mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237624 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1624 lines
		
	
	
		
			60 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1624 lines
		
	
	
		
			60 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- DataFlowSanitizer.cpp - dynamic data flow analysis ----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// \file
 | |
| /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow
 | |
| /// analysis.
 | |
| ///
 | |
| /// Unlike other Sanitizer tools, this tool is not designed to detect a specific
 | |
| /// class of bugs on its own.  Instead, it provides a generic dynamic data flow
 | |
| /// analysis framework to be used by clients to help detect application-specific
 | |
| /// issues within their own code.
 | |
| ///
 | |
| /// The analysis is based on automatic propagation of data flow labels (also
 | |
| /// known as taint labels) through a program as it performs computation.  Each
 | |
| /// byte of application memory is backed by two bytes of shadow memory which
 | |
| /// hold the label.  On Linux/x86_64, memory is laid out as follows:
 | |
| ///
 | |
| /// +--------------------+ 0x800000000000 (top of memory)
 | |
| /// | application memory |
 | |
| /// +--------------------+ 0x700000008000 (kAppAddr)
 | |
| /// |                    |
 | |
| /// |       unused       |
 | |
| /// |                    |
 | |
| /// +--------------------+ 0x200200000000 (kUnusedAddr)
 | |
| /// |    union table     |
 | |
| /// +--------------------+ 0x200000000000 (kUnionTableAddr)
 | |
| /// |   shadow memory    |
 | |
| /// +--------------------+ 0x000000010000 (kShadowAddr)
 | |
| /// | reserved by kernel |
 | |
| /// +--------------------+ 0x000000000000
 | |
| ///
 | |
| /// To derive a shadow memory address from an application memory address,
 | |
| /// bits 44-46 are cleared to bring the address into the range
 | |
| /// [0x000000008000,0x100000000000).  Then the address is shifted left by 1 to
 | |
| /// account for the double byte representation of shadow labels and move the
 | |
| /// address into the shadow memory range.  See the function
 | |
| /// DataFlowSanitizer::getShadowAddress below.
 | |
| ///
 | |
| /// For more information, please refer to the design document:
 | |
| /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html
 | |
| 
 | |
| #include "llvm/Transforms/Instrumentation.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/ADT/Triple.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/DebugInfo.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/InlineAsm.h"
 | |
| #include "llvm/IR/InstVisitor.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/MDBuilder.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/SpecialCaseList.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include <algorithm>
 | |
| #include <iterator>
 | |
| #include <set>
 | |
| #include <utility>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| // The -dfsan-preserve-alignment flag controls whether this pass assumes that
 | |
| // alignment requirements provided by the input IR are correct.  For example,
 | |
| // if the input IR contains a load with alignment 8, this flag will cause
 | |
| // the shadow load to have alignment 16.  This flag is disabled by default as
 | |
| // we have unfortunately encountered too much code (including Clang itself;
 | |
| // see PR14291) which performs misaligned access.
 | |
| static cl::opt<bool> ClPreserveAlignment(
 | |
|     "dfsan-preserve-alignment",
 | |
|     cl::desc("respect alignment requirements provided by input IR"), cl::Hidden,
 | |
|     cl::init(false));
 | |
| 
 | |
| // The ABI list files control how shadow parameters are passed. The pass treats
 | |
| // every function labelled "uninstrumented" in the ABI list file as conforming
 | |
| // to the "native" (i.e. unsanitized) ABI.  Unless the ABI list contains
 | |
| // additional annotations for those functions, a call to one of those functions
 | |
| // will produce a warning message, as the labelling behaviour of the function is
 | |
| // unknown.  The other supported annotations are "functional" and "discard",
 | |
| // which are described below under DataFlowSanitizer::WrapperKind.
 | |
| static cl::list<std::string> ClABIListFiles(
 | |
|     "dfsan-abilist",
 | |
|     cl::desc("File listing native ABI functions and how the pass treats them"),
 | |
|     cl::Hidden);
 | |
| 
 | |
| // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented
 | |
| // functions (see DataFlowSanitizer::InstrumentedABI below).
 | |
| static cl::opt<bool> ClArgsABI(
 | |
|     "dfsan-args-abi",
 | |
|     cl::desc("Use the argument ABI rather than the TLS ABI"),
 | |
|     cl::Hidden);
 | |
| 
 | |
| // Controls whether the pass includes or ignores the labels of pointers in load
 | |
| // instructions.
 | |
| static cl::opt<bool> ClCombinePointerLabelsOnLoad(
 | |
|     "dfsan-combine-pointer-labels-on-load",
 | |
|     cl::desc("Combine the label of the pointer with the label of the data when "
 | |
|              "loading from memory."),
 | |
|     cl::Hidden, cl::init(true));
 | |
| 
 | |
| // Controls whether the pass includes or ignores the labels of pointers in
 | |
| // stores instructions.
 | |
| static cl::opt<bool> ClCombinePointerLabelsOnStore(
 | |
|     "dfsan-combine-pointer-labels-on-store",
 | |
|     cl::desc("Combine the label of the pointer with the label of the data when "
 | |
|              "storing in memory."),
 | |
|     cl::Hidden, cl::init(false));
 | |
| 
 | |
| static cl::opt<bool> ClDebugNonzeroLabels(
 | |
|     "dfsan-debug-nonzero-labels",
 | |
|     cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, "
 | |
|              "load or return with a nonzero label"),
 | |
|     cl::Hidden);
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| StringRef GetGlobalTypeString(const GlobalValue &G) {
 | |
|   // Types of GlobalVariables are always pointer types.
 | |
|   Type *GType = G.getType()->getElementType();
 | |
|   // For now we support blacklisting struct types only.
 | |
|   if (StructType *SGType = dyn_cast<StructType>(GType)) {
 | |
|     if (!SGType->isLiteral())
 | |
|       return SGType->getName();
 | |
|   }
 | |
|   return "<unknown type>";
 | |
| }
 | |
| 
 | |
| class DFSanABIList {
 | |
|   std::unique_ptr<SpecialCaseList> SCL;
 | |
| 
 | |
|  public:
 | |
|   DFSanABIList() {}
 | |
| 
 | |
|   void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); }
 | |
| 
 | |
|   /// Returns whether either this function or its source file are listed in the
 | |
|   /// given category.
 | |
|   bool isIn(const Function &F, StringRef Category) const {
 | |
|     return isIn(*F.getParent(), Category) ||
 | |
|            SCL->inSection("fun", F.getName(), Category);
 | |
|   }
 | |
| 
 | |
|   /// Returns whether this global alias is listed in the given category.
 | |
|   ///
 | |
|   /// If GA aliases a function, the alias's name is matched as a function name
 | |
|   /// would be.  Similarly, aliases of globals are matched like globals.
 | |
|   bool isIn(const GlobalAlias &GA, StringRef Category) const {
 | |
|     if (isIn(*GA.getParent(), Category))
 | |
|       return true;
 | |
| 
 | |
|     if (isa<FunctionType>(GA.getType()->getElementType()))
 | |
|       return SCL->inSection("fun", GA.getName(), Category);
 | |
| 
 | |
|     return SCL->inSection("global", GA.getName(), Category) ||
 | |
|            SCL->inSection("type", GetGlobalTypeString(GA), Category);
 | |
|   }
 | |
| 
 | |
|   /// Returns whether this module is listed in the given category.
 | |
|   bool isIn(const Module &M, StringRef Category) const {
 | |
|     return SCL->inSection("src", M.getModuleIdentifier(), Category);
 | |
|   }
 | |
| };
 | |
| 
 | |
| class DataFlowSanitizer : public ModulePass {
 | |
|   friend struct DFSanFunction;
 | |
|   friend class DFSanVisitor;
 | |
| 
 | |
|   enum {
 | |
|     ShadowWidth = 16
 | |
|   };
 | |
| 
 | |
|   /// Which ABI should be used for instrumented functions?
 | |
|   enum InstrumentedABI {
 | |
|     /// Argument and return value labels are passed through additional
 | |
|     /// arguments and by modifying the return type.
 | |
|     IA_Args,
 | |
| 
 | |
|     /// Argument and return value labels are passed through TLS variables
 | |
|     /// __dfsan_arg_tls and __dfsan_retval_tls.
 | |
|     IA_TLS
 | |
|   };
 | |
| 
 | |
|   /// How should calls to uninstrumented functions be handled?
 | |
|   enum WrapperKind {
 | |
|     /// This function is present in an uninstrumented form but we don't know
 | |
|     /// how it should be handled.  Print a warning and call the function anyway.
 | |
|     /// Don't label the return value.
 | |
|     WK_Warning,
 | |
| 
 | |
|     /// This function does not write to (user-accessible) memory, and its return
 | |
|     /// value is unlabelled.
 | |
|     WK_Discard,
 | |
| 
 | |
|     /// This function does not write to (user-accessible) memory, and the label
 | |
|     /// of its return value is the union of the label of its arguments.
 | |
|     WK_Functional,
 | |
| 
 | |
|     /// Instead of calling the function, a custom wrapper __dfsw_F is called,
 | |
|     /// where F is the name of the function.  This function may wrap the
 | |
|     /// original function or provide its own implementation.  This is similar to
 | |
|     /// the IA_Args ABI, except that IA_Args uses a struct return type to
 | |
|     /// pass the return value shadow in a register, while WK_Custom uses an
 | |
|     /// extra pointer argument to return the shadow.  This allows the wrapped
 | |
|     /// form of the function type to be expressed in C.
