mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	Just store InstPartitions directly into the std::list. No functional change intended. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237930 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			977 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			977 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- LoopDistribute.cpp - Loop Distribution Pass ------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the Loop Distribution Pass.  Its main focus is to
 | |
| // distribute loops that cannot be vectorized due to dependence cycles.  It
 | |
| // tries to isolate the offending dependences into a new loop allowing
 | |
| // vectorization of the remaining parts.
 | |
| //
 | |
| // For dependence analysis, the pass uses the LoopVectorizer's
 | |
| // LoopAccessAnalysis.  Because this analysis presumes no change in the order of
 | |
| // memory operations, special care is taken to preserve the lexical order of
 | |
| // these operations.
 | |
| //
 | |
| // Similarly to the Vectorizer, the pass also supports loop versioning to
 | |
| // run-time disambiguate potentially overlapping arrays.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/EquivalenceClasses.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/LoopAccessAnalysis.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Cloning.h"
 | |
| #include <list>
 | |
| 
 | |
| #define LDIST_NAME "loop-distribute"
 | |
| #define DEBUG_TYPE LDIST_NAME
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<bool>
 | |
|     LDistVerify("loop-distribute-verify", cl::Hidden,
 | |
|                 cl::desc("Turn on DominatorTree and LoopInfo verification "
 | |
|                          "after Loop Distribution"),
 | |
|                 cl::init(false));
 | |
| 
 | |
| static cl::opt<bool> DistributeNonIfConvertible(
 | |
|     "loop-distribute-non-if-convertible", cl::Hidden,
 | |
|     cl::desc("Whether to distribute into a loop that may not be "
 | |
|              "if-convertible by the loop vectorizer"),
 | |
|     cl::init(false));
 | |
| 
 | |
| STATISTIC(NumLoopsDistributed, "Number of loops distributed");
 | |
| 
 | |
| /// \brief Remaps instructions in a loop including the preheader.
 | |
| static void remapInstructionsInLoop(const SmallVectorImpl<BasicBlock *> &Blocks,
 | |
|                                     ValueToValueMapTy &VMap) {
 | |
|   // Rewrite the code to refer to itself.
 | |
|   for (auto *BB : Blocks)
 | |
|     for (auto &Inst : *BB)
 | |
|       RemapInstruction(&Inst, VMap,
 | |
|                        RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
 | |
| }
 | |
| 
 | |
| /// \brief Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
 | |
| /// Blocks.
 | |
| ///
 | |
| /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
 | |
| /// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
 | |
| static Loop *cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
 | |
|                                     Loop *OrigLoop, ValueToValueMapTy &VMap,
 | |
|                                     const Twine &NameSuffix, LoopInfo *LI,
 | |
|                                     DominatorTree *DT,
 | |
|                                     SmallVectorImpl<BasicBlock *> &Blocks) {
 | |
|   Function *F = OrigLoop->getHeader()->getParent();
 | |
|   Loop *ParentLoop = OrigLoop->getParentLoop();
 | |
| 
 | |
|   Loop *NewLoop = new Loop();
 | |
|   if (ParentLoop)
 | |
|     ParentLoop->addChildLoop(NewLoop);
 | |
|   else
 | |
|     LI->addTopLevelLoop(NewLoop);
 | |
| 
 | |
|   BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
 | |
|   BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
 | |
|   // To rename the loop PHIs.
 | |
|   VMap[OrigPH] = NewPH;
 | |
|   Blocks.push_back(NewPH);
 | |
| 
 | |
|   // Update LoopInfo.
 | |
|   if (ParentLoop)
 | |
|     ParentLoop->addBasicBlockToLoop(NewPH, *LI);
 | |
| 
 | |
|   // Update DominatorTree.
 | |
|   DT->addNewBlock(NewPH, LoopDomBB);
 | |
| 
 | |
|   for (BasicBlock *BB : OrigLoop->getBlocks()) {
 | |
|     BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
 | |
|     VMap[BB] = NewBB;
 | |
| 
 | |
|     // Update LoopInfo.
 | |
|     NewLoop->addBasicBlockToLoop(NewBB, *LI);
 | |
| 
 | |
|     // Update DominatorTree.
 | |
|     BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
 | |
|     DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB]));
 | |
| 
 | |
|     Blocks.push_back(NewBB);
 | |
|   }
 | |
| 
 | |
|   // Move them physically from the end of the block list.
 | |
|   F->getBasicBlockList().splice(Before, F->getBasicBlockList(), NewPH);
 | |
|   F->getBasicBlockList().splice(Before, F->getBasicBlockList(),
 | |
|                                 NewLoop->getHeader(), F->end());
 | |
| 
 | |
|   return NewLoop;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// \brief Maintains the set of instructions of the loop for a partition before
 | |
| /// cloning.  After cloning, it hosts the new loop.
 | |
| class InstPartition {
 | |
|   typedef SmallPtrSet<Instruction *, 8> InstructionSet;
 | |
| 
 | |
| public:
 | |
|   InstPartition(Instruction *I, Loop *L, bool DepCycle = false)
 | |
|       : DepCycle(DepCycle), OrigLoop(L), ClonedLoop(nullptr) {
 | |
|     Set.insert(I);
 | |
|   }
 | |
| 
 | |
|   /// \brief Returns whether this partition contains a dependence cycle.
 | |
|   bool hasDepCycle() const { return DepCycle; }
 | |
| 
 | |
|   /// \brief Adds an instruction to this partition.
 | |
|   void add(Instruction *I) { Set.insert(I); }
 | |
| 
 | |
|   /// \brief Collection accessors.
