndexVal = Sext->getOperand(0);
 | |
|       if (SDB->findValue(IndexVal))
 | |
|         Index = SDB->getValue(IndexVal);
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
 | |
|   SDLoc sdl = getCurSDLoc();
 | |
| 
 | |
|   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
 | |
|   Value  *Ptr = I.getArgOperand(1);
 | |
|   SDValue Src0 = getValue(I.getArgOperand(0));
 | |
|   SDValue Mask = getValue(I.getArgOperand(3));
 | |
|   EVT VT = Src0.getValueType();
 | |
|   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
 | |
|   if (!Alignment)
 | |
|     Alignment = DAG.getEVTAlignment(VT);
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
| 
 | |
|   AAMDNodes AAInfo;
 | |
|   I.getAAMetadata(AAInfo);
 | |
| 
 | |
|   SDValue Base;
 | |
|   SDValue Index;
 | |
|   Value *BasePtr = Ptr;
 | |
|   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
 | |
| 
 | |
|   Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
 | |
|   MachineMemOperand *MMO = DAG.getMachineFunction().
 | |
|     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
 | |
|                          MachineMemOperand::MOStore,  VT.getStoreSize(),
 | |
|                          Alignment, AAInfo);
 | |
|   if (!UniformBase) {
 | |
|     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy());
 | |
|     Index = getValue(Ptr);
 | |
|   }
 | |
|   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index };
 | |
|   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
 | |
|                                          Ops, MMO);
 | |
|   DAG.setRoot(Scatter);
 | |
|   setValue(&I, Scatter);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) {
 | |
|   SDLoc sdl = getCurSDLoc();
 | |
| 
 | |
|   // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
 | |
|   Value  *PtrOperand = I.getArgOperand(0);
 | |
|   SDValue Ptr = getValue(PtrOperand);
 | |
|   SDValue Src0 = getValue(I.getArgOperand(3));
 | |
|   SDValue Mask = getValue(I.getArgOperand(2));
 | |
| 
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   EVT VT = TLI.getValueType(I.getType());
 | |
|   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
 | |
|   if (!Alignment)
 | |
|     Alignment = DAG.getEVTAlignment(VT);
 | |
| 
 | |
|   AAMDNodes AAInfo;
 | |
|   I.getAAMetadata(AAInfo);
 | |
|   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
 | |
| 
 | |
|   SDValue InChain = DAG.getRoot();
 | |
|   if (AA->pointsToConstantMemory(
 | |
|       AliasAnalysis::Location(PtrOperand,
 | |
|                               AA->getTypeStoreSize(I.getType()),
 | |
|                               AAInfo))) {
 | |
|     // Do not serialize (non-volatile) loads of constant memory with anything.
 | |
|     InChain = DAG.getEntryNode();
 | |
|   }
 | |
| 
 | |
|   MachineMemOperand *MMO =
 | |
|     DAG.getMachineFunction().
 | |
|     getMachineMemOperand(MachinePointerInfo(PtrOperand),
 | |
|                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
 | |
|                           Alignment, AAInfo, Ranges);
 | |
| 
 | |
|   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
 | |
|                                    ISD::NON_EXTLOAD);
 | |
|   SDValue OutChain = Load.getValue(1);
 | |
|   DAG.setRoot(OutChain);
 | |
|   setValue(&I, Load);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
 | |
|   SDLoc sdl = getCurSDLoc();
 | |
| 
 | |
|   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
 | |
|   Value  *Ptr = I.getArgOperand(0);
 | |
|   SDValue Src0 = getValue(I.getArgOperand(3));
 | |
|   SDValue Mask = getValue(I.getArgOperand(2));
 | |
| 
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   EVT VT = TLI.getValueType(I.getType());
 | |
|   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
 | |
|   if (!Alignment)
 | |
|     Alignment = DAG.getEVTAlignment(VT);
 | |
| 
 | |
|   AAMDNodes AAInfo;
 | |
|   I.getAAMetadata(AAInfo);
 | |
|   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
 | |
| 
 | |
|   SDValue Root = DAG.getRoot();
 | |
|   SDValue Base;
 | |
|   SDValue Index;
 | |
|   Value *BasePtr = Ptr;
 | |
|   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
 | |
|   bool ConstantMemory = false;
 | |
|   if (UniformBase && AA->pointsToConstantMemory(
 | |
|       AliasAnalysis::Location(BasePtr,
 | |
| 	                            AA->getTypeStoreSize(I.getType()),
 | |
|                               AAInfo))) {
 | |
|     // Do not serialize (non-volatile) loads of constant memory with anything.
 | |
|     Root = DAG.getEntryNode();
 | |
|     ConstantMemory = true;
 | |
|   }
 | |
| 
 | |
|   MachineMemOperand *MMO =
 | |
|     DAG.getMachineFunction().
 | |
|     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
 | |
|                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
 | |
|                          Alignment, AAInfo, Ranges);
 | |
| 
 | |
|   if (!UniformBase) {
 | |
|     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy());
 | |
|     Index = getValue(Ptr);
 | |
|   }
 | |
|   SDValue Ops[] = { Root, Src0, Mask, Base, Index };
 | |
|   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
 | |
|                                        Ops, MMO);
 | |
| 
 | |
|   SDValue OutChain = Gather.getValue(1);
 | |
|   if (!ConstantMemory)
 | |
|     PendingLoads.push_back(OutChain);
 | |
|   setValue(&I, Gather);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
 | |
|   SDLoc dl = getCurSDLoc();
 | |
|   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
 | |
|   AtomicOrdering FailureOrder = I.getFailureOrdering();
 | |
|   SynchronizationScope Scope = I.getSynchScope();
 | |
| 
 | |
|   SDValue InChain = getRoot();
 | |
| 
 | |
|   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
 | |
|   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
 | |
|   SDValue L = DAG.getAtomicCmpSwap(
 | |
|       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
 | |
|       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
 | |
|       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
 | |
|       /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
 | |
| 
 | |
|   SDValue OutChain = L.getValue(2);
 | |
| 
 | |
|   setValue(&I, L);
 | |
|   DAG.setRoot(OutChain);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
 | |
|   SDLoc dl = getCurSDLoc();
 | |
|   ISD::NodeType NT;
 | |
|   switch (I.getOperation()) {
 | |
|   default: llvm_unreachable("Unknown atomicrmw operation");
 | |
|   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
 | |
|   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
 | |
|   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
 | |
|   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
 | |
|   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
 | |
|   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
 | |
|   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
 | |
|   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
 | |
|   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
 | |
|   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
 | |
|   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
 | |
|   }
 | |
|   AtomicOrdering Order = I.getOrdering();
 | |
|   SynchronizationScope Scope = I.getSynchScope();
 | |
| 
 | |
|   SDValue InChain = getRoot();
 | |
| 
 | |
|   SDValue L =
 | |
|     DAG.getAtomic(NT, dl,
 | |
|                   getValue(I.getValOperand()).getSimpleValueType(),
 | |
|                   InChain,
 | |
|                   getValue(I.getPointerOperand()),
 | |
|                   getValue(I.getValOperand()),
 | |
|                   I.getPointerOperand(),
 | |
|                   /* Alignment=*/ 0, Order, Scope);
 | |
| 
 | |
|   SDValue OutChain = L.getValue(1);
 | |
| 
 | |
|   setValue(&I, L);
 | |
|   DAG.setRoot(OutChain);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitFence(const FenceInst &I) {
 | |
|   SDLoc dl = getCurSDLoc();
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   SDValue Ops[3];
 | |
|   Ops[0] = getRoot();
 | |
|   Ops[1] = DAG.getConstant(I.getOrdering(), dl, TLI.getPointerTy());
 | |
|   Ops[2] = DAG.getConstant(I.getSynchScope(), dl, TLI.getPointerTy());
 | |
|   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
 | |
|   SDLoc dl = getCurSDLoc();
 | |
|   AtomicOrdering Order = I.getOrdering();
 | |
|   SynchronizationScope Scope = I.getSynchScope();
 | |
| 
 | |
|   SDValue InChain = getRoot();
 | |
| 
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   EVT VT = TLI.getValueType(I.getType());
 | |
| 
 | |
|   if (I.getAlignment() < VT.getSizeInBits() / 8)
 | |
|     report_fatal_error("Cannot generate unaligned atomic load");
 | |
| 
 | |
|   MachineMemOperand *MMO =
 | |
|       DAG.getMachineFunction().
 | |
|       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
 | |
|                            MachineMemOperand::MOVolatile |
 | |
|                            MachineMemOperand::MOLoad,
 | |
|                            VT.getStoreSize(),
 | |
|                            I.getAlignment() ? I.getAlignment() :
 | |
|                                               DAG.getEVTAlignment(VT));
 | |
| 
 | |
|   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
 | |
|   SDValue L =
 | |
|       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
 | |
|                     getValue(I.getPointerOperand()), MMO,
 | |
|                     Order, Scope);
 | |
| 
 | |
|   SDValue OutChain = L.getValue(1);
 | |
| 
 | |
|   setValue(&I, L);
 | |
|   DAG.setRoot(OutChain);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
 | |
|   SDLoc dl = getCurSDLoc();
 | |
| 
 | |
|   AtomicOrdering Order = I.getOrdering();
 | |
|   SynchronizationScope Scope = I.getSynchScope();
 | |
| 
 | |
|   SDValue InChain = getRoot();
 | |
| 
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   EVT VT = TLI.getValueType(I.getValueOperand()->getType());
 | |
| 
 | |
|   if (I.getAlignment() < VT.getSizeInBits() / 8)
 | |
|     report_fatal_error("Cannot generate unaligned atomic store");
 | |
| 
 | |
|   SDValue OutChain =
 | |
|     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
 | |
|                   InChain,
 | |
|                   getValue(I.getPointerOperand()),
 | |
|                   getValue(I.getValueOperand()),
 | |
|                   I.getPointerOperand(), I.getAlignment(),
 | |
|                   Order, Scope);
 | |
| 
 | |
|   DAG.setRoot(OutChain);
 | |
| }
 | |
| 
 | |
| /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
 | |
| /// node.
 | |
| void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
 | |
|                                                unsigned Intrinsic) {
 | |
|   bool HasChain = !I.doesNotAccessMemory();
 | |
|   bool OnlyLoad = HasChain && I.onlyReadsMemory();
 | |
| 
 | |
|   // Build the operand list.
 | |
|   SmallVector<SDValue, 8> Ops;
 | |
|   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
 | |
|     if (OnlyLoad) {
 | |
|       // We don't need to serialize loads against other loads.
 | |
|       Ops.push_back(DAG.getRoot());
 | |
|     } else {
 | |
|       Ops.push_back(getRoot());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Info is set by getTgtMemInstrinsic
 | |
|   TargetLowering::IntrinsicInfo Info;
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
 | |
| 
 | |
|   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
 | |
|   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
 | |
|       Info.opc == ISD::INTRINSIC_W_CHAIN)
 | |
|     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
 | |
|                                         TLI.getPointerTy()));
 | |
| 
 | |
|   // Add all operands of the call to the operand list.
 | |
|   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
 | |
|     SDValue Op = getValue(I.getArgOperand(i));
 | |
|     Ops.push_back(Op);
 | |
|   }
 | |
| 
 | |
|   SmallVector<EVT, 4> ValueVTs;
 | |
|   ComputeValueVTs(TLI, I.getType(), ValueVTs);
 | |
| 
 | |
|   if (HasChain)
 | |
|     ValueVTs.push_back(MVT::Other);
 | |
| 
 | |
|   SDVTList VTs = DAG.getVTList(ValueVTs);
 | |
| 
 | |
|   // Create the node.
 | |
|   SDValue Result;
 | |
|   if (IsTgtIntrinsic) {
 | |
|     // This is target intrinsic that touches memory
 | |
|     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
 | |
|                                      VTs, Ops, Info.memVT,
 | |
|                                    MachinePointerInfo(Info.ptrVal, Info.offset),
 | |
|                                      Info.align, Info.vol,
 | |
|                                      Info.readMem, Info.writeMem, Info.size);
 | |
|   } else if (!HasChain) {
 | |
|     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
 | |
|   } else if (!I.getType()->isVoidTy()) {
 | |
|     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
 | |
|   } else {
 | |
|     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
 | |
|   }
 | |
| 
 | |
|   if (HasChain) {
 | |
|     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
 | |
|     if (OnlyLoad)
 | |
|       PendingLoads.push_back(Chain);
 | |
|     else
 | |
|       DAG.setRoot(Chain);
 | |
|   }
 | |
| 
 | |
|   if (!I.getType()->isVoidTy()) {
 | |
|     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
 | |
|       EVT VT = TLI.getValueType(PTy);
 | |
|       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
 | |
|     }
 | |
| 
 | |
|     setValue(&I, Result);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// GetSignificand - Get the significand and build it into a floating-point
 | |
| /// number with exponent of 1:
 | |
| ///
 | |
| ///   Op = (Op & 0x007fffff) | 0x3f800000;
 | |
| ///
 | |
| /// where Op is the hexadecimal representation of floating point value.
 | |
| static SDValue
 | |
| GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
 | |
|   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
 | |
|                            DAG.getConstant(0x007fffff, dl, MVT::i32));
 | |
|   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
 | |
|                            DAG.getConstant(0x3f800000, dl, MVT::i32));
 | |
|   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
 | |
| }
 | |
| 
 | |
| /// GetExponent - Get the exponent:
 | |
| ///
 | |
| ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
 | |
| ///
 | |
| /// where Op is the hexadecimal representation of floating point value.
 | |
| static SDValue
 | |
| GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
 | |
|             SDLoc dl) {
 | |
|   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
 | |
|                            DAG.getConstant(0x7f800000, dl, MVT::i32));
 | |
|   SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
 | |
|                            DAG.getConstant(23, dl, TLI.getPointerTy()));
 | |
|   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
 | |
|                            DAG.getConstant(127, dl, MVT::i32));
 | |
|   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
 | |
| }
 | |
| 
 | |
| /// getF32Constant - Get 32-bit floating point constant.
 | |
| static SDValue
 | |
| getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) {
 | |
|   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl,
 | |
|                            MVT::f32);
 | |
| }
 | |
| 
 | |
| static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl,
 | |
|                                        SelectionDAG &DAG) {
 | |
|   //   IntegerPartOfX = ((int32_t)(t0);
 | |
|   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
 | |
| 
 | |
|   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
 | |
|   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
 | |
|   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
 | |
| 
 | |
|   //   IntegerPartOfX <<= 23;
 | |
|   IntegerPartOfX = DAG.getNode(
 | |
|       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
 | |
|       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy()));
 | |
| 
 | |
|   SDValue TwoToFractionalPartOfX;
 | |
|   if (LimitFloatPrecision <= 6) {
 | |
|     // For floating-point precision of 6:
 | |
|     //
 | |
|     //   TwoToFractionalPartOfX =
 | |
|     //     0.997535578f +
 | |
|     //       (0.735607626f + 0.252464424f * x) * x;
 | |
|     //
 | |
|     // error 0.0144103317, which is 6 bits
 | |
|     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                              getF32Constant(DAG, 0x3e814304, dl));
 | |
|     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
 | |
|                              getF32Constant(DAG, 0x3f3c50c8, dl));
 | |
|     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
 | |
|     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
 | |
|                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
 | |
|   } else if (LimitFloatPrecision <= 12) {
 | |
|     // For floating-point precision of 12:
 | |
|     //
 | |
|     //   TwoToFractionalPartOfX =
 | |
|     //     0.999892986f +
 | |
|     //       (0.696457318f +
 | |
|     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
 | |
|     //
 | |
|     // error 0.000107046256, which is 13 to 14 bits
 | |
|     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                              getF32Constant(DAG, 0x3da235e3, dl));
 | |
|     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
 | |
|                              getF32Constant(DAG, 0x3e65b8f3, dl));
 | |
|     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
 | |
|     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
 | |
|                              getF32Constant(DAG, 0x3f324b07, dl));
 | |
|     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
 | |
|     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
 | |
|                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
 | |
|   } else { // LimitFloatPrecision <= 18
 | |
|     // For floating-point precision of 18:
 | |
|     //
 | |
|     //   TwoToFractionalPartOfX =
 | |
|     //     0.999999982f +
 | |
|     //       (0.693148872f +
 | |
|     //         (0.240227044f +
 | |
|     //           (0.554906021e-1f +
 | |
|     //             (0.961591928e-2f +
 | |
|     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
 | |
|     // error 2.47208000*10^(-7), which is better than 18 bits
 | |
|     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                              getF32Constant(DAG, 0x3924b03e, dl));
 | |
|     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
 | |
|                              getF32Constant(DAG, 0x3ab24b87, dl));
 | |
|     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
 | |
|     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
 | |
|                              getF32Constant(DAG, 0x3c1d8c17, dl));
 | |
|     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
 | |
|     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
 | |
|                              getF32Constant(DAG, 0x3d634a1d, dl));
 | |
|     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
 | |
|     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
 | |
|                              getF32Constant(DAG, 0x3e75fe14, dl));
 | |
|     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
 | |
|     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
 | |
|                               getF32Constant(DAG, 0x3f317234, dl));
 | |
|     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
 | |
|     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
 | |
|                                          getF32Constant(DAG, 0x3f800000, dl));
 | |
|   }
 | |
| 
 | |
|   // Add the exponent into the result in integer domain.
 | |
|   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
 | |
|   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
 | |
|                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
 | |
| }
 | |
| 
 | |
| /// expandExp - Lower an exp intrinsic. Handles the special sequences for
 | |
| /// limited-precision mode.
 | |
| static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
 | |
|                          const TargetLowering &TLI) {
 | |
|   if (Op.getValueType() == MVT::f32 &&
 | |
|       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
 | |
| 
 | |
|     // Put the exponent in the right bit position for later addition to the
 | |
|     // final result:
 | |
|     //
 | |
|     //   #define LOG2OFe 1.4426950f
 | |
|     //   t0 = Op * LOG2OFe
 | |
|     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
 | |
|                              getF32Constant(DAG, 0x3fb8aa3b, dl));
 | |
|     return getLimitedPrecisionExp2(t0, dl, DAG);
 | |
|   }
 | |
| 
 | |
|   // No special expansion.
 | |
|   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
 | |
| }
 | |
| 
 | |
| /// expandLog - Lower a log intrinsic. Handles the special sequences for
 | |
| /// limited-precision mode.
 | |
| static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
 | |
|                          const TargetLowering &TLI) {
 | |
|   if (Op.getValueType() == MVT::f32 &&
 | |
|       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
 | |
|     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
 | |
| 
 | |
|     // Scale the exponent by log(2) [0.69314718f].
 | |
|     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
 | |
|     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
 | |
|                                         getF32Constant(DAG, 0x3f317218, dl));
 | |
| 
 | |
|     // Get the significand and build it into a floating-point number with
 | |
|     // exponent of 1.
 | |
|     SDValue X = GetSignificand(DAG, Op1, dl);
 | |
| 
 | |
|     SDValue LogOfMantissa;
 | |
|     if (LimitFloatPrecision <= 6) {
 | |
|       // For floating-point precision of 6:
 | |
|       //
 | |
|       //   LogofMantissa =
 | |
|       //     -1.1609546f +
 | |
|       //       (1.4034025f - 0.23903021f * x) * x;
 | |
|       //
 | |
|       // error 0.0034276066, which is better than 8 bits
 | |
|       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                                getF32Constant(DAG, 0xbe74c456, dl));
 | |
|       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
 | |
|                                getF32Constant(DAG, 0x3fb3a2b1, dl));
 | |
|       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
 | |
|       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
 | |
|                                   getF32Constant(DAG, 0x3f949a29, dl));
 | |
|     } else if (LimitFloatPrecision <= 12) {
 | |
|       // For floating-point precision of 12:
 | |
|       //
 | |
|       //   LogOfMantissa =
 | |
|       //     -1.7417939f +
 | |
|       //       (2.8212026f +
 | |
|       //         (-1.4699568f +
 | |
|       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
 | |
|       //
 | |
|       // error 0.000061011436, which is 14 bits
 | |
|       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                                getF32Constant(DAG, 0xbd67b6d6, dl));
 | |
|       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
 | |
|                                getF32Constant(DAG, 0x3ee4f4b8, dl));
 | |
|       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
 | |
|       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
 | |
|                                getF32Constant(DAG, 0x3fbc278b, dl));
 | |
|       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
 | |
|       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
 | |
|                                getF32Constant(DAG, 0x40348e95, dl));
 | |
|       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
 | |
|       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
 | |
|                                   getF32Constant(DAG, 0x3fdef31a, dl));
 | |
|     } else { // LimitFloatPrecision <= 18
 | |
|       // For floating-point precision of 18:
 | |
|       //
 | |
|       //   LogOfMantissa =
 | |
|       //     -2.1072184f +
 | |
|       //       (4.2372794f +
 | |
|       //         (-3.7029485f +
 | |
|       //           (2.2781945f +
 | |
|       //             (-0.87823314f +
 | |
|       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
 | |
|       //
 | |
|       // error 0.0000023660568, which is better than 18 bits
 | |
|       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                                getF32Constant(DAG, 0xbc91e5ac, dl));
 | |
|       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
 | |
|                                getF32Constant(DAG, 0x3e4350aa, dl));
 | |
|       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
 | |
|       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
 | |
|                                getF32Constant(DAG, 0x3f60d3e3, dl));
 | |
|       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
 | |
|       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
 | |
|                                getF32Constant(DAG, 0x4011cdf0, dl));
 | |
|       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
 | |
|       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
 | |
|                                getF32Constant(DAG, 0x406cfd1c, dl));
 | |
|       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
 | |
|       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
 | |
|                                getF32Constant(DAG, 0x408797cb, dl));
 | |
|       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
 | |
|       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
 | |
|                                   getF32Constant(DAG, 0x4006dcab, dl));
 | |
|     }
 | |
| 
 | |
|     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
 | |
|   }
 | |
| 
 | |
|   // No special expansion.
 | |
|   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
 | |
| }
 | |
| 
 | |
| /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
 | |
| /// limited-precision mode.
 | |
| static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
 | |
|                           const TargetLowering &TLI) {
 | |
|   if (Op.getValueType() == MVT::f32 &&
 | |
|       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
 | |
|     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
 | |
| 
 | |
|     // Get the exponent.
 | |
|     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
 | |
| 
 | |
|     // Get the significand and build it into a floating-point number with
 | |
|     // exponent of 1.
 | |
|     SDValue X = GetSignificand(DAG, Op1, dl);
 | |
| 
 | |
|     // Different possible minimax approximations of significand in
 | |
|     // floating-point for various degrees of accuracy over [1,2].
 | |
|     SDValue Log2ofMantissa;
 | |
|     if (LimitFloatPrecision <= 6) {
 | |
|       // For floating-point precision of 6:
 | |
|       //
 | |
|       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
 | |
|       //
 | |
|       // error 0.0049451742, which is more than 7 bits
 | |
|       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                                getF32Constant(DAG, 0xbeb08fe0, dl));
 | |
|       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
 | |
|                                getF32Constant(DAG, 0x40019463, dl));
 | |
|       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
 | |
|       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
 | |
|                                    getF32Constant(DAG, 0x3fd6633d, dl));
 | |
|     } else if (LimitFloatPrecision <= 12) {
 | |
|       // For floating-point precision of 12:
 | |
|       //
 | |
|       //   Log2ofMantissa =
 | |
|       //     -2.51285454f +
 | |
|       //       (4.07009056f +
 | |
|       //         (-2.12067489f +
 | |
|       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
 | |
|       //
 | |
|       // error 0.0000876136000, which is better than 13 bits
 | |
|       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                                getF32Constant(DAG, 0xbda7262e, dl));
 | |
|       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
 | |
|                                getF32Constant(DAG, 0x3f25280b, dl));
 | |
|       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
 | |
|       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
 | |
|                                getF32Constant(DAG, 0x4007b923, dl));
 | |
|       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
 | |
|       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
 | |
|                                getF32Constant(DAG, 0x40823e2f, dl));
 | |
|       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
 | |
|       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
 | |
|                                    getF32Constant(DAG, 0x4020d29c, dl));
 | |
|     } else { // LimitFloatPrecision <= 18
 | |
|       // For floating-point precision of 18:
 | |
|       //
 | |
|       //   Log2ofMantissa =
 | |
|       //     -3.0400495f +
 | |
|       //       (6.1129976f +
 | |
|       //         (-5.3420409f +
 | |
|       //           (3.2865683f +
 | |
|       //             (-1.2669343f +
 | |
|       //               (0.27515199f -
 | |
|       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
 | |
|       //
 | |
|       // error 0.0000018516, which is better than 18 bits
 | |
|       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                                getF32Constant(DAG, 0xbcd2769e, dl));
 | |
|       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
 | |
|                                getF32Constant(DAG, 0x3e8ce0b9, dl));
 | |
|       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
 | |
|       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
 | |
|                                getF32Constant(DAG, 0x3fa22ae7, dl));
 | |
|       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
 | |
|       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
 | |
|                                getF32Constant(DAG, 0x40525723, dl));
 | |
|       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
 | |
|       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
 | |
|                                getF32Constant(DAG, 0x40aaf200, dl));
 | |
|       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
 | |
|       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
 | |
|                                getF32Constant(DAG, 0x40c39dad, dl));
 | |
|       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
 | |
|       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
 | |
|                                    getF32Constant(DAG, 0x4042902c, dl));
 | |
|     }
 | |
| 
 | |
|     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
 | |
|   }
 | |
| 
 | |
|   // No special expansion.