 | |
|     WK_Custom
 | |
|   };
 | |
| 
 | |
|   Module *Mod;
 | |
|   LLVMContext *Ctx;
 | |
|   IntegerType *ShadowTy;
 | |
|   PointerType *ShadowPtrTy;
 | |
|   IntegerType *IntptrTy;
 | |
|   ConstantInt *ZeroShadow;
 | |
|   ConstantInt *ShadowPtrMask;
 | |
|   ConstantInt *ShadowPtrMul;
 | |
|   Constant *ArgTLS;
 | |
|   Constant *RetvalTLS;
 | |
|   void *(*GetArgTLSPtr)();
 | |
|   void *(*GetRetvalTLSPtr)();
 | |
|   Constant *GetArgTLS;
 | |
|   Constant *GetRetvalTLS;
 | |
|   FunctionType *DFSanUnionFnTy;
 | |
|   FunctionType *DFSanUnionLoadFnTy;
 | |
|   FunctionType *DFSanUnimplementedFnTy;
 | |
|   FunctionType *DFSanSetLabelFnTy;
 | |
|   FunctionType *DFSanNonzeroLabelFnTy;
 | |
|   FunctionType *DFSanVarargWrapperFnTy;
 | |
|   Constant *DFSanUnionFn;
 | |
|   Constant *DFSanCheckedUnionFn;
 | |
|   Constant *DFSanUnionLoadFn;
 | |
|   Constant *DFSanUnimplementedFn;
 | |
|   Constant *DFSanSetLabelFn;
 | |
|   Constant *DFSanNonzeroLabelFn;
 | |
|   Constant *DFSanVarargWrapperFn;
 | |
|   MDNode *ColdCallWeights;
 | |
|   DFSanABIList ABIList;
 | |
|   DenseMap<Value *, Function *> UnwrappedFnMap;
 | |
|   AttributeSet ReadOnlyNoneAttrs;
 | |
|   DenseMap<const Function *, DISubprogram *> FunctionDIs;
 | |
| 
 | |
|   Value *getShadowAddress(Value *Addr, Instruction *Pos);
 | |
|   bool isInstrumented(const Function *F);
 | |
|   bool isInstrumented(const GlobalAlias *GA);
 | |
|   FunctionType *getArgsFunctionType(FunctionType *T);
 | |
|   FunctionType *getTrampolineFunctionType(FunctionType *T);
 | |
|   FunctionType *getCustomFunctionType(FunctionType *T);
 | |
|   InstrumentedABI getInstrumentedABI();
 | |
|   WrapperKind getWrapperKind(Function *F);
 | |
|   void addGlobalNamePrefix(GlobalValue *GV);
 | |
|   Function *buildWrapperFunction(Function *F, StringRef NewFName,
 | |
|                                  GlobalValue::LinkageTypes NewFLink,
 | |
|                                  FunctionType *NewFT);
 | |
|   Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName);
 | |
| 
 | |
|  public:
 | |
|   DataFlowSanitizer(
 | |
|       const std::vector<std::string> &ABIListFiles = std::vector<std::string>(),
 | |
|       void *(*getArgTLS)() = nullptr, void *(*getRetValTLS)() = nullptr);
 | |
|   static char ID;
 | |
|   bool doInitialization(Module &M) override;
 | |
|   bool runOnModule(Module &M) override;
 | |
| };
 | |
| 
 | |
| struct DFSanFunction {
 | |
|   DataFlowSanitizer &DFS;
 | |
|   Function *F;
 | |
|   DominatorTree DT;
 | |
|   DataFlowSanitizer::InstrumentedABI IA;
 | |
|   bool IsNativeABI;
 | |
|   Value *ArgTLSPtr;
 | |
|   Value *RetvalTLSPtr;
 | |
|   AllocaInst *LabelReturnAlloca;
 | |
|   DenseMap<Value *, Value *> ValShadowMap;
 | |
|   DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap;
 | |
|   std::vector<std::pair<PHINode *, PHINode *> > PHIFixups;
 | |
|   DenseSet<Instruction *> SkipInsts;
 | |
|   std::vector<Value *> NonZeroChecks;
 | |
|   bool AvoidNewBlocks;
 | |
| 
 | |
|   struct CachedCombinedShadow {
 | |
|     BasicBlock *Block;
 | |
|     Value *Shadow;
 | |
|   };
 | |
|   DenseMap<std::pair<Value *, Value *>, CachedCombinedShadow>
 | |
|       CachedCombinedShadows;
 | |
|   DenseMap<Value *, std::set<Value *>> ShadowElements;
 | |
| 
 | |
|   DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI)
 | |
|       : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()),
 | |
|         IsNativeABI(IsNativeABI), ArgTLSPtr(nullptr), RetvalTLSPtr(nullptr),
 | |
|         LabelReturnAlloca(nullptr) {
 | |
|     DT.recalculate(*F);
 | |
|     // FIXME: Need to track down the register allocator issue which causes poor
 | |
|     // performance in pathological cases with large numbers of basic blocks.
 | |
|     AvoidNewBlocks = F->size() > 1000;
 | |
|   }
 | |
|   Value *getArgTLSPtr();
 | |
|   Value *getArgTLS(unsigned Index, Instruction *Pos);
 | |
|   Value *getRetvalTLS();
 | |
|   Value *getShadow(Value *V);
 | |
|   void setShadow(Instruction *I, Value *Shadow);
 | |
|   Value *combineShadows(Value *V1, Value *V2, Instruction *Pos);
 | |
|   Value *combineOperandShadows(Instruction *Inst);
 | |
|   Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align,
 | |
|                     Instruction *Pos);
 | |
|   void storeShadow(Value *Addr, uint64_t Size, uint64_t Align, Value *Shadow,
 | |
|                    Instruction *Pos);
 | |
| };
 | |
| 
 | |
| class DFSanVisitor : public InstVisitor<DFSanVisitor> {
 | |
|  public:
 | |
|   DFSanFunction &DFSF;
 | |
|   DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {}
 | |
| 
 | |
|   void visitOperandShadowInst(Instruction &I);
 | |
| 
 | |
|   void visitBinaryOperator(BinaryOperator &BO);
 | |
|   void visitCastInst(CastInst &CI);
 | |
|   void visitCmpInst(CmpInst &CI);
 | |
|   void visitGetElementPtrInst(GetElementPtrInst &GEPI);
 | |
|   void visitLoadInst(LoadInst &LI);
 | |
|   void visitStoreInst(StoreInst &SI);
 | |
|   void visitReturnInst(ReturnInst &RI);
 | |
|   void visitCallSite(CallSite CS);
 | |
|   void visitPHINode(PHINode &PN);
 | |
|   void visitExtractElementInst(ExtractElementInst &I);
 | |
|   void visitInsertElementInst(InsertElementInst &I);
 | |
|   void visitShuffleVectorInst(ShuffleVectorInst &I);
 | |
|   void visitExtractValueInst(ExtractValueInst &I);
 | |
|   void visitInsertValueInst(InsertValueInst &I);
 | |
|   void visitAllocaInst(AllocaInst &I);
 | |
|   void visitSelectInst(SelectInst &I);
 | |
|   void visitMemSetInst(MemSetInst &I);
 | |
|   void visitMemTransferInst(MemTransferInst &I);
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| char DataFlowSanitizer::ID;
 | |
| INITIALIZE_PASS(DataFlowSanitizer, "dfsan",
 | |
|                 "DataFlowSanitizer: dynamic data flow analysis.", false, false)
 | |
| 
 | |
| ModulePass *
 | |
| llvm::createDataFlowSanitizerPass(const std::vector<std::string> &ABIListFiles,
 | |
|                                   void *(*getArgTLS)(),
 | |
|                                   void *(*getRetValTLS)()) {
 | |
|   return new DataFlowSanitizer(ABIListFiles, getArgTLS, getRetValTLS);
 | |
| }
 | |
| 
 | |
| DataFlowSanitizer::DataFlowSanitizer(
 | |
|     const std::vector<std::string> &ABIListFiles, void *(*getArgTLS)(),
 | |
|     void *(*getRetValTLS)())
 | |
|     : ModulePass(ID), GetArgTLSPtr(getArgTLS), GetRetvalTLSPtr(getRetValTLS) {
 | |
|   std::vector<std::string> AllABIListFiles(std::move(ABIListFiles));
 | |
|   AllABIListFiles.insert(AllABIListFiles.end(), ClABIListFiles.begin(),
 | |
|                          ClABIListFiles.end());
 | |
|   ABIList.set(SpecialCaseList::createOrDie(AllABIListFiles));
 | |
| }
 | |
| 
 | |
| FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) {
 | |
|   llvm::SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end());
 | |
|   ArgTypes.append(T->getNumParams(), ShadowTy);
 | |
|   if (T->isVarArg())
 | |
|     ArgTypes.push_back(ShadowPtrTy);
 | |
|   Type *RetType = T->getReturnType();
 | |
|   if (!RetType->isVoidTy())
 | |
|     RetType = StructType::get(RetType, ShadowTy, (Type *)nullptr);
 | |
|   return FunctionType::get(RetType, ArgTypes, T->isVarArg());
 | |
| }
 | |
| 
 | |
| FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) {
 | |
|   assert(!T->isVarArg());
 | |
|   llvm::SmallVector<Type *, 4> ArgTypes;
 | |
|   ArgTypes.push_back(T->getPointerTo());
 | |
|   ArgTypes.append(T->param_begin(), T->param_end());
 | |
|   ArgTypes.append(T->getNumParams(), ShadowTy);
 | |
|   Type *RetType = T->getReturnType();
 | |
|   if (!RetType->isVoidTy())
 | |
|     ArgTypes.push_back(ShadowPtrTy);
 | |
|   return FunctionType::get(T->getReturnType(), ArgTypes, false);
 | |
| }
 | |
| 
 | |
| FunctionType *DataFlowSanitizer::getCustomFunctionType(FunctionType *T) {
 | |
|   llvm::SmallVector<Type *, 4> ArgTypes;
 | |
|   for (FunctionType::param_iterator i = T->param_begin(), e = T->param_end();
 | |
|        i != e; ++i) {
 | |
|     FunctionType *FT;
 | |
|     if (isa<PointerType>(*i) && (FT = dyn_cast<FunctionType>(cast<PointerType>(
 | |
|                                      *i)->getElementType()))) {
 | |
|       ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo());
 | |
|       ArgTypes.push_back(Type::getInt8PtrTy(*Ctx));
 | |
|     } else {
 | |
|       ArgTypes.push_back(*i);
 | |
|     }
 | |
|   }
 | |
|   for (unsigned i = 0, e = T->getNumParams(); i != e; ++i)
 | |
|     ArgTypes.push_back(ShadowTy);
 | |
|   if (T->isVarArg())
 | |
|     ArgTypes.push_back(ShadowPtrTy);
 | |
|   Type *RetType = T->getReturnType();
 | |
|   if (!RetType->isVoidTy())
 | |
|     ArgTypes.push_back(ShadowPtrTy);