 | |
|   InstructionSet::iterator begin() { return Set.begin(); }
 | |
|   InstructionSet::iterator end() { return Set.end(); }
 | |
|   InstructionSet::const_iterator begin() const { return Set.begin(); }
 | |
|   InstructionSet::const_iterator end() const { return Set.end(); }
 | |
|   bool empty() const { return Set.empty(); }
 | |
| 
 | |
|   /// \brief Moves this partition into \p Other.  This partition becomes empty
 | |
|   /// after this.
 | |
|   void moveTo(InstPartition &Other) {
 | |
|     Other.Set.insert(Set.begin(), Set.end());
 | |
|     Set.clear();
 | |
|     Other.DepCycle |= DepCycle;
 | |
|   }
 | |
| 
 | |
|   /// \brief Populates the partition with a transitive closure of all the
 | |
|   /// instructions that the seeded instructions dependent on.
 | |
|   void populateUsedSet() {
 | |
|     // FIXME: We currently don't use control-dependence but simply include all
 | |
|     // blocks (possibly empty at the end) and let simplifycfg mostly clean this
 | |
|     // up.
 | |
|     for (auto *B : OrigLoop->getBlocks())
 | |
|       Set.insert(B->getTerminator());
 | |
| 
 | |
|     // Follow the use-def chains to form a transitive closure of all the
 | |
|     // instructions that the originally seeded instructions depend on.
 | |
|     SmallVector<Instruction *, 8> Worklist(Set.begin(), Set.end());
 | |
|     while (!Worklist.empty()) {
 | |
|       Instruction *I = Worklist.pop_back_val();
 | |
|       // Insert instructions from the loop that we depend on.
 | |
|       for (Value *V : I->operand_values()) {
 | |
|         auto *I = dyn_cast<Instruction>(V);
 | |
|         if (I && OrigLoop->contains(I->getParent()) && Set.insert(I).second)
 | |
|           Worklist.push_back(I);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// \brief Clones the original loop.
 | |
|   ///
 | |
|   /// Updates LoopInfo and DominatorTree using the information that block \p
 | |
|   /// LoopDomBB dominates the loop.
 | |
|   Loop *cloneLoopWithPreheader(BasicBlock *InsertBefore, BasicBlock *LoopDomBB,
 | |
|                                unsigned Index, LoopInfo *LI,
 | |
|                                DominatorTree *DT) {
 | |
|     ClonedLoop = ::cloneLoopWithPreheader(InsertBefore, LoopDomBB, OrigLoop,
 | |
|                                           VMap, Twine(".ldist") + Twine(Index),
 | |
|                                           LI, DT, ClonedLoopBlocks);
 | |
|     return ClonedLoop;
 | |
|   }
 | |
| 
 | |
|   /// \brief The cloned loop.  If this partition is mapped to the original loop,
 | |
|   /// this is null.
 | |
|   const Loop *getClonedLoop() const { return ClonedLoop; }
 | |
| 
 | |
|   /// \brief Returns the loop where this partition ends up after distribution.
 | |
|   /// If this partition is mapped to the original loop then use the block from
 | |
|   /// the loop.
 | |
|   const Loop *getDistributedLoop() const {
 | |
|     return ClonedLoop ? ClonedLoop : OrigLoop;
 | |
|   }
 | |
| 
 | |
|   /// \brief The VMap that is populated by cloning and then used in
 | |
|   /// remapinstruction to remap the cloned instructions.
 | |
|   ValueToValueMapTy &getVMap() { return VMap; }
 | |
| 
 | |
|   /// \brief Remaps the cloned instructions using VMap.
 | |
|   void remapInstructions() { remapInstructionsInLoop(ClonedLoopBlocks, VMap); }
 | |
| 
 | |
|   /// \brief Based on the set of instructions selected for this partition,
 | |
|   /// removes the unnecessary ones.
 | |
|   void removeUnusedInsts() {
 | |
|     SmallVector<Instruction *, 8> Unused;
 | |
| 
 | |
|     for (auto *Block : OrigLoop->getBlocks())
 | |
|       for (auto &Inst : *Block)
 | |
|         if (!Set.count(&Inst)) {
 | |
|           Instruction *NewInst = &Inst;
 | |
|           if (!VMap.empty())
 | |
|             NewInst = cast<Instruction>(VMap[NewInst]);
 | |
| 
 | |
|           assert(!isa<BranchInst>(NewInst) &&
 | |
|                  "Branches are marked used early on");
 | |
|           Unused.push_back(NewInst);
 | |
|         }
 | |
| 
 | |
|     // Delete the instructions backwards, as it has a reduced likelihood of
 | |
|     // having to update as many def-use and use-def chains.
 | |
|     for (auto I = Unused.rbegin(), E = Unused.rend(); I != E; ++I) {
 | |
|       auto *Inst = *I;
 | |
| 
 | |
|       if (!Inst->use_empty())
 | |
|         Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
 | |
|       Inst->eraseFromParent();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void print() const {
 | |
|     if (DepCycle)
 | |
|       dbgs() << "  (cycle)\n";
 | |
|     for (auto *I : Set)
 | |
|       // Prefix with the block name.
 | |
|       dbgs() << "  " << I->getParent()->getName() << ":" << *I << "\n";
 | |
|   }
 | |
| 
 | |
|   void printBlocks() const {
 | |
|     for (auto *BB : getDistributedLoop()->getBlocks())
 | |
|       dbgs() << *BB;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   /// \brief Instructions from OrigLoop selected for this partition.
 | |
|   InstructionSet Set;
 | |
| 
 | |
|   /// \brief Whether this partition contains a dependence cycle.
 | |
|   bool DepCycle;
 | |
| 
 | |
|   /// \brief The original loop.
 | |
|   Loop *OrigLoop;
 | |
| 
 | |
|   /// \brief The cloned loop.  If this partition is mapped to the original loop,
 | |
|   /// this is null.