 | |
|   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
 | |
| }
 | |
| 
 | |
| /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
 | |
| /// limited-precision mode.
 | |
| static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
 | |
|                            const TargetLowering &TLI) {
 | |
|   if (Op.getValueType() == MVT::f32 &&
 | |
|       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
 | |
|     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
 | |
| 
 | |
|     // Scale the exponent by log10(2) [0.30102999f].
 | |
|     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
 | |
|     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
 | |
|                                         getF32Constant(DAG, 0x3e9a209a, dl));
 | |
| 
 | |
|     // Get the significand and build it into a floating-point number with
 | |
|     // exponent of 1.
 | |
|     SDValue X = GetSignificand(DAG, Op1, dl);
 | |
| 
 | |
|     SDValue Log10ofMantissa;
 | |
|     if (LimitFloatPrecision <= 6) {
 | |
|       // For floating-point precision of 6:
 | |
|       //
 | |
|       //   Log10ofMantissa =
 | |
|       //     -0.50419619f +
 | |
|       //       (0.60948995f - 0.10380950f * x) * x;
 | |
|       //
 | |
|       // error 0.0014886165, which is 6 bits
 | |
|       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                                getF32Constant(DAG, 0xbdd49a13, dl));
 | |
|       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
 | |
|                                getF32Constant(DAG, 0x3f1c0789, dl));
 | |
|       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
 | |
|       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
 | |
|                                     getF32Constant(DAG, 0x3f011300, dl));
 | |
|     } else if (LimitFloatPrecision <= 12) {
 | |
|       // For floating-point precision of 12:
 | |
|       //
 | |
|       //   Log10ofMantissa =
 | |
|       //     -0.64831180f +
 | |
|       //       (0.91751397f +
 | |
|       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
 | |
|       //
 | |
|       // error 0.00019228036, which is better than 12 bits
 | |
|       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                                getF32Constant(DAG, 0x3d431f31, dl));
 | |
|       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
 | |
|                                getF32Constant(DAG, 0x3ea21fb2, dl));
 | |
|       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
 | |
|       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
 | |
|                                getF32Constant(DAG, 0x3f6ae232, dl));
 | |
|       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
 | |
|       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
 | |
|                                     getF32Constant(DAG, 0x3f25f7c3, dl));
 | |
|     } else { // LimitFloatPrecision <= 18
 | |
|       // For floating-point precision of 18:
 | |
|       //
 | |
|       //   Log10ofMantissa =
 | |
|       //     -0.84299375f +
 | |
|       //       (1.5327582f +
 | |
|       //         (-1.0688956f +
 | |
|       //           (0.49102474f +
 | |
|       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
 | |
|       //
 | |
|       // error 0.0000037995730, which is better than 18 bits
 | |
|       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
 | |
|                                getF32Constant(DAG, 0x3c5d51ce, dl));
 | |
|       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
 | |
|                                getF32Constant(DAG, 0x3e00685a, dl));
 | |
|       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
 | |
|       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
 | |
|                                getF32Constant(DAG, 0x3efb6798, dl));
 | |
|       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
 | |
|       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
 | |
|                                getF32Constant(DAG, 0x3f88d192, dl));
 | |
|       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
 | |
|       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
 | |
|                                getF32Constant(DAG, 0x3fc4316c, dl));
 | |
|       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
 | |
|       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
 | |
|                                     getF32Constant(DAG, 0x3f57ce70, dl));
 | |
|     }
 | |
| 
 | |
|     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
 | |
|   }
 | |
| 
 | |
|   // No special expansion.
 | |
|   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
 | |
| }
 | |
| 
 | |
| /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
 | |
| /// limited-precision mode.
 | |
| static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
 | |
|                           const TargetLowering &TLI) {
 | |
|   if (Op.getValueType() == MVT::f32 &&
 | |
|       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
 | |
|     return getLimitedPrecisionExp2(Op, dl, DAG);
 | |
| 
 | |
|   // No special expansion.
 | |
|   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
 | |
| }
 | |
| 
 | |
| /// visitPow - Lower a pow intrinsic. Handles the special sequences for
 | |
| /// limited-precision mode with x == 10.0f.
 | |
| static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
 | |
|                          SelectionDAG &DAG, const TargetLowering &TLI) {
 | |
|   bool IsExp10 = false;
 | |
|   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
 | |
|       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
 | |
|     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
 | |
|       APFloat Ten(10.0f);
 | |
|       IsExp10 = LHSC->isExactlyValue(Ten);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (IsExp10) {
 | |
|     // Put the exponent in the right bit position for later addition to the
 | |
|     // final result:
 | |
|     //
 | |
|     //   #define LOG2OF10 3.3219281f
 | |
|     //   t0 = Op * LOG2OF10;
 | |
|     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
 | |
|                              getF32Constant(DAG, 0x40549a78, dl));
 | |
|     return getLimitedPrecisionExp2(t0, dl, DAG);
 | |
|   }
 | |
| 
 | |
|   // No special expansion.
 | |
|   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ExpandPowI - Expand a llvm.powi intrinsic.
 | |
| static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
 | |
|                           SelectionDAG &DAG) {
 | |
|   // If RHS is a constant, we can expand this out to a multiplication tree,
 | |
|   // otherwise we end up lowering to a call to __powidf2 (for example).  When
 | |
|   // optimizing for size, we only want to do this if the expansion would produce
 | |
|   // a small number of multiplies, otherwise we do the full expansion.
 | |
|   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
 | |
|     // Get the exponent as a positive value.
 | |
|     unsigned Val = RHSC->getSExtValue();
 | |
|     if ((int)Val < 0) Val = -Val;
 | |
| 
 | |
|     // powi(x, 0) -> 1.0
 | |
|     if (Val == 0)
 | |
|       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
 | |
| 
 | |
|     const Function *F = DAG.getMachineFunction().getFunction();
 | |
|     if (!F->hasFnAttribute(Attribute::OptimizeForSize) ||
 | |
|         // If optimizing for size, don't insert too many multiplies.  This
 | |
|         // inserts up to 5 multiplies.
 | |
|         countPopulation(Val) + Log2_32(Val) < 7) {
 | |
|       // We use the simple binary decomposition method to generate the multiply
 | |
|       // sequence.  There are more optimal ways to do this (for example,
 | |
|       // powi(x,15) generates one more multiply than it should), but this has
 | |
|       // the benefit of being both really simple and much better than a libcall.
 | |
|       SDValue Res;  // Logically starts equal to 1.0
 | |
|       SDValue CurSquare = LHS;
 | |
|       while (Val) {
 | |
|         if (Val & 1) {
 | |
|           if (Res.getNode())
 | |
|             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
 | |
|           else
 | |
|             Res = CurSquare;  // 1.0*CurSquare.
 | |
|         }
 | |
| 
 | |
|         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
 | |
|                                 CurSquare, CurSquare);
 | |
|         Val >>= 1;
 | |
|       }
 | |
| 
 | |
|       // If the original was negative, invert the result, producing 1/(x*x*x).
 | |
|       if (RHSC->getSExtValue() < 0)
 | |
|         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
 | |
|                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
 | |
|       return Res;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise, expand to a libcall.
 | |
|   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
 | |
| }
 | |
| 
 | |
| // getTruncatedArgReg - Find underlying register used for an truncated
 | |
| // argument.
 | |
| static unsigned getTruncatedArgReg(const SDValue &N) {
 | |
|   if (N.getOpcode() != ISD::TRUNCATE)
 | |
|     return 0;
 | |
| 
 | |
|   const SDValue &Ext = N.getOperand(0);
 | |
|   if (Ext.getOpcode() == ISD::AssertZext ||
 | |
|       Ext.getOpcode() == ISD::AssertSext) {
 | |
|     const SDValue &CFR = Ext.getOperand(0);
 | |
|     if (CFR.getOpcode() == ISD::CopyFromReg)
 | |
|       return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
 | |
|     if (CFR.getOpcode() == ISD::TRUNCATE)
 | |
|       return getTruncatedArgReg(CFR);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
 | |
| /// argument, create the corresponding DBG_VALUE machine instruction for it now.
 | |
| /// At the end of instruction selection, they will be inserted to the entry BB.
 | |
| bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
 | |
|     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
 | |
|     DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) {
 | |
|   const Argument *Arg = dyn_cast<Argument>(V);
 | |
|   if (!Arg)
 | |
|     return false;
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
 | |
| 
 | |
|   // Ignore inlined function arguments here.
 | |
|   //
 | |
|   // FIXME: Should we be checking DL->inlinedAt() to determine this?
 | |
|   if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction()))
 | |
|     return false;
 | |
| 
 | |
|   Optional<MachineOperand> Op;
 | |
|   // Some arguments' frame index is recorded during argument lowering.
 | |
|   if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
 | |
|     Op = MachineOperand::CreateFI(FI);
 | |
| 
 | |
|   if (!Op && N.getNode()) {
 | |
|     unsigned Reg;
 | |
|     if (N.getOpcode() == ISD::CopyFromReg)
 | |
|       Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
 | |
|     else
 | |
|       Reg = getTruncatedArgReg(N);
 | |
|     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
 | |
|       MachineRegisterInfo &RegInfo = MF.getRegInfo();
 | |
|       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
 | |
|       if (PR)
 | |
|         Reg = PR;
 | |
|     }
 | |
|     if (Reg)
 | |
|       Op = MachineOperand::CreateReg(Reg, false);
 | |
|   }
 | |
| 
 | |
|   if (!Op) {
 | |
|     // Check if ValueMap has reg number.
 | |
|     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
 | |
|     if (VMI != FuncInfo.ValueMap.end())
 | |
|       Op = MachineOperand::CreateReg(VMI->second, false);
 | |
|   }
 | |
| 
 | |
|   if (!Op && N.getNode())
 | |
|     // Check if frame index is available.
 | |
|     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
 | |
|       if (FrameIndexSDNode *FINode =
 | |
|           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
 | |
|         Op = MachineOperand::CreateFI(FINode->getIndex());
 | |
| 
 | |
|   if (!Op)
 | |
|     return false;
 | |
| 
 | |
|   assert(Variable->isValidLocationForIntrinsic(DL) &&
 | |
|          "Expected inlined-at fields to agree");
 | |
|   if (Op->isReg())
 | |
|     FuncInfo.ArgDbgValues.push_back(
 | |
|         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
 | |
|                 Op->getReg(), Offset, Variable, Expr));
 | |
|   else
 | |
|     FuncInfo.ArgDbgValues.push_back(
 | |
|         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
 | |
|             .addOperand(*Op)
 | |
|             .addImm(Offset)
 | |
|             .addMetadata(Variable)
 | |
|             .addMetadata(Expr));
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // VisualStudio defines setjmp as _setjmp
 | |
| #if defined(_MSC_VER) && defined(setjmp) && \
 | |
|                          !defined(setjmp_undefined_for_msvc)
 | |
| #  pragma push_macro("setjmp")
 | |
| #  undef setjmp
 | |
| #  define setjmp_undefined_for_msvc
 | |
| #endif
 | |
| 
 | |
| /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
 | |
| /// we want to emit this as a call to a named external function, return the name
 | |
| /// otherwise lower it and return null.
 | |
| const char *
 | |
| SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   SDLoc sdl = getCurSDLoc();
 | |
|   DebugLoc dl = getCurDebugLoc();
 | |
|   SDValue Res;
 | |
| 
 | |
|   switch (Intrinsic) {
 | |
|   default:
 | |
|     // By default, turn this into a target intrinsic node.
 | |
|     visitTargetIntrinsic(I, Intrinsic);
 | |
|     return nullptr;
 | |
|   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
 | |
|   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
 | |
|   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
 | |
|   case Intrinsic::returnaddress:
 | |
|     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(),
 | |
|                              getValue(I.getArgOperand(0))));
 | |
|     return nullptr;
 | |
|   case Intrinsic::frameaddress:
 | |
|     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(),
 | |
|                              getValue(I.getArgOperand(0))));
 | |
|     return nullptr;
 | |
|   case Intrinsic::read_register: {
 | |
|     Value *Reg = I.getArgOperand(0);
 | |
|     SDValue Chain = getRoot();
 | |
|     SDValue RegName =
 | |
|         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
 | |
|     EVT VT = TLI.getValueType(I.getType());
 | |
|     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
 | |
|       DAG.getVTList(VT, MVT::Other), Chain, RegName);
 | |
|     setValue(&I, Res);
 | |
|     DAG.setRoot(Res.getValue(1));
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Intrinsic::write_register: {
 | |
|     Value *Reg = I.getArgOperand(0);
 | |
|     Value *RegValue = I.getArgOperand(1);
 | |
|     SDValue Chain = getRoot();
 | |
|     SDValue RegName =
 | |
|         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
 | |
|     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
 | |
|                             RegName, getValue(RegValue)));
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Intrinsic::setjmp:
 | |
|     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
 | |
|   case Intrinsic::longjmp:
 | |
|     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
 | |
|   case Intrinsic::memcpy: {
 | |
|     // FIXME: this definition of "user defined address space" is x86-specific
 | |
|     // Assert for address < 256 since we support only user defined address
 | |
|     // spaces.
 | |
|     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
 | |
|            < 256 &&
 | |
|            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
 | |
|            < 256 &&
 | |
|            "Unknown address space");
 | |
|     SDValue Op1 = getValue(I.getArgOperand(0));
 | |
|     SDValue Op2 = getValue(I.getArgOperand(1));
 | |
|     SDValue Op3 = getValue(I.getArgOperand(2));
 | |
|     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
 | |
|     if (!Align)
 | |
|       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
 | |
|     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
 | |
|     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
 | |
|     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
 | |
|                                false, isTC,
 | |
|                                MachinePointerInfo(I.getArgOperand(0)),
 | |
|                                MachinePointerInfo(I.getArgOperand(1)));
 | |
|     updateDAGForMaybeTailCall(MC);
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Intrinsic::memset: {
 | |
|     // FIXME: this definition of "user defined address space" is x86-specific
 | |
|     // Assert for address < 256 since we support only user defined address
 | |
|     // spaces.
 | |
|     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
 | |
|            < 256 &&
 | |
|            "Unknown address space");
 | |
|     SDValue Op1 = getValue(I.getArgOperand(0));
 | |
|     SDValue Op2 = getValue(I.getArgOperand(1));
 | |
|     SDValue Op3 = getValue(I.getArgOperand(2));
 | |
|     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
 | |
|     if (!Align)
 | |
|       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
 | |
|     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
 | |
|     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
 | |
|     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
 | |
|                                isTC, MachinePointerInfo(I.getArgOperand(0)));
 | |
|     updateDAGForMaybeTailCall(MS);
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Intrinsic::memmove: {
 | |
|     // FIXME: this definition of "user defined address space" is x86-specific
 | |
|     // Assert for address < 256 since we support only user defined address
 | |
|     // spaces.
 | |
|     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
 | |
|            < 256 &&
 | |
|            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
 | |
|            < 256 &&
 | |
|            "Unknown address space");
 | |
|     SDValue Op1 = getValue(I.getArgOperand(0));
 | |
|     SDValue Op2 = getValue(I.getArgOperand(1));
 | |
|     SDValue Op3 = getValue(I.getArgOperand(2));
 | |
|     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
 | |
|     if (!Align)
 | |
|       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
 | |
|     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
 | |
|     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
 | |
|     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
 | |
|                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
 | |
|                                 MachinePointerInfo(I.getArgOperand(1)));
 | |
|     updateDAGForMaybeTailCall(MM);
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Intrinsic::dbg_declare: {
 | |
|     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
 | |
|     DILocalVariable *Variable = DI.getVariable();
 | |
|     DIExpression *Expression = DI.getExpression();
 | |
|     const Value *Address = DI.getAddress();
 | |
|     assert(Variable && "Missing variable");
 | |
|     if (!Address) {
 | |
|       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
 | |
|       return nullptr;
 | |
|     }
 | |
| 
 | |
|     // Check if address has undef value.
 | |
|     if (isa<UndefValue>(Address) ||
 | |
|         (Address->use_empty() && !isa<Argument>(Address))) {
 | |
|       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
 | |
|       return nullptr;
 | |
|     }
 | |
| 
 | |
|     SDValue &N = NodeMap[Address];
 | |
|     if (!N.getNode() && isa<Argument>(Address))
 | |
|       // Check unused arguments map.
 | |
|       N = UnusedArgNodeMap[Address];
 | |
|     SDDbgValue *SDV;
 | |
|     if (N.getNode()) {
 | |
|       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
 | |
|         Address = BCI->getOperand(0);
 | |
|       // Parameters are handled specially.
 | |
|       bool isParameter = Variable->getTag() == dwarf::DW_TAG_arg_variable ||
 | |
|                          isa<Argument>(Address);
 | |
| 
 | |
|       const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
 | |
| 
 | |
|       if (isParameter && !AI) {
 | |
|         FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
 | |
|         if (FINode)
 | |
|           // Byval parameter.  We have a frame index at this point.
 | |
|           SDV = DAG.getFrameIndexDbgValue(
 | |
|               Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder);
 | |
|         else {
 | |
|           // Address is an argument, so try to emit its dbg value using
 | |
|           // virtual register info from the FuncInfo.ValueMap.
 | |
|           EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
 | |
|                                    N);
 | |
|           return nullptr;
 | |
|         }
 | |
|       } else if (AI)
 | |
|         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
 | |
|                               true, 0, dl, SDNodeOrder);
 | |
|       else {
 | |
|         // Can't do anything with other non-AI cases yet.
 | |
|         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
 | |
|         DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
 | |
|         DEBUG(Address->dump());
 | |
|         return nullptr;
 | |
|       }
 | |
|       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
 | |
|     } else {
 | |
|       // If Address is an argument then try to emit its dbg value using
 | |
|       // virtual register info from the FuncInfo.ValueMap.
 | |
|       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
 | |
|                                     N)) {
 | |
|         // If variable is pinned by a alloca in dominating bb then
 | |
|         // use StaticAllocaMap.
 | |
|         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
 | |
|           if (AI->getParent() != DI.getParent()) {
 | |
|             DenseMap<const AllocaInst*, int>::iterator SI =
 | |
|               FuncInfo.StaticAllocaMap.find(AI);
 | |
|             if (SI != FuncInfo.StaticAllocaMap.end()) {
 | |
|               SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second,
 | |
|                                               0, dl, SDNodeOrder);
 | |
|               DAG.AddDbgValue(SDV, nullptr, false);
 | |
|               return nullptr;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
 | |
|       }
 | |
|     }
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Intrinsic::dbg_value: {
 | |
|     const DbgValueInst &DI = cast<DbgValueInst>(I);
 | |
|     assert(DI.getVariable() && "Missing variable");
 | |
| 
 | |
|     DILocalVariable *Variable = DI.getVariable();
 | |
|     DIExpression *Expression = DI.getExpression();
 | |
|     uint64_t Offset = DI.getOffset();
 | |
|     const Value *V = DI.getValue();
 | |
|     if (!V)
 | |
|       return nullptr;
 | |
| 
 | |
|     SDDbgValue *SDV;
 | |
|     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
 | |
|       SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl,
 | |
|                                     SDNodeOrder);
 | |
|       DAG.AddDbgValue(SDV, nullptr, false);
 | |
|     } else {
 | |
|       // Do not use getValue() in here; we don't want to generate code at
 | |
|       // this point if it hasn't been done yet.
 | |
|       SDValue N = NodeMap[V];
 | |
|       if (!N.getNode() && isa<Argument>(V))
 | |
|         // Check unused arguments map.
 | |
|         N = UnusedArgNodeMap[V];
 | |
|       if (N.getNode()) {
 | |
|         // A dbg.value for an alloca is always indirect.
 | |
|         bool IsIndirect = isa<AllocaInst>(V) || Offset != 0;
 | |
|         if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset,
 | |
|                                       IsIndirect, N)) {
 | |
|           SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
 | |
|                                 IsIndirect, Offset, dl, SDNodeOrder);
 | |
|           DAG.AddDbgValue(SDV, N.getNode(), false);
 | |
|         }
 | |
|       } else if (!V->use_empty() ) {
 | |
|         // Do not call getValue(V) yet, as we don't want to generate code.
 | |
|         // Remember it for later.
 | |
|         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
 | |
|         DanglingDebugInfoMap[V] = DDI;
 | |
|       } else {
 | |
|         // We may expand this to cover more cases.  One case where we have no
 | |
|         // data available is an unreferenced parameter.
 | |
|         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Build a debug info table entry.
 | |
|     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
 | |
|       V = BCI->getOperand(0);
 | |
|     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
 | |
|     // Don't handle byval struct arguments or VLAs, for example.
 | |
|     if (!AI) {
 | |
|       DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
 | |
|       DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
 | |
|       return nullptr;
 | |
|     }
 | |
|     DenseMap<const AllocaInst*, int>::iterator SI =
 | |
|       FuncInfo.StaticAllocaMap.find(AI);
 | |
|     if (SI == FuncInfo.StaticAllocaMap.end())
 | |
|       return nullptr; // VLAs.