 | |
|   return FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg());
 | |
| }
 | |
| 
 | |
| bool DataFlowSanitizer::doInitialization(Module &M) {
 | |
|   llvm::Triple TargetTriple(M.getTargetTriple());
 | |
|   bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64;
 | |
|   bool IsMIPS64 = TargetTriple.getArch() == llvm::Triple::mips64 ||
 | |
|                   TargetTriple.getArch() == llvm::Triple::mips64el;
 | |
| 
 | |
|   const DataLayout &DL = M.getDataLayout();
 | |
| 
 | |
|   Mod = &M;
 | |
|   Ctx = &M.getContext();
 | |
|   ShadowTy = IntegerType::get(*Ctx, ShadowWidth);
 | |
|   ShadowPtrTy = PointerType::getUnqual(ShadowTy);
 | |
|   IntptrTy = DL.getIntPtrType(*Ctx);
 | |
|   ZeroShadow = ConstantInt::getSigned(ShadowTy, 0);
 | |
|   ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidth / 8);
 | |
|   if (IsX86_64)
 | |
|     ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL);
 | |
|   else if (IsMIPS64)
 | |
|     ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xF000000000LL);
 | |
|   else
 | |
|     report_fatal_error("unsupported triple");
 | |
| 
 | |
|   Type *DFSanUnionArgs[2] = { ShadowTy, ShadowTy };
 | |
|   DFSanUnionFnTy =
 | |
|       FunctionType::get(ShadowTy, DFSanUnionArgs, /*isVarArg=*/ false);
 | |
|   Type *DFSanUnionLoadArgs[2] = { ShadowPtrTy, IntptrTy };
 | |
|   DFSanUnionLoadFnTy =
 | |
|       FunctionType::get(ShadowTy, DFSanUnionLoadArgs, /*isVarArg=*/ false);
 | |
|   DFSanUnimplementedFnTy = FunctionType::get(
 | |
|       Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
 | |
|   Type *DFSanSetLabelArgs[3] = { ShadowTy, Type::getInt8PtrTy(*Ctx), IntptrTy };
 | |
|   DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx),
 | |
|                                         DFSanSetLabelArgs, /*isVarArg=*/false);
 | |
|   DFSanNonzeroLabelFnTy = FunctionType::get(
 | |
|       Type::getVoidTy(*Ctx), None, /*isVarArg=*/false);
 | |
|   DFSanVarargWrapperFnTy = FunctionType::get(
 | |
|       Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
 | |
| 
 | |
|   if (GetArgTLSPtr) {
 | |
|     Type *ArgTLSTy = ArrayType::get(ShadowTy, 64);
 | |
|     ArgTLS = nullptr;
 | |
|     GetArgTLS = ConstantExpr::getIntToPtr(
 | |
|         ConstantInt::get(IntptrTy, uintptr_t(GetArgTLSPtr)),
 | |
|         PointerType::getUnqual(
 | |
|             FunctionType::get(PointerType::getUnqual(ArgTLSTy),
 | |
|                               (Type *)nullptr)));
 | |
|   }
 | |
|   if (GetRetvalTLSPtr) {
 | |
|     RetvalTLS = nullptr;
 | |
|     GetRetvalTLS = ConstantExpr::getIntToPtr(
 | |
|         ConstantInt::get(IntptrTy, uintptr_t(GetRetvalTLSPtr)),
 | |
|         PointerType::getUnqual(
 | |
|             FunctionType::get(PointerType::getUnqual(ShadowTy),
 | |
|                               (Type *)nullptr)));
 | |
|   }
 | |
| 
 | |
|   ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool DataFlowSanitizer::isInstrumented(const Function *F) {
 | |
|   return !ABIList.isIn(*F, "uninstrumented");
 | |
| }
 | |
| 
 | |
| bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) {
 | |
|   return !ABIList.isIn(*GA, "uninstrumented");
 | |
| }
 | |
| 
 | |
| DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() {
 | |
|   return ClArgsABI ? IA_Args : IA_TLS;
 | |
| }
 | |
| 
 | |
| DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) {
 | |
|   if (ABIList.isIn(*F, "functional"))
 | |
|     return WK_Functional;
 | |
|   if (ABIList.isIn(*F, "discard"))
 | |
|     return WK_Discard;
 | |
|   if (ABIList.isIn(*F, "custom"))
 | |
|     return WK_Custom;
 | |
| 
 | |
|   return WK_Warning;
 | |
| }
 | |
| 
 | |
| void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) {
 | |
|   std::string GVName = GV->getName(), Prefix = "dfs$";
 | |
|   GV->setName(Prefix + GVName);
 | |
| 
 | |
|   // Try to change the name of the function in module inline asm.  We only do
 | |
|   // this for specific asm directives, currently only ".symver", to try to avoid
 | |
|   // corrupting asm which happens to contain the symbol name as a substring.
 | |
|   // Note that the substitution for .symver assumes that the versioned symbol
 | |
|   // also has an instrumented name.
 | |
|   std::string Asm = GV->getParent()->getModuleInlineAsm();
 | |
|   std::string SearchStr = ".symver " + GVName + ",";
 | |
|   size_t Pos = Asm.find(SearchStr);
 | |
|   if (Pos != std::string::npos) {
 | |
|     Asm.replace(Pos, SearchStr.size(),
 | |
|                 ".symver " + Prefix + GVName + "," + Prefix);
 | |
|     GV->getParent()->setModuleInlineAsm(Asm);
 | |
|   }
 | |
| }
 | |
| 
 | |
| Function *
 | |
| DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName,
 | |
|                                         GlobalValue::LinkageTypes NewFLink,
 | |
|                                         FunctionType *NewFT) {
 | |
|   FunctionType *FT = F->getFunctionType();
 | |
|   Function *NewF = Function::Create(NewFT, NewFLink, NewFName,
 | |
|                                     F->getParent());
 | |
|   NewF->copyAttributesFrom(F);
 | |
|   NewF->removeAttributes(
 | |
|     AttributeSet::ReturnIndex,
 | |
|     AttributeSet::get(F->getContext(), AttributeSet::ReturnIndex,
 | |
|                     AttributeFuncs::typeIncompatible(NewFT->getReturnType())));
 | |
| 
 | |
|   BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF);
 | |
|   if (F->isVarArg()) {
 | |
|     NewF->removeAttributes(
 | |
|         AttributeSet::FunctionIndex,
 | |
|         AttributeSet().addAttribute(*Ctx, AttributeSet::FunctionIndex,
 | |
|                                     "split-stack"));
 | |
|     CallInst::Create(DFSanVarargWrapperFn,
 | |
|                      IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "",
 | |
|                      BB);
 | |
|     new UnreachableInst(*Ctx, BB);
 | |
|   } else {
 | |
|     std::vector<Value *> Args;
 | |
|     unsigned n = FT->getNumParams();
 | |
|     for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n)
 | |
|       Args.push_back(&*ai);
 | |
|     CallInst *CI = CallInst::Create(F, Args, "", BB);
 | |
|     if (FT->getReturnType()->isVoidTy())
 | |
|       ReturnInst::Create(*Ctx, BB);
 | |
|     else
 | |
|       ReturnInst::Create(*Ctx, CI, BB);
 | |
|   }
 | |
| 
 | |
|   return NewF;
 | |
| }
 | |
| 
 | |
| Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT,
 | |
|                                                           StringRef FName) {
 | |
|   FunctionType *FTT = getTrampolineFunctionType(FT);
 | |
|   Constant *C = Mod->getOrInsertFunction(FName, FTT);
 | |
|   Function *F = dyn_cast<Function>(C);
 | |
|   if (F && F->isDeclaration()) {
 | |
|     F->setLinkage(GlobalValue::LinkOnceODRLinkage);
 | |
|     BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F);
 | |
|     std::vector<Value *> Args;
 | |
|     Function::arg_iterator AI = F->arg_begin(); ++AI;
 | |
|     for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N)
 | |
|       Args.push_back(&*AI);
 | |
|     CallInst *CI =
 | |
|         CallInst::Create(&F->getArgumentList().front(), Args, "", BB);
 | |
|     ReturnInst *RI;
 | |
|     if (FT->getReturnType()->isVoidTy())
 | |
|       RI = ReturnInst::Create(*Ctx, BB);
 | |
|     else
 | |
|       RI = ReturnInst::Create(*Ctx, CI, BB);
 | |
| 
 | |
|     DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true);
 | |
|     Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI;
 | |
|     for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N)
 | |
|       DFSF.ValShadowMap[ValAI] = ShadowAI;
 | |
|     DFSanVisitor(DFSF).visitCallInst(*CI);
 | |
|     if (!FT->getReturnType()->isVoidTy())
 | |
|       new StoreInst(DFSF.getShadow(RI->getReturnValue()),
 | |
|                     &F->getArgumentList().back(), RI);
 | |
|   }
 | |
| 
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| bool DataFlowSanitizer::runOnModule(Module &M) {
 | |
|   if (ABIList.isIn(M, "skip"))
 | |
|     return false;
 | |
| 
 | |
|   FunctionDIs = makeSubprogramMap(M);
 | |
| 
 | |
|   if (!GetArgTLSPtr) {
 | |
|     Type *ArgTLSTy = ArrayType::get(ShadowTy, 64);
 | |
|     ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy);
 | |
|     if (GlobalVariable *G = dyn_cast<GlobalVariable>(ArgTLS))
 | |
|       G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
 | |
|   }
 | |
|   if (!GetRetvalTLSPtr) {
 | |
|     RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", ShadowTy);
 | |
|     if (GlobalVariable *G = dyn_cast<GlobalVariable>(RetvalTLS))
 | |
|       G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
 | |
|   }
 | |
| 
 | |