 | |
|   Loop *ClonedLoop;
 | |
| 
 | |
|   /// \brief The blocks of ClonedLoop including the preheader.  If this
 | |
|   /// partition is mapped to the original loop, this is empty.
 | |
|   SmallVector<BasicBlock *, 8> ClonedLoopBlocks;
 | |
| 
 | |
|   /// \brief These gets populated once the set of instructions have been
 | |
|   /// finalized. If this partition is mapped to the original loop, these are not
 | |
|   /// set.
 | |
|   ValueToValueMapTy VMap;
 | |
| };
 | |
| 
 | |
| /// \brief Holds the set of Partitions.  It populates them, merges them and then
 | |
| /// clones the loops.
 | |
| class InstPartitionContainer {
 | |
|   typedef DenseMap<Instruction *, int> InstToPartitionIdT;
 | |
| 
 | |
| public:
 | |
|   InstPartitionContainer(Loop *L, LoopInfo *LI, DominatorTree *DT)
 | |
|       : L(L), LI(LI), DT(DT) {}
 | |
| 
 | |
|   /// \brief Returns the number of partitions.
 | |
|   unsigned getSize() const { return PartitionContainer.size(); }
 | |
| 
 | |
|   /// \brief Adds \p Inst into the current partition if that is marked to
 | |
|   /// contain cycles.  Otherwise start a new partition for it.
 | |
|   void addToCyclicPartition(Instruction *Inst) {
 | |
|     // If the current partition is non-cyclic.  Start a new one.
 | |
|     if (PartitionContainer.empty() || !PartitionContainer.back().hasDepCycle())
 | |
|       PartitionContainer.emplace_back(Inst, L, /*DepCycle=*/true);
 | |
|     else
 | |
|       PartitionContainer.back().add(Inst);
 | |
|   }
 | |
| 
 | |
|   /// \brief Adds \p Inst into a partition that is not marked to contain
 | |
|   /// dependence cycles.
 | |
|   ///
 | |
|   //  Initially we isolate memory instructions into as many partitions as
 | |
|   //  possible, then later we may merge them back together.
 | |
|   void addToNewNonCyclicPartition(Instruction *Inst) {
 | |
|     PartitionContainer.emplace_back(Inst, L);
 | |
|   }
 | |
| 
 | |
|   /// \brief Merges adjacent non-cyclic partitions.
 | |
|   ///
 | |
|   /// The idea is that we currently only want to isolate the non-vectorizable
 | |
|   /// partition.  We could later allow more distribution among these partition
 | |
|   /// too.
 | |
|   void mergeAdjacentNonCyclic() {
 | |
|     mergeAdjacentPartitionsIf(
 | |
|         [](const InstPartition *P) { return !P->hasDepCycle(); });
 | |
|   }
 | |
| 
 | |
|   /// \brief If a partition contains only conditional stores, we won't vectorize
 | |
|   /// it.  Try to merge it with a previous cyclic partition.
 | |
|   void mergeNonIfConvertible() {
 | |
|     mergeAdjacentPartitionsIf([&](const InstPartition *Partition) {
 | |
|       if (Partition->hasDepCycle())
 | |
|         return true;
 | |
| 
 | |
|       // Now, check if all stores are conditional in this partition.
 | |
|       bool seenStore = false;
 | |
| 
 | |
|       for (auto *Inst : *Partition)
 | |
|         if (isa<StoreInst>(Inst)) {
 | |
|           seenStore = true;
 | |
|           if (!LoopAccessInfo::blockNeedsPredication(Inst->getParent(), L, DT))
 | |
|             return false;
 | |
|         }
 | |
|       return seenStore;
 | |
|     });
 | |
|   }
 | |
| 
 | |
|   /// \brief Merges the partitions according to various heuristics.
 | |
|   void mergeBeforePopulating() {
 | |
|     mergeAdjacentNonCyclic();
 | |
|     if (!DistributeNonIfConvertible)
 | |
|       mergeNonIfConvertible();
 | |
|   }
 | |
| 
 | |
|   /// \brief Merges partitions in order to ensure that no loads are duplicated.
 | |
|   ///
 | |
|   /// We can't duplicate loads because that could potentially reorder them.
 | |
|   /// LoopAccessAnalysis provides dependency information with the context that
 | |
|   /// the order of memory operation is preserved.
 | |
|   ///
 | |
|   /// Return if any partitions were merged.
 | |
|   bool mergeToAvoidDuplicatedLoads() {
 | |
|     typedef DenseMap<Instruction *, InstPartition *> LoadToPartitionT;
 | |
|     typedef EquivalenceClasses<InstPartition *> ToBeMergedT;
 | |
| 
 | |
|     LoadToPartitionT LoadToPartition;
 | |
|     ToBeMergedT ToBeMerged;
 | |
| 
 | |
|     // Step through the partitions and create equivalence between partitions
 | |
|     // that contain the same load.  Also put partitions in between them in the
 | |
|     // same equivalence class to avoid reordering of memory operations.
 | |
|     for (PartitionContainerT::iterator I = PartitionContainer.begin(),
 | |
|                                        E = PartitionContainer.end();
 | |
|          I != E; ++I) {
 | |
|       auto *PartI = &*I;
 | |
| 
 | |
|       // If a load occurs in two partitions PartI and PartJ, merge all
 | |
|       // partitions (PartI, PartJ] into PartI.