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::eh_typeid_for: {
 | |
|     // Find the type id for the given typeinfo.
 | |
|     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
 | |
|     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
 | |
|     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
 | |
|     setValue(&I, Res);
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::eh_return_i32:
 | |
|   case Intrinsic::eh_return_i64:
 | |
|     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
 | |
|     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
 | |
|                             MVT::Other,
 | |
|                             getControlRoot(),
 | |
|                             getValue(I.getArgOperand(0)),
 | |
|                             getValue(I.getArgOperand(1))));
 | |
|     return nullptr;
 | |
|   case Intrinsic::eh_unwind_init:
 | |
|     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
 | |
|     return nullptr;
 | |
|   case Intrinsic::eh_dwarf_cfa: {
 | |
|     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
 | |
|                                         TLI.getPointerTy());
 | |
|     SDValue Offset = DAG.getNode(ISD::ADD, sdl,
 | |
|                                  CfaArg.getValueType(),
 | |
|                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
 | |
|                                              CfaArg.getValueType()),
 | |
|                                  CfaArg);
 | |
|     SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(),
 | |
|                              DAG.getConstant(0, sdl, TLI.getPointerTy()));
 | |
|     setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
 | |
|                              FA, Offset));
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Intrinsic::eh_sjlj_callsite: {
 | |
|     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
 | |
|     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
 | |
|     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
 | |
|     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
 | |
| 
 | |
|     MMI.setCurrentCallSite(CI->getZExtValue());
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Intrinsic::eh_sjlj_functioncontext: {
 | |
|     // Get and store the index of the function context.
 | |
|     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
 | |
|     AllocaInst *FnCtx =
 | |
|       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
 | |
|     int FI = FuncInfo.StaticAllocaMap[FnCtx];
 | |
|     MFI->setFunctionContextIndex(FI);
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Intrinsic::eh_sjlj_setjmp: {
 | |
|     SDValue Ops[2];
 | |
|     Ops[0] = getRoot();
 | |
|     Ops[1] = getValue(I.getArgOperand(0));
 | |
|     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
 | |
|                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
 | |
|     setValue(&I, Op.getValue(0));
 | |
|     DAG.setRoot(Op.getValue(1));
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Intrinsic::eh_sjlj_longjmp: {
 | |
|     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
 | |
|                             getRoot(), getValue(I.getArgOperand(0))));
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::masked_gather:
 | |
|     visitMaskedGather(I);
 | |
|     return nullptr;
 | |
|   case Intrinsic::masked_load:
 | |
|     visitMaskedLoad(I);
 | |
|     return nullptr;
 | |
|   case Intrinsic::masked_scatter:
 | |
|     visitMaskedScatter(I);
 | |
|     return nullptr;
 | |
|   case Intrinsic::masked_store:
 | |
|     visitMaskedStore(I);
 | |
|     return nullptr;
 | |
|   case Intrinsic::x86_mmx_pslli_w:
 | |
|   case Intrinsic::x86_mmx_pslli_d:
 | |
|   case Intrinsic::x86_mmx_pslli_q:
 | |
|   case Intrinsic::x86_mmx_psrli_w:
 | |
|   case Intrinsic::x86_mmx_psrli_d:
 | |
|   case Intrinsic::x86_mmx_psrli_q:
 | |
|   case Intrinsic::x86_mmx_psrai_w:
 | |
|   case Intrinsic::x86_mmx_psrai_d: {
 | |
|     SDValue ShAmt = getValue(I.getArgOperand(1));
 | |
|     if (isa<ConstantSDNode>(ShAmt)) {
 | |
|       visitTargetIntrinsic(I, Intrinsic);
 | |
|       return nullptr;
 | |
|     }
 | |
|     unsigned NewIntrinsic = 0;
 | |
|     EVT ShAmtVT = MVT::v2i32;
 | |
|     switch (Intrinsic) {
 | |
|     case Intrinsic::x86_mmx_pslli_w:
 | |
|       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
 | |
|       break;
 | |
|     case Intrinsic::x86_mmx_pslli_d:
 | |
|       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
 | |
|       break;
 | |
|     case Intrinsic::x86_mmx_pslli_q:
 | |
|       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
 | |
|       break;
 | |
|     case Intrinsic::x86_mmx_psrli_w:
 | |
|       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
 | |
|       break;
 | |
|     case Intrinsic::x86_mmx_psrli_d:
 | |
|       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
 | |
|       break;
 | |
|     case Intrinsic::x86_mmx_psrli_q:
 | |
|       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
 | |
|       break;
 | |
|     case Intrinsic::x86_mmx_psrai_w:
 | |
|       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
 | |
|       break;
 | |
|     case Intrinsic::x86_mmx_psrai_d:
 | |
|       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
 | |
|       break;
 | |
|     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
 | |
|     }
 | |
| 
 | |
|     // The vector shift intrinsics with scalars uses 32b shift amounts but
 | |
|     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
 | |
|     // to be zero.
 | |
|     // We must do this early because v2i32 is not a legal type.
 | |
|     SDValue ShOps[2];
 | |
|     ShOps[0] = ShAmt;
 | |
|     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
 | |
|     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
 | |
|     EVT DestVT = TLI.getValueType(I.getType());
 | |
|     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
 | |
|     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
 | |
|                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
 | |
|                        getValue(I.getArgOperand(0)), ShAmt);
 | |
|     setValue(&I, Res);
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Intrinsic::convertff:
 | |
|   case Intrinsic::convertfsi:
 | |
|   case Intrinsic::convertfui:
 | |
|   case Intrinsic::convertsif:
 | |
|   case Intrinsic::convertuif:
 | |
|   case Intrinsic::convertss:
 | |
|   case Intrinsic::convertsu:
 | |
|   case Intrinsic::convertus:
 | |
|   case Intrinsic::convertuu: {
 | |
|     ISD::CvtCode Code = ISD::CVT_INVALID;
 | |
|     switch (Intrinsic) {
 | |
|     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
 | |
|     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
 | |
|     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
 | |
|     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
 | |
|     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
 | |
|     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
 | |
|     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
 | |
|     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
 | |
|     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
 | |
|     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
 | |
|     }
 | |
|     EVT DestVT = TLI.getValueType(I.getType());
 | |
|     const Value *Op1 = I.getArgOperand(0);
 | |
|     Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
 | |
|                                DAG.getValueType(DestVT),
 | |
|                                DAG.getValueType(getValue(Op1).getValueType()),
 | |
|                                getValue(I.getArgOperand(1)),
 | |
|                                getValue(I.getArgOperand(2)),
 | |
|                                Code);
 | |
|     setValue(&I, Res);
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Intrinsic::powi:
 | |
|     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
 | |
|                             getValue(I.getArgOperand(1)), DAG));
 | |
|     return nullptr;
 | |
|   case Intrinsic::log:
 | |
|     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
 | |
|     return nullptr;
 | |
|   case Intrinsic::log2:
 | |
|     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
 | |
|     return nullptr;
 | |
|   case Intrinsic::log10:
 | |
|     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
 | |
|     return nullptr;
 | |
|   case Intrinsic::exp:
 | |
|     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
 | |
|     return nullptr;
 | |
|   case Intrinsic::exp2:
 | |
|     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
 | |
|     return nullptr;
 | |
|   case Intrinsic::pow:
 | |
|     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
 | |
|                            getValue(I.getArgOperand(1)), DAG, TLI));
 | |
|     return nullptr;
 | |
|   case Intrinsic::sqrt:
 | |
|   case Intrinsic::fabs:
 | |
|   case Intrinsic::sin:
 | |
|   case Intrinsic::cos:
 | |
|   case Intrinsic::floor:
 | |
|   case Intrinsic::ceil:
 | |
|   case Intrinsic::trunc:
 | |
|   case Intrinsic::rint:
 | |
|   case Intrinsic::nearbyint:
 | |
|   case Intrinsic::round: {
 | |
|     unsigned Opcode;
 | |
|     switch (Intrinsic) {
 | |
|     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
 | |
|     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
 | |
|     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
 | |
|     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
 | |
|     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
 | |
|     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
 | |
|     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
 | |
|     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
 | |
|     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
 | |
|     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
 | |
|     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
 | |
|     }
 | |
| 
 | |
|     setValue(&I, DAG.getNode(Opcode, sdl,
 | |
|                              getValue(I.getArgOperand(0)).getValueType(),
 | |
|                              getValue(I.getArgOperand(0))));
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Intrinsic::minnum:
 | |
|     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
 | |
|                              getValue(I.getArgOperand(0)).getValueType(),
 | |
|                              getValue(I.getArgOperand(0)),
 | |
|                              getValue(I.getArgOperand(1))));
 | |
|     return nullptr;
 | |
|   case Intrinsic::maxnum:
 | |
|     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
 | |
|                              getValue(I.getArgOperand(0)).getValueType(),
 | |
|                              getValue(I.getArgOperand(0)),
 | |
|                              getValue(I.getArgOperand(1))));
 | |
|     return nullptr;
 | |
|   case Intrinsic::copysign:
 | |
|     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
 | |
|                              getValue(I.getArgOperand(0)).getValueType(),
 | |
|                              getValue(I.getArgOperand(0)),
 | |
|                              getValue(I.getArgOperand(1))));
 | |
|     return nullptr;
 | |
|   case Intrinsic::fma:
 | |
|     setValue(&I, DAG.getNode(ISD::FMA, sdl,
 | |
|                              getValue(I.getArgOperand(0)).getValueType(),
 | |
|                              getValue(I.getArgOperand(0)),
 | |
|                              getValue(I.getArgOperand(1)),
 | |
|                              getValue(I.getArgOperand(2))));
 | |
|     return nullptr;
 | |
|   case Intrinsic::fmuladd: {
 | |
|     EVT VT = TLI.getValueType(I.getType());
 | |
|     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
 | |
|         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
 | |
|       setValue(&I, DAG.getNode(ISD::FMA, sdl,
 | |
|                                getValue(I.getArgOperand(0)).getValueType(),
 | |
|                                getValue(I.getArgOperand(0)),
 | |
|                                getValue(I.getArgOperand(1)),
 | |
|                                getValue(I.getArgOperand(2))));
 | |
|     } else {
 | |
|       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
 | |
|                                 getValue(I.getArgOperand(0)).getValueType(),
 | |
|                                 getValue(I.getArgOperand(0)),
 | |
|                                 getValue(I.getArgOperand(1)));
 | |
|       SDValue Add = DAG.getNode(ISD::FADD, sdl,
 | |
|                                 getValue(I.getArgOperand(0)).getValueType(),
 | |
|                                 Mul,
 | |
|                                 getValue(I.getArgOperand(2)));
 | |
|       setValue(&I, Add);
 | |
|     }
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Intrinsic::convert_to_fp16:
 | |
|     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
 | |
|                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
 | |
|                                          getValue(I.getArgOperand(0)),
 | |
|                                          DAG.getTargetConstant(0, sdl,
 | |
|                                                                MVT::i32))));
 | |
|     return nullptr;
 | |
|   case Intrinsic::convert_from_fp16:
 | |
|     setValue(&I,
 | |
|              DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()),
 | |
|                          DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
 | |
|                                      getValue(I.getArgOperand(0)))));
 | |
|     return nullptr;
 | |
|   case Intrinsic::pcmarker: {
 | |
|     SDValue Tmp = getValue(I.getArgOperand(0));
 | |
|     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Intrinsic::readcyclecounter: {
 | |
|     SDValue Op = getRoot();
 | |
|     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
 | |
|                       DAG.getVTList(MVT::i64, MVT::Other), Op);
 | |
|     setValue(&I, Res);
 | |
|     DAG.setRoot(Res.getValue(1));
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Intrinsic::bswap:
 | |
|     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
 | |
|                              getValue(I.getArgOperand(0)).getValueType(),
 | |
|                              getValue(I.getArgOperand(0))));
 | |
|     return nullptr;
 | |
|   case Intrinsic::cttz: {
 | |
|     SDValue Arg = getValue(I.getArgOperand(0));
 | |
|     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
 | |
|     EVT Ty = Arg.getValueType();
 | |
|     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
 | |
|                              sdl, Ty, Arg));
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Intrinsic::ctlz: {
 | |
|     SDValue Arg = getValue(I.getArgOperand(0));
 | |
|     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
 | |
|     EVT Ty = Arg.getValueType();
 | |
|     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
 | |
|                              sdl, Ty, Arg));
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Intrinsic::ctpop: {
 | |
|     SDValue Arg = getValue(I.getArgOperand(0));
 | |
|     EVT Ty = Arg.getValueType();
 | |
|     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Intrinsic::stacksave: {
 | |
|     SDValue Op = getRoot();
 | |
|     Res = DAG.getNode(ISD::STACKSAVE, sdl,
 | |
|                       DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op);
 | |
|     setValue(&I, Res);
 | |
|     DAG.setRoot(Res.getValue(1));
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Intrinsic::stackrestore: {
 | |
|     Res = getValue(I.getArgOperand(0));
 | |
|     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Intrinsic::stackprotector: {
 | |
|     // Emit code into the DAG to store the stack guard onto the stack.
 | |
|     MachineFunction &MF = DAG.getMachineFunction();
 | |
|     MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
|     EVT PtrTy = TLI.getPointerTy();
 | |
|     SDValue Src, Chain = getRoot();
 | |
|     const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand();
 | |
|     const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr);
 | |
| 
 | |
|     // See if Ptr is a bitcast. If it is, look through it and see if we can get
 | |
|     // global variable __stack_chk_guard.
 | |
|     if (!GV)
 | |
|       if (const Operator *BC = dyn_cast<Operator>(Ptr))
 | |
|         if (BC->getOpcode() == Instruction::BitCast)
 | |
|           GV = dyn_cast<GlobalVariable>(BC->getOperand(0));
 | |
| 
 | |
|     if (GV && TLI.useLoadStackGuardNode()) {
 | |
|       // Emit a LOAD_STACK_GUARD node.
 | |
|       MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD,
 | |
|                                                sdl, PtrTy, Chain);
 | |
|       MachinePointerInfo MPInfo(GV);
 | |
|       MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
 | |
|       unsigned Flags = MachineMemOperand::MOLoad |
 | |
|                        MachineMemOperand::MOInvariant;
 | |
|       *MemRefs = MF.getMachineMemOperand(MPInfo, Flags,
 | |
|                                          PtrTy.getSizeInBits() / 8,
 | |
|                                          DAG.getEVTAlignment(PtrTy));
 | |
|       Node->setMemRefs(MemRefs, MemRefs + 1);
 | |
| 
 | |
|       // Copy the guard value to a virtual register so that it can be
 | |
|       // retrieved in the epilogue.
 | |
|       Src = SDValue(Node, 0);
 | |
|       const TargetRegisterClass *RC =
 | |
|           TLI.getRegClassFor(Src.getSimpleValueType());
 | |
|       unsigned Reg = MF.getRegInfo().createVirtualRegister(RC);
 | |
| 
 | |
|       SPDescriptor.setGuardReg(Reg);
 | |
|       Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src);
 | |
|     } else {
 | |
|       Src = getValue(I.getArgOperand(0));   // The guard's value.
 | |
|     }
 | |
| 
 | |
|     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
 | |
| 
 | |
|     int FI = FuncInfo.StaticAllocaMap[Slot];
 | |
|     MFI->setStackProtectorIndex(FI);
 | |
| 
 | |
|     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
 | |
| 
 | |
|     // Store the stack protector onto the stack.
 | |
|     Res = DAG.getStore(Chain, sdl, Src, FIN,
 | |
|                        MachinePointerInfo::getFixedStack(FI),
 | |
|                        true, false, 0);
 | |
|     setValue(&I, Res);
 | |
|     DAG.setRoot(Res);
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Intrinsic::objectsize: {
 | |
|     // If we don't know by now, we're never going to know.
 | |
|     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
 | |
| 
 | |
|     assert(CI && "Non-constant type in __builtin_object_size?");
 | |
| 
 | |
|     SDValue Arg = getValue(I.getCalledValue());
 | |
|     EVT Ty = Arg.getValueType();
 | |
| 
 | |
|     if (CI->isZero())
 | |
|       Res = DAG.getConstant(-1ULL, sdl, Ty);
 | |
|     else
 | |
|       Res = DAG.getConstant(0, sdl, Ty);
 | |
| 
 | |
|     setValue(&I, Res);
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Intrinsic::annotation:
 | |
|   case Intrinsic::ptr_annotation:
 | |
|     // Drop the intrinsic, but forward the value
 | |
|     setValue(&I, getValue(I.getOperand(0)));
 | |
|     return nullptr;
 | |
|   case Intrinsic::assume:
 | |
|   case Intrinsic::var_annotation:
 | |
|     // Discard annotate attributes and assumptions
 | |
|     return nullptr;
 | |
| 
 | |
|   case Intrinsic::init_trampoline: {
 | |
|     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
 | |
| 
 | |
|     SDValue Ops[6];
 | |
|     Ops[0] = getRoot();
 | |
|     Ops[1] = getValue(I.getArgOperand(0));
 | |
|     Ops[2] = getValue(I.getArgOperand(1));
 | |
|     Ops[3] = getValue(I.getArgOperand(2));
 | |
|     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
 | |
|     Ops[5] = DAG.getSrcValue(F);
 | |
| 
 | |
|     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
 | |
| 
 | |
|     DAG.setRoot(Res);
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Intrinsic::adjust_trampoline: {
 | |
|     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
 | |
|                              TLI.getPointerTy(),
 | |
|                              getValue(I.getArgOperand(0))));
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Intrinsic::gcroot:
 | |
|     if (GFI) {
 | |
|       const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
 | |
|       const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
 | |
| 
 | |
|       FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
 | |
|       GFI->addStackRoot(FI->getIndex(), TypeMap);
 | |
|     }
 | |
|     return nullptr;
 | |
|   case Intrinsic::gcread:
 | |
|   case Intrinsic::gcwrite:
 | |
|     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
 | |
|   case Intrinsic::flt_rounds:
 | |
|     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
 | |
|     return nullptr;
 | |
| 
 | |
|   case Intrinsic::expect: {
 | |
|     // Just replace __builtin_expect(exp, c) with EXP.
 | |
|     setValue(&I, getValue(I.getArgOperand(0)));
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::debugtrap:
 | |
|   case Intrinsic::trap: {
 | |
|     StringRef TrapFuncName = TM.Options.getTrapFunctionName();
 | |
|     if (TrapFuncName.empty()) {
 | |
|       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
 | |
|         ISD::TRAP : ISD::DEBUGTRAP;
 | |
|       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
 | |
|       return nullptr;
 | |
|     }
 | |
|     TargetLowering::ArgListTy Args;
 | |
| 
 | |
|     TargetLowering::CallLoweringInfo CLI(DAG);
 | |
|     CLI.setDebugLoc(sdl).setChain(getRoot())
 | |
|       .setCallee(CallingConv::C, I.getType(),
 | |
|                  DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
 | |
|                  std::move(Args), 0);
 | |
| 
 | |
|     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
 | |
|     DAG.setRoot(Result.second);
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::uadd_with_overflow:
 | |
|   case Intrinsic::sadd_with_overflow:
 | |
|   case Intrinsic::usub_with_overflow:
 | |
|   case Intrinsic::ssub_with_overflow:
 | |
|   case Intrinsic::umul_with_overflow:
 | |
|   case Intrinsic::smul_with_overflow: {
 | |
|     ISD::NodeType Op;
 | |
|     switch (Intrinsic) {
 | |
|     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
 | |
|     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
 | |
|     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
 | |
|     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
 | |
|     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
 | |
|     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
 | |
|     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
 | |
|     }
 | |
|     SDValue Op1 = getValue(I.getArgOperand(0));
 | |
|     SDValue Op2 = getValue(I.getArgOperand(1));
 | |
| 
 | |
|     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
 | |
|     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Intrinsic::prefetch: {
 | |
|     SDValue Ops[5];
 | |
|     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
 | |
|     Ops[0] = getRoot();
 | |
|     Ops[1] = getValue(I.getArgOperand(0));
 | |
|     Ops[2] = getValue(I.getArgOperand(1));
 | |
|     Ops[3] = getValue(I.getArgOperand(2));
 | |
|     Ops[4] = getValue(I.getArgOperand(3));
 | |
|     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
 | |
|                                         DAG.getVTList(MVT::Other), Ops,
 | |
|                                         EVT::getIntegerVT(*Context, 8),
 | |
|                                         MachinePointerInfo(I.getArgOperand(0)),
 | |
|                                         0, /* align */
 | |
|                                         false, /* volatile */
 | |
|                                         rw==0, /* read */
 | |
|                                         rw==1)); /* write */
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Intrinsic::lifetime_start:
 | |
|   case Intrinsic::lifetime_end: {
 | |
|     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
 | |
|     // Stack coloring is not enabled in O0, discard region information.
 | |
|     if (TM.getOptLevel() == CodeGenOpt::None)
 | |
|       return nullptr;
 | |
| 
 | |
|     SmallVector<Value *, 4> Allocas;
 | |
|     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
 | |
| 
 | |
|     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
 | |
|            E = Allocas.end(); Object != E; ++Object) {
 | |
|       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
 | |
| 
 | |
|       // Could not find an Alloca.
 | |
|       if (!LifetimeObject)
 | |
|         continue;
 | |
| 
 | |
|       // First check that the Alloca is static, otherwise it won't have a
 | |
|       // valid frame index.
 | |
|       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
 | |
|       if (SI == FuncInfo.StaticAllocaMap.end())
 | |
|         return nullptr;
 | |
| 
 | |
|       int FI = SI->second;
 | |
| 
 | |
|       SDValue Ops[2];
 | |
|       Ops[0] = getRoot();
 | |
|       Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true);
 | |
|       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
 | |
| 
 | |
|       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
 | |
|       DAG.setRoot(Res);
 | |
|     }
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Intrinsic::invariant_start:
 | |
|     // Discard region information.
 | |
|     setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
 | |
|     return nullptr;
 | |
|   case Intrinsic::invariant_end:
 | |
|     // Discard region information.
 | |
|     return nullptr;
 | |
|   case Intrinsic::stackprotectorcheck: {
 | |
|     // Do not actually emit anything for this basic block. Instead we initialize
 | |
|     // the stack protector descriptor and export the guard variable so we can
 | |
|     // access it in FinishBasicBlock.
 | |
|     const BasicBlock *BB = I.getParent();
 | |
|     SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I);
 | |
|     ExportFromCurrentBlock(SPDescriptor.getGuard());
 | |
| 
 | |
|     // Flush our exports since we are going to process a terminator.
 | |
|     (void)getControlRoot();
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Intrinsic::clear_cache:
 | |
|     return TLI.getClearCacheBuiltinName();
 | |
|   case Intrinsic::eh_actions:
 | |
|     setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
 | |
|     return nullptr;
 | |
|   case Intrinsic::donothing:
 | |
|     // ignore
 | |
|     return nullptr;
 | |
|   case Intrinsic::experimental_stackmap: {
 | |
|     visitStackmap(I);
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Intrinsic::experimental_patchpoint_void:
 | |
|   case Intrinsic::experimental_patchpoint_i64: {
 | |
|     visitPatchpoint(&I);
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Intrinsic::experimental_gc_statepoint: {
 | |
|     visitStatepoint(I);
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Intrinsic::experimental_gc_result_int:
 | |
|   case Intrinsic::experimental_gc_result_float:
 | |
|   case Intrinsic::experimental_gc_result_ptr:
 | |
|   case Intrinsic::experimental_gc_result: {
 | |
|     visitGCResult(I);
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Intrinsic::experimental_gc_relocate: {
 | |
|     visitGCRelocate(I);
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Intrinsic::instrprof_increment:
 | |
|     llvm_unreachable("instrprof failed to lower an increment");
 | |
| 
 | |
|   case Intrinsic::frameescape: {
 | |
|     MachineFunction &MF = DAG.getMachineFunction();
 | |
|     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
 | |
| 
 | |
|     // Directly emit some FRAME_ALLOC machine instrs. Label assignment emission
 | |
|     // is the same on all targets.
 | |
|     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
 | |
|       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
 | |
|       if (isa<ConstantPointerNull>(Arg))
 | |
|         continue; // Skip null pointers. They represent a hole in index space.
 | |
|       AllocaInst *Slot = cast<AllocaInst>(Arg);
 | |
|       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
 | |
|              "can only escape static allocas");
 | |
|       int FI = FuncInfo.StaticAllocaMap[Slot];
 | |
|       MCSymbol *FrameAllocSym =
 | |
|           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
 | |
|               GlobalValue::getRealLinkageName(MF.getName()), Idx);
 | |
|       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
 | |
|               TII->get(TargetOpcode::FRAME_ALLOC))
 | |
|           .addSym(FrameAllocSym)
 | |
|           .addFrameIndex(FI);
 | |
|     }
 | |
| 
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::framerecover: {
 | |
|     // i8* @llvm.framerecover(i8* %fn, i8* %fp, i32 %idx)
 | |
|     MachineFunction &MF = DAG.getMachineFunction();
 | |
|     MVT PtrVT = TLI.getPointerTy(0);
 | |
| 
 | |
|     // Get the symbol that defines the frame offset.
 | |
|     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
 | |
|     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
 | |
|     unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX));
 | |
|     MCSymbol *FrameAllocSym =
 | |
|         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
 | |
|             GlobalValue::getRealLinkageName(Fn->getName()), IdxVal);
 | |
| 
 | |
|     // Create a TargetExternalSymbol for the label to avoid any target lowering
 | |
|     // that would make this PC relative.
 | |
|     StringRef Name = FrameAllocSym->getName();
 | |
|     assert(Name.data()[Name.size()] == '\0' && "not null terminated");
 | |
|     SDValue OffsetSym = DAG.getTargetExternalSymbol(Name.data(), PtrVT);
 | |
|     SDValue OffsetVal =
 | |
|         DAG.getNode(ISD::FRAME_ALLOC_RECOVER, sdl, PtrVT, OffsetSym);
 | |
| 
 | |
|     // Add the offset to the FP.
 | |
|     Value *FP = I.getArgOperand(1);
 | |
|     SDValue FPVal = getValue(FP);
 | |
|     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
 | |
|     setValue(&I, Add);
 | |
| 
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Intrinsic::eh_begincatch:
 | |
|   case Intrinsic::eh_endcatch:
 | |
|     llvm_unreachable("begin/end catch intrinsics not lowered in codegen");
 | |
|   case Intrinsic::eh_exceptioncode: {
 | |
|     unsigned Reg = TLI.getExceptionPointerRegister();
 | |
|     assert(Reg && "cannot get exception code on this platform");
 | |
|     MVT PtrVT = TLI.getPointerTy();
 | |
|     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
 | |
|     unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC);
 | |
|     SDValue N =
 | |
|         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
 | |
|     N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
 | |
|     setValue(&I, N);
 | |
|     return nullptr;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| std::pair<SDValue, SDValue>
 | |
| SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
 | |
|                                     MachineBasicBlock *LandingPad) {
 | |
|   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
 | |
|   MCSymbol *BeginLabel = nullptr;
 | |
| 
 | |
|   if (LandingPad) {
 | |
|     // Insert a label before the invoke call to mark the try range.  This can be
 | |
|     // used to detect deletion of the invoke via the MachineModuleInfo.
 | |
|     BeginLabel = MMI.getContext().createTempSymbol();
 | |
| 
 | |
|     // For SjLj, keep track of which landing pads go with which invokes
 | |
|     // so as to maintain the ordering of pads in the LSDA.
 | |
|     unsigned CallSiteIndex = MMI.getCurrentCallSite();
 | |
|     if (CallSiteIndex) {
 | |
|       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
 | |
|       LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
 | |
| 
 | |
|       // Now that the call site is handled, stop tracking it.
 | |
|       MMI.setCurrentCallSite(0);
 | |
|     }
 | |
| 
 | |
|     // Both PendingLoads and PendingExports must be flushed here;
 | |
|     // this call might not return.
 | |
|     (void)getRoot();
 | |
|     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
 | |
| 
 | |
|     CLI.setChain(getRoot());
 | |
|   }
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
 | |
| 
 | |
|   assert((CLI.IsTailCall || Result.second.getNode()) &&
 | |
|          "Non-null chain expected with non-tail call!");
 | |
|   assert((Result.second.getNode() || !Result.first.getNode()) &&
 | |
|          "Null value expected with tail call!");
 | |
| 
 | |
|   if (!Result.second.getNode()) {
 | |
|     // As a special case, a null chain means that a tail call has been emitted
 | |
|     // and the DAG root is already updated.
 | |
|     HasTailCall = true;
 | |
| 
 | |
|     // Since there's no actual continuation from this block, nothing can be
 | |
|     // relying on us setting vregs for them.
 | |
|     PendingExports.clear();
 | |
|   } else {
 | |
|     DAG.setRoot(Result.second);
 | |
|   }
 | |
| 
 | |
|   if (LandingPad) {
 | |
|     // Insert a label at the end of the invoke call to mark the try range.  This
 | |
|     // can be used to detect deletion of the invoke via the MachineModuleInfo.
 | |
|     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
 | |
|     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
 | |
| 
 | |
|     // Inform MachineModuleInfo of range.
 | |
|     MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
 | |
|                                       bool isTailCall,
 | |
|                                       MachineBasicBlock *LandingPad) {
 | |
|   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
 | |
|   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
 | |
|   Type *RetTy = FTy->getReturnType();
 | |
| 
 | |
|   TargetLowering::ArgListTy Args;
 | |
|   TargetLowering::ArgListEntry Entry;
 | |
|   Args.reserve(CS.arg_size());
 | |
| 
 | |
|   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
 | |
|        i != e; ++i) {
 | |
|     const Value *V = *i;
 | |
| 
 | |
|     // Skip empty types
 | |
|     if (V->getType()->isEmptyTy())
 | |
|       continue;
 | |
| 
 | |
|     SDValue ArgNode = getValue(V);
 | |
|     Entry.Node = ArgNode; Entry.Ty = V->getType();
 | |
| 
 | |
|     // Skip the first return-type Attribute to get to params.
 | |
|     Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
 | |
|     Args.push_back(Entry);
 | |
| 
 | |
|     // If we have an explicit sret argument that is an Instruction, (i.e., it
 | |
|     // might point to function-local memory), we can't meaningfully tail-call.
 | |
|     if (Entry.isSRet && isa<Instruction>(V))
 | |
|       isTailCall = false;
 | |
|   }
 | |
| 
 | |
|   // Check if target-independent constraints permit a tail call here.
 | |
|   // Target-dependent constraints are checked within TLI->LowerCallTo.
 | |
|   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
 | |
|     isTailCall = false;
 | |
| 
 | |
|   TargetLowering::CallLoweringInfo CLI(DAG);
 | |
|   CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
 | |
|     .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
 | |
|     .setTailCall(isTailCall);
 | |
|   std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad);
 | |
| 
 | |
|   if (Result.first.getNode())
 | |
|     setValue(CS.getInstruction(), Result.first);
 | |
| }
 | |
| 
 | |
| /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
 | |
| /// value is equal or not-equal to zero.
 | |
| static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
 | |
|   for (const User *U : V->users()) {
 | |
|     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
 | |
|       if (IC->isEquality())
 | |
|         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
 | |
|           if (C->isNullValue())
 | |
|             continue;
 | |
|     // Unknown instruction.