|   DFSanUnionFn = Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy);
 | |
|   if (Function *F = dyn_cast<Function>(DFSanUnionFn)) {
 | |
|     F->addAttribute(AttributeSet::FunctionIndex, Attribute::NoUnwind);
 | |
|     F->addAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone);
 | |
|     F->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
 | |
|     F->addAttribute(1, Attribute::ZExt);
 | |
|     F->addAttribute(2, Attribute::ZExt);
 | |
|   }
 | |
|   DFSanCheckedUnionFn = Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy);
 | |
|   if (Function *F = dyn_cast<Function>(DFSanCheckedUnionFn)) {
 | |
|     F->addAttribute(AttributeSet::FunctionIndex, Attribute::NoUnwind);
 | |
|     F->addAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone);
 | |
|     F->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
 | |
|     F->addAttribute(1, Attribute::ZExt);
 | |
|     F->addAttribute(2, Attribute::ZExt);
 | |
|   }
 | |
|   DFSanUnionLoadFn =
 | |
|       Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy);
 | |
|   if (Function *F = dyn_cast<Function>(DFSanUnionLoadFn)) {
 | |
|     F->addAttribute(AttributeSet::FunctionIndex, Attribute::NoUnwind);
 | |
|     F->addAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly);
 | |
|     F->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
 | |
|   }
 | |
|   DFSanUnimplementedFn =
 | |
|       Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy);
 | |
|   DFSanSetLabelFn =
 | |
|       Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy);
 | |
|   if (Function *F = dyn_cast<Function>(DFSanSetLabelFn)) {
 | |
|     F->addAttribute(1, Attribute::ZExt);
 | |
|   }
 | |
|   DFSanNonzeroLabelFn =
 | |
|       Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy);
 | |
|   DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper",
 | |
|                                                   DFSanVarargWrapperFnTy);
 | |
| 
 | |
|   std::vector<Function *> FnsToInstrument;
 | |
|   llvm::SmallPtrSet<Function *, 2> FnsWithNativeABI;
 | |
|   for (Module::iterator i = M.begin(), e = M.end(); i != e; ++i) {
 | |
|     if (!i->isIntrinsic() &&
 | |
|         i != DFSanUnionFn &&
 | |
|         i != DFSanCheckedUnionFn &&
 | |
|         i != DFSanUnionLoadFn &&
 | |
|         i != DFSanUnimplementedFn &&
 | |
|         i != DFSanSetLabelFn &&
 | |
|         i != DFSanNonzeroLabelFn &&
 | |
|         i != DFSanVarargWrapperFn)
 | |
|       FnsToInstrument.push_back(&*i);
 | |
|   }
 | |
| 
 | |
|   // Give function aliases prefixes when necessary, and build wrappers where the
 | |
|   // instrumentedness is inconsistent.
 | |
|   for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) {
 | |
|     GlobalAlias *GA = &*i;
 | |
|     ++i;
 | |
|     // Don't stop on weak.  We assume people aren't playing games with the
 | |
|     // instrumentedness of overridden weak aliases.
 | |
|     if (auto F = dyn_cast<Function>(GA->getBaseObject())) {
 | |
|       bool GAInst = isInstrumented(GA), FInst = isInstrumented(F);
 | |
|       if (GAInst && FInst) {
 | |
|         addGlobalNamePrefix(GA);
 | |
|       } else if (GAInst != FInst) {
 | |
|         // Non-instrumented alias of an instrumented function, or vice versa.
 | |
|         // Replace the alias with a native-ABI wrapper of the aliasee.  The pass
 | |
|         // below will take care of instrumenting it.
 | |
|         Function *NewF =
 | |
|             buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType());
 | |
|         GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType()));
 | |
|         NewF->takeName(GA);
 | |
|         GA->eraseFromParent();
 | |
|         FnsToInstrument.push_back(NewF);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   AttrBuilder B;
 | |
|   B.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone);
 | |
|   ReadOnlyNoneAttrs = AttributeSet::get(*Ctx, AttributeSet::FunctionIndex, B);
 | |
| 
 | |
|   // First, change the ABI of every function in the module.  ABI-listed
 | |
|   // functions keep their original ABI and get a wrapper function.
 | |
|   for (std::vector<Function *>::iterator i = FnsToInstrument.begin(),
 | |
|                                          e = FnsToInstrument.end();
 | |
|        i != e; ++i) {
 | |
|     Function &F = **i;
 | |
|     FunctionType *FT = F.getFunctionType();
 | |
| 
 | |
|     bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() &&
 | |
|                               FT->getReturnType()->isVoidTy());
 | |
| 
 | |
|     if (isInstrumented(&F)) {
 | |
|       // Instrumented functions get a 'dfs$' prefix.  This allows us to more
 | |
|       // easily identify cases of mismatching ABIs.
 | |
|       if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) {
 | |
|         FunctionType *NewFT = getArgsFunctionType(FT);
 | |
|         Function *NewF = Function::Create(NewFT, F.getLinkage(), "", &M);
 | |
|         NewF->copyAttributesFrom(&F);
 | |
|         NewF->removeAttributes(
 | |
|           AttributeSet::ReturnIndex,
 | |
|           AttributeSet::get(NewF->getContext(), AttributeSet::ReturnIndex,
 | |
|                     AttributeFuncs::typeIncompatible(NewFT->getReturnType())));
 | |
|         for (Function::arg_iterator FArg = F.arg_begin(),
 | |
|                                     NewFArg = NewF->arg_begin(),
 | |
|                                     FArgEnd = F.arg_end();
 | |
|              FArg != FArgEnd; ++FArg, ++NewFArg) {
 | |
|           FArg->replaceAllUsesWith(NewFArg);
 | |
|         }
 | |
|         NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList());
 | |
| 
 | |
|         for (Function::user_iterator UI = F.user_begin(), UE = F.user_end();
 | |
|              UI != UE;) {
 | |
|           BlockAddress *BA = dyn_cast<BlockAddress>(*UI);
 | |
|           ++UI;
 | |
|           if (BA) {
 | |
|             BA->replaceAllUsesWith(
 | |
|                 BlockAddress::get(NewF, BA->getBasicBlock()));
 | |
|             delete BA;
 | |
|           }
 | |
|         }
 | |
|         F.replaceAllUsesWith(
 | |
|             ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)));
 | |
|         NewF->takeName(&F);
 | |
|         F.eraseFromParent();
 | |
|         *i = NewF;
 | |
|         addGlobalNamePrefix(NewF);
 | |
|       } else {
 | |
|         addGlobalNamePrefix(&F);
 | |
|       }
 | |
|     } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) {
 | |
|       // Build a wrapper function for F.  The wrapper simply calls F, and is
 | |
|       // added to FnsToInstrument so that any instrumentation according to its
 | |
|       // WrapperKind is done in the second pass below.
 | |
|       FunctionType *NewFT = getInstrumentedABI() == IA_Args
 | |
|                                 ? getArgsFunctionType(FT)
 | |
|                                 : FT;
 | |
|       Function *NewF = buildWrapperFunction(
 | |
|           &F, std::string("dfsw$") + std::string(F.getName()),
 | |
|           GlobalValue::LinkOnceODRLinkage, NewFT);
 | |
|       if (getInstrumentedABI() == IA_TLS)
 | |
|         NewF->removeAttributes(AttributeSet::FunctionIndex, ReadOnlyNoneAttrs);
 | |
| 
 | |
|       Value *WrappedFnCst =
 | |
|           ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT));
 | |
|       F.replaceAllUsesWith(WrappedFnCst);
 | |
| 
 | |
|       // Patch the pointer to LLVM function in debug info descriptor.
 | |
|       auto DI = FunctionDIs.find(&F);
 | |
|       if (DI != FunctionDIs.end())
 | |
|         DI->second->replaceFunction(&F);
 | |
| 
 | |
|       UnwrappedFnMap[WrappedFnCst] = &F;
 | |
|       *i = NewF;
 | |
| 
 | |
|       if (!F.isDeclaration()) {
 | |
|         // This function is probably defining an interposition of an
 | |
|         // uninstrumented function and hence needs to keep the original ABI.
 | |
|         // But any functions it may call need to use the instrumented ABI, so
 | |
|         // we instrument it in a mode which preserves the original ABI.
 | |
|         FnsWithNativeABI.insert(&F);
 | |
| 
 | |
|         // This code needs to rebuild the iterators, as they may be invalidated
 | |
|         // by the push_back, taking care that the new range does not include
 | |
|         // any functions added by this code.
 | |
|         size_t N = i - FnsToInstrument.begin(),
 | |
|                Count = e - FnsToInstrument.begin();
 | |
|         FnsToInstrument.push_back(&F);
 | |
|         i = FnsToInstrument.begin() + N;
 | |
|         e = FnsToInstrument.begin() + Count;
 | |
|       }
 | |
|                // Hopefully, nobody will try to indirectly call a vararg
 | |
|                // function... yet.