 | |
|       for (Instruction *Inst : *PartI)
 | |
|         if (isa<LoadInst>(Inst)) {
 | |
|           bool NewElt;
 | |
|           LoadToPartitionT::iterator LoadToPart;
 | |
| 
 | |
|           std::tie(LoadToPart, NewElt) =
 | |
|               LoadToPartition.insert(std::make_pair(Inst, PartI));
 | |
|           if (!NewElt) {
 | |
|             DEBUG(dbgs() << "Merging partitions due to this load in multiple "
 | |
|                          << "partitions: " << PartI << ", "
 | |
|                          << LoadToPart->second << "\n" << *Inst << "\n");
 | |
| 
 | |
|             auto PartJ = I;
 | |
|             do {
 | |
|               --PartJ;
 | |
|               ToBeMerged.unionSets(PartI, &*PartJ);
 | |
|             } while (&*PartJ != LoadToPart->second);
 | |
|           }
 | |
|         }
 | |
|     }
 | |
|     if (ToBeMerged.empty())
 | |
|       return false;
 | |
| 
 | |
|     // Merge the member of an equivalence class into its class leader.  This
 | |
|     // makes the members empty.
 | |
|     for (ToBeMergedT::iterator I = ToBeMerged.begin(), E = ToBeMerged.end();
 | |
|          I != E; ++I) {
 | |
|       if (!I->isLeader())
 | |
|         continue;
 | |
| 
 | |
|       auto PartI = I->getData();
 | |
|       for (auto PartJ : make_range(std::next(ToBeMerged.member_begin(I)),
 | |
|                                    ToBeMerged.member_end())) {
 | |
|         PartJ->moveTo(*PartI);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Remove the empty partitions.
 | |
|     PartitionContainer.remove_if(
 | |
|         [](const InstPartition &P) { return P.empty(); });
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// \brief Sets up the mapping between instructions to partitions.  If the
 | |
|   /// instruction is duplicated across multiple partitions, set the entry to -1.
 | |
|   void setupPartitionIdOnInstructions() {
 | |
|     int PartitionID = 0;
 | |
|     for (const auto &Partition : PartitionContainer) {
 | |
|       for (Instruction *Inst : Partition) {
 | |
|         bool NewElt;
 | |
|         InstToPartitionIdT::iterator Iter;
 | |
| 
 | |
|         std::tie(Iter, NewElt) =
 | |
|             InstToPartitionId.insert(std::make_pair(Inst, PartitionID));
 | |
|         if (!NewElt)
 | |
|           Iter->second = -1;
 | |
|       }
 | |
|       ++PartitionID;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// \brief Populates the partition with everything that the seeding
 | |
|   /// instructions require.
 | |
|   void populateUsedSet() {
 | |
|     for (auto &P : PartitionContainer)
 | |
|       P.populateUsedSet();
 | |
|   }
 | |
| 
 | |
|   /// \brief This performs the main chunk of the work of cloning the loops for
 | |
|   /// the partitions.
 | |
|   void cloneLoops(Pass *P) {
 | |
|     BasicBlock *OrigPH = L->getLoopPreheader();
 | |
|     // At this point the predecessor of the preheader is either the memcheck
 | |
|     // block or the top part of the original preheader.
 | |
|     BasicBlock *Pred = OrigPH->getSinglePredecessor();
 | |
|     assert(Pred && "Preheader does not have a single predecessor");
 | |
|     BasicBlock *ExitBlock = L->getExitBlock();
 | |
|     assert(ExitBlock && "No single exit block");
 | |
|     Loop *NewLoop;
 | |
| 
 | |
|     assert(!PartitionContainer.empty() && "at least two partitions expected");
 | |
|     // We're cloning the preheader along with the loop so we already made sure
 | |
|     // it was empty.
 | |
|     assert(&*OrigPH->begin() == OrigPH->getTerminator() &&
 | |
|            "preheader not empty");
 | |
| 
 | |
|     // Create a loop for each partition except the last.  Clone the original
 | |
|     // loop before PH along with adding a preheader for the cloned loop.  Then
 | |
|     // update PH to point to the newly added preheader.
 | |
|     BasicBlock *TopPH = OrigPH;
 | |
|     unsigned Index = getSize() - 1;
 | |
|     for (auto I = std::next(PartitionContainer.rbegin()),
 | |
|               E = PartitionContainer.rend();
 | |
|          I != E; ++I, --Index, TopPH = NewLoop->getLoopPreheader()) {
 | |
|       auto *Part = &*I;
 | |
| 
 | |
|       NewLoop = Part->cloneLoopWithPreheader(TopPH, Pred, Index, LI, DT);
 | |
| 
 | |
|       Part->getVMap()[ExitBlock] = TopPH;
 | |
|       Part->remapInstructions();
 | |
|     }
 | |
|     Pred->getTerminator()->replaceUsesOfWith(OrigPH, TopPH);
 | |
| 
 | |
|     // Now go in forward order and update the immediate dominator for the
 | |
|     // preheaders with the exiting block of the previous loop.  Dominance
 | |
|     // within the loop is updated in cloneLoopWithPreheader.
 | |
|     for (auto Curr = PartitionContainer.cbegin(),
 | |
|               Next = std::next(PartitionContainer.cbegin()),
 | |
|               E = PartitionContainer.cend();
 | |
|          Next != E; ++Curr, ++Next)
 | |
|       DT->changeImmediateDominator(
 | |
|           Next->getDistributedLoop()->getLoopPreheader(),
 | |
|           Curr->getDistributedLoop()->getExitingBlock());
 | |
|   }
 | |
| 
 | |
|   /// \brief Removes the dead instructions from the cloned loops.
 | |
|   void removeUnusedInsts() {
 | |
|     for (auto &Partition : PartitionContainer)
 | |
|       Partition.removeUnusedInsts();
 | |
|   }
 | |
| 
 | |
|   /// \brief For each memory pointer, it computes the partitionId the pointer is
 | |
|   /// used in.
 | |
|   ///
 | |
|   /// This returns an array of int where the I-th entry corresponds to I-th
 | |
|   /// entry in LAI.getRuntimePointerCheck().  If the pointer is used in multiple
 | |
|   /// partitions its entry is set to -1.