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
 | |
|                              Type *LoadTy,
 | |
|                              SelectionDAGBuilder &Builder) {
 | |
| 
 | |
|   // Check to see if this load can be trivially constant folded, e.g. if the
 | |
|   // input is from a string literal.
 | |
|   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
 | |
|     // Cast pointer to the type we really want to load.
 | |
|     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
 | |
|                                          PointerType::getUnqual(LoadTy));
 | |
| 
 | |
|     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
 | |
|             const_cast<Constant *>(LoadInput), *Builder.DL))
 | |
|       return Builder.getValue(LoadCst);
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
 | |
|   // still constant memory, the input chain can be the entry node.
 | |
|   SDValue Root;
 | |
|   bool ConstantMemory = false;
 | |
| 
 | |
|   // Do not serialize (non-volatile) loads of constant memory with anything.
 | |
|   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
 | |
|     Root = Builder.DAG.getEntryNode();
 | |
|     ConstantMemory = true;
 | |
|   } else {
 | |
|     // Do not serialize non-volatile loads against each other.
 | |
|     Root = Builder.DAG.getRoot();
 | |
|   }
 | |
| 
 | |
|   SDValue Ptr = Builder.getValue(PtrVal);
 | |
|   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
 | |
|                                         Ptr, MachinePointerInfo(PtrVal),
 | |
|                                         false /*volatile*/,
 | |
|                                         false /*nontemporal*/,
 | |
|                                         false /*isinvariant*/, 1 /* align=1 */);
 | |
| 
 | |
|   if (!ConstantMemory)
 | |
|     Builder.PendingLoads.push_back(LoadVal.getValue(1));
 | |
|   return LoadVal;
 | |
| }
 | |
| 
 | |
| /// processIntegerCallValue - Record the value for an instruction that
 | |
| /// produces an integer result, converting the type where necessary.
 | |
| void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
 | |
|                                                   SDValue Value,
 | |
|                                                   bool IsSigned) {
 | |
|   EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true);
 | |
|   if (IsSigned)
 | |
|     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
 | |
|   else
 | |
|     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
 | |
|   setValue(&I, Value);
 | |
| }
 | |
| 
 | |
| /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
 | |
| /// If so, return true and lower it, otherwise return false and it will be
 | |
| /// lowered like a normal call.
 | |
| bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
 | |
|   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
 | |
|   if (I.getNumArgOperands() != 3)
 | |
|     return false;
 | |
| 
 | |
|   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
 | |
|   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
 | |
|       !I.getArgOperand(2)->getType()->isIntegerTy() ||
 | |
|       !I.getType()->isIntegerTy())
 | |
|     return false;
 | |
| 
 | |
|   const Value *Size = I.getArgOperand(2);
 | |
|   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
 | |
|   if (CSize && CSize->getZExtValue() == 0) {
 | |
|     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true);
 | |
|     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
 | |
|   std::pair<SDValue, SDValue> Res =
 | |
|     TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
 | |
|                                 getValue(LHS), getValue(RHS), getValue(Size),
 | |
|                                 MachinePointerInfo(LHS),
 | |
|                                 MachinePointerInfo(RHS));
 | |
|   if (Res.first.getNode()) {
 | |
|     processIntegerCallValue(I, Res.first, true);
 | |
|     PendingLoads.push_back(Res.second);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
 | |
|   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
 | |
|   if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
 | |
|     bool ActuallyDoIt = true;
 | |
|     MVT LoadVT;
 | |
|     Type *LoadTy;
 | |
|     switch (CSize->getZExtValue()) {
 | |
|     default:
 | |
|       LoadVT = MVT::Other;
 | |
|       LoadTy = nullptr;
 | |
|       ActuallyDoIt = false;
 | |
|       break;
 | |
|     case 2:
 | |
|       LoadVT = MVT::i16;
 | |
|       LoadTy = Type::getInt16Ty(CSize->getContext());
 | |
|       break;
 | |
|     case 4:
 | |
|       LoadVT = MVT::i32;
 | |
|       LoadTy = Type::getInt32Ty(CSize->getContext());
 | |
|       break;
 | |
|     case 8:
 | |
|       LoadVT = MVT::i64;
 | |
|       LoadTy = Type::getInt64Ty(CSize->getContext());
 | |
|       break;
 | |
|         /*
 | |
|     case 16:
 | |
|       LoadVT = MVT::v4i32;
 | |
|       LoadTy = Type::getInt32Ty(CSize->getContext());
 | |
|       LoadTy = VectorType::get(LoadTy, 4);
 | |
|       break;
 | |
|          */
 | |
|     }
 | |
| 
 | |
|     // This turns into unaligned loads.  We only do this if the target natively
 | |
|     // supports the MVT we'll be loading or if it is small enough (<= 4) that
 | |
|     // we'll only produce a small number of byte loads.
 | |
| 
 | |
|     // Require that we can find a legal MVT, and only do this if the target
 | |
|     // supports unaligned loads of that type.  Expanding into byte loads would
 | |
|     // bloat the code.
 | |
|     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|     if (ActuallyDoIt && CSize->getZExtValue() > 4) {
 | |
|       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
 | |
|       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
 | |
|       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
 | |
|       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
 | |
|       // TODO: Check alignment of src and dest ptrs.
 | |
|       if (!TLI.isTypeLegal(LoadVT) ||
 | |
|           !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) ||
 | |
|           !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS))
 | |
|         ActuallyDoIt = false;
 | |
|     }
 | |
| 
 | |
|     if (ActuallyDoIt) {
 | |
|       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
 | |
|       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
 | |
| 
 | |
|       SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
 | |
|                                  ISD::SETNE);
 | |
|       processIntegerCallValue(I, Res, false);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// visitMemChrCall -- See if we can lower a memchr call into an optimized
 | |
| /// form.  If so, return true and lower it, otherwise return false and it
 | |
| /// will be lowered like a normal call.
 | |
| bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
 | |
|   // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
 | |
|   if (I.getNumArgOperands() != 3)
 | |
|     return false;
 | |
| 
 | |
|   const Value *Src = I.getArgOperand(0);
 | |
|   const Value *Char = I.getArgOperand(1);
 | |
|   const Value *Length = I.getArgOperand(2);
 | |
|   if (!Src->getType()->isPointerTy() ||
 | |
|       !Char->getType()->isIntegerTy() ||
 | |
|       !Length->getType()->isIntegerTy() ||
 | |
|       !I.getType()->isPointerTy())
 | |
|     return false;
 | |
| 
 | |
|   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
 | |
|   std::pair<SDValue, SDValue> Res =
 | |
|     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
 | |
|                                 getValue(Src), getValue(Char), getValue(Length),
 | |
|                                 MachinePointerInfo(Src));
 | |
|   if (Res.first.getNode()) {
 | |
|     setValue(&I, Res.first);
 | |
|     PendingLoads.push_back(Res.second);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
 | |
| /// optimized form.  If so, return true and lower it, otherwise return false
 | |
| /// and it will be lowered like a normal call.
 | |
| bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
 | |
|   // Verify that the prototype makes sense.  char *strcpy(char *, char *)
 | |
|   if (I.getNumArgOperands() != 2)
 | |
|     return false;
 | |
| 
 | |
|   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
 | |
|   if (!Arg0->getType()->isPointerTy() ||
 | |
|       !Arg1->getType()->isPointerTy() ||
 | |
|       !I.getType()->isPointerTy())
 | |
|     return false;
 | |
| 
 | |
|   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
 | |
|   std::pair<SDValue, SDValue> Res =
 | |
|     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
 | |
|                                 getValue(Arg0), getValue(Arg1),
 | |
|                                 MachinePointerInfo(Arg0),
 | |
|                                 MachinePointerInfo(Arg1), isStpcpy);
 | |
|   if (Res.first.getNode()) {
 | |
|     setValue(&I, Res.first);
 | |
|     DAG.setRoot(Res.second);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
 | |
| /// If so, return true and lower it, otherwise return false and it will be
 | |
| /// lowered like a normal call.
 | |
| bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
 | |
|   // Verify that the prototype makes sense.  int strcmp(void*,void*)
 | |
|   if (I.getNumArgOperands() != 2)
 | |
|     return false;
 | |
| 
 | |
|   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
 | |
|   if (!Arg0->getType()->isPointerTy() ||
 | |
|       !Arg1->getType()->isPointerTy() ||
 | |
|       !I.getType()->isIntegerTy())
 | |
|     return false;
 | |
| 
 | |
|   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
 | |
|   std::pair<SDValue, SDValue> Res =
 | |
|     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
 | |
|                                 getValue(Arg0), getValue(Arg1),
 | |
|                                 MachinePointerInfo(Arg0),
 | |
|                                 MachinePointerInfo(Arg1));
 | |
|   if (Res.first.getNode()) {
 | |
|     processIntegerCallValue(I, Res.first, true);
 | |
|     PendingLoads.push_back(Res.second);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// visitStrLenCall -- See if we can lower a strlen call into an optimized
 | |
| /// form.  If so, return true and lower it, otherwise return false and it
 | |
| /// will be lowered like a normal call.
 | |
| bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
 | |
|   // Verify that the prototype makes sense.  size_t strlen(char *)
 | |
|   if (I.getNumArgOperands() != 1)
 | |
|     return false;
 | |
| 
 | |
|   const Value *Arg0 = I.getArgOperand(0);
 | |
|   if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
 | |
|     return false;
 | |
| 
 | |
|   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
 | |
|   std::pair<SDValue, SDValue> Res =
 | |
|     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
 | |
|                                 getValue(Arg0), MachinePointerInfo(Arg0));
 | |
|   if (Res.first.getNode()) {
 | |
|     processIntegerCallValue(I, Res.first, false);
 | |
|     PendingLoads.push_back(Res.second);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
 | |
| /// form.  If so, return true and lower it, otherwise return false and it
 | |
| /// will be lowered like a normal call.
 | |
| bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
 | |
|   // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
 | |
|   if (I.getNumArgOperands() != 2)
 | |
|     return false;
 | |
| 
 | |
|   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
 | |
|   if (!Arg0->getType()->isPointerTy() ||
 | |
|       !Arg1->getType()->isIntegerTy() ||
 | |
|       !I.getType()->isIntegerTy())
 | |
|     return false;
 | |
| 
 | |
|   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
 | |
|   std::pair<SDValue, SDValue> Res =
 | |
|     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
 | |
|                                  getValue(Arg0), getValue(Arg1),
 | |
|                                  MachinePointerInfo(Arg0));
 | |
|   if (Res.first.getNode()) {
 | |
|     processIntegerCallValue(I, Res.first, false);
 | |
|     PendingLoads.push_back(Res.second);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// visitUnaryFloatCall - If a call instruction is a unary floating-point
 | |
| /// operation (as expected), translate it to an SDNode with the specified opcode
 | |
| /// and return true.
 | |
| bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
 | |
|                                               unsigned Opcode) {
 | |
|   // Sanity check that it really is a unary floating-point call.
 | |
|   if (I.getNumArgOperands() != 1 ||
 | |
|       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
 | |
|       I.getType() != I.getArgOperand(0)->getType() ||
 | |
|       !I.onlyReadsMemory())
 | |
|     return false;
 | |
| 
 | |
|   SDValue Tmp = getValue(I.getArgOperand(0));
 | |
|   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// visitBinaryFloatCall - If a call instruction is a binary floating-point
 | |
| /// operation (as expected), translate it to an SDNode with the specified opcode
 | |
| /// and return true.
 | |
| bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
 | |
|                                                unsigned Opcode) {
 | |
|   // Sanity check that it really is a binary floating-point call.
 | |
|   if (I.getNumArgOperands() != 2 ||
 | |
|       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
 | |
|       I.getType() != I.getArgOperand(0)->getType() ||
 | |
|       I.getType() != I.getArgOperand(1)->getType() ||
 | |
|       !I.onlyReadsMemory())
 | |
|     return false;
 | |
| 
 | |
|   SDValue Tmp0 = getValue(I.getArgOperand(0));
 | |
|   SDValue Tmp1 = getValue(I.getArgOperand(1));
 | |
|   EVT VT = Tmp0.getValueType();
 | |
|   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitCall(const CallInst &I) {
 | |
|   // Handle inline assembly differently.
 | |
|   if (isa<InlineAsm>(I.getCalledValue())) {
 | |
|     visitInlineAsm(&I);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
 | |
|   ComputeUsesVAFloatArgument(I, &MMI);
 | |
| 
 | |
|   const char *RenameFn = nullptr;
 | |
|   if (Function *F = I.getCalledFunction()) {
 | |
|     if (F->isDeclaration()) {
 | |
|       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
 | |
|         if (unsigned IID = II->getIntrinsicID(F)) {
 | |
|           RenameFn = visitIntrinsicCall(I, IID);
 | |
|           if (!RenameFn)
 | |
|             return;
 | |
|         }
 | |
|       }
 | |
|       if (Intrinsic::ID IID = F->getIntrinsicID()) {
 | |
|         RenameFn = visitIntrinsicCall(I, IID);
 | |
|         if (!RenameFn)
 | |
|           return;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Check for well-known libc/libm calls.  If the function is internal, it
 | |
|     // can't be a library call.
 | |
|     LibFunc::Func Func;
 | |
|     if (!F->hasLocalLinkage() && F->hasName() &&
 | |
|         LibInfo->getLibFunc(F->getName(), Func) &&
 | |
|         LibInfo->hasOptimizedCodeGen(Func)) {
 | |
|       switch (Func) {
 | |
|       default: break;
 | |
|       case LibFunc::copysign:
 | |
|       case LibFunc::copysignf:
 | |
|       case LibFunc::copysignl:
 | |
|         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
 | |
|             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
 | |
|             I.getType() == I.getArgOperand(0)->getType() &&
 | |
|             I.getType() == I.getArgOperand(1)->getType() &&
 | |
|             I.onlyReadsMemory()) {
 | |
|           SDValue LHS = getValue(I.getArgOperand(0));
 | |
|           SDValue RHS = getValue(I.getArgOperand(1));
 | |
|           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
 | |
|                                    LHS.getValueType(), LHS, RHS));
 | |
|           return;
 | |
|         }
 | |
|         break;
 | |
|       case LibFunc::fabs:
 | |
|       case LibFunc::fabsf:
 | |
|       case LibFunc::fabsl:
 | |
|         if (visitUnaryFloatCall(I, ISD::FABS))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc::fmin:
 | |
|       case LibFunc::fminf:
 | |
|       case LibFunc::fminl:
 | |
|         if (visitBinaryFloatCall(I, ISD::FMINNUM))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc::fmax:
 | |
|       case LibFunc::fmaxf:
 | |
|       case LibFunc::fmaxl:
 | |
|         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc::sin:
 | |
|       case LibFunc::sinf:
 | |
|       case LibFunc::sinl:
 | |
|         if (visitUnaryFloatCall(I, ISD::FSIN))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc::cos:
 | |
|       case LibFunc::cosf:
 | |
|       case LibFunc::cosl:
 | |
|         if (visitUnaryFloatCall(I, ISD::FCOS))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc::sqrt:
 | |
|       case LibFunc::sqrtf:
 | |
|       case LibFunc::sqrtl:
 | |
|       case LibFunc::sqrt_finite:
 | |
|       case LibFunc::sqrtf_finite:
 | |
|       case LibFunc::sqrtl_finite:
 | |
|         if (visitUnaryFloatCall(I, ISD::FSQRT))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc::floor:
 | |
|       case LibFunc::floorf:
 | |
|       case LibFunc::floorl:
 | |
|         if (visitUnaryFloatCall(I, ISD::FFLOOR))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc::nearbyint:
 | |
|       case LibFunc::nearbyintf:
 | |
|       case LibFunc::nearbyintl:
 | |
|         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc::ceil:
 | |
|       case LibFunc::ceilf:
 | |
|       case LibFunc::ceill:
 | |
|         if (visitUnaryFloatCall(I, ISD::FCEIL))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc::rint:
 | |
|       case LibFunc::rintf:
 | |
|       case LibFunc::rintl:
 | |
|         if (visitUnaryFloatCall(I, ISD::FRINT))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc::round:
 | |
|       case LibFunc::roundf:
 | |
|       case LibFunc::roundl:
 | |
|         if (visitUnaryFloatCall(I, ISD::FROUND))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc::trunc:
 | |
|       case LibFunc::truncf:
 | |
|       case LibFunc::truncl:
 | |
|         if (visitUnaryFloatCall(I, ISD::FTRUNC))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc::log2:
 | |
|       case LibFunc::log2f:
 | |
|       case LibFunc::log2l:
 | |
|         if (visitUnaryFloatCall(I, ISD::FLOG2))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc::exp2:
 | |
|       case LibFunc::exp2f:
 | |
|       case LibFunc::exp2l:
 | |
|         if (visitUnaryFloatCall(I, ISD::FEXP2))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc::memcmp:
 | |
|         if (visitMemCmpCall(I))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc::memchr:
 | |
|         if (visitMemChrCall(I))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc::strcpy:
 | |
|         if (visitStrCpyCall(I, false))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc::stpcpy:
 | |
|         if (visitStrCpyCall(I, true))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc::strcmp:
 | |
|         if (visitStrCmpCall(I))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc::strlen:
 | |
|         if (visitStrLenCall(I))
 | |
|           return;
 | |
|         break;
 | |
|       case LibFunc::strnlen:
 | |
|         if (visitStrNLenCall(I))
 | |
|           return;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SDValue Callee;
 | |
|   if (!RenameFn)
 | |
|     Callee = getValue(I.getCalledValue());
 | |
|   else
 | |
|     Callee = DAG.getExternalSymbol(RenameFn,
 | |
|                                    DAG.getTargetLoweringInfo().getPointerTy());
 | |
| 
 | |
|   // Check if we can potentially perform a tail call. More detailed checking is
 | |
|   // be done within LowerCallTo, after more information about the call is known.
 | |
|   LowerCallTo(&I, Callee, I.isTailCall());
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// AsmOperandInfo - This contains information for each constraint that we are
 | |
| /// lowering.
 | |
| class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
 | |
| public:
 | |
|   /// CallOperand - If this is the result output operand or a clobber
 | |
|   /// this is null, otherwise it is the incoming operand to the CallInst.
 | |
|   /// This gets modified as the asm is processed.
 | |
|   SDValue CallOperand;
 | |
| 
 | |
|   /// AssignedRegs - If this is a register or register class operand, this
 | |
|   /// contains the set of register corresponding to the operand.
 | |
|   RegsForValue AssignedRegs;
 | |
| 
 | |
|   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
 | |
|     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
 | |
|   }
 | |
| 
 | |
|   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
 | |
|   /// corresponds to.  If there is no Value* for this operand, it returns
 | |
|   /// MVT::Other.
 | |
|   EVT getCallOperandValEVT(LLVMContext &Context,
 | |
|                            const TargetLowering &TLI,
 | |
|                            const DataLayout *DL) const {
 | |
|     if (!CallOperandVal) return MVT::Other;
 | |
| 
 | |
|     if (isa<BasicBlock>(CallOperandVal))
 | |
|       return TLI.getPointerTy();
 | |
| 
 | |
|     llvm::Type *OpTy = CallOperandVal->getType();
 | |
| 
 | |
|     // FIXME: code duplicated from TargetLowering::ParseConstraints().
 | |
|     // If this is an indirect operand, the operand is a pointer to the
 | |
|     // accessed type.
 | |
|     if (isIndirect) {
 | |
|       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
 | |
|       if (!PtrTy)
 | |
|         report_fatal_error("Indirect operand for inline asm not a pointer!");
 | |
|       OpTy = PtrTy->getElementType();
 | |
|     }
 | |
| 
 | |
|     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
 | |
|     if (StructType *STy = dyn_cast<StructType>(OpTy))
 | |
|       if (STy->getNumElements() == 1)
 | |
|         OpTy = STy->getElementType(0);
 | |
| 
 | |
|     // If OpTy is not a single value, it may be a struct/union that we
 | |
|     // can tile with integers.
 | |
|     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
 | |
|       unsigned BitSize = DL->getTypeSizeInBits(OpTy);
 | |
|       switch (BitSize) {
 | |
|       default: break;
 | |
|       case 1:
 | |
|       case 8:
 | |
|       case 16:
 | |
|       case 32:
 | |
|       case 64:
 | |
|       case 128:
 | |
|         OpTy = IntegerType::get(Context, BitSize);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return TLI.getValueType(OpTy, true);
 | |
|   }
 | |
| };
 | |
| 
 | |
| typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// GetRegistersForValue - Assign registers (virtual or physical) for the
 | |
| /// specified operand.  We prefer to assign virtual registers, to allow the
 | |
| /// register allocator to handle the assignment process.  However, if the asm
 | |
| /// uses features that we can't model on machineinstrs, we have SDISel do the
 | |
| /// allocation.  This produces generally horrible, but correct, code.
 | |
| ///
 | |
| ///   OpInfo describes the operand.