 | |
|     } else if (FT->isVarArg()) {
 | |
|       UnwrappedFnMap[&F] = &F;
 | |
|       *i = nullptr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (std::vector<Function *>::iterator i = FnsToInstrument.begin(),
 | |
|                                          e = FnsToInstrument.end();
 | |
|        i != e; ++i) {
 | |
|     if (!*i || (*i)->isDeclaration())
 | |
|       continue;
 | |
| 
 | |
|     removeUnreachableBlocks(**i);
 | |
| 
 | |
|     DFSanFunction DFSF(*this, *i, FnsWithNativeABI.count(*i));
 | |
| 
 | |
|     // DFSanVisitor may create new basic blocks, which confuses df_iterator.
 | |
|     // Build a copy of the list before iterating over it.
 | |
|     llvm::SmallVector<BasicBlock *, 4> BBList(
 | |
|         depth_first(&(*i)->getEntryBlock()));
 | |
| 
 | |
|     for (llvm::SmallVector<BasicBlock *, 4>::iterator i = BBList.begin(),
 | |
|                                                       e = BBList.end();
 | |
|          i != e; ++i) {
 | |
|       Instruction *Inst = &(*i)->front();
 | |
|       while (1) {
 | |
|         // DFSanVisitor may split the current basic block, changing the current
 | |
|         // instruction's next pointer and moving the next instruction to the
 | |
|         // tail block from which we should continue.
 | |
|         Instruction *Next = Inst->getNextNode();
 | |
|         // DFSanVisitor may delete Inst, so keep track of whether it was a
 | |
|         // terminator.
 | |
|         bool IsTerminator = isa<TerminatorInst>(Inst);
 | |
|         if (!DFSF.SkipInsts.count(Inst))
 | |
|           DFSanVisitor(DFSF).visit(Inst);
 | |
|         if (IsTerminator)
 | |
|           break;
 | |
|         Inst = Next;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // We will not necessarily be able to compute the shadow for every phi node
 | |
|     // until we have visited every block.  Therefore, the code that handles phi
 | |
|     // nodes adds them to the PHIFixups list so that they can be properly
 | |
|     // handled here.
 | |
|     for (std::vector<std::pair<PHINode *, PHINode *> >::iterator
 | |
|              i = DFSF.PHIFixups.begin(),
 | |
|              e = DFSF.PHIFixups.end();
 | |
|          i != e; ++i) {
 | |
|       for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n;
 | |
|            ++val) {
 | |
|         i->second->setIncomingValue(
 | |
|             val, DFSF.getShadow(i->first->getIncomingValue(val)));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy
 | |
|     // places (i.e. instructions in basic blocks we haven't even begun visiting
 | |
|     // yet).  To make our life easier, do this work in a pass after the main
 | |
|     // instrumentation.
 | |
|     if (ClDebugNonzeroLabels) {
 | |
|       for (Value *V : DFSF.NonZeroChecks) {
 | |
|         Instruction *Pos;
 | |
|         if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|           Pos = I->getNextNode();
 | |
|         else
 | |
|           Pos = DFSF.F->getEntryBlock().begin();
 | |
|         while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos))
 | |
|           Pos = Pos->getNextNode();
 | |
|         IRBuilder<> IRB(Pos);
 | |
|         Value *Ne = IRB.CreateICmpNE(V, DFSF.DFS.ZeroShadow);
 | |
|         BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
 | |
|             Ne, Pos, /*Unreachable=*/false, ColdCallWeights));
 | |
|         IRBuilder<> ThenIRB(BI);
 | |
|         ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {});
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Value *DFSanFunction::getArgTLSPtr() {
 | |
|   if (ArgTLSPtr)
 | |
|     return ArgTLSPtr;
 | |
|   if (DFS.ArgTLS)
 | |
|     return ArgTLSPtr = DFS.ArgTLS;
 | |
| 
 | |
|   IRBuilder<> IRB(F->getEntryBlock().begin());
 | |
|   return ArgTLSPtr = IRB.CreateCall(DFS.GetArgTLS, {});
 | |
| }
 | |
| 
 | |
| Value *DFSanFunction::getRetvalTLS() {
 | |
|   if (RetvalTLSPtr)
 | |
|     return RetvalTLSPtr;
 | |
|   if (DFS.RetvalTLS)
 | |
|     return RetvalTLSPtr = DFS.RetvalTLS;
 | |
| 
 | |
|   IRBuilder<> IRB(F->getEntryBlock().begin());
 | |
|   return RetvalTLSPtr = IRB.CreateCall(DFS.GetRetvalTLS, {});
 | |
| }
 | |
| 
 | |
| Value *DFSanFunction::getArgTLS(unsigned Idx, Instruction *Pos) {
 | |
|   IRBuilder<> IRB(Pos);
 | |
|   return IRB.CreateConstGEP2_64(getArgTLSPtr(), 0, Idx);
 | |
| }
 | |
| 
 | |
| Value *DFSanFunction::getShadow(Value *V) {
 | |
|   if (!isa<Argument>(V) && !isa<Instruction>(V))
 | |
|     return DFS.ZeroShadow;
 | |
|   Value *&Shadow = ValShadowMap[V];
 | |
|   if (!Shadow) {
 | |
|     if (Argument *A = dyn_cast<Argument>(V)) {
 | |
|       if (IsNativeABI)
 | |
|         return DFS.ZeroShadow;
 | |
|       switch (IA) {
 | |
|       case DataFlowSanitizer::IA_TLS: {
 | |
|         Value *ArgTLSPtr = getArgTLSPtr();
 | |
|         Instruction *ArgTLSPos =
 | |
|             DFS.ArgTLS ? &*F->getEntryBlock().begin()
 | |
|                        : cast<Instruction>(ArgTLSPtr)->getNextNode();
 | |
|         IRBuilder<> IRB(ArgTLSPos);
 | |
|         Shadow = IRB.CreateLoad(getArgTLS(A->getArgNo(), ArgTLSPos));
 | |
|         break;
 | |
|       }
 | |
|       case DataFlowSanitizer::IA_Args: {
 | |
|         unsigned ArgIdx = A->getArgNo() + F->getArgumentList().size() / 2;
 | |
|         Function::arg_iterator i = F->arg_begin();
 | |
|         while (ArgIdx--)
 | |
|           ++i;
 | |
|         Shadow = i;
 | |
|         assert(Shadow->getType() == DFS.ShadowTy);
 | |
|         break;
 | |
|       }
 | |
|       }
 | |
|       NonZeroChecks.push_back(Shadow);
 | |
|     } else {
 | |
|       Shadow = DFS.ZeroShadow;
 | |
|     }
 | |
|   }
 | |
|   return Shadow;
 | |
| }
 | |
| 
 | |
| void DFSanFunction::setShadow(Instruction *I, Value *Shadow) {
 | |
|   assert(!ValShadowMap.count(I));
 | |
|   assert(Shadow->getType() == DFS.ShadowTy);
 | |
|   ValShadowMap[I] = Shadow;
 | |
| }
 | |
| 
 | |
| Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) {
 | |
|   assert(Addr != RetvalTLS && "Reinstrumenting?");
 | |
|   IRBuilder<> IRB(Pos);
 | |
|   return IRB.CreateIntToPtr(
 | |
|       IRB.CreateMul(
 | |
|           IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy), ShadowPtrMask),
 | |
|           ShadowPtrMul),
 | |
|       ShadowPtrTy);
 | |
| }
 | |
| 
 | |
| // Generates IR to compute the union of the two given shadows, inserting it
 | |
| // before Pos.  Returns the computed union Value.
 | |
| Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) {
 | |
|   if (V1 == DFS.ZeroShadow)
 | |
|     return V2;
 | |
|   if (V2 == DFS.ZeroShadow)
 | |
|     return V1;
 | |
|   if (V1 == V2)
 | |
|     return V1;
 | |
| 
 | |
|   auto V1Elems = ShadowElements.find(V1);
 | |
|   auto V2Elems = ShadowElements.find(V2);
 | |
|   if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) {
 | |
|     if (std::includes(V1Elems->second.begin(), V1Elems->second.end(),
 | |
|                       V2Elems->second.begin(), V2Elems->second.end())) {
 | |
|       return V1;
 | |
|     } else if (std::includes(V2Elems->second.begin(), V2Elems->second.end(),
 | |
|                              V1Elems->second.begin(), V1Elems->second.end())) {
 | |
|       return V2;
 | |
|     }
 | |
|   } else if (V1Elems != ShadowElements.end()) {
 | |
|     if (V1Elems->second.count(V2))
 | |
|       return V1;
 | |
|   } else if (V2Elems != ShadowElements.end()) {
 | |
|     if (V2Elems->second.count(V1))
 | |
|       return V2;
 | |
|   }
 | |
| 
 | |
|   auto Key = std::make_pair(V1, V2);
 | |
|   if (V1 > V2)
 | |
|     std::swap(Key.first, Key.second);
 | |
|   CachedCombinedShadow &CCS = CachedCombinedShadows[Key];
 | |
|   if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent()))
 | |
|     return CCS.Shadow;
 | |
| 
 | |
|   IRBuilder<> IRB(Pos);
 | |
|   if (AvoidNewBlocks) {
 | |
|     CallInst *Call = IRB.CreateCall(DFS.DFSanCheckedUnionFn, {V1, V2});
 | |
|     Call->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
 | |
|     Call->addAttribute(1, Attribute::ZExt);
 | |
|     Call->addAttribute(2, Attribute::ZExt);
 | |
| 
 | |
|     CCS.Block = Pos->getParent();
 | |
|     CCS.Shadow = Call;
 | |
|   } else {
 | |
|     BasicBlock *Head = Pos->getParent();
 | |
|     Value *Ne = IRB.CreateICmpNE(V1, V2);
 | |
|     BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
 | |
|         Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT));
 | |
|     IRBuilder<> ThenIRB(BI);
 | |
|     CallInst *Call = ThenIRB.CreateCall(DFS.DFSanUnionFn, {V1, V2});
 | |
|     Call->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
 | |
|     Call->addAttribute(1, Attribute::ZExt);
 | |
|     Call->addAttribute(2, Attribute::ZExt);
 | |
| 
 | |
|     BasicBlock *Tail = BI->getSuccessor(0);
 | |
|     PHINode *Phi = PHINode::Create(DFS.ShadowTy, 2, "", Tail->begin());
 | |
|     Phi->addIncoming(Call, Call->getParent());
 | |
|     Phi->addIncoming(V1, Head);
 | |
| 
 | |
|     CCS.Block = Tail;
 | |
|     CCS.Shadow = Phi;
 | |
|   }
 | |
| 
 | |
|   std::set<Value *> UnionElems;
 | |
|   if (V1Elems != ShadowElements.end()) {
 | |
|     UnionElems = V1Elems->second;
 | |
|   } else {
 | |
|     UnionElems.insert(V1);
 | |
|   }
 | |
|   if (V2Elems != ShadowElements.end()) {
 | |
|     UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end());
 | |
|   } else {
 | |
|     UnionElems.insert(V2);
 | |
|   }
 | |
|   ShadowElements[CCS.Shadow] = std::move(UnionElems);
 | |
| 
 | |
|   return CCS.Shadow;
 | |
| }
 | |
| 
 | |
| // A convenience function which folds the shadows of each of the operands
 | |
| // of the provided instruction Inst, inserting the IR before Inst.  Returns
 | |
| // the computed union Value.