 | |
|   SmallVector<int, 8>
 | |
|   computePartitionSetForPointers(const LoopAccessInfo &LAI) {
 | |
|     const LoopAccessInfo::RuntimePointerCheck *RtPtrCheck =
 | |
|         LAI.getRuntimePointerCheck();
 | |
| 
 | |
|     unsigned N = RtPtrCheck->Pointers.size();
 | |
|     SmallVector<int, 8> PtrToPartitions(N);
 | |
|     for (unsigned I = 0; I < N; ++I) {
 | |
|       Value *Ptr = RtPtrCheck->Pointers[I];
 | |
|       auto Instructions =
 | |
|           LAI.getInstructionsForAccess(Ptr, RtPtrCheck->IsWritePtr[I]);
 | |
| 
 | |
|       int &Partition = PtrToPartitions[I];
 | |
|       // First set it to uninitialized.
 | |
|       Partition = -2;
 | |
|       for (Instruction *Inst : Instructions) {
 | |
|         // Note that this could be -1 if Inst is duplicated across multiple
 | |
|         // partitions.
 | |
|         int ThisPartition = this->InstToPartitionId[Inst];
 | |
|         if (Partition == -2)
 | |
|           Partition = ThisPartition;
 | |
|         // -1 means belonging to multiple partitions.
 | |
|         else if (Partition == -1)
 | |
|           break;
 | |
|         else if (Partition != (int)ThisPartition)
 | |
|           Partition = -1;
 | |
|       }
 | |
|       assert(Partition != -2 && "Pointer not belonging to any partition");
 | |
|     }
 | |
| 
 | |
|     return PtrToPartitions;
 | |
|   }
 | |
| 
 | |
|   void print(raw_ostream &OS) const {
 | |
|     unsigned Index = 0;
 | |
|     for (const auto &P : PartitionContainer) {
 | |
|       OS << "Partition " << Index++ << " (" << &P << "):\n";
 | |
|       P.print();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void dump() const { print(dbgs()); }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   friend raw_ostream &operator<<(raw_ostream &OS,
 | |
|                                  const InstPartitionContainer &Partitions) {
 | |
|     Partitions.print(OS);
 | |
|     return OS;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   void printBlocks() const {
 | |
|     unsigned Index = 0;
 | |
|     for (const auto &P : PartitionContainer) {
 | |
|       dbgs() << "\nPartition " << Index++ << " (" << &P << "):\n";
 | |
|       P.printBlocks();
 | |
|     }
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   typedef std::list<InstPartition> PartitionContainerT;
 | |
| 
 | |
|   /// \brief List of partitions.
 | |
|   PartitionContainerT PartitionContainer;
 | |
| 
 | |
|   /// \brief Mapping from Instruction to partition Id.  If the instruction
 | |
|   /// belongs to multiple partitions the entry contains -1.
 | |
|   InstToPartitionIdT InstToPartitionId;
 | |
| 
 | |
|   Loop *L;
 | |
|   LoopInfo *LI;
 | |
|   DominatorTree *DT;
 | |
| 
 | |
|   /// \brief The control structure to merge adjacent partitions if both satisfy
 | |
|   /// the \p Predicate.
 | |
|   template <class UnaryPredicate>
 | |
|   void mergeAdjacentPartitionsIf(UnaryPredicate Predicate) {
 | |
|     InstPartition *PrevMatch = nullptr;
 | |
|     for (auto I = PartitionContainer.begin(); I != PartitionContainer.end();) {
 | |
|       auto DoesMatch = Predicate(&*I);
 | |
|       if (PrevMatch == nullptr && DoesMatch) {
 | |
|         PrevMatch = &*I;
 | |
|         ++I;
 | |
|       } else if (PrevMatch != nullptr && DoesMatch) {
 | |
|         I->moveTo(*PrevMatch);
 | |
|         I = PartitionContainer.erase(I);
 | |
|       } else {
 | |
|         PrevMatch = nullptr;
 | |
|         ++I;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// \brief For each memory instruction, this class maintains difference of the
 | |
| /// number of unsafe dependences that start out from this instruction minus
 | |
| /// those that end here.
 | |
| ///
 | |
| /// By traversing the memory instructions in program order and accumulating this
 | |
| /// number, we know whether any unsafe dependence crosses over a program point.
 | |
| class MemoryInstructionDependences {
 | |
|   typedef MemoryDepChecker::Dependence Dependence;
 | |
| 
 | |
| public:
 | |
|   struct Entry {
 | |
|     Instruction *Inst;
 | |
|     unsigned NumUnsafeDependencesStartOrEnd;
 | |
| 
 | |
|     Entry(Instruction *Inst) : Inst(Inst), NumUnsafeDependencesStartOrEnd(0) {}
 | |
|   };
 | |
| 
 | |
|   typedef SmallVector<Entry, 8> AccessesType;
 | |
| 
 | |
|   AccessesType::const_iterator begin() const { return Accesses.begin(); }
 | |
|   AccessesType::const_iterator end() const { return Accesses.end(); }
 | |
| 
 | |
|   MemoryInstructionDependences(
 | |
|       const SmallVectorImpl<Instruction *> &Instructions,
 | |
|       const SmallVectorImpl<Dependence> &InterestingDependences) {
 | |
|     Accesses.append(Instructions.begin(), Instructions.end());
 | |
| 
 | |
|     DEBUG(dbgs() << "Backward dependences:\n");
 | |
|     for (auto &Dep : InterestingDependences)
 | |
|       if (Dep.isPossiblyBackward()) {
 | |
|         // Note that the designations source and destination follow the program
 | |
|         // order, i.e. source is always first.  (The direction is given by the
 | |
|         // DepType.)