 | |
| ///
 | |
| static void GetRegistersForValue(SelectionDAG &DAG,
 | |
|                                  const TargetLowering &TLI,
 | |
|                                  SDLoc DL,
 | |
|                                  SDISelAsmOperandInfo &OpInfo) {
 | |
|   LLVMContext &Context = *DAG.getContext();
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   SmallVector<unsigned, 4> Regs;
 | |
| 
 | |
|   // If this is a constraint for a single physreg, or a constraint for a
 | |
|   // register class, find it.
 | |
|   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
 | |
|       TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(),
 | |
|                                        OpInfo.ConstraintCode,
 | |
|                                        OpInfo.ConstraintVT);
 | |
| 
 | |
|   unsigned NumRegs = 1;
 | |
|   if (OpInfo.ConstraintVT != MVT::Other) {
 | |
|     // If this is a FP input in an integer register (or visa versa) insert a bit
 | |
|     // cast of the input value.  More generally, handle any case where the input
 | |
|     // value disagrees with the register class we plan to stick this in.
 | |
|     if (OpInfo.Type == InlineAsm::isInput &&
 | |
|         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
 | |
|       // Try to convert to the first EVT that the reg class contains.  If the
 | |
|       // types are identical size, use a bitcast to convert (e.g. two differing
 | |
|       // vector types).
 | |
|       MVT RegVT = *PhysReg.second->vt_begin();
 | |
|       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
 | |
|         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
 | |
|                                          RegVT, OpInfo.CallOperand);
 | |
|         OpInfo.ConstraintVT = RegVT;
 | |
|       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
 | |
|         // If the input is a FP value and we want it in FP registers, do a
 | |
|         // bitcast to the corresponding integer type.  This turns an f64 value
 | |
|         // into i64, which can be passed with two i32 values on a 32-bit
 | |
|         // machine.
 | |
|         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
 | |
|         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
 | |
|                                          RegVT, OpInfo.CallOperand);
 | |
|         OpInfo.ConstraintVT = RegVT;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
 | |
|   }
 | |
| 
 | |
|   MVT RegVT;
 | |
|   EVT ValueVT = OpInfo.ConstraintVT;
 | |
| 
 | |
|   // If this is a constraint for a specific physical register, like {r17},
 | |
|   // assign it now.
 | |
|   if (unsigned AssignedReg = PhysReg.first) {
 | |
|     const TargetRegisterClass *RC = PhysReg.second;
 | |
|     if (OpInfo.ConstraintVT == MVT::Other)
 | |
|       ValueVT = *RC->vt_begin();
 | |
| 
 | |
|     // Get the actual register value type.  This is important, because the user
 | |
|     // may have asked for (e.g.) the AX register in i32 type.  We need to
 | |
|     // remember that AX is actually i16 to get the right extension.
 | |
|     RegVT = *RC->vt_begin();
 | |
| 
 | |
|     // This is a explicit reference to a physical register.
 | |
|     Regs.push_back(AssignedReg);
 | |
| 
 | |
|     // If this is an expanded reference, add the rest of the regs to Regs.
 | |
|     if (NumRegs != 1) {
 | |
|       TargetRegisterClass::iterator I = RC->begin();
 | |
|       for (; *I != AssignedReg; ++I)
 | |
|         assert(I != RC->end() && "Didn't find reg!");
 | |
| 
 | |
|       // Already added the first reg.
 | |
|       --NumRegs; ++I;
 | |
|       for (; NumRegs; --NumRegs, ++I) {
 | |
|         assert(I != RC->end() && "Ran out of registers to allocate!");
 | |
|         Regs.push_back(*I);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, if this was a reference to an LLVM register class, create vregs
 | |
|   // for this reference.
 | |
|   if (const TargetRegisterClass *RC = PhysReg.second) {
 | |
|     RegVT = *RC->vt_begin();
 | |
|     if (OpInfo.ConstraintVT == MVT::Other)
 | |
|       ValueVT = RegVT;
 | |
| 
 | |
|     // Create the appropriate number of virtual registers.
 | |
|     MachineRegisterInfo &RegInfo = MF.getRegInfo();
 | |
|     for (; NumRegs; --NumRegs)
 | |
|       Regs.push_back(RegInfo.createVirtualRegister(RC));
 | |
| 
 | |
|     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we couldn't allocate enough registers for this.
 | |
| }
 | |
| 
 | |
| /// visitInlineAsm - Handle a call to an InlineAsm object.
 | |
| ///
 | |
| void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
 | |
|   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
 | |
| 
 | |
|   /// ConstraintOperands - Information about all of the constraints.
 | |
|   SDISelAsmOperandInfoVector ConstraintOperands;
 | |
| 
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   TargetLowering::AsmOperandInfoVector TargetConstraints =
 | |
|       TLI.ParseConstraints(DAG.getSubtarget().getRegisterInfo(), CS);
 | |
| 
 | |
|   bool hasMemory = false;
 | |
| 
 | |
|   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
 | |
|   unsigned ResNo = 0;   // ResNo - The result number of the next output.
 | |
|   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
 | |
|     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
 | |
|     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
 | |
| 
 | |
|     MVT OpVT = MVT::Other;
 | |
| 
 | |
|     // Compute the value type for each operand.
 | |
|     switch (OpInfo.Type) {
 | |
|     case InlineAsm::isOutput:
 | |
|       // Indirect outputs just consume an argument.
 | |
|       if (OpInfo.isIndirect) {
 | |
|         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // The return value of the call is this value.  As such, there is no
 | |
|       // corresponding argument.
 | |
|       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
 | |
|       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
 | |
|         OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo));
 | |
|       } else {
 | |
|         assert(ResNo == 0 && "Asm only has one result!");
 | |
|         OpVT = TLI.getSimpleValueType(CS.getType());
 | |
|       }
 | |
|       ++ResNo;
 | |
|       break;
 | |
|     case InlineAsm::isInput:
 | |
|       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
 | |
|       break;
 | |
|     case InlineAsm::isClobber:
 | |
|       // Nothing to do.
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // If this is an input or an indirect output, process the call argument.
 | |
|     // BasicBlocks are labels, currently appearing only in asm's.
 | |
|     if (OpInfo.CallOperandVal) {
 | |
|       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
 | |
|         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
 | |
|       } else {
 | |
|         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
 | |
|       }
 | |
| 
 | |
|       OpVT =
 | |
|           OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT();
 | |
|     }
 | |
| 
 | |
|     OpInfo.ConstraintVT = OpVT;
 | |
| 
 | |
|     // Indirect operand accesses access memory.
 | |
|     if (OpInfo.isIndirect)
 | |
|       hasMemory = true;
 | |
|     else {
 | |
|       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
 | |
|         TargetLowering::ConstraintType
 | |
|           CType = TLI.getConstraintType(OpInfo.Codes[j]);
 | |
|         if (CType == TargetLowering::C_Memory) {
 | |
|           hasMemory = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SDValue Chain, Flag;
 | |
| 
 | |
|   // We won't need to flush pending loads if this asm doesn't touch
 | |
|   // memory and is nonvolatile.
 | |
|   if (hasMemory || IA->hasSideEffects())
 | |
|     Chain = getRoot();
 | |
|   else
 | |
|     Chain = DAG.getRoot();
 | |
| 
 | |
|   // Second pass over the constraints: compute which constraint option to use
 | |
|   // and assign registers to constraints that want a specific physreg.
 | |
|   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
 | |
|     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
 | |
| 
 | |
|     // If this is an output operand with a matching input operand, look up the
 | |
|     // matching input. If their types mismatch, e.g. one is an integer, the
 | |
|     // other is floating point, or their sizes are different, flag it as an
 | |
|     // error.
 | |
|     if (OpInfo.hasMatchingInput()) {
 | |
|       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
 | |
| 
 | |
|       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
 | |
| 	const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
 | |
|         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
 | |
|             TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
 | |
|                                              OpInfo.ConstraintVT);
 | |
|         std::pair<unsigned, const TargetRegisterClass *> InputRC =
 | |
|             TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
 | |
|                                              Input.ConstraintVT);
 | |
|         if ((OpInfo.ConstraintVT.isInteger() !=
 | |
|              Input.ConstraintVT.isInteger()) ||
 | |
|             (MatchRC.second != InputRC.second)) {
 | |
|           report_fatal_error("Unsupported asm: input constraint"
 | |
|                              " with a matching output constraint of"
 | |
|                              " incompatible type!");
 | |
|         }
 | |
|         Input.ConstraintVT = OpInfo.ConstraintVT;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Compute the constraint code and ConstraintType to use.
 | |
|     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
 | |
| 
 | |
|     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
 | |
|         OpInfo.Type == InlineAsm::isClobber)
 | |
|       continue;
 | |
| 
 | |
|     // If this is a memory input, and if the operand is not indirect, do what we
 | |
|     // need to to provide an address for the memory input.
 | |
|     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
 | |
|         !OpInfo.isIndirect) {
 | |
|       assert((OpInfo.isMultipleAlternative ||
 | |
|               (OpInfo.Type == InlineAsm::isInput)) &&
 | |
|              "Can only indirectify direct input operands!");
 | |
| 
 | |
|       // Memory operands really want the address of the value.  If we don't have
 | |
|       // an indirect input, put it in the constpool if we can, otherwise spill
 | |
|       // it to a stack slot.
 | |
|       // TODO: This isn't quite right. We need to handle these according to
 | |
|       // the addressing mode that the constraint wants. Also, this may take
 | |
|       // an additional register for the computation and we don't want that
 | |
|       // either.
 | |
| 
 | |
|       // If the operand is a float, integer, or vector constant, spill to a
 | |
|       // constant pool entry to get its address.
 | |
|       const Value *OpVal = OpInfo.CallOperandVal;
 | |
|       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
 | |
|           isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
 | |
|         OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
 | |
|                                                  TLI.getPointerTy());
 | |
|       } else {
 | |
|         // Otherwise, create a stack slot and emit a store to it before the
 | |
|         // asm.
 | |
|         Type *Ty = OpVal->getType();
 | |
|         uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
 | |
|         unsigned Align  = TLI.getDataLayout()->getPrefTypeAlignment(Ty);
 | |
|         MachineFunction &MF = DAG.getMachineFunction();
 | |
|         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
 | |
|         SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
 | |
|         Chain = DAG.getStore(Chain, getCurSDLoc(),
 | |
|                              OpInfo.CallOperand, StackSlot,
 | |
|                              MachinePointerInfo::getFixedStack(SSFI),
 | |
|                              false, false, 0);
 | |
|         OpInfo.CallOperand = StackSlot;
 | |
|       }
 | |
| 
 | |
|       // There is no longer a Value* corresponding to this operand.
 | |
|       OpInfo.CallOperandVal = nullptr;
 | |
| 
 | |
|       // It is now an indirect operand.
 | |
|       OpInfo.isIndirect = true;
 | |
|     }
 | |
| 
 | |
|     // If this constraint is for a specific register, allocate it before
 | |
|     // anything else.
 | |
|     if (OpInfo.ConstraintType == TargetLowering::C_Register)
 | |
|       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
 | |
|   }
 | |
| 
 | |
|   // Second pass - Loop over all of the operands, assigning virtual or physregs
 | |
|   // to register class operands.
 | |
|   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
 | |
|     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
 | |
| 
 | |
|     // C_Register operands have already been allocated, Other/Memory don't need
 | |
|     // to be.
 | |
|     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
 | |
|       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
 | |
|   }
 | |
| 
 | |
|   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
 | |
|   std::vector<SDValue> AsmNodeOperands;
 | |
|   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
 | |
|   AsmNodeOperands.push_back(
 | |
|           DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
 | |
|                                       TLI.getPointerTy()));
 | |
| 
 | |
|   // If we have a !srcloc metadata node associated with it, we want to attach
 | |
|   // this to the ultimately generated inline asm machineinstr.  To do this, we
 | |
|   // pass in the third operand as this (potentially null) inline asm MDNode.
 | |
|   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
 | |
|   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
 | |
| 
 | |
|   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
 | |
|   // bits as operand 3.
 | |
|   unsigned ExtraInfo = 0;
 | |
|   if (IA->hasSideEffects())
 | |
|     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
 | |
|   if (IA->isAlignStack())
 | |
|     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
 | |
|   // Set the asm dialect.
 | |
|   ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
 | |
| 
 | |
|   // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
 | |
|   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
 | |
|     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
 | |
| 
 | |
|     // Compute the constraint code and ConstraintType to use.
 | |
|     TLI.ComputeConstraintToUse(OpInfo, SDValue());
 | |
| 
 | |
|     // Ideally, we would only check against memory constraints.  However, the
 | |
|     // meaning of an other constraint can be target-specific and we can't easily
 | |
|     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
 | |
|     // for other constriants as well.
 | |
|     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
 | |
|         OpInfo.ConstraintType == TargetLowering::C_Other) {
 | |
|       if (OpInfo.Type == InlineAsm::isInput)
 | |
|         ExtraInfo |= InlineAsm::Extra_MayLoad;
 | |
|       else if (OpInfo.Type == InlineAsm::isOutput)
 | |
|         ExtraInfo |= InlineAsm::Extra_MayStore;
 | |
|       else if (OpInfo.Type == InlineAsm::isClobber)
 | |
|         ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, getCurSDLoc(),
 | |
|                                                   TLI.getPointerTy()));
 | |
| 
 | |
|   // Loop over all of the inputs, copying the operand values into the
 | |
|   // appropriate registers and processing the output regs.
 | |
|   RegsForValue RetValRegs;
 | |
| 
 | |
|   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
 | |
|   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
 | |
| 
 | |
|   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
 | |
|     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
 | |
| 
 | |
|     switch (OpInfo.Type) {
 | |
|     case InlineAsm::isOutput: {
 | |
|       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
 | |
|           OpInfo.ConstraintType != TargetLowering::C_Register) {
 | |
|         // Memory output, or 'other' output (e.g. 'X' constraint).
 | |
|         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
 | |
| 
 | |
|         unsigned ConstraintID =
 | |
|             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
 | |
|         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
 | |
|                "Failed to convert memory constraint code to constraint id.");
 | |
| 
 | |
|         // Add information to the INLINEASM node to know about this output.
 | |
|         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
 | |
|         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
 | |
|         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
 | |
|                                                         MVT::i32));
 | |
|         AsmNodeOperands.push_back(OpInfo.CallOperand);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // Otherwise, this is a register or register class output.
 | |
| 
 | |
|       // Copy the output from the appropriate register.  Find a register that
 | |
|       // we can use.
 | |
|       if (OpInfo.AssignedRegs.Regs.empty()) {
 | |
|         LLVMContext &Ctx = *DAG.getContext();
 | |
|         Ctx.emitError(CS.getInstruction(),
 | |
|                       "couldn't allocate output register for constraint '" +
 | |
|                           Twine(OpInfo.ConstraintCode) + "'");
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       // If this is an indirect operand, store through the pointer after the
 | |
|       // asm.
 | |
|       if (OpInfo.isIndirect) {
 | |
|         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
 | |
|                                                       OpInfo.CallOperandVal));
 | |
|       } else {
 | |
|         // This is the result value of the call.
 | |
|         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
 | |
|         // Concatenate this output onto the outputs list.
 | |
|         RetValRegs.append(OpInfo.AssignedRegs);
 | |
|       }
 | |
| 
 | |
|       // Add information to the INLINEASM node to know that this register is
 | |
|       // set.
 | |
|       OpInfo.AssignedRegs
 | |
|           .AddInlineAsmOperands(OpInfo.isEarlyClobber
 | |
|                                     ? InlineAsm::Kind_RegDefEarlyClobber
 | |
|                                     : InlineAsm::Kind_RegDef,
 | |
|                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
 | |
|       break;
 | |
|     }
 | |
|     case InlineAsm::isInput: {
 | |
|       SDValue InOperandVal = OpInfo.CallOperand;
 | |
| 
 | |
|       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
 | |
|         // If this is required to match an output register we have already set,
 | |
|         // just use its register.
 | |
|         unsigned OperandNo = OpInfo.getMatchedOperand();
 | |
| 
 | |
|         // Scan until we find the definition we already emitted of this operand.
 | |
|         // When we find it, create a RegsForValue operand.
 | |
|         unsigned CurOp = InlineAsm::Op_FirstOperand;
 | |
|         for (; OperandNo; --OperandNo) {
 | |
|           // Advance to the next operand.
 | |
|           unsigned OpFlag =
 | |
|             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
 | |
|           assert((InlineAsm::isRegDefKind(OpFlag) ||
 | |
|                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
 | |
|                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
 | |
|           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
 | |
|         }
 | |
| 
 | |
|         unsigned OpFlag =
 | |
|           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
 | |
|         if (InlineAsm::isRegDefKind(OpFlag) ||
 | |
|             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
 | |
|           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
 | |
|           if (OpInfo.isIndirect) {
 | |
|             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
 | |
|             LLVMContext &Ctx = *DAG.getContext();
 | |
|             Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
 | |
|                                                " don't know how to handle tied "
 | |
|                                                "indirect register inputs");
 | |
|             return;
 | |
|           }
 | |
| 
 | |
|           RegsForValue MatchedRegs;
 | |
|           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
 | |
|           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
 | |
|           MatchedRegs.RegVTs.push_back(RegVT);
 | |
|           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
 | |
|           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
 | |
|                i != e; ++i) {
 | |
|             if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
 | |
|               MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
 | |
|             else {
 | |
|               LLVMContext &Ctx = *DAG.getContext();
 | |
|               Ctx.emitError(CS.getInstruction(),
 | |
|                             "inline asm error: This value"
 | |
|                             " type register class is not natively supported!");
 | |
|               return;
 | |
|             }
 | |
|           }
 | |
|           SDLoc dl = getCurSDLoc();
 | |
|           // Use the produced MatchedRegs object to
 | |
|           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl,
 | |
|                                     Chain, &Flag, CS.getInstruction());
 | |
|           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
 | |
|                                            true, OpInfo.getMatchedOperand(), dl,
 | |
|                                            DAG, AsmNodeOperands);
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
 | |
|         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
 | |
|                "Unexpected number of operands");
 | |
|         // Add information to the INLINEASM node to know about this input.
 | |
|         // See InlineAsm.h isUseOperandTiedToDef.
 | |
|         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
 | |
|         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
 | |
|                                                     OpInfo.getMatchedOperand());
 | |
|         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, getCurSDLoc(),
 | |
|                                                         TLI.getPointerTy()));
 | |
|         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // Treat indirect 'X' constraint as memory.
 | |
|       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
 | |
|           OpInfo.isIndirect)
 | |
|         OpInfo.ConstraintType = TargetLowering::C_Memory;
 | |
| 
 | |
|       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
 | |
|         std::vector<SDValue> Ops;
 | |
|         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
 | |
|                                           Ops, DAG);
 | |
|         if (Ops.empty()) {
 | |
|           LLVMContext &Ctx = *DAG.getContext();
 | |
|           Ctx.emitError(CS.getInstruction(),
 | |
|                         "invalid operand for inline asm constraint '" +
 | |
|                             Twine(OpInfo.ConstraintCode) + "'");
 | |
|           return;
 | |
|         }
 | |
| 
 | |
|         // Add information to the INLINEASM node to know about this input.
 | |
|         unsigned ResOpType =
 | |
|           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
 | |
|         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
 | |
|                                                         getCurSDLoc(),
 | |
|                                                         TLI.getPointerTy()));
 | |
|         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
 | |
|         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
 | |
|         assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
 | |
|                "Memory operands expect pointer values");
 | |
| 
 | |
|         unsigned ConstraintID =
 | |
|             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
 | |
|         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
 | |
|                "Failed to convert memory constraint code to constraint id.");
 | |
| 
 | |
|         // Add information to the INLINEASM node to know about this input.
 | |
|         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
 | |
|         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
 | |
|         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
 | |
|                                                         getCurSDLoc(),
 | |
|                                                         MVT::i32));
 | |
|         AsmNodeOperands.push_back(InOperandVal);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
 | |
|               OpInfo.ConstraintType == TargetLowering::C_Register) &&
 | |
|              "Unknown constraint type!");
 | |
| 
 | |
|       // TODO: Support this.
 | |
|       if (OpInfo.isIndirect) {
 | |
|         LLVMContext &Ctx = *DAG.getContext();
 | |
|         Ctx.emitError(CS.getInstruction(),
 | |
|                       "Don't know how to handle indirect register inputs yet "
 | |
|                       "for constraint '" +
 | |
|                           Twine(OpInfo.ConstraintCode) + "'");
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       // Copy the input into the appropriate registers.
 | |
|       if (OpInfo.AssignedRegs.Regs.empty()) {
 | |
|         LLVMContext &Ctx = *DAG.getContext();
 | |
|         Ctx.emitError(CS.getInstruction(),
 | |
|                       "couldn't allocate input reg for constraint '" +
 | |
|                           Twine(OpInfo.ConstraintCode) + "'");
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       SDLoc dl = getCurSDLoc();
 | |
| 
 | |
|       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
 | |
|                                         Chain, &Flag, CS.getInstruction());
 | |
| 
 | |
|       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
 | |
|                                                dl, DAG, AsmNodeOperands);
 | |
|       break;
 | |
|     }
 | |
|     case InlineAsm::isClobber: {
 | |
|       // Add the clobbered value to the operand list, so that the register
 | |
|       // allocator is aware that the physreg got clobbered.
 | |
|       if (!OpInfo.AssignedRegs.Regs.empty())
 | |
|         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
 | |
|                                                  false, 0, getCurSDLoc(), DAG,
 | |
|                                                  AsmNodeOperands);
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Finish up input operands.  Set the input chain and add the flag last.
 | |
|   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
 | |
|   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
 | |
| 
 | |
|   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
 | |
|                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
 | |
|   Flag = Chain.getValue(1);
 | |
| 
 | |
|   // If this asm returns a register value, copy the result from that register
 | |
|   // and set it as the value of the call.
 | |
|   if (!RetValRegs.Regs.empty()) {
 | |
|     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
 | |
|                                              Chain, &Flag, CS.getInstruction());
 | |
| 
 | |
|     // FIXME: Why don't we do this for inline asms with MRVs?
 | |
|     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
 | |
|       EVT ResultType = TLI.getValueType(CS.getType());
 | |
| 
 | |
|       // If any of the results of the inline asm is a vector, it may have the
 | |
|       // wrong width/num elts.  This can happen for register classes that can
 | |
|       // contain multiple different value types.  The preg or vreg allocated may
 | |
|       // not have the same VT as was expected.  Convert it to the right type
 | |
|       // with bit_convert.
 | |
|       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
 | |
|         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
 | |
|                           ResultType, Val);
 | |
| 
 | |
|       } else if (ResultType != Val.getValueType() &&
 | |
|                  ResultType.isInteger() && Val.getValueType().isInteger()) {
 | |
|         // If a result value was tied to an input value, the computed result may
 | |
|         // have a wider width than the expected result.  Extract the relevant
 | |
|         // portion.
 | |
|         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
 | |
|       }
 | |
| 
 | |
|       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
 | |
|     }
 | |
| 
 | |
|     setValue(CS.getInstruction(), Val);
 | |
|     // Don't need to use this as a chain in this case.
 | |
|     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
 | |
| 
 | |
|   // Process indirect outputs, first output all of the flagged copies out of
 | |
|   // physregs.
 | |
|   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
 | |
|     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
 | |
|     const Value *Ptr = IndirectStoresToEmit[i].second;
 | |
|     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
 | |
|                                              Chain, &Flag, IA);
 | |
|     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
 | |
|   }
 | |
| 
 | |
|   // Emit the non-flagged stores from the physregs.
 | |
|   SmallVector<SDValue, 8> OutChains;
 | |
|   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
 | |
|     SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
 | |
|                                StoresToEmit[i].first,
 | |
|                                getValue(StoresToEmit[i].second),
 | |
|                                MachinePointerInfo(StoresToEmit[i].second),
 | |
|                                false, false, 0);
 | |
|     OutChains.push_back(Val);
 | |
|   }
 | |
| 
 | |
|   if (!OutChains.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
 | |
| 
 | |
|   DAG.setRoot(Chain);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
 | |
|   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
 | |
|                           MVT::Other, getRoot(),
 | |
|                           getValue(I.getArgOperand(0)),
 | |
|                           DAG.getSrcValue(I.getArgOperand(0))));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   const DataLayout &DL = *TLI.getDataLayout();
 | |
|   SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(),
 | |
|                            getRoot(), getValue(I.getOperand(0)),
 | |
|                            DAG.getSrcValue(I.getOperand(0)),
 | |
|                            DL.getABITypeAlignment(I.getType()));
 | |
|   setValue(&I, V);
 | |
|   DAG.setRoot(V.getValue(1));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
 | |
|   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
 | |
|                           MVT::Other, getRoot(),
 | |
|                           getValue(I.getArgOperand(0)),
 | |
|                           DAG.getSrcValue(I.getArgOperand(0))));
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
 | |
|   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
 | |
|                           MVT::Other, getRoot(),
 | |
|                           getValue(I.getArgOperand(0)),
 | |
|                           getValue(I.getArgOperand(1)),
 | |
|                           DAG.getSrcValue(I.getArgOperand(0)),
 | |
|                           DAG.getSrcValue(I.getArgOperand(1))));
 | |
| }
 | |
| 
 | |
| /// \brief Lower an argument list according to the target calling convention.