 | |
| Value *DFSanFunction::combineOperandShadows(Instruction *Inst) {
 | |
|   if (Inst->getNumOperands() == 0)
 | |
|     return DFS.ZeroShadow;
 | |
| 
 | |
|   Value *Shadow = getShadow(Inst->getOperand(0));
 | |
|   for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) {
 | |
|     Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst);
 | |
|   }
 | |
|   return Shadow;
 | |
| }
 | |
| 
 | |
| void DFSanVisitor::visitOperandShadowInst(Instruction &I) {
 | |
|   Value *CombinedShadow = DFSF.combineOperandShadows(&I);
 | |
|   DFSF.setShadow(&I, CombinedShadow);
 | |
| }
 | |
| 
 | |
| // Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where
 | |
| // Addr has alignment Align, and take the union of each of those shadows.
 | |
| Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align,
 | |
|                                  Instruction *Pos) {
 | |
|   if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
 | |
|     llvm::DenseMap<AllocaInst *, AllocaInst *>::iterator i =
 | |
|         AllocaShadowMap.find(AI);
 | |
|     if (i != AllocaShadowMap.end()) {
 | |
|       IRBuilder<> IRB(Pos);
 | |
|       return IRB.CreateLoad(i->second);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8;
 | |
|   SmallVector<Value *, 2> Objs;
 | |
|   GetUnderlyingObjects(Addr, Objs, Pos->getModule()->getDataLayout());
 | |
|   bool AllConstants = true;
 | |
|   for (SmallVector<Value *, 2>::iterator i = Objs.begin(), e = Objs.end();
 | |
|        i != e; ++i) {
 | |
|     if (isa<Function>(*i) || isa<BlockAddress>(*i))
 | |
|       continue;
 | |
|     if (isa<GlobalVariable>(*i) && cast<GlobalVariable>(*i)->isConstant())
 | |
|       continue;
 | |
| 
 | |
|     AllConstants = false;
 | |
|     break;
 | |
|   }
 | |
|   if (AllConstants)
 | |
|     return DFS.ZeroShadow;
 | |
| 
 | |
|   Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
 | |
|   switch (Size) {
 | |
|   case 0:
 | |
|     return DFS.ZeroShadow;
 | |
|   case 1: {
 | |
|     LoadInst *LI = new LoadInst(ShadowAddr, "", Pos);
 | |
|     LI->setAlignment(ShadowAlign);
 | |
|     return LI;
 | |
|   }
 | |
|   case 2: {
 | |
|     IRBuilder<> IRB(Pos);
 | |
|     Value *ShadowAddr1 = IRB.CreateGEP(DFS.ShadowTy, ShadowAddr,
 | |
|                                        ConstantInt::get(DFS.IntptrTy, 1));
 | |
|     return combineShadows(IRB.CreateAlignedLoad(ShadowAddr, ShadowAlign),
 | |
|                           IRB.CreateAlignedLoad(ShadowAddr1, ShadowAlign), Pos);
 | |
|   }
 | |
|   }
 | |
|   if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidth) == 0) {
 | |
|     // Fast path for the common case where each byte has identical shadow: load
 | |
|     // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any
 | |
|     // shadow is non-equal.
 | |
|     BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F);
 | |
|     IRBuilder<> FallbackIRB(FallbackBB);
 | |
|     CallInst *FallbackCall = FallbackIRB.CreateCall(
 | |
|         DFS.DFSanUnionLoadFn,
 | |
|         {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
 | |
|     FallbackCall->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
 | |
| 
 | |
|     // Compare each of the shadows stored in the loaded 64 bits to each other,
 | |
|     // by computing (WideShadow rotl ShadowWidth) == WideShadow.
 | |
|     IRBuilder<> IRB(Pos);
 | |
|     Value *WideAddr =
 | |
|         IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx));
 | |
|     Value *WideShadow = IRB.CreateAlignedLoad(WideAddr, ShadowAlign);
 | |
|     Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.ShadowTy);
 | |
|     Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidth);
 | |
|     Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidth);
 | |
|     Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow);
 | |
|     Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow);
 | |
| 
 | |
|     BasicBlock *Head = Pos->getParent();
 | |
|     BasicBlock *Tail = Head->splitBasicBlock(Pos);
 | |
| 
 | |
|     if (DomTreeNode *OldNode = DT.getNode(Head)) {
 | |
|       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
 | |
| 
 | |
|       DomTreeNode *NewNode = DT.addNewBlock(Tail, Head);
 | |
|       for (auto Child : Children)
 | |
|         DT.changeImmediateDominator(Child, NewNode);
 | |
|     }
 | |
| 
 | |
|     // In the following code LastBr will refer to the previous basic block's
 | |
|     // conditional branch instruction, whose true successor is fixed up to point
 | |
|     // to the next block during the loop below or to the tail after the final
 | |
|     // iteration.
 | |
|     BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq);
 | |
|     ReplaceInstWithInst(Head->getTerminator(), LastBr);
 | |
|     DT.addNewBlock(FallbackBB, Head);
 | |
| 
 | |
|     for (uint64_t Ofs = 64 / DFS.ShadowWidth; Ofs != Size;
 | |
|          Ofs += 64 / DFS.ShadowWidth) {
 | |
|       BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F);
 | |
|       DT.addNewBlock(NextBB, LastBr->getParent());
 | |
|       IRBuilder<> NextIRB(NextBB);
 | |
|       WideAddr = NextIRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr,
 | |
|                                    ConstantInt::get(DFS.IntptrTy, 1));
 | |
|       Value *NextWideShadow = NextIRB.CreateAlignedLoad(WideAddr, ShadowAlign);
 | |
|       ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow);
 | |
|       LastBr->setSuccessor(0, NextBB);
 | |
|       LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB);
 | |
|     }
 | |
| 
 | |
|     LastBr->setSuccessor(0, Tail);
 | |
|     FallbackIRB.CreateBr(Tail);
 | |
|     PHINode *Shadow = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front());
 | |
|     Shadow->addIncoming(FallbackCall, FallbackBB);
 | |
|     Shadow->addIncoming(TruncShadow, LastBr->getParent());
 | |
|     return Shadow;
 | |
|   }
 | |
| 
 | |
|   IRBuilder<> IRB(Pos);
 | |
|   CallInst *FallbackCall = IRB.CreateCall(
 | |
|       DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
 | |
|   FallbackCall->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
 | |
|   return FallbackCall;
 | |
| }
 | |
| 
 | |
| void DFSanVisitor::visitLoadInst(LoadInst &LI) {
 | |
|   auto &DL = LI.getModule()->getDataLayout();
 | |
|   uint64_t Size = DL.getTypeStoreSize(LI.getType());
 | |
|   if (Size == 0) {
 | |
|     DFSF.setShadow(&LI, DFSF.DFS.ZeroShadow);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   uint64_t Align;
 | |
|   if (ClPreserveAlignment) {
 | |
|     Align = LI.getAlignment();
 | |
|     if (Align == 0)
 | |
|       Align = DL.getABITypeAlignment(LI.getType());
 | |
|   } else {
 | |
|     Align = 1;
 | |
|   }
 | |
|   IRBuilder<> IRB(&LI);
 | |
|   Value *Shadow = DFSF.loadShadow(LI.getPointerOperand(), Size, Align, &LI);
 | |
|   if (ClCombinePointerLabelsOnLoad) {
 | |
|     Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand());
 | |
|     Shadow = DFSF.combineShadows(Shadow, PtrShadow, &LI);
 | |
|   }
 | |
|   if (Shadow != DFSF.DFS.ZeroShadow)
 | |
|     DFSF.NonZeroChecks.push_back(Shadow);
 | |
| 
 | |
|   DFSF.setShadow(&LI, Shadow);
 | |
| }
 | |
| 
 | |
| void DFSanFunction::storeShadow(Value *Addr, uint64_t Size, uint64_t Align,
 | |
|                                 Value *Shadow, Instruction *Pos) {
 | |
|   if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
 | |
|     llvm::DenseMap<AllocaInst *, AllocaInst *>::iterator i =
 | |
|         AllocaShadowMap.find(AI);
 | |
|     if (i != AllocaShadowMap.end()) {
 | |
|       IRBuilder<> IRB(Pos);
 | |
|       IRB.CreateStore(Shadow, i->second);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8;
 | |
|   IRBuilder<> IRB(Pos);
 | |
|   Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
 | |
|   if (Shadow == DFS.ZeroShadow) {
 | |
|     IntegerType *ShadowTy = IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidth);
 | |
|     Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0);
 | |
|     Value *ExtShadowAddr =
 | |
|         IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy));
 | |
|     IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   const unsigned ShadowVecSize = 128 / DFS.ShadowWidth;
 | |
|   uint64_t Offset = 0;
 | |
|   if (Size >= ShadowVecSize) {
 | |
|     VectorType *ShadowVecTy = VectorType::get(DFS.ShadowTy, ShadowVecSize);
 | |
|     Value *ShadowVec = UndefValue::get(ShadowVecTy);
 | |
|     for (unsigned i = 0; i != ShadowVecSize; ++i) {
 | |
|       ShadowVec = IRB.CreateInsertElement(
 | |