 | |
|         ++Accesses[Dep.Source].NumUnsafeDependencesStartOrEnd;
 | |
|         --Accesses[Dep.Destination].NumUnsafeDependencesStartOrEnd;
 | |
| 
 | |
|         DEBUG(Dep.print(dbgs(), 2, Instructions));
 | |
|       }
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   AccessesType Accesses;
 | |
| };
 | |
| 
 | |
| /// \brief Handles the loop versioning based on memchecks.
 | |
| class RuntimeCheckEmitter {
 | |
| public:
 | |
|   RuntimeCheckEmitter(const LoopAccessInfo &LAI, Loop *L, LoopInfo *LI,
 | |
|                       DominatorTree *DT)
 | |
|       : OrigLoop(L), NonDistributedLoop(nullptr), LAI(LAI), LI(LI), DT(DT) {}
 | |
| 
 | |
|   /// \brief Given the \p Partitions formed by Loop Distribution, it determines
 | |
|   /// in which partition each pointer is used.
 | |
|   void partitionPointers(InstPartitionContainer &Partitions) {
 | |
|     // Set up partition id in PtrRtChecks.  Ptr -> Access -> Intruction ->
 | |
|     // Partition.
 | |
|     PtrToPartition = Partitions.computePartitionSetForPointers(LAI);
 | |
| 
 | |
|     DEBUG(dbgs() << "\nPointers:\n");
 | |
|     DEBUG(LAI.getRuntimePointerCheck()->print(dbgs(), 0, &PtrToPartition));
 | |
|   }
 | |
| 
 | |
|   /// \brief Returns true if we need memchecks to distribute the loop.
 | |
|   bool needsRuntimeChecks() const {
 | |
|     return LAI.getRuntimePointerCheck()->needsAnyChecking(&PtrToPartition);
 | |
|   }
 | |
| 
 | |
|   /// \brief Performs the CFG manipulation part of versioning the loop including
 | |
|   /// the DominatorTree and LoopInfo updates.
 | |
|   void versionLoop(Pass *P) {
 | |
|     Instruction *FirstCheckInst;
 | |
|     Instruction *MemRuntimeCheck;
 | |
|     // Add the memcheck in the original preheader (this is empty initially).
 | |
|     BasicBlock *MemCheckBB = OrigLoop->getLoopPreheader();
 | |
|     std::tie(FirstCheckInst, MemRuntimeCheck) =
 | |
|         LAI.addRuntimeCheck(MemCheckBB->getTerminator(), &PtrToPartition);
 | |
|     assert(MemRuntimeCheck && "called even though needsAnyChecking = false");
 | |
| 
 | |
|     // Rename the block to make the IR more readable.
 | |
|     MemCheckBB->setName(OrigLoop->getHeader()->getName() + ".ldist.memcheck");
 | |
| 
 | |
|     // Create empty preheader for the loop (and after cloning for the
 | |
|     // original/nondist loop).
 | |
|     BasicBlock *PH =
 | |
|         SplitBlock(MemCheckBB, MemCheckBB->getTerminator(), DT, LI);
 | |
|     PH->setName(OrigLoop->getHeader()->getName() + ".ph");
 | |
| 
 | |
|     // Clone the loop including the preheader.
 | |
|     //
 | |
|     // FIXME: This does not currently preserve SimplifyLoop because the exit
 | |
|     // block is a join between the two loops.
 | |
|     SmallVector<BasicBlock *, 8> NonDistributedLoopBlocks;
 | |
|     NonDistributedLoop =
 | |
|         cloneLoopWithPreheader(PH, MemCheckBB, OrigLoop, VMap, ".ldist.nondist",
 | |
|                                LI, DT, NonDistributedLoopBlocks);
 | |
|     remapInstructionsInLoop(NonDistributedLoopBlocks, VMap);
 | |
| 
 | |
|     // Insert the conditional branch based on the result of the memchecks.
 | |
|     Instruction *OrigTerm = MemCheckBB->getTerminator();
 | |
|     BranchInst::Create(NonDistributedLoop->getLoopPreheader(),
 | |
|                        OrigLoop->getLoopPreheader(), MemRuntimeCheck, OrigTerm);
 | |
|     OrigTerm->eraseFromParent();
 | |
| 
 | |
|     // The loops merge in the original exit block.  This is now dominated by the
 | |
|     // memchecking block.
 | |
|     DT->changeImmediateDominator(OrigLoop->getExitBlock(), MemCheckBB);
 | |
|   }
 | |
| 
 | |
|   /// \brief Adds the necessary PHI nodes for the versioned loops based on the
 | |
|   /// loop-defined values used outside of the loop.
 | |
|   void addPHINodes(const SmallVectorImpl<Instruction *> &DefsUsedOutside) {
 | |
|     BasicBlock *PHIBlock = OrigLoop->getExitBlock();
 | |
|     assert(PHIBlock && "No single successor to loop exit block");
 | |
| 
 | |
|     for (auto *Inst : DefsUsedOutside) {
 | |
|       auto *NonDistInst = cast<Instruction>(VMap[Inst]);
 | |
|       PHINode *PN;
 | |
| 
 | |
|       // First see if we have a single-operand PHI with the value defined by the
 | |
|       // original loop.
 | |
|       for (auto I = PHIBlock->begin(); (PN = dyn_cast<PHINode>(I)); ++I) {
 | |
|         assert(PN->getNumOperands() == 1 &&
 | |
|                "Exit block should only have on predecessor");
 | |
|         if (PN->getIncomingValue(0) == Inst)
 | |
|           break;
 | |
|       }
 | |
|       // If not create it.