 | |
| ///
 | |
| /// \return A tuple of <return-value, token-chain>
 | |
| ///
 | |
| /// This is a helper for lowering intrinsics that follow a target calling
 | |
| /// convention or require stack pointer adjustment. Only a subset of the
 | |
| /// intrinsic's operands need to participate in the calling convention.
 | |
| std::pair<SDValue, SDValue>
 | |
| SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx,
 | |
|                                        unsigned NumArgs, SDValue Callee,
 | |
|                                        Type *ReturnTy,
 | |
|                                        MachineBasicBlock *LandingPad,
 | |
|                                        bool IsPatchPoint) {
 | |
|   TargetLowering::ArgListTy Args;
 | |
|   Args.reserve(NumArgs);
 | |
| 
 | |
|   // Populate the argument list.
 | |
|   // Attributes for args start at offset 1, after the return attribute.
 | |
|   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
 | |
|        ArgI != ArgE; ++ArgI) {
 | |
|     const Value *V = CS->getOperand(ArgI);
 | |
| 
 | |
|     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
 | |
| 
 | |
|     TargetLowering::ArgListEntry Entry;
 | |
|     Entry.Node = getValue(V);
 | |
|     Entry.Ty = V->getType();
 | |
|     Entry.setAttributes(&CS, AttrI);
 | |
|     Args.push_back(Entry);
 | |
|   }
 | |
| 
 | |
|   TargetLowering::CallLoweringInfo CLI(DAG);
 | |
|   CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
 | |
|     .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs)
 | |
|     .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint);
 | |
| 
 | |
|   return lowerInvokable(CLI, LandingPad);
 | |
| }
 | |
| 
 | |
| /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
 | |
| /// or patchpoint target node's operand list.
 | |
| ///
 | |
| /// Constants are converted to TargetConstants purely as an optimization to
 | |
| /// avoid constant materialization and register allocation.
 | |
| ///
 | |
| /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
 | |
| /// generate addess computation nodes, and so ExpandISelPseudo can convert the
 | |
| /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
 | |
| /// address materialization and register allocation, but may also be required
 | |
| /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
 | |
| /// alloca in the entry block, then the runtime may assume that the alloca's
 | |
| /// StackMap location can be read immediately after compilation and that the
 | |
| /// location is valid at any point during execution (this is similar to the
 | |
| /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
 | |
| /// only available in a register, then the runtime would need to trap when
 | |
| /// execution reaches the StackMap in order to read the alloca's location.
 | |
| static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
 | |
|                                 SDLoc DL, SmallVectorImpl<SDValue> &Ops,
 | |
|                                 SelectionDAGBuilder &Builder) {
 | |
|   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
 | |
|     SDValue OpVal = Builder.getValue(CS.getArgument(i));
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
 | |
|       Ops.push_back(
 | |
|         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
 | |
|       Ops.push_back(
 | |
|         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
 | |
|     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
 | |
|       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
 | |
|       Ops.push_back(
 | |
|         Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy()));
 | |
|     } else
 | |
|       Ops.push_back(OpVal);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
 | |
| void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
 | |
|   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
 | |
|   //                                  [live variables...])
 | |
| 
 | |
|   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
 | |
| 
 | |
|   SDValue Chain, InFlag, Callee, NullPtr;
 | |
|   SmallVector<SDValue, 32> Ops;
 | |
| 
 | |
|   SDLoc DL = getCurSDLoc();
 | |
|   Callee = getValue(CI.getCalledValue());
 | |
|   NullPtr = DAG.getIntPtrConstant(0, DL, true);
 | |
| 
 | |
|   // The stackmap intrinsic only records the live variables (the arguemnts
 | |
|   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
 | |
|   // intrinsic, this won't be lowered to a function call. This means we don't
 | |
|   // have to worry about calling conventions and target specific lowering code.
 | |
|   // Instead we perform the call lowering right here.
 | |
|   //
 | |
|   // chain, flag = CALLSEQ_START(chain, 0)
 | |
|   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
 | |
|   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
 | |
|   //
 | |
|   Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
 | |
|   InFlag = Chain.getValue(1);
 | |
| 
 | |
|   // Add the <id> and <numBytes> constants.
 | |
|   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
 | |
|   Ops.push_back(DAG.getTargetConstant(
 | |
|                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
 | |
|   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
 | |
|   Ops.push_back(DAG.getTargetConstant(
 | |
|                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
 | |
|                   MVT::i32));
 | |
| 
 | |
|   // Push live variables for the stack map.
 | |
|   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
 | |
| 
 | |
|   // We are not pushing any register mask info here on the operands list,
 | |
|   // because the stackmap doesn't clobber anything.
 | |
| 
 | |
|   // Push the chain and the glue flag.
 | |
|   Ops.push_back(Chain);
 | |
|   Ops.push_back(InFlag);
 | |
| 
 | |
|   // Create the STACKMAP node.
 | |
|   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
 | |
|   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
 | |
|   Chain = SDValue(SM, 0);
 | |
|   InFlag = Chain.getValue(1);
 | |
| 
 | |
|   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
 | |
| 
 | |
|   // Stackmaps don't generate values, so nothing goes into the NodeMap.
 | |
| 
 | |
|   // Set the root to the target-lowered call chain.
 | |
|   DAG.setRoot(Chain);
 | |
| 
 | |
|   // Inform the Frame Information that we have a stackmap in this function.
 | |
|   FuncInfo.MF->getFrameInfo()->setHasStackMap();
 | |
| }
 | |
| 
 | |
| /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
 | |
| void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
 | |
|                                           MachineBasicBlock *LandingPad) {
 | |
|   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
 | |
|   //                                                 i32 <numBytes>,
 | |
|   //                                                 i8* <target>,
 | |
|   //                                                 i32 <numArgs>,
 | |
|   //                                                 [Args...],
 | |
|   //                                                 [live variables...])
 | |
| 
 | |
|   CallingConv::ID CC = CS.getCallingConv();
 | |
|   bool IsAnyRegCC = CC == CallingConv::AnyReg;
 | |
|   bool HasDef = !CS->getType()->isVoidTy();
 | |
|   SDLoc dl = getCurSDLoc();
 | |
|   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
 | |
| 
 | |
|   // Handle immediate and symbolic callees.
 | |
|   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
 | |
|     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
 | |
|                                    /*isTarget=*/true);
 | |
|   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
 | |
|     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
 | |
|                                          SDLoc(SymbolicCallee),
 | |
|                                          SymbolicCallee->getValueType(0));
 | |
| 
 | |
|   // Get the real number of arguments participating in the call <numArgs>
 | |
|   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
 | |
|   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
 | |
| 
 | |
|   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
 | |
|   // Intrinsics include all meta-operands up to but not including CC.
 | |
|   unsigned NumMetaOpers = PatchPointOpers::CCPos;
 | |
|   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
 | |
|          "Not enough arguments provided to the patchpoint intrinsic");
 | |
| 
 | |
|   // For AnyRegCC the arguments are lowered later on manually.
 | |
|   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
 | |
|   Type *ReturnTy =
 | |
|     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
 | |
|   std::pair<SDValue, SDValue> Result =
 | |
|     lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
 | |
|                       LandingPad, true);
 | |
| 
 | |
|   SDNode *CallEnd = Result.second.getNode();
 | |
|   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
 | |
|     CallEnd = CallEnd->getOperand(0).getNode();
 | |
| 
 | |
|   /// Get a call instruction from the call sequence chain.
 | |
|   /// Tail calls are not allowed.
 | |
|   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
 | |
|          "Expected a callseq node.");
 | |
|   SDNode *Call = CallEnd->getOperand(0).getNode();
 | |
|   bool HasGlue = Call->getGluedNode();
 | |
| 
 | |
|   // Replace the target specific call node with the patchable intrinsic.
 | |
|   SmallVector<SDValue, 8> Ops;
 | |
| 
 | |
|   // Add the <id> and <numBytes> constants.
 | |
|   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
 | |
|   Ops.push_back(DAG.getTargetConstant(
 | |
|                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
 | |
|   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
 | |
|   Ops.push_back(DAG.getTargetConstant(
 | |
|                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
 | |
|                   MVT::i32));
 | |
| 
 | |
|   // Add the callee.
 | |
|   Ops.push_back(Callee);
 | |
| 
 | |
|   // Adjust <numArgs> to account for any arguments that have been passed on the
 | |
|   // stack instead.
 | |
|   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
 | |
|   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
 | |
|   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
 | |
|   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
 | |
| 
 | |
|   // Add the calling convention
 | |
|   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
 | |
| 
 | |
|   // Add the arguments we omitted previously. The register allocator should
 | |
|   // place these in any free register.
 | |
|   if (IsAnyRegCC)
 | |
|     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
 | |
|       Ops.push_back(getValue(CS.getArgument(i)));
 | |
| 
 | |
|   // Push the arguments from the call instruction up to the register mask.
 | |
|   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
 | |
|   Ops.append(Call->op_begin() + 2, e);
 | |
| 
 | |
|   // Push live variables for the stack map.
 | |
|   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
 | |
| 
 | |
|   // Push the register mask info.
 | |
|   if (HasGlue)
 | |
|     Ops.push_back(*(Call->op_end()-2));
 | |
|   else
 | |
|     Ops.push_back(*(Call->op_end()-1));
 | |
| 
 | |
|   // Push the chain (this is originally the first operand of the call, but
 | |
|   // becomes now the last or second to last operand).
 | |
|   Ops.push_back(*(Call->op_begin()));
 | |
| 
 | |
|   // Push the glue flag (last operand).
 | |
|   if (HasGlue)
 | |
|     Ops.push_back(*(Call->op_end()-1));
 | |
| 
 | |
|   SDVTList NodeTys;
 | |
|   if (IsAnyRegCC && HasDef) {
 | |
|     // Create the return types based on the intrinsic definition
 | |
|     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|     SmallVector<EVT, 3> ValueVTs;
 | |
|     ComputeValueVTs(TLI, CS->getType(), ValueVTs);
 | |
|     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
 | |
| 
 | |
|     // There is always a chain and a glue type at the end
 | |
|     ValueVTs.push_back(MVT::Other);
 | |
|     ValueVTs.push_back(MVT::Glue);
 | |
|     NodeTys = DAG.getVTList(ValueVTs);
 | |
|   } else
 | |
|     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
 | |
| 
 | |
|   // Replace the target specific call node with a PATCHPOINT node.
 | |
|   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
 | |
|                                          dl, NodeTys, Ops);
 | |
| 
 | |
|   // Update the NodeMap.
 | |
|   if (HasDef) {
 | |
|     if (IsAnyRegCC)
 | |
|       setValue(CS.getInstruction(), SDValue(MN, 0));
 | |
|     else
 | |
|       setValue(CS.getInstruction(), Result.first);
 | |
|   }
 | |
| 
 | |
|   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
 | |
|   // call sequence. Furthermore the location of the chain and glue can change
 | |
|   // when the AnyReg calling convention is used and the intrinsic returns a
 | |
|   // value.
 | |
|   if (IsAnyRegCC && HasDef) {
 | |
|     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
 | |
|     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
 | |
|     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
 | |
|   } else
 | |
|     DAG.ReplaceAllUsesWith(Call, MN);
 | |
|   DAG.DeleteNode(Call);
 | |
| 
 | |
|   // Inform the Frame Information that we have a patchpoint in this function.
 | |
|   FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
 | |
| }
 | |
| 
 | |
| /// Returns an AttributeSet representing the attributes applied to the return
 | |
| /// value of the given call.
 | |
| static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
 | |
|   SmallVector<Attribute::AttrKind, 2> Attrs;
 | |
|   if (CLI.RetSExt)
 | |
|     Attrs.push_back(Attribute::SExt);
 | |
|   if (CLI.RetZExt)
 | |
|     Attrs.push_back(Attribute::ZExt);
 | |
|   if (CLI.IsInReg)
 | |
|     Attrs.push_back(Attribute::InReg);
 | |
| 
 | |
|   return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
 | |
|                            Attrs);
 | |
| }
 | |
| 
 | |
| /// TargetLowering::LowerCallTo - This is the default LowerCallTo
 | |
| /// implementation, which just calls LowerCall.
 | |
| /// FIXME: When all targets are
 | |
| /// migrated to using LowerCall, this hook should be integrated into SDISel.
 | |
| std::pair<SDValue, SDValue>
 | |
| TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
 | |
|   // Handle the incoming return values from the call.
 | |
|   CLI.Ins.clear();
 | |
|   Type *OrigRetTy = CLI.RetTy;
 | |
|   SmallVector<EVT, 4> RetTys;
 | |
|   SmallVector<uint64_t, 4> Offsets;
 | |
|   ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets);
 | |
| 
 | |
|   SmallVector<ISD::OutputArg, 4> Outs;
 | |
|   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this);
 | |
| 
 | |
|   bool CanLowerReturn =
 | |
|       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
 | |
|                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
 | |
| 
 | |
|   SDValue DemoteStackSlot;
 | |
|   int DemoteStackIdx = -100;
 | |
|   if (!CanLowerReturn) {
 | |
|     // FIXME: equivalent assert?
 | |
|     // assert(!CS.hasInAllocaArgument() &&
 | |
|     //        "sret demotion is incompatible with inalloca");
 | |
|     uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy);
 | |
|     unsigned Align  = getDataLayout()->getPrefTypeAlignment(CLI.RetTy);
 | |
|     MachineFunction &MF = CLI.DAG.getMachineFunction();
 | |
|     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
 | |
|     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
 | |
| 
 | |
|     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy());
 | |
|     ArgListEntry Entry;
 | |
|     Entry.Node = DemoteStackSlot;
 | |
|     Entry.Ty = StackSlotPtrType;
 | |
|     Entry.isSExt = false;
 | |
|     Entry.isZExt = false;
 | |
|     Entry.isInReg = false;
 | |
|     Entry.isSRet = true;
 | |
|     Entry.isNest = false;
 | |
|     Entry.isByVal = false;
 | |
|     Entry.isReturned = false;
 | |
|     Entry.Alignment = Align;
 | |
|     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
 | |
|     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
 | |
| 
 | |
|     // sret demotion isn't compatible with tail-calls, since the sret argument
 | |
|     // points into the callers stack frame.
 | |
|     CLI.IsTailCall = false;
 | |
|   } else {
 | |
|     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
 | |
|       EVT VT = RetTys[I];
 | |
|       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
 | |
|       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
 | |
|       for (unsigned i = 0; i != NumRegs; ++i) {
 | |
|         ISD::InputArg MyFlags;
 | |
|         MyFlags.VT = RegisterVT;
 | |
|         MyFlags.ArgVT = VT;
 | |
|         MyFlags.Used = CLI.IsReturnValueUsed;
 | |
|         if (CLI.RetSExt)
 | |
|           MyFlags.Flags.setSExt();
 | |
|         if (CLI.RetZExt)
 | |
|           MyFlags.Flags.setZExt();
 | |
|         if (CLI.IsInReg)
 | |
|           MyFlags.Flags.setInReg();
 | |
|         CLI.Ins.push_back(MyFlags);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Handle all of the outgoing arguments.
 | |
|   CLI.Outs.clear();
 | |
|   CLI.OutVals.clear();
 | |
|   ArgListTy &Args = CLI.getArgs();
 | |
|   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
 | |
|     SmallVector<EVT, 4> ValueVTs;
 | |
|     ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
 | |
|     Type *FinalType = Args[i].Ty;
 | |
|     if (Args[i].isByVal)
 | |
|       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
 | |
|     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
 | |
|         FinalType, CLI.CallConv, CLI.IsVarArg);
 | |
|     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
 | |
|          ++Value) {
 | |
|       EVT VT = ValueVTs[Value];
 | |
|       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
 | |
|       SDValue Op = SDValue(Args[i].Node.getNode(),
 | |
|                            Args[i].Node.getResNo() + Value);
 | |
|       ISD::ArgFlagsTy Flags;
 | |
|       unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy);
 | |
| 
 | |
|       if (Args[i].isZExt)
 | |
|         Flags.setZExt();
 | |
|       if (Args[i].isSExt)
 | |
|         Flags.setSExt();
 | |
|       if (Args[i].isInReg)
 | |
|         Flags.setInReg();
 | |
|       if (Args[i].isSRet)
 | |
|         Flags.setSRet();
 | |
|       if (Args[i].isByVal)
 | |
|         Flags.setByVal();
 | |
|       if (Args[i].isInAlloca) {
 | |
|         Flags.setInAlloca();
 | |
|         // Set the byval flag for CCAssignFn callbacks that don't know about
 | |
|         // inalloca.  This way we can know how many bytes we should've allocated
 | |
|         // and how many bytes a callee cleanup function will pop.  If we port
 | |
|         // inalloca to more targets, we'll have to add custom inalloca handling
 | |
|         // in the various CC lowering callbacks.
 | |
|         Flags.setByVal();
 | |
|       }
 | |
|       if (Args[i].isByVal || Args[i].isInAlloca) {
 | |
|         PointerType *Ty = cast<PointerType>(Args[i].Ty);
 | |
|         Type *ElementTy = Ty->getElementType();
 | |
|         Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy));
 | |
|         // For ByVal, alignment should come from FE.  BE will guess if this
 | |
|         // info is not there but there are cases it cannot get right.
 | |
|         unsigned FrameAlign;
 | |
|         if (Args[i].Alignment)
 | |
|           FrameAlign = Args[i].Alignment;
 | |
|         else
 | |
|           FrameAlign = getByValTypeAlignment(ElementTy);
 | |
|         Flags.setByValAlign(FrameAlign);
 | |
|       }
 | |
|       if (Args[i].isNest)
 | |
|         Flags.setNest();
 | |
|       if (NeedsRegBlock)
 | |
|         Flags.setInConsecutiveRegs();
 | |
|       Flags.setOrigAlign(OriginalAlignment);
 | |
| 
 | |
|       MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
 | |
|       unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
 | |
|       SmallVector<SDValue, 4> Parts(NumParts);
 | |
|       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
 | |
| 
 | |
|       if (Args[i].isSExt)
 | |
|         ExtendKind = ISD::SIGN_EXTEND;
 | |
|       else if (Args[i].isZExt)
 | |
|         ExtendKind = ISD::ZERO_EXTEND;
 | |
| 
 | |
|       // Conservatively only handle 'returned' on non-vectors for now
 | |
|       if (Args[i].isReturned && !Op.getValueType().isVector()) {
 | |
|         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
 | |
|                "unexpected use of 'returned'");
 | |
|         // Before passing 'returned' to the target lowering code, ensure that
 | |
|         // either the register MVT and the actual EVT are the same size or that
 | |
|         // the return value and argument are extended in the same way; in these
 | |
|         // cases it's safe to pass the argument register value unchanged as the
 | |
|         // return register value (although it's at the target's option whether
 | |
|         // to do so)
 | |
|         // TODO: allow code generation to take advantage of partially preserved
 | |
|         // registers rather than clobbering the entire register when the
 | |
|         // parameter extension method is not compatible with the return
 | |
|         // extension method
 | |
|         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
 | |
|             (ExtendKind != ISD::ANY_EXTEND &&
 | |
|              CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
 | |
|         Flags.setReturned();
 | |
|       }
 | |
| 
 | |
|       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
 | |
|                      CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
 | |
| 
 | |
|       for (unsigned j = 0; j != NumParts; ++j) {
 | |
|         // if it isn't first piece, alignment must be 1
 | |
|         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
 | |
|                                i < CLI.NumFixedArgs,
 | |
|                                i, j*Parts[j].getValueType().getStoreSize());
 | |
|         if (NumParts > 1 && j == 0)
 | |
|           MyFlags.Flags.setSplit();
 | |
|         else if (j != 0)
 | |
|           MyFlags.Flags.setOrigAlign(1);
 | |
| 
 | |
|         CLI.Outs.push_back(MyFlags);
 | |
|         CLI.OutVals.push_back(Parts[j]);
 | |
|       }
 | |
| 
 | |
|       if (NeedsRegBlock && Value == NumValues - 1)
 | |
|         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SmallVector<SDValue, 4> InVals;
 | |
|   CLI.Chain = LowerCall(CLI, InVals);
 | |
| 
 | |
|   // Verify that the target's LowerCall behaved as expected.
 | |
|   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
 | |
|          "LowerCall didn't return a valid chain!");
 | |
|   assert((!CLI.IsTailCall || InVals.empty()) &&
 | |
|          "LowerCall emitted a return value for a tail call!");
 | |
|   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
 | |
|          "LowerCall didn't emit the correct number of values!");
 | |
| 
 | |
|   // For a tail call, the return value is merely live-out and there aren't
 | |
|   // any nodes in the DAG representing it. Return a special value to
 | |
|   // indicate that a tail call has been emitted and no more Instructions
 | |
|   // should be processed in the current block.
 | |
|   if (CLI.IsTailCall) {
 | |
|     CLI.DAG.setRoot(CLI.Chain);
 | |
|     return std::make_pair(SDValue(), SDValue());
 | |
|   }
 | |
| 
 | |
|   DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
 | |
|           assert(InVals[i].getNode() &&
 | |
|                  "LowerCall emitted a null value!");
 | |
|           assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
 | |
|                  "LowerCall emitted a value with the wrong type!");
 | |
|         });
 | |
| 
 | |
|   SmallVector<SDValue, 4> ReturnValues;
 | |
|   if (!CanLowerReturn) {
 | |
|     // The instruction result is the result of loading from the
 | |
|     // hidden sret parameter.
 | |
|     SmallVector<EVT, 1> PVTs;
 | |
|     Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
 | |
| 
 | |
|     ComputeValueVTs(*this, PtrRetTy, PVTs);
 | |
|     assert(PVTs.size() == 1 && "Pointers should fit in one register");
 | |
|     EVT PtrVT = PVTs[0];
 | |
| 
 | |
|     unsigned NumValues = RetTys.size();
 | |
|     ReturnValues.resize(NumValues);
 | |
|     SmallVector<SDValue, 4> Chains(NumValues);
 | |
| 
 | |
|     for (unsigned i = 0; i < NumValues; ++i) {
 | |
|       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
 | |
|                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
 | |
|                                                         PtrVT));
 | |
|       SDValue L = CLI.DAG.getLoad(
 | |
|           RetTys[i], CLI.DL, CLI.Chain, Add,
 | |
|           MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false,
 | |
|           false, false, 1);
 | |
|       ReturnValues[i] = L;
 | |
|       Chains[i] = L.getValue(1);
 | |
|     }
 | |
| 
 | |
|     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
 | |
|   } else {
 | |
|     // Collect the legal value parts into potentially illegal values
 | |
|     // that correspond to the original function's return values.
 | |
|     ISD::NodeType AssertOp = ISD::DELETED_NODE;
 | |
|     if (CLI.RetSExt)
 | |
|       AssertOp = ISD::AssertSext;
 | |
|     else if (CLI.RetZExt)
 | |
|       AssertOp = ISD::AssertZext;
 | |
|     unsigned CurReg = 0;
 | |
|     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
 | |
|       EVT VT = RetTys[I];
 | |
|       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
 | |
|       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
 | |
| 
 | |
|       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
 | |
|                                               NumRegs, RegisterVT, VT, nullptr,
 | |
|                                               AssertOp));
 | |
|       CurReg += NumRegs;
 | |
|     }
 | |
| 
 | |
|     // For a function returning void, there is no return value. We can't create
 | |
|     // such a node, so we just return a null return value in that case. In
 | |
|     // that case, nothing will actually look at the value.
 | |
|     if (ReturnValues.empty())
 | |
|       return std::make_pair(SDValue(), CLI.Chain);
 | |
|   }
 | |
| 
 | |
|   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
 | |
|                                 CLI.DAG.getVTList(RetTys), ReturnValues);
 | |
|   return std::make_pair(Res, CLI.Chain);
 | |
| }
 | |
| 
 | |
| void TargetLowering::LowerOperationWrapper(SDNode *N,
 | |
|                                            SmallVectorImpl<SDValue> &Results,
 | |
|                                            SelectionDAG &DAG) const {
 | |
|   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
 | |
|   if (Res.getNode())
 | |
|     Results.push_back(Res);
 | |
| }
 | |
| 
 | |
| SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
 | |
|   llvm_unreachable("LowerOperation not implemented for this target!");
 | |
| }
 | |
| 
 | |
| void
 | |
| SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
 | |
|   SDValue Op = getNonRegisterValue(V);
 | |
|   assert((Op.getOpcode() != ISD::CopyFromReg ||
 | |
|           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
 | |
|          "Copy from a reg to the same reg!");
 | |
|   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
 | |
| 
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
 | |
|   SDValue Chain = DAG.getEntryNode();
 | |
| 
 | |
|   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
 | |
|                               FuncInfo.PreferredExtendType.end())
 | |
|                                  ? ISD::ANY_EXTEND
 | |
|                                  : FuncInfo.PreferredExtendType[V];
 | |
|   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
 | |
|   PendingExports.push_back(Chain);
 | |
| }
 | |
| 
 | |
| #include "llvm/CodeGen/SelectionDAGISel.h"
 | |
| 
 | |
| /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
 | |
| /// entry block, return true.  This includes arguments used by switches, since
 | |
| /// the switch may expand into multiple basic blocks.
 | |
| static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
 | |
|   // With FastISel active, we may be splitting blocks, so force creation
 | |
|   // of virtual registers for all non-dead arguments.
 | |
|   if (FastISel)
 | |
|     return A->use_empty();
 | |
| 
 | |
|   const BasicBlock *Entry = A->getParent()->begin();
 | |
|   for (const User *U : A->users())
 | |
|     if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
 | |
|       return false;  // Use not in entry block.