|           ShadowVec, Shadow, ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i));
 | |
|     }
 | |
|     Value *ShadowVecAddr =
 | |
|         IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy));
 | |
|     do {
 | |
|       Value *CurShadowVecAddr =
 | |
|           IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset);
 | |
|       IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign);
 | |
|       Size -= ShadowVecSize;
 | |
|       ++Offset;
 | |
|     } while (Size >= ShadowVecSize);
 | |
|     Offset *= ShadowVecSize;
 | |
|   }
 | |
|   while (Size > 0) {
 | |
|     Value *CurShadowAddr =
 | |
|         IRB.CreateConstGEP1_32(DFS.ShadowTy, ShadowAddr, Offset);
 | |
|     IRB.CreateAlignedStore(Shadow, CurShadowAddr, ShadowAlign);
 | |
|     --Size;
 | |
|     ++Offset;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void DFSanVisitor::visitStoreInst(StoreInst &SI) {
 | |
|   auto &DL = SI.getModule()->getDataLayout();
 | |
|   uint64_t Size = DL.getTypeStoreSize(SI.getValueOperand()->getType());
 | |
|   if (Size == 0)
 | |
|     return;
 | |
| 
 | |
|   uint64_t Align;
 | |
|   if (ClPreserveAlignment) {
 | |
|     Align = SI.getAlignment();
 | |
|     if (Align == 0)
 | |
|       Align = DL.getABITypeAlignment(SI.getValueOperand()->getType());
 | |
|   } else {
 | |
|     Align = 1;
 | |
|   }
 | |
| 
 | |
|   Value* Shadow = DFSF.getShadow(SI.getValueOperand());
 | |
|   if (ClCombinePointerLabelsOnStore) {
 | |
|     Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand());
 | |
|     Shadow = DFSF.combineShadows(Shadow, PtrShadow, &SI);
 | |
|   }
 | |
|   DFSF.storeShadow(SI.getPointerOperand(), Size, Align, Shadow, &SI);
 | |
| }
 | |
| 
 | |
| void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) {
 | |
|   visitOperandShadowInst(BO);
 | |
| }
 | |
| 
 | |
| void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); }
 | |
| 
 | |
| void DFSanVisitor::visitCmpInst(CmpInst &CI) { visitOperandShadowInst(CI); }
 | |
| 
 | |
| void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
 | |
|   visitOperandShadowInst(GEPI);
 | |
| }
 | |
| 
 | |
| void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) {
 | |
|   visitOperandShadowInst(I);
 | |
| }
 | |
| 
 | |
| void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) {
 | |
|   visitOperandShadowInst(I);
 | |
| }
 | |
| 
 | |
| void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) {
 | |
|   visitOperandShadowInst(I);
 | |
| }
 | |
| 
 | |
| void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) {
 | |
|   visitOperandShadowInst(I);
 | |
| }
 | |
| 
 | |
| void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) {
 | |
|   visitOperandShadowInst(I);
 | |
| }
 | |
| 
 | |
| void DFSanVisitor::visitAllocaInst(AllocaInst &I) {
 | |
|   bool AllLoadsStores = true;
 | |
|   for (User *U : I.users()) {
 | |
|     if (isa<LoadInst>(U))
 | |
|       continue;
 | |
| 
 | |
|     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
 | |
|       if (SI->getPointerOperand() == &I)
 | |
|         continue;
 | |
|     }
 | |
| 
 | |
|     AllLoadsStores = false;
 | |
|     break;
 | |
|   }
 | |
|   if (AllLoadsStores) {
 | |
|     IRBuilder<> IRB(&I);
 | |
|     DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.ShadowTy);
 | |
|   }
 | |
|   DFSF.setShadow(&I, DFSF.DFS.ZeroShadow);
 | |
| }
 | |
| 
 | |
| void DFSanVisitor::visitSelectInst(SelectInst &I) {
 | |
|   Value *CondShadow = DFSF.getShadow(I.getCondition());
 | |
|   Value *TrueShadow = DFSF.getShadow(I.getTrueValue());
 | |
|   Value *FalseShadow = DFSF.getShadow(I.getFalseValue());
 | |
| 
 | |
|   if (isa<VectorType>(I.getCondition()->getType())) {
 | |
|     DFSF.setShadow(
 | |
|         &I,
 | |
|         DFSF.combineShadows(
 | |
|             CondShadow, DFSF.combineShadows(TrueShadow, FalseShadow, &I), &I));
 | |
|   } else {
 | |
|     Value *ShadowSel;
 | |
|     if (TrueShadow == FalseShadow) {
 | |
|       ShadowSel = TrueShadow;
 | |
|     } else {
 | |
|       ShadowSel =
 | |
|           SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I);
 | |
|     }
 | |
|     DFSF.setShadow(&I, DFSF.combineShadows(CondShadow, ShadowSel, &I));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void DFSanVisitor::visitMemSetInst(MemSetInst &I) {
 | |
|   IRBuilder<> IRB(&I);
 | |
|   Value *ValShadow = DFSF.getShadow(I.getValue());
 | |
|   IRB.CreateCall(DFSF.DFS.DFSanSetLabelFn,
 | |
|                  {ValShadow, IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(
 | |
|                                                                 *DFSF.DFS.Ctx)),
 | |
|                   IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)});
 | |
| }
 | |
| 
 | |
| void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) {
 | |
|   IRBuilder<> IRB(&I);
 | |
|   Value *DestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I);
 | |
|   Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I);
 | |
|   Value *LenShadow = IRB.CreateMul(
 | |
|       I.getLength(),
 | |
|       ConstantInt::get(I.getLength()->getType(), DFSF.DFS.ShadowWidth / 8));
 | |
|   Value *AlignShadow;
 | |
|   if (ClPreserveAlignment) {
 | |
|     AlignShadow = IRB.CreateMul(I.getAlignmentCst(),
 | |
|                                 ConstantInt::get(I.getAlignmentCst()->getType(),
 | |
|                                                  DFSF.DFS.ShadowWidth / 8));
 | |
|   } else {
 | |
|     AlignShadow = ConstantInt::get(I.getAlignmentCst()->getType(),
 | |
|                                    DFSF.DFS.ShadowWidth / 8);
 | |
|   }
 | |
|   Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx);
 | |
|   DestShadow = IRB.CreateBitCast(DestShadow, Int8Ptr);
 | |
|   SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr);
 | |
|   IRB.CreateCall(I.getCalledValue(), {DestShadow, SrcShadow, LenShadow,
 | |
|                                       AlignShadow, I.getVolatileCst()});
 | |
| }
 | |
| 
 | |
| void DFSanVisitor::visitReturnInst(ReturnInst &RI) {
 | |
|   if (!DFSF.IsNativeABI && RI.getReturnValue()) {
 | |
|     switch (DFSF.IA) {
 | |
|     case DataFlowSanitizer::IA_TLS: {
 | |
|       Value *S = DFSF.getShadow(RI.getReturnValue());
 | |
|       IRBuilder<> IRB(&RI);
 | |
|       IRB.CreateStore(S, DFSF.getRetvalTLS());
 | |
|       break;
 | |
|     }
 | |
|     case DataFlowSanitizer::IA_Args: {
 | |
|       IRBuilder<> IRB(&RI);
 | |
|       Type *RT = DFSF.F->getFunctionType()->getReturnType();
 | |
|       Value *InsVal =
 | |
|           IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0);
 | |
|       Value *InsShadow =
 | |
|           IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1);
 | |
|       RI.setOperand(0, InsShadow);
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void DFSanVisitor::visitCallSite(CallSite CS) {
 | |
|   Function *F = CS.getCalledFunction();
 | |
|   if ((F && F->isIntrinsic()) || isa<InlineAsm>(CS.getCalledValue())) {
 | |
|     visitOperandShadowInst(*CS.getInstruction());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Calls to this function are synthesized in wrappers, and we shouldn't
 | |
|   // instrument them.
 | |
|   if (F == DFSF.DFS.DFSanVarargWrapperFn)
 | |
|     return;
 | |
| 
 | |
|   assert(!(cast<FunctionType>(
 | |
|       CS.getCalledValue()->getType()->getPointerElementType())->isVarArg() &&
 | |
|            dyn_cast<InvokeInst>(CS.getInstruction())));
 | |
| 
 | |
|   IRBuilder<> IRB(CS.getInstruction());
 | |
| 
 | |
|   DenseMap<Value *, Function *>::iterator i =
 | |
|       DFSF.DFS.UnwrappedFnMap.find(CS.getCalledValue());
 | |
|   if (i != DFSF.DFS.UnwrappedFnMap.end()) {
 | |
|     Function *F = i->second;
 | |
|     switch (DFSF.DFS.getWrapperKind(F)) {
 | |
|     case DataFlowSanitizer::WK_Warning: {
 | |
|       CS.setCalledFunction(F);
 | |
|       IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn,
 | |
|                      IRB.CreateGlobalStringPtr(F->getName()));
 | |
|       DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow);
 | |
|       return;
 | |
|     }
 | |
|     case DataFlowSanitizer::WK_Discard: {
 | |
|       CS.setCalledFunction(F);
 | |
|       DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow);
 | |
|       return;
 | |
|     }
 | |
|     case DataFlowSanitizer::WK_Functional: {
 | |
|       CS.setCalledFunction(F);
 | |
|       visitOperandShadowInst(*CS.getInstruction());
 | |
|       return;
 | |
|     }
 | |
|     case DataFlowSanitizer::WK_Custom: {
 | |
|       // Don't try to handle invokes of custom functions, it's too complicated.