 | |
|       if (!PN) {
 | |
|         PN = PHINode::Create(Inst->getType(), 2, Inst->getName() + ".ldist",
 | |
|                              PHIBlock->begin());
 | |
|         for (auto *User : Inst->users())
 | |
|           if (!OrigLoop->contains(cast<Instruction>(User)->getParent()))
 | |
|             User->replaceUsesOfWith(Inst, PN);
 | |
|         PN->addIncoming(Inst, OrigLoop->getExitingBlock());
 | |
|       }
 | |
|       // Add the new incoming value from the non-distributed loop.
 | |
|       PN->addIncoming(NonDistInst, NonDistributedLoop->getExitingBlock());
 | |
|     }
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   /// \brief The original loop.  This becomes the "versioned" one, i.e. control
 | |
|   /// goes if the memchecks all pass.
 | |
|   Loop *OrigLoop;
 | |
|   /// \brief The fall-back loop, i.e. if any of the memchecks fail.
 | |
|   Loop *NonDistributedLoop;
 | |
| 
 | |
|   /// \brief For each memory pointer it contains the partitionId it is used in.
 | |
|   ///
 | |
|   /// The I-th entry corresponds to I-th entry in LAI.getRuntimePointerCheck().
 | |
|   /// If the pointer is used in multiple partitions the entry is set to -1.
 | |
|   SmallVector<int, 8> PtrToPartition;
 | |
| 
 | |
|   /// \brief This maps the instructions from OrigLoop to their counterpart in
 | |
|   /// NonDistributedLoop.
 | |
|   ValueToValueMapTy VMap;
 | |
| 
 | |
|   /// \brief Analyses used.
 | |
|   const LoopAccessInfo &LAI;
 | |
|   LoopInfo *LI;
 | |
|   DominatorTree *DT;
 | |
| };
 | |
| 
 | |
| /// \brief Returns the instructions that use values defined in the loop.
 | |
| static SmallVector<Instruction *, 8> findDefsUsedOutsideOfLoop(Loop *L) {
 | |
|   SmallVector<Instruction *, 8> UsedOutside;
 | |
| 
 | |
|   for (auto *Block : L->getBlocks())
 | |
|     // FIXME: I believe that this could use copy_if if the Inst reference could
 | |
|     // be adapted into a pointer.
 | |
|     for (auto &Inst : *Block) {
 | |
|       auto Users = Inst.users();
 | |
|       if (std::any_of(Users.begin(), Users.end(), [&](User *U) {
 | |
|             auto *Use = cast<Instruction>(U);
 | |
|             return !L->contains(Use->getParent());
 | |
|           }))
 | |
|         UsedOutside.push_back(&Inst);
 | |
|     }
 | |
| 
 | |
|   return UsedOutside;
 | |
| }
 | |
| 
 | |
| /// \brief The pass class.
 | |
| class LoopDistribute : public FunctionPass {
 | |
| public:
 | |
|   LoopDistribute() : FunctionPass(ID) {
 | |
|     initializeLoopDistributePass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   bool runOnFunction(Function &F) override {
 | |
|     LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | |
|     LAA = &getAnalysis<LoopAccessAnalysis>();
 | |
|     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
| 
 | |
|     // Build up a worklist of inner-loops to vectorize. This is necessary as the
 | |
|     // act of distributing a loop creates new loops and can invalidate iterators
 | |
|     // across the loops.
 | |
|     SmallVector<Loop *, 8> Worklist;
 | |
| 
 | |
|     for (Loop *TopLevelLoop : *LI)
 | |
|       for (Loop *L : depth_first(TopLevelLoop))
 | |
|         // We only handle inner-most loops.
 | |
|         if (L->empty())
 | |
|           Worklist.push_back(L);
 | |
| 
 | |
|     // Now walk the identified inner loops.
 | |
|     bool Changed = false;
 | |
|     for (Loop *L : Worklist)
 | |
|       Changed |= processLoop(L);
 | |
| 
 | |
|     // Process each loop nest in the function.
 | |
|     return Changed;
 | |
|   }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.addRequired<LoopInfoWrapperPass>();
 | |
|     AU.addPreserved<LoopInfoWrapperPass>();
 | |
|     AU.addRequired<LoopAccessAnalysis>();
 | |
|     AU.addRequired<DominatorTreeWrapperPass>();
 | |
|     AU.addPreserved<DominatorTreeWrapperPass>();
 | |
|   }
 | |
| 
 | |
|   static char ID;
 | |
| 
 | |
| private:
 | |
|   /// \brief Try to distribute an inner-most loop.
 | |
|   bool processLoop(Loop *L) {
 | |
|     assert(L->empty() && "Only process inner loops.");
 | |
| 
 | |
|     DEBUG(dbgs() << "\nLDist: In \"" << L->getHeader()->getParent()->getName()
 | |
|                  << "\" checking " << *L << "\n");
 | |
| 
 | |
|     BasicBlock *PH = L->getLoopPreheader();
 | |
|     if (!PH) {
 | |
|       DEBUG(dbgs() << "Skipping; no preheader");
 | |
|       return false;
 | |
|     }
 | |
|     if (!L->getExitBlock()) {
 | |
|       DEBUG(dbgs() << "Skipping; multiple exit blocks");
 | |
|       return false;
 | |
|     }
 | |
|     // LAA will check that we only have a single exiting block.
 | |
| 
 | |
|     const LoopAccessInfo &LAI = LAA->getInfo(L, ValueToValueMap());
 | |
| 
 | |
|     // Currently, we only distribute to isolate the part of the loop with
 | |
|     // dependence cycles to enable partial vectorization.