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void SelectionDAGISel::LowerArguments(const Function &F) {
 | |
|   SelectionDAG &DAG = SDB->DAG;
 | |
|   SDLoc dl = SDB->getCurSDLoc();
 | |
|   const DataLayout *DL = TLI->getDataLayout();
 | |
|   SmallVector<ISD::InputArg, 16> Ins;
 | |
| 
 | |
|   if (!FuncInfo->CanLowerReturn) {
 | |
|     // Put in an sret pointer parameter before all the other parameters.
 | |
|     SmallVector<EVT, 1> ValueVTs;
 | |
|     ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
 | |
| 
 | |
|     // NOTE: Assuming that a pointer will never break down to more than one VT
 | |
|     // or one register.
 | |
|     ISD::ArgFlagsTy Flags;
 | |
|     Flags.setSRet();
 | |
|     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
 | |
|     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
 | |
|                          ISD::InputArg::NoArgIndex, 0);
 | |
|     Ins.push_back(RetArg);
 | |
|   }
 | |
| 
 | |
|   // Set up the incoming argument description vector.
 | |
|   unsigned Idx = 1;
 | |
|   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
 | |
|        I != E; ++I, ++Idx) {
 | |
|     SmallVector<EVT, 4> ValueVTs;
 | |
|     ComputeValueVTs(*TLI, I->getType(), ValueVTs);
 | |
|     bool isArgValueUsed = !I->use_empty();
 | |
|     unsigned PartBase = 0;
 | |
|     Type *FinalType = I->getType();
 | |
|     if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
 | |
|       FinalType = cast<PointerType>(FinalType)->getElementType();
 | |
|     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
 | |
|         FinalType, F.getCallingConv(), F.isVarArg());
 | |
|     for (unsigned Value = 0, NumValues = ValueVTs.size();
 | |
|          Value != NumValues; ++Value) {
 | |
|       EVT VT = ValueVTs[Value];
 | |
|       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
 | |
|       ISD::ArgFlagsTy Flags;
 | |
|       unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy);
 | |
| 
 | |
|       if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
 | |
|         Flags.setZExt();
 | |
|       if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
 | |
|         Flags.setSExt();
 | |
|       if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
 | |
|         Flags.setInReg();
 | |
|       if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
 | |
|         Flags.setSRet();
 | |
|       if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
 | |
|         Flags.setByVal();
 | |
|       if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
 | |
|         Flags.setInAlloca();
 | |
|         // Set the byval flag for CCAssignFn callbacks that don't know about
 | |
|         // inalloca.  This way we can know how many bytes we should've allocated
 | |
|         // and how many bytes a callee cleanup function will pop.  If we port
 | |
|         // inalloca to more targets, we'll have to add custom inalloca handling
 | |
|         // in the various CC lowering callbacks.
 | |
|         Flags.setByVal();
 | |
|       }
 | |
|       if (Flags.isByVal() || Flags.isInAlloca()) {
 | |
|         PointerType *Ty = cast<PointerType>(I->getType());
 | |
|         Type *ElementTy = Ty->getElementType();
 | |
|         Flags.setByValSize(DL->getTypeAllocSize(ElementTy));
 | |
|         // For ByVal, alignment should be passed from FE.  BE will guess if
 | |
|         // this info is not there but there are cases it cannot get right.
 | |
|         unsigned FrameAlign;
 | |
|         if (F.getParamAlignment(Idx))
 | |
|           FrameAlign = F.getParamAlignment(Idx);
 | |
|         else
 | |
|           FrameAlign = TLI->getByValTypeAlignment(ElementTy);
 | |
|         Flags.setByValAlign(FrameAlign);
 | |
|       }
 | |
|       if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
 | |
|         Flags.setNest();
 | |
|       if (NeedsRegBlock)
 | |
|         Flags.setInConsecutiveRegs();
 | |
|       Flags.setOrigAlign(OriginalAlignment);
 | |
| 
 | |
|       MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
 | |
|       unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
 | |
|       for (unsigned i = 0; i != NumRegs; ++i) {
 | |
|         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
 | |
|                               Idx-1, PartBase+i*RegisterVT.getStoreSize());
 | |
|         if (NumRegs > 1 && i == 0)
 | |
|           MyFlags.Flags.setSplit();
 | |
|         // if it isn't first piece, alignment must be 1
 | |
|         else if (i > 0)
 | |
|           MyFlags.Flags.setOrigAlign(1);
 | |
|         Ins.push_back(MyFlags);
 | |
|       }
 | |
|       if (NeedsRegBlock && Value == NumValues - 1)
 | |
|         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
 | |
|       PartBase += VT.getStoreSize();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Call the target to set up the argument values.
 | |
|   SmallVector<SDValue, 8> InVals;
 | |
|   SDValue NewRoot = TLI->LowerFormalArguments(
 | |
|       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
 | |
| 
 | |
|   // Verify that the target's LowerFormalArguments behaved as expected.
 | |
|   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
 | |
|          "LowerFormalArguments didn't return a valid chain!");
 | |
|   assert(InVals.size() == Ins.size() &&
 | |
|          "LowerFormalArguments didn't emit the correct number of values!");
 | |
|   DEBUG({
 | |
|       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
 | |
|         assert(InVals[i].getNode() &&
 | |
|                "LowerFormalArguments emitted a null value!");
 | |
|         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
 | |
|                "LowerFormalArguments emitted a value with the wrong type!");
 | |
|       }
 | |
|     });
 | |
| 
 | |
|   // Update the DAG with the new chain value resulting from argument lowering.
 | |
|   DAG.setRoot(NewRoot);
 | |
| 
 | |
|   // Set up the argument values.
 | |
|   unsigned i = 0;
 | |
|   Idx = 1;
 | |
|   if (!FuncInfo->CanLowerReturn) {
 | |
|     // Create a virtual register for the sret pointer, and put in a copy
 | |
|     // from the sret argument into it.
 | |
|     SmallVector<EVT, 1> ValueVTs;
 | |
|     ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
 | |
|     MVT VT = ValueVTs[0].getSimpleVT();
 | |
|     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
 | |
|     ISD::NodeType AssertOp = ISD::DELETED_NODE;
 | |
|     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
 | |
|                                         RegVT, VT, nullptr, AssertOp);
 | |
| 
 | |
|     MachineFunction& MF = SDB->DAG.getMachineFunction();
 | |
|     MachineRegisterInfo& RegInfo = MF.getRegInfo();
 | |
|     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
 | |
|     FuncInfo->DemoteRegister = SRetReg;
 | |
|     NewRoot =
 | |
|         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
 | |
|     DAG.setRoot(NewRoot);
 | |
| 
 | |
|     // i indexes lowered arguments.  Bump it past the hidden sret argument.
 | |
|     // Idx indexes LLVM arguments.  Don't touch it.
 | |
|     ++i;
 | |
|   }
 | |
| 
 | |
|   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
 | |
|       ++I, ++Idx) {
 | |
|     SmallVector<SDValue, 4> ArgValues;
 | |
|     SmallVector<EVT, 4> ValueVTs;
 | |
|     ComputeValueVTs(*TLI, I->getType(), ValueVTs);
 | |
|     unsigned NumValues = ValueVTs.size();
 | |
| 
 | |
|     // If this argument is unused then remember its value. It is used to generate
 | |
|     // debugging information.
 | |
|     if (I->use_empty() && NumValues) {
 | |
|       SDB->setUnusedArgValue(I, InVals[i]);
 | |
| 
 | |
|       // Also remember any frame index for use in FastISel.
 | |
|       if (FrameIndexSDNode *FI =
 | |
|           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
 | |
|         FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
 | |
|     }
 | |
| 
 | |
|     for (unsigned Val = 0; Val != NumValues; ++Val) {
 | |
|       EVT VT = ValueVTs[Val];
 | |
|       MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
 | |
|       unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
 | |
| 
 | |
|       if (!I->use_empty()) {
 | |
|         ISD::NodeType AssertOp = ISD::DELETED_NODE;
 | |
|         if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
 | |
|           AssertOp = ISD::AssertSext;
 | |
|         else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
 | |
|           AssertOp = ISD::AssertZext;
 | |
| 
 | |
|         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
 | |
|                                              NumParts, PartVT, VT,
 | |
|                                              nullptr, AssertOp));
 | |
|       }
 | |
| 
 | |
|       i += NumParts;
 | |
|     }
 | |
| 
 | |
|     // We don't need to do anything else for unused arguments.
 | |
|     if (ArgValues.empty())
 | |
|       continue;
 | |
| 
 | |
|     // Note down frame index.
 | |
|     if (FrameIndexSDNode *FI =
 | |
|         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
 | |
|       FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
 | |
| 
 | |
|     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
 | |
|                                      SDB->getCurSDLoc());
 | |
| 
 | |
|     SDB->setValue(I, Res);
 | |
|     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
 | |
|       if (LoadSDNode *LNode =
 | |
|           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
 | |
|         if (FrameIndexSDNode *FI =
 | |
|             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
 | |
|         FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
 | |
|     }
 | |
| 
 | |
|     // If this argument is live outside of the entry block, insert a copy from
 | |
|     // wherever we got it to the vreg that other BB's will reference it as.
 | |
|     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
 | |
|       // If we can, though, try to skip creating an unnecessary vreg.
 | |
|       // FIXME: This isn't very clean... it would be nice to make this more
 | |
|       // general.  It's also subtly incompatible with the hacks FastISel
 | |
|       // uses with vregs.
 | |
|       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
 | |
|       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
 | |
|         FuncInfo->ValueMap[I] = Reg;
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
 | |
|       FuncInfo->InitializeRegForValue(I);
 | |
|       SDB->CopyToExportRegsIfNeeded(I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(i == InVals.size() && "Argument register count mismatch!");
 | |
| 
 | |
|   // Finally, if the target has anything special to do, allow it to do so.
 | |
|   EmitFunctionEntryCode();
 | |
| }
 | |
| 
 | |
| /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
 | |
| /// ensure constants are generated when needed.  Remember the virtual registers
 | |
| /// that need to be added to the Machine PHI nodes as input.  We cannot just
 | |
| /// directly add them, because expansion might result in multiple MBB's for one
 | |
| /// BB.  As such, the start of the BB might correspond to a different MBB than
 | |
| /// the end.
 | |
| ///
 | |
| void
 | |
| SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
 | |
|   const TerminatorInst *TI = LLVMBB->getTerminator();
 | |
| 
 | |
|   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
 | |
| 
 | |
|   // Check PHI nodes in successors that expect a value to be available from this
 | |
|   // block.
 | |
|   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
 | |
|     const BasicBlock *SuccBB = TI->getSuccessor(succ);
 | |
|     if (!isa<PHINode>(SuccBB->begin())) continue;
 | |
|     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
 | |
| 
 | |
|     // If this terminator has multiple identical successors (common for
 | |
|     // switches), only handle each succ once.
 | |
|     if (!SuccsHandled.insert(SuccMBB).second)
 | |
|       continue;
 | |
| 
 | |
|     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
 | |
| 
 | |
|     // At this point we know that there is a 1-1 correspondence between LLVM PHI
 | |
|     // nodes and Machine PHI nodes, but the incoming operands have not been
 | |
|     // emitted yet.
 | |
|     for (BasicBlock::const_iterator I = SuccBB->begin();
 | |
|          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
 | |
|       // Ignore dead phi's.
 | |
|       if (PN->use_empty()) continue;
 | |
| 
 | |
|       // Skip empty types
 | |
|       if (PN->getType()->isEmptyTy())
 | |
|         continue;
 | |
| 
 | |
|       unsigned Reg;
 | |
|       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
 | |
| 
 | |
|       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
 | |
|         unsigned &RegOut = ConstantsOut[C];
 | |
|         if (RegOut == 0) {
 | |
|           RegOut = FuncInfo.CreateRegs(C->getType());
 | |
|           CopyValueToVirtualRegister(C, RegOut);
 | |
|         }
 | |
|         Reg = RegOut;
 | |
|       } else {
 | |
|         DenseMap<const Value *, unsigned>::iterator I =
 | |
|           FuncInfo.ValueMap.find(PHIOp);
 | |
|         if (I != FuncInfo.ValueMap.end())
 | |
|           Reg = I->second;
 | |
|         else {
 | |
|           assert(isa<AllocaInst>(PHIOp) &&
 | |
|                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
 | |
|                  "Didn't codegen value into a register!??");
 | |
|           Reg = FuncInfo.CreateRegs(PHIOp->getType());
 | |
|           CopyValueToVirtualRegister(PHIOp, Reg);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Remember that this register needs to added to the machine PHI node as
 | |
|       // the input for this MBB.
 | |
|       SmallVector<EVT, 4> ValueVTs;
 | |
|       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|       ComputeValueVTs(TLI, PN->getType(), ValueVTs);
 | |
|       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
 | |
|         EVT VT = ValueVTs[vti];
 | |
|         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
 | |
|         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
 | |
|           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
 | |
|         Reg += NumRegisters;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ConstantsOut.clear();
 | |
| }
 | |
| 
 | |
| /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
 | |
| /// is 0.
 | |
| MachineBasicBlock *
 | |
| SelectionDAGBuilder::StackProtectorDescriptor::
 | |
| AddSuccessorMBB(const BasicBlock *BB,
 | |
|                 MachineBasicBlock *ParentMBB,
 | |
|                 bool IsLikely,
 | |
|                 MachineBasicBlock *SuccMBB) {
 | |
|   // If SuccBB has not been created yet, create it.
 | |
|   if (!SuccMBB) {
 | |
|     MachineFunction *MF = ParentMBB->getParent();
 | |
|     MachineFunction::iterator BBI = ParentMBB;
 | |
|     SuccMBB = MF->CreateMachineBasicBlock(BB);
 | |
|     MF->insert(++BBI, SuccMBB);
 | |
|   }
 | |
|   // Add it as a successor of ParentMBB.
 | |
|   ParentMBB->addSuccessor(
 | |
|       SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely));
 | |
|   return SuccMBB;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
 | |
|   MachineFunction::iterator I = MBB;
 | |
|   if (++I == FuncInfo.MF->end())
 | |
|     return nullptr;
 | |
|   return I;
 | |
| }
 | |
| 
 | |
| /// During lowering new call nodes can be created (such as memset, etc.).
 | |
| /// Those will become new roots of the current DAG, but complications arise
 | |
| /// when they are tail calls. In such cases, the call lowering will update
 | |
| /// the root, but the builder still needs to know that a tail call has been
 | |
| /// lowered in order to avoid generating an additional return.
 | |
| void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
 | |
|   // If the node is null, we do have a tail call.
 | |
|   if (MaybeTC.getNode() != nullptr)
 | |
|     DAG.setRoot(MaybeTC);
 | |
|   else
 | |
|     HasTailCall = true;
 | |
| }
 | |
| 
 | |
| bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters,
 | |
|                                   unsigned *TotalCases, unsigned First,
 | |
|                                   unsigned Last) {
 | |
|   assert(Last >= First);
 | |
|   assert(TotalCases[Last] >= TotalCases[First]);
 | |
| 
 | |
|   APInt LowCase = Clusters[First].Low->getValue();
 | |
|   APInt HighCase = Clusters[Last].High->getValue();
 | |
|   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
 | |
| 
 | |
|   // FIXME: A range of consecutive cases has 100% density, but only requires one
 | |
|   // comparison to lower. We should discriminate against such consecutive ranges
 | |
|   // in jump tables.
 | |
| 
 | |
|   uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100);
 | |
|   uint64_t Range = Diff + 1;
 | |
| 
 | |
|   uint64_t NumCases =
 | |
|       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
 | |
| 
 | |
|   assert(NumCases < UINT64_MAX / 100);
 | |
|   assert(Range >= NumCases);
 | |
| 
 | |
|   return NumCases * 100 >= Range * MinJumpTableDensity;
 | |
| }
 | |
| 
 | |
| static inline bool areJTsAllowed(const TargetLowering &TLI) {
 | |
|   return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
 | |
|          TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
 | |
| }
 | |
| 
 | |
| bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters,
 | |
|                                          unsigned First, unsigned Last,
 | |
|                                          const SwitchInst *SI,
 | |
|                                          MachineBasicBlock *DefaultMBB,
 | |
|                                          CaseCluster &JTCluster) {
 | |
|   assert(First <= Last);
 | |
| 
 | |
|   uint32_t Weight = 0;
 | |
|   unsigned NumCmps = 0;
 | |
|   std::vector<MachineBasicBlock*> Table;
 | |
|   DenseMap<MachineBasicBlock*, uint32_t> JTWeights;
 | |
|   for (unsigned I = First; I <= Last; ++I) {
 | |
|     assert(Clusters[I].Kind == CC_Range);
 | |
|     Weight += Clusters[I].Weight;
 | |
|     assert(Weight >= Clusters[I].Weight && "Weight overflow!");
 | |
|     APInt Low = Clusters[I].Low->getValue();
 | |
|     APInt High = Clusters[I].High->getValue();
 | |
|     NumCmps += (Low == High) ? 1 : 2;
 | |
|     if (I != First) {
 | |
|       // Fill the gap between this and the previous cluster.
 | |
|       APInt PreviousHigh = Clusters[I - 1].High->getValue();
 | |
|       assert(PreviousHigh.slt(Low));
 | |
|       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
 | |
|       for (uint64_t J = 0; J < Gap; J++)
 | |
|         Table.push_back(DefaultMBB);
 | |
|     }
 | |
|     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
 | |
|     for (uint64_t J = 0; J < ClusterSize; ++J)
 | |
|       Table.push_back(Clusters[I].MBB);
 | |
|     JTWeights[Clusters[I].MBB] += Clusters[I].Weight;
 | |
|   }
 | |
| 
 | |
|   unsigned NumDests = JTWeights.size();
 | |
|   if (isSuitableForBitTests(NumDests, NumCmps,
 | |
|                             Clusters[First].Low->getValue(),
 | |
|                             Clusters[Last].High->getValue())) {
 | |
|     // Clusters[First..Last] should be lowered as bit tests instead.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Create the MBB that will load from and jump through the table.
 | |
|   // Note: We create it here, but it's not inserted into the function yet.
 | |
|   MachineFunction *CurMF = FuncInfo.MF;
 | |
|   MachineBasicBlock *JumpTableMBB =
 | |
|       CurMF->CreateMachineBasicBlock(SI->getParent());
 | |
| 
 | |
|   // Add successors. Note: use table order for determinism.
 | |
|   SmallPtrSet<MachineBasicBlock *, 8> Done;
 | |
|   for (MachineBasicBlock *Succ : Table) {
 | |
|     if (Done.count(Succ))
 | |
|       continue;
 | |
|     addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]);
 | |
|     Done.insert(Succ);
 | |
|   }
 | |
| 
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
 | |
|                      ->createJumpTableIndex(Table);
 | |
| 
 | |
|   // Set up the jump table info.
 | |
|   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
 | |
|   JumpTableHeader JTH(Clusters[First].Low->getValue(),
 | |
|                       Clusters[Last].High->getValue(), SI->getCondition(),
 | |
|                       nullptr, false);
 | |
|   JTCases.emplace_back(std::move(JTH), std::move(JT));
 | |
| 
 | |
|   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
 | |
|                                      JTCases.size() - 1, Weight);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
 | |
|                                          const SwitchInst *SI,
 | |
|                                          MachineBasicBlock *DefaultMBB) {
 | |
| #ifndef NDEBUG
 | |
|   // Clusters must be non-empty, sorted, and only contain Range clusters.
 | |
|   assert(!Clusters.empty());
 | |
|   for (CaseCluster &C : Clusters)
 | |
|     assert(C.Kind == CC_Range);
 | |
|   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
 | |
|     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
 | |
| #endif
 | |
| 
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   if (!areJTsAllowed(TLI))
 | |
|     return;
 | |
| 
 | |
|   const int64_t N = Clusters.size();
 | |
|   const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries();
 | |
| 
 | |
|   // Split Clusters into minimum number of dense partitions. The algorithm uses
 | |
|   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
 | |
|   // for the Case Statement'" (1994), but builds the MinPartitions array in
 | |
|   // reverse order to make it easier to reconstruct the partitions in ascending
 | |
|   // order. In the choice between two optimal partitionings, it picks the one
 | |
|   // which yields more jump tables.
 | |
| 
 | |
|   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
 | |
|   SmallVector<unsigned, 8> MinPartitions(N);
 | |
|   // LastElement[i] is the last element of the partition starting at i.
 | |
|   SmallVector<unsigned, 8> LastElement(N);
 | |
|   // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1].
 | |
|   SmallVector<unsigned, 8> NumTables(N);
 | |
|   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
 | |
|   SmallVector<unsigned, 8> TotalCases(N);
 | |
| 
 | |
|   for (unsigned i = 0; i < N; ++i) {
 | |
|     APInt Hi = Clusters[i].High->getValue();
 | |
|     APInt Lo = Clusters[i].Low->getValue();
 | |
|     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
 | |
|     if (i != 0)
 | |
|       TotalCases[i] += TotalCases[i - 1];
 | |
|   }
 | |
| 
 | |
|   // Base case: There is only one way to partition Clusters[N-1].
 | |
|   MinPartitions[N - 1] = 1;
 | |
|   LastElement[N - 1] = N - 1;
 | |
|   assert(MinJumpTableSize > 1);
 | |
|   NumTables[N - 1] = 0;
 | |
| 
 | |
|   // Note: loop indexes are signed to avoid underflow.
 | |
|   for (int64_t i = N - 2; i >= 0; i--) {
 | |
|     // Find optimal partitioning of Clusters[i..N-1].
 | |
|     // Baseline: Put Clusters[i] into a partition on its own.
 | |
|     MinPartitions[i] = MinPartitions[i + 1] + 1;
 | |
|     LastElement[i] = i;
 | |
|     NumTables[i] = NumTables[i + 1];
 | |
| 
 | |
|     // Search for a solution that results in fewer partitions.
 | |
|     for (int64_t j = N - 1; j > i; j--) {
 | |
|       // Try building a partition from Clusters[i..j].
 | |
|       if (isDense(Clusters, &TotalCases[0], i, j)) {
 | |
|         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
 | |
|         bool IsTable = j - i + 1 >= MinJumpTableSize;
 | |
|         unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]);
 | |
| 
 | |
|         // If this j leads to fewer partitions, or same number of partitions
 | |
|         // with more lookup tables, it is a better partitioning.
 | |
|         if (NumPartitions < MinPartitions[i] ||
 | |
|             (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) {
 | |
|           MinPartitions[i] = NumPartitions;
 | |
|           LastElement[i] = j;
 | |
|           NumTables[i] = Tables;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Iterate over the partitions, replacing some with jump tables in-place.
 | |
|   unsigned DstIndex = 0;
 | |
|   for (unsigned First = 0, Last; First < N; First = Last + 1) {
 | |
|     Last = LastElement[First];
 | |
|     assert(Last >= First);
 | |
|     assert(DstIndex <= First);
 | |
|     unsigned NumClusters = Last - First + 1;
 | |
| 
 | |
|     CaseCluster JTCluster;
 | |
|     if (NumClusters >= MinJumpTableSize &&
 | |
|         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
 | |
|       Clusters[DstIndex++] = JTCluster;
 | |
|     } else {
 | |
|       for (unsigned I = First; I <= Last; ++I)
 | |
|         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
 | |
|     }
 | |
|   }
 | |
|   Clusters.resize(DstIndex);
 | |
| }
 | |
| 
 | |
| bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) {
 | |
|   // FIXME: Using the pointer type doesn't seem ideal.