 | |
|       // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_
 | |
|       // wrapper.
 | |
|       if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
 | |
|         FunctionType *FT = F->getFunctionType();
 | |
|         FunctionType *CustomFT = DFSF.DFS.getCustomFunctionType(FT);
 | |
|         std::string CustomFName = "__dfsw_";
 | |
|         CustomFName += F->getName();
 | |
|         Constant *CustomF =
 | |
|             DFSF.DFS.Mod->getOrInsertFunction(CustomFName, CustomFT);
 | |
|         if (Function *CustomFn = dyn_cast<Function>(CustomF)) {
 | |
|           CustomFn->copyAttributesFrom(F);
 | |
| 
 | |
|           // Custom functions returning non-void will write to the return label.
 | |
|           if (!FT->getReturnType()->isVoidTy()) {
 | |
|             CustomFn->removeAttributes(AttributeSet::FunctionIndex,
 | |
|                                        DFSF.DFS.ReadOnlyNoneAttrs);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         std::vector<Value *> Args;
 | |
| 
 | |
|         CallSite::arg_iterator i = CS.arg_begin();
 | |
|         for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) {
 | |
|           Type *T = (*i)->getType();
 | |
|           FunctionType *ParamFT;
 | |
|           if (isa<PointerType>(T) &&
 | |
|               (ParamFT = dyn_cast<FunctionType>(
 | |
|                    cast<PointerType>(T)->getElementType()))) {
 | |
|             std::string TName = "dfst";
 | |
|             TName += utostr(FT->getNumParams() - n);
 | |
|             TName += "$";
 | |
|             TName += F->getName();
 | |
|             Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName);
 | |
|             Args.push_back(T);
 | |
|             Args.push_back(
 | |
|                 IRB.CreateBitCast(*i, Type::getInt8PtrTy(*DFSF.DFS.Ctx)));
 | |
|           } else {
 | |
|             Args.push_back(*i);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         i = CS.arg_begin();
 | |
|         for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
 | |
|           Args.push_back(DFSF.getShadow(*i));
 | |
| 
 | |
|         if (FT->isVarArg()) {
 | |
|           auto *LabelVATy = ArrayType::get(DFSF.DFS.ShadowTy,
 | |
|                                            CS.arg_size() - FT->getNumParams());
 | |
|           auto *LabelVAAlloca = new AllocaInst(LabelVATy, "labelva",
 | |
|                                                DFSF.F->getEntryBlock().begin());
 | |
| 
 | |
|           for (unsigned n = 0; i != CS.arg_end(); ++i, ++n) {
 | |
|             auto LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, n);
 | |
|             IRB.CreateStore(DFSF.getShadow(*i), LabelVAPtr);
 | |
|           }
 | |
| 
 | |
|           Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0));
 | |
|         }
 | |
| 
 | |
|         if (!FT->getReturnType()->isVoidTy()) {
 | |
|           if (!DFSF.LabelReturnAlloca) {
 | |
|             DFSF.LabelReturnAlloca =
 | |
|                 new AllocaInst(DFSF.DFS.ShadowTy, "labelreturn",
 | |
|                                DFSF.F->getEntryBlock().begin());
 | |
|           }
 | |
|           Args.push_back(DFSF.LabelReturnAlloca);
 | |
|         }
 | |
| 
 | |
|         for (i = CS.arg_begin() + FT->getNumParams(); i != CS.arg_end(); ++i)
 | |
|           Args.push_back(*i);
 | |
| 
 | |
|         CallInst *CustomCI = IRB.CreateCall(CustomF, Args);
 | |
|         CustomCI->setCallingConv(CI->getCallingConv());
 | |
|         CustomCI->setAttributes(CI->getAttributes());
 | |
| 
 | |
|         if (!FT->getReturnType()->isVoidTy()) {
 | |
|           LoadInst *LabelLoad = IRB.CreateLoad(DFSF.LabelReturnAlloca);
 | |
|           DFSF.setShadow(CustomCI, LabelLoad);
 | |
|         }
 | |
| 
 | |
|         CI->replaceAllUsesWith(CustomCI);
 | |
|         CI->eraseFromParent();
 | |
|         return;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   FunctionType *FT = cast<FunctionType>(
 | |
|       CS.getCalledValue()->getType()->getPointerElementType());
 | |
|   if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
 | |
|     for (unsigned i = 0, n = FT->getNumParams(); i != n; ++i) {
 | |
|       IRB.CreateStore(DFSF.getShadow(CS.getArgument(i)),
 | |
|                       DFSF.getArgTLS(i, CS.getInstruction()));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Instruction *Next = nullptr;
 | |
|   if (!CS.getType()->isVoidTy()) {
 | |
|     if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
 | |
|       if (II->getNormalDest()->getSinglePredecessor()) {
 | |
|         Next = II->getNormalDest()->begin();
 | |
|       } else {
 | |
|         BasicBlock *NewBB =
 | |
|             SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT);
 | |
|         Next = NewBB->begin();
 | |
|       }
 | |
|     } else {
 | |
|       Next = CS->getNextNode();
 | |
|     }
 | |
| 
 | |
|     if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
 | |
|       IRBuilder<> NextIRB(Next);
 | |
|       LoadInst *LI = NextIRB.CreateLoad(DFSF.getRetvalTLS());
 | |
|       DFSF.SkipInsts.insert(LI);
 | |
|       DFSF.setShadow(CS.getInstruction(), LI);
 | |
|       DFSF.NonZeroChecks.push_back(LI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Do all instrumentation for IA_Args down here to defer tampering with the
 | |
|   // CFG in a way that SplitEdge may be able to detect.
 | |
|   if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) {
 | |
|     FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT);
 | |
|     Value *Func =
 | |
|         IRB.CreateBitCast(CS.getCalledValue(), PointerType::getUnqual(NewFT));
 | |
|     std::vector<Value *> Args;
 | |
| 
 | |
|     CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
 | |
|     for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
 | |
|       Args.push_back(*i);
 | |
| 
 | |
|     i = CS.arg_begin();
 | |
|     for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
 | |
|       Args.push_back(DFSF.getShadow(*i));
 | |
| 
 | |
|     if (FT->isVarArg()) {
 | |
|       unsigned VarArgSize = CS.arg_size() - FT->getNumParams();
 | |
|       ArrayType *VarArgArrayTy = ArrayType::get(DFSF.DFS.ShadowTy, VarArgSize);
 | |
|       AllocaInst *VarArgShadow =
 | |
|           new AllocaInst(VarArgArrayTy, "", DFSF.F->getEntryBlock().begin());
 | |
|       Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0));
 | |
|       for (unsigned n = 0; i != e; ++i, ++n) {
 | |
|         IRB.CreateStore(
 | |
|             DFSF.getShadow(*i),
 | |
|             IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, n));
 | |
|         Args.push_back(*i);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     CallSite NewCS;
 | |
|     if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
 | |
|       NewCS = IRB.CreateInvoke(Func, II->getNormalDest(), II->getUnwindDest(),
 | |
|                                Args);
 | |
|     } else {
 | |
|       NewCS = IRB.CreateCall(Func, Args);
 | |
|     }
 | |
|     NewCS.setCallingConv(CS.getCallingConv());
 | |
|     NewCS.setAttributes(CS.getAttributes().removeAttributes(
 | |
|         *DFSF.DFS.Ctx, AttributeSet::ReturnIndex,
 | |
|         AttributeFuncs::typeIncompatible(NewCS.getInstruction()->getType())));
 | |
| 
 | |
|     if (Next) {
 | |
|       ExtractValueInst *ExVal =
 | |
|           ExtractValueInst::Create(NewCS.getInstruction(), 0, "", Next);
 | |
|       DFSF.SkipInsts.insert(ExVal);
 | |
|       ExtractValueInst *ExShadow =
 | |
|           ExtractValueInst::Create(NewCS.getInstruction(), 1, "", Next);
 | |
|       DFSF.SkipInsts.insert(ExShadow);
 | |
|       DFSF.setShadow(ExVal, ExShadow);
 | |
|       DFSF.NonZeroChecks.push_back(ExShadow);
 | |
| 
 | |
|       CS.getInstruction()->replaceAllUsesWith(ExVal);
 | |
|     }
 | |
| 
 | |
|     CS.getInstruction()->eraseFromParent();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void DFSanVisitor::visitPHINode(PHINode &PN) {
 | |
|   PHINode *ShadowPN =
 | |
|       PHINode::Create(DFSF.DFS.ShadowTy, PN.getNumIncomingValues(), "", &PN);
 | |
| 
 | |
|   // Give the shadow phi node valid predecessors to fool SplitEdge into working.
 | |
|   Value *UndefShadow = UndefValue::get(DFSF.DFS.ShadowTy);
 | |
|   for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e;
 | |
|        ++i) {
 | |
|     ShadowPN->addIncoming(UndefShadow, *i);
 | |
|   }
 | |
| 
 | |
|   DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN));
 | |
|   DFSF.setShadow(&PN, ShadowPN);
 | |
| }
 |