 | |
|   uint64_t BW = DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits();
 | |
|   uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
 | |
|   return Range <= BW;
 | |
| }
 | |
| 
 | |
| bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests,
 | |
|                                                 unsigned NumCmps,
 | |
|                                                 const APInt &Low,
 | |
|                                                 const APInt &High) {
 | |
|   // FIXME: I don't think NumCmps is the correct metric: a single case and a
 | |
|   // range of cases both require only one branch to lower. Just looking at the
 | |
|   // number of clusters and destinations should be enough to decide whether to
 | |
|   // build bit tests.
 | |
| 
 | |
|   // To lower a range with bit tests, the range must fit the bitwidth of a
 | |
|   // machine word.
 | |
|   if (!rangeFitsInWord(Low, High))
 | |
|     return false;
 | |
| 
 | |
|   // Decide whether it's profitable to lower this range with bit tests. Each
 | |
|   // destination requires a bit test and branch, and there is an overall range
 | |
|   // check branch. For a small number of clusters, separate comparisons might be
 | |
|   // cheaper, and for many destinations, splitting the range might be better.
 | |
|   return (NumDests == 1 && NumCmps >= 3) ||
 | |
|          (NumDests == 2 && NumCmps >= 5) ||
 | |
|          (NumDests == 3 && NumCmps >= 6);
 | |
| }
 | |
| 
 | |
| bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
 | |
|                                         unsigned First, unsigned Last,
 | |
|                                         const SwitchInst *SI,
 | |
|                                         CaseCluster &BTCluster) {
 | |
|   assert(First <= Last);
 | |
|   if (First == Last)
 | |
|     return false;
 | |
| 
 | |
|   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
 | |
|   unsigned NumCmps = 0;
 | |
|   for (int64_t I = First; I <= Last; ++I) {
 | |
|     assert(Clusters[I].Kind == CC_Range);
 | |
|     Dests.set(Clusters[I].MBB->getNumber());
 | |
|     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
 | |
|   }
 | |
|   unsigned NumDests = Dests.count();
 | |
| 
 | |
|   APInt Low = Clusters[First].Low->getValue();
 | |
|   APInt High = Clusters[Last].High->getValue();
 | |
|   assert(Low.slt(High));
 | |
| 
 | |
|   if (!isSuitableForBitTests(NumDests, NumCmps, Low, High))
 | |
|     return false;
 | |
| 
 | |
|   APInt LowBound;
 | |
|   APInt CmpRange;
 | |
| 
 | |
|   const int BitWidth =
 | |
|       DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits();
 | |
|   assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!");
 | |
| 
 | |
|   if (Low.isNonNegative() && High.slt(BitWidth)) {
 | |
|     // Optimize the case where all the case values fit in a
 | |
|     // word without having to subtract minValue. In this case,
 | |
|     // we can optimize away the subtraction.
 | |
|     LowBound = APInt::getNullValue(Low.getBitWidth());
 | |
|     CmpRange = High;
 | |
|   } else {
 | |
|     LowBound = Low;
 | |
|     CmpRange = High - Low;
 | |
|   }
 | |
| 
 | |
|   CaseBitsVector CBV;
 | |
|   uint32_t TotalWeight = 0;
 | |
|   for (unsigned i = First; i <= Last; ++i) {
 | |
|     // Find the CaseBits for this destination.
 | |
|     unsigned j;
 | |
|     for (j = 0; j < CBV.size(); ++j)
 | |
|       if (CBV[j].BB == Clusters[i].MBB)
 | |
|         break;
 | |
|     if (j == CBV.size())
 | |
|       CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0));
 | |
|     CaseBits *CB = &CBV[j];
 | |
| 
 | |
|     // Update Mask, Bits and ExtraWeight.
 | |
|     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
 | |
|     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
 | |
|     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
 | |
|     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
 | |
|     CB->Bits += Hi - Lo + 1;
 | |
|     CB->ExtraWeight += Clusters[i].Weight;
 | |
|     TotalWeight += Clusters[i].Weight;
 | |
|     assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!");
 | |
|   }
 | |
| 
 | |
|   BitTestInfo BTI;
 | |
|   std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
 | |
|     // Sort by weight first, number of bits second.
 | |
|     if (a.ExtraWeight != b.ExtraWeight)
 | |
|       return a.ExtraWeight > b.ExtraWeight;
 | |
|     return a.Bits > b.Bits;
 | |
|   });
 | |
| 
 | |
|   for (auto &CB : CBV) {
 | |
|     MachineBasicBlock *BitTestBB =
 | |
|         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
 | |
|     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight));
 | |
|   }
 | |
|   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
 | |
|                             SI->getCondition(), -1U, MVT::Other, false, nullptr,
 | |
|                             nullptr, std::move(BTI));
 | |
| 
 | |
|   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
 | |
|                                     BitTestCases.size() - 1, TotalWeight);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
 | |
|                                               const SwitchInst *SI) {
 | |
| // Partition Clusters into as few subsets as possible, where each subset has a
 | |
| // range that fits in a machine word and has <= 3 unique destinations.
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // Clusters must be sorted and contain Range or JumpTable clusters.
 | |
|   assert(!Clusters.empty());
 | |
|   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
 | |
|   for (const CaseCluster &C : Clusters)
 | |
|     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
 | |
|   for (unsigned i = 1; i < Clusters.size(); ++i)
 | |
|     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
 | |
| #endif
 | |
| 
 | |
|   // If target does not have legal shift left, do not emit bit tests at all.
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   EVT PTy = TLI.getPointerTy();
 | |
|   if (!TLI.isOperationLegal(ISD::SHL, PTy))
 | |
|     return;
 | |
| 
 | |
|   int BitWidth = PTy.getSizeInBits();
 | |
|   const int64_t N = Clusters.size();
 | |
| 
 | |
|   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
 | |
|   SmallVector<unsigned, 8> MinPartitions(N);
 | |
|   // LastElement[i] is the last element of the partition starting at i.
 | |
|   SmallVector<unsigned, 8> LastElement(N);
 | |
| 
 | |
|   // FIXME: This might not be the best algorithm for finding bit test clusters.
 | |
| 
 | |
|   // Base case: There is only one way to partition Clusters[N-1].
 | |
|   MinPartitions[N - 1] = 1;
 | |
|   LastElement[N - 1] = N - 1;
 | |
| 
 | |
|   // Note: loop indexes are signed to avoid underflow.
 | |
|   for (int64_t i = N - 2; i >= 0; --i) {
 | |
|     // Find optimal partitioning of Clusters[i..N-1].
 | |
|     // Baseline: Put Clusters[i] into a partition on its own.
 | |
|     MinPartitions[i] = MinPartitions[i + 1] + 1;
 | |
|     LastElement[i] = i;
 | |
| 
 | |
|     // Search for a solution that results in fewer partitions.
 | |
|     // Note: the search is limited by BitWidth, reducing time complexity.
 | |
|     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
 | |
|       // Try building a partition from Clusters[i..j].
 | |
| 
 | |
|       // Check the range.
 | |
|       if (!rangeFitsInWord(Clusters[i].Low->getValue(),
 | |
|                            Clusters[j].High->getValue()))
 | |
|         continue;
 | |
| 
 | |
|       // Check nbr of destinations and cluster types.
 | |
|       // FIXME: This works, but doesn't seem very efficient.
 | |
|       bool RangesOnly = true;
 | |
|       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
 | |
|       for (int64_t k = i; k <= j; k++) {
 | |
|         if (Clusters[k].Kind != CC_Range) {
 | |
|           RangesOnly = false;
 | |
|           break;
 | |
|         }
 | |
|         Dests.set(Clusters[k].MBB->getNumber());
 | |
|       }
 | |
|       if (!RangesOnly || Dests.count() > 3)
 | |
|         break;
 | |
| 
 | |
|       // Check if it's a better partition.
 | |
|       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
 | |
|       if (NumPartitions < MinPartitions[i]) {
 | |
|         // Found a better partition.
 | |
|         MinPartitions[i] = NumPartitions;
 | |
|         LastElement[i] = j;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Iterate over the partitions, replacing with bit-test clusters in-place.
 | |
|   unsigned DstIndex = 0;
 | |
|   for (unsigned First = 0, Last; First < N; First = Last + 1) {
 | |
|     Last = LastElement[First];
 | |
|     assert(First <= Last);
 | |
|     assert(DstIndex <= First);
 | |
| 
 | |
|     CaseCluster BitTestCluster;
 | |
|     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
 | |
|       Clusters[DstIndex++] = BitTestCluster;
 | |
|     } else {
 | |
|       size_t NumClusters = Last - First + 1;
 | |
|       std::memmove(&Clusters[DstIndex], &Clusters[First],
 | |
|                    sizeof(Clusters[0]) * NumClusters);
 | |
|       DstIndex += NumClusters;
 | |
|     }
 | |
|   }
 | |
|   Clusters.resize(DstIndex);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
 | |
|                                         MachineBasicBlock *SwitchMBB,
 | |
|                                         MachineBasicBlock *DefaultMBB) {
 | |
|   MachineFunction *CurMF = FuncInfo.MF;
 | |
|   MachineBasicBlock *NextMBB = nullptr;
 | |
|   MachineFunction::iterator BBI = W.MBB;
 | |
|   if (++BBI != FuncInfo.MF->end())
 | |
|     NextMBB = BBI;
 | |
| 
 | |
|   unsigned Size = W.LastCluster - W.FirstCluster + 1;
 | |
| 
 | |
|   BranchProbabilityInfo *BPI = FuncInfo.BPI;
 | |
| 
 | |
|   if (Size == 2 && W.MBB == SwitchMBB) {
 | |
|     // If any two of the cases has the same destination, and if one value
 | |
|     // is the same as the other, but has one bit unset that the other has set,
 | |
|     // use bit manipulation to do two compares at once.  For example:
 | |
|     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
 | |
|     // TODO: This could be extended to merge any 2 cases in switches with 3
 | |
|     // cases.
 | |
|     // TODO: Handle cases where W.CaseBB != SwitchBB.
 | |
|     CaseCluster &Small = *W.FirstCluster;
 | |
|     CaseCluster &Big = *W.LastCluster;
 | |
| 
 | |
|     if (Small.Low == Small.High && Big.Low == Big.High &&
 | |
|         Small.MBB == Big.MBB) {
 | |
|       const APInt &SmallValue = Small.Low->getValue();
 | |
|       const APInt &BigValue = Big.Low->getValue();
 | |
| 
 | |
|       // Check that there is only one bit different.
 | |
|       if ((BigValue ^ SmallValue).isPowerOf2()) {
 | |
|         // Isolate the common bit.
 | |
|         APInt CommonBit = BigValue & ~SmallValue;
 | |
|         assert((SmallValue | CommonBit) == BigValue &&
 | |
|                CommonBit.countPopulation() == 1 && "Not a common bit?");
 | |
| 
 | |
|         SDValue CondLHS = getValue(Cond);
 | |
|         EVT VT = CondLHS.getValueType();
 | |
|         SDLoc DL = getCurSDLoc();
 | |
| 
 | |
|         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
 | |
|                                  DAG.getConstant(CommonBit, DL, VT));
 | |
|         SDValue Cond = DAG.getSetCC(DL, MVT::i1, Or,
 | |
|                                     DAG.getConstant(BigValue, DL, VT),
 | |
|                                     ISD::SETEQ);
 | |
| 
 | |
|         // Update successor info.
 | |
|         // Both Small and Big will jump to Small.BB, so we sum up the weights.
 | |
|         addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight);
 | |
|         addSuccessorWithWeight(
 | |
|             SwitchMBB, DefaultMBB,
 | |
|             // The default destination is the first successor in IR.
 | |
|             BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0)
 | |
|                 : 0);
 | |
| 
 | |
|         // Insert the true branch.
 | |
|         SDValue BrCond =
 | |
|             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
 | |
|                         DAG.getBasicBlock(Small.MBB));
 | |
|         // Insert the false branch.
 | |
|         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
 | |
|                              DAG.getBasicBlock(DefaultMBB));
 | |
| 
 | |
|         DAG.setRoot(BrCond);
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (TM.getOptLevel() != CodeGenOpt::None) {
 | |
|     // Order cases by weight so the most likely case will be checked first.
 | |
|     std::sort(W.FirstCluster, W.LastCluster + 1,
 | |
|               [](const CaseCluster &a, const CaseCluster &b) {
 | |
|       return a.Weight > b.Weight;
 | |
|     });
 | |
| 
 | |
|     // Rearrange the case blocks so that the last one falls through if possible
 | |
|     // without without changing the order of weights.
 | |
|     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
 | |
|       --I;
 | |
|       if (I->Weight > W.LastCluster->Weight)
 | |
|         break;
 | |
|       if (I->Kind == CC_Range && I->MBB == NextMBB) {
 | |
|         std::swap(*I, *W.LastCluster);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Compute total weight.
 | |
|   uint32_t UnhandledWeights = 0;
 | |
|   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) {
 | |
|     UnhandledWeights += I->Weight;
 | |
|     assert(UnhandledWeights >= I->Weight && "Weight overflow!");
 | |
|   }
 | |
| 
 | |
|   MachineBasicBlock *CurMBB = W.MBB;
 | |
|   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
 | |
|     MachineBasicBlock *Fallthrough;
 | |
|     if (I == W.LastCluster) {
 | |
|       // For the last cluster, fall through to the default destination.
 | |
|       Fallthrough = DefaultMBB;
 | |
|     } else {
 | |
|       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
 | |
|       CurMF->insert(BBI, Fallthrough);
 | |
|       // Put Cond in a virtual register to make it available from the new blocks.
 | |
|       ExportFromCurrentBlock(Cond);
 | |
|     }
 | |
| 
 | |
|     switch (I->Kind) {
 | |
|       case CC_JumpTable: {
 | |
|         // FIXME: Optimize away range check based on pivot comparisons.
 | |
|         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
 | |
|         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
 | |
| 
 | |
|         // The jump block hasn't been inserted yet; insert it here.
 | |
|         MachineBasicBlock *JumpMBB = JT->MBB;
 | |
|         CurMF->insert(BBI, JumpMBB);
 | |
|         addSuccessorWithWeight(CurMBB, Fallthrough);
 | |
|         addSuccessorWithWeight(CurMBB, JumpMBB);
 | |
| 
 | |
|         // The jump table header will be inserted in our current block, do the
 | |
|         // range check, and fall through to our fallthrough block.
 | |
|         JTH->HeaderBB = CurMBB;
 | |
|         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
 | |
| 
 | |
|         // If we're in the right place, emit the jump table header right now.
 | |
|         if (CurMBB == SwitchMBB) {
 | |
|           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
 | |
|           JTH->Emitted = true;
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       case CC_BitTests: {
 | |
|         // FIXME: Optimize away range check based on pivot comparisons.
 | |
|         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
 | |
| 
 | |
|         // The bit test blocks haven't been inserted yet; insert them here.
 | |
|         for (BitTestCase &BTC : BTB->Cases)
 | |
|           CurMF->insert(BBI, BTC.ThisBB);
 | |
| 
 | |
|         // Fill in fields of the BitTestBlock.
 | |
|         BTB->Parent = CurMBB;
 | |
|         BTB->Default = Fallthrough;
 | |
| 
 | |
|         // If we're in the right place, emit the bit test header header right now.
 | |
|         if (CurMBB ==SwitchMBB) {
 | |
|           visitBitTestHeader(*BTB, SwitchMBB);
 | |
|           BTB->Emitted = true;
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       case CC_Range: {
 | |
|         const Value *RHS, *LHS, *MHS;
 | |
|         ISD::CondCode CC;
 | |
|         if (I->Low == I->High) {
 | |
|           // Check Cond == I->Low.
 | |
|           CC = ISD::SETEQ;
 | |
|           LHS = Cond;
 | |
|           RHS=I->Low;
 | |
|           MHS = nullptr;
 | |
|         } else {
 | |
|           // Check I->Low <= Cond <= I->High.
 | |
|           CC = ISD::SETLE;
 | |
|           LHS = I->Low;
 | |
|           MHS = Cond;
 | |
|           RHS = I->High;
 | |
|         }
 | |
| 
 | |
|         // The false weight is the sum of all unhandled cases.
 | |
|         UnhandledWeights -= I->Weight;
 | |
|         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight,
 | |
|                      UnhandledWeights);
 | |
| 
 | |
|         if (CurMBB == SwitchMBB)
 | |
|           visitSwitchCase(CB, SwitchMBB);
 | |
|         else
 | |
|           SwitchCases.push_back(CB);
 | |
| 
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     CurMBB = Fallthrough;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
 | |
|                                         const SwitchWorkListItem &W,
 | |
|                                         Value *Cond,
 | |
|                                         MachineBasicBlock *SwitchMBB) {
 | |
|   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
 | |
|          "Clusters not sorted?");
 | |
| 
 | |
|   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
 | |
| 
 | |
|   // Balance the tree based on branch weights to create a near-optimal (in terms
 | |
|   // of search time given key frequency) binary search tree. See e.g. Kurt
 | |
|   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
 | |
|   CaseClusterIt LastLeft = W.FirstCluster;
 | |
|   CaseClusterIt FirstRight = W.LastCluster;
 | |
|   uint32_t LeftWeight = LastLeft->Weight;
 | |
|   uint32_t RightWeight = FirstRight->Weight;
 | |
| 
 | |
|   // Move LastLeft and FirstRight towards each other from opposite directions to
 | |
|   // find a partitioning of the clusters which balances the weight on both
 | |
|   // sides. If LeftWeight and RightWeight are equal, alternate which side is
 | |
|   // taken to ensure 0-weight nodes are distributed evenly.
 | |
|   unsigned I = 0;
 | |
|   while (LastLeft + 1 < FirstRight) {
 | |
|     if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1)))
 | |
|       LeftWeight += (++LastLeft)->Weight;
 | |
|     else
 | |
|       RightWeight += (--FirstRight)->Weight;
 | |
|     I++;
 | |
|   }
 | |
|   assert(LastLeft + 1 == FirstRight);
 | |
|   assert(LastLeft >= W.FirstCluster);
 | |
|   assert(FirstRight <= W.LastCluster);
 | |
| 
 | |
|   // Use the first element on the right as pivot since we will make less-than
 | |
|   // comparisons against it.
 | |
|   CaseClusterIt PivotCluster = FirstRight;
 | |
|   assert(PivotCluster > W.FirstCluster);
 | |
|   assert(PivotCluster <= W.LastCluster);
 | |
| 
 | |
|   CaseClusterIt FirstLeft = W.FirstCluster;
 | |
|   CaseClusterIt LastRight = W.LastCluster;
 | |
| 
 | |
|   const ConstantInt *Pivot = PivotCluster->Low;
 | |
| 
 | |
|   // New blocks will be inserted immediately after the current one.
 | |
|   MachineFunction::iterator BBI = W.MBB;
 | |
|   ++BBI;
 | |
| 
 | |
|   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
 | |
|   // we can branch to its destination directly if it's squeezed exactly in
 | |
|   // between the known lower bound and Pivot - 1.
 | |
|   MachineBasicBlock *LeftMBB;
 | |
|   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
 | |
|       FirstLeft->Low == W.GE &&
 | |
|       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
 | |
|     LeftMBB = FirstLeft->MBB;
 | |
|   } else {
 | |
|     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
 | |
|     FuncInfo.MF->insert(BBI, LeftMBB);
 | |
|     WorkList.push_back({LeftMBB, FirstLeft, LastLeft, W.GE, Pivot});
 | |
|     // Put Cond in a virtual register to make it available from the new blocks.
 | |
|     ExportFromCurrentBlock(Cond);
 | |
|   }
 | |
| 
 | |
|   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
 | |
|   // single cluster, RHS.Low == Pivot, and we can branch to its destination
 | |
|   // directly if RHS.High equals the current upper bound.
 | |
|   MachineBasicBlock *RightMBB;
 | |
|   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
 | |
|       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
 | |
|     RightMBB = FirstRight->MBB;
 | |
|   } else {
 | |
|     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
 | |
|     FuncInfo.MF->insert(BBI, RightMBB);
 | |
|     WorkList.push_back({RightMBB, FirstRight, LastRight, Pivot, W.LT});
 | |
|     // Put Cond in a virtual register to make it available from the new blocks.
 | |
|     ExportFromCurrentBlock(Cond);
 | |
|   }
 | |
| 
 | |
|   // Create the CaseBlock record that will be used to lower the branch.
 | |
|   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
 | |
|                LeftWeight, RightWeight);
 | |
| 
 | |
|   if (W.MBB == SwitchMBB)
 | |
|     visitSwitchCase(CB, SwitchMBB);
 | |
|   else
 | |
|     SwitchCases.push_back(CB);
 | |
| }
 | |
| 
 | |
| void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
 | |
|   // Extract cases from the switch.
 | |
|   BranchProbabilityInfo *BPI = FuncInfo.BPI;
 | |
|   CaseClusterVector Clusters;
 | |
|   Clusters.reserve(SI.getNumCases());
 | |
|   for (auto I : SI.cases()) {
 | |
|     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
 | |
|     const ConstantInt *CaseVal = I.getCaseValue();
 | |
|     uint32_t Weight =
 | |
|         BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0;
 | |
|     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight));
 | |
|   }
 | |
| 
 | |
|   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
 | |
| 
 | |
|   // Cluster adjacent cases with the same destination. We do this at all
 | |
|   // optimization levels because it's cheap to do and will make codegen faster
 | |
|   // if there are many clusters.
 | |
|   sortAndRangeify(Clusters);
 | |
| 
 | |
|   if (TM.getOptLevel() != CodeGenOpt::None) {
 | |
|     // Replace an unreachable default with the most popular destination.
 | |
|     // FIXME: Exploit unreachable default more aggressively.
 | |
|     bool UnreachableDefault =
 | |
|         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
 | |
|     if (UnreachableDefault && !Clusters.empty()) {
 | |
|       DenseMap<const BasicBlock *, unsigned> Popularity;
 | |
|       unsigned MaxPop = 0;
 | |
|       const BasicBlock *MaxBB = nullptr;
 | |
|       for (auto I : SI.cases()) {
 | |
|         const BasicBlock *BB = I.getCaseSuccessor();
 | |
|         if (++Popularity[BB] > MaxPop) {
 | |
|           MaxPop = Popularity[BB];
 | |
|           MaxBB = BB;
 | |
|         }
 | |
|       }
 | |
|       // Set new default.
 | |
|       assert(MaxPop > 0 && MaxBB);
 | |
|       DefaultMBB = FuncInfo.MBBMap[MaxBB];
 | |
| 
 | |
|       // Remove cases that were pointing to the destination that is now the
 | |
|       // default.
 | |
|       CaseClusterVector New;
 | |
|       New.reserve(Clusters.size());
 | |
|       for (CaseCluster &CC : Clusters) {
 | |
|         if (CC.MBB != DefaultMBB)
 | |
|           New.push_back(CC);
 | |
|       }
 | |
|       Clusters = std::move(New);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If there is only the default destination, jump there directly.
 | |
|   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
 | |
|   if (Clusters.empty()) {
 | |
|     SwitchMBB->addSuccessor(DefaultMBB);
 | |
|     if (DefaultMBB != NextBlock(SwitchMBB)) {
 | |
|       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
 | |
|                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (TM.getOptLevel() != CodeGenOpt::None) {
 | |
|     findJumpTables(Clusters, &SI, DefaultMBB);
 | |
|     findBitTestClusters(Clusters, &SI);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   DEBUG({
 | |
|     dbgs() << "Case clusters: ";
 | |
|     for (const CaseCluster &C : Clusters) {
 | |
|       if (C.Kind == CC_JumpTable) dbgs() << "JT:";
 | |
|       if (C.Kind == CC_BitTests) dbgs() << "BT:";
 | |
| 
 | |
|       C.Low->getValue().print(dbgs(), true);
 | |
|       if (C.Low != C.High) {
 | |
|         dbgs() << '-';
 | |
|         C.High->getValue().print(dbgs(), true);
 | |
|       }
 | |
|       dbgs() << ' ';
 | |
|     }
 | |
|     dbgs() << '\n';
 | |
|   });
 | |
| 
 | |
|   assert(!Clusters.empty());
 | |
|   SwitchWorkList WorkList;
 | |
|   CaseClusterIt First = Clusters.begin();
 | |
|   CaseClusterIt Last = Clusters.end() - 1;
 | |
|   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr});
 | |
| 
 | |
|   while (!WorkList.empty()) {
 | |
|     SwitchWorkListItem W = WorkList.back();
 | |
|     WorkList.pop_back();
 | |
|     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
 | |
| 
 | |
|     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) {
 | |
|       // For optimized builds, lower large range as a balanced binary tree.
 | |
|       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
 | |
|   }
 | |
| }
 |