 | |
|     if (LAI.canVectorizeMemory()) {
 | |
|       DEBUG(dbgs() << "Skipping; memory operations are safe for vectorization");
 | |
|       return false;
 | |
|     }
 | |
|     auto *InterestingDependences =
 | |
|         LAI.getDepChecker().getInterestingDependences();
 | |
|     if (!InterestingDependences || InterestingDependences->empty()) {
 | |
|       DEBUG(dbgs() << "Skipping; No unsafe dependences to isolate");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     InstPartitionContainer Partitions(L, LI, DT);
 | |
| 
 | |
|     // First, go through each memory operation and assign them to consecutive
 | |
|     // partitions (the order of partitions follows program order).  Put those
 | |
|     // with unsafe dependences into "cyclic" partition otherwise put each store
 | |
|     // in its own "non-cyclic" partition (we'll merge these later).
 | |
|     //
 | |
|     // Note that a memory operation (e.g. Load2 below) at a program point that
 | |
|     // has an unsafe dependence (Store3->Load1) spanning over it must be
 | |
|     // included in the same cyclic partition as the dependent operations.  This
 | |
|     // is to preserve the original program order after distribution.  E.g.:
 | |
|     //
 | |
|     //                NumUnsafeDependencesStartOrEnd  NumUnsafeDependencesActive
 | |
|     //  Load1   -.                     1                       0->1
 | |
|     //  Load2    | /Unsafe/            0                       1
 | |
|     //  Store3  -'                    -1                       1->0
 | |
|     //  Load4                          0                       0
 | |
|     //
 | |
|     // NumUnsafeDependencesActive > 0 indicates this situation and in this case
 | |
|     // we just keep assigning to the same cyclic partition until
 | |
|     // NumUnsafeDependencesActive reaches 0.
 | |
|     const MemoryDepChecker &DepChecker = LAI.getDepChecker();
 | |
|     MemoryInstructionDependences MID(DepChecker.getMemoryInstructions(),
 | |
|                                      *InterestingDependences);
 | |
| 
 | |
|     int NumUnsafeDependencesActive = 0;
 | |
|     for (auto &InstDep : MID) {
 | |
|       Instruction *I = InstDep.Inst;
 | |
|       // We update NumUnsafeDependencesActive post-instruction, catch the
 | |
|       // start of a dependence directly via NumUnsafeDependencesStartOrEnd.
 | |
|       if (NumUnsafeDependencesActive ||
 | |
|           InstDep.NumUnsafeDependencesStartOrEnd > 0)
 | |
|         Partitions.addToCyclicPartition(I);
 | |
|       else
 | |
|         Partitions.addToNewNonCyclicPartition(I);
 | |
|       NumUnsafeDependencesActive += InstDep.NumUnsafeDependencesStartOrEnd;
 | |
|       assert(NumUnsafeDependencesActive >= 0 &&
 | |
|              "Negative number of dependences active");
 | |
|     }
 | |
| 
 | |
|     // Add partitions for values used outside.  These partitions can be out of
 | |
|     // order from the original program order.  This is OK because if the
 | |
|     // partition uses a load we will merge this partition with the original
 | |
|     // partition of the load that we set up in the previous loop (see
 | |
|     // mergeToAvoidDuplicatedLoads).
 | |
|     auto DefsUsedOutside = findDefsUsedOutsideOfLoop(L);
 | |
|     for (auto *Inst : DefsUsedOutside)
 | |
|       Partitions.addToNewNonCyclicPartition(Inst);
 | |
| 
 | |
|     DEBUG(dbgs() << "Seeded partitions:\n" << Partitions);
 | |
|     if (Partitions.getSize() < 2)
 | |
|       return false;
 | |
| 
 | |
|     // Run the merge heuristics: Merge non-cyclic adjacent partitions since we
 | |
|     // should be able to vectorize these together.
 | |
|     Partitions.mergeBeforePopulating();
 | |
|     DEBUG(dbgs() << "\nMerged partitions:\n" << Partitions);
 | |
|     if (Partitions.getSize() < 2)
 | |
|       return false;
 | |
| 
 | |
|     // Now, populate the partitions with non-memory operations.
 | |
|     Partitions.populateUsedSet();
 | |
|     DEBUG(dbgs() << "\nPopulated partitions:\n" << Partitions);
 | |
| 
 | |
|     // In order to preserve original lexical order for loads, keep them in the
 | |
|     // partition that we set up in the MemoryInstructionDependences loop.
 | |
|     if (Partitions.mergeToAvoidDuplicatedLoads()) {
 | |
|       DEBUG(dbgs() << "\nPartitions merged to ensure unique loads:\n"
 | |
|                    << Partitions);
 | |
|       if (Partitions.getSize() < 2)
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     DEBUG(dbgs() << "\nDistributing loop: " << *L << "\n");
 | |
|     // We're done forming the partitions set up the reverse mapping from
 | |
|     // instructions to partitions.
 | |
|     Partitions.setupPartitionIdOnInstructions();
 | |
| 
 | |
|     // To keep things simple have an empty preheader before we version or clone
 | |
|     // the loop.  (Also split if this has no predecessor, i.e. entry, because we
 | |
|     // rely on PH having a predecessor.)
 | |
|     if (!PH->getSinglePredecessor() || &*PH->begin() != PH->getTerminator())
 | |
|       SplitBlock(PH, PH->getTerminator(), DT, LI);
 | |
| 
 | |
|     // If we need run-time checks to disambiguate pointers are run-time, version
 | |
|     // the loop now.
 | |
|     RuntimeCheckEmitter RtCheckEmitter(LAI, L, LI, DT);
 | |
|     RtCheckEmitter.partitionPointers(Partitions);
 | |
|     if (RtCheckEmitter.needsRuntimeChecks()) {
 | |
|       RtCheckEmitter.versionLoop(this);
 | |
|       RtCheckEmitter.addPHINodes(DefsUsedOutside);
 | |
|     }
 | |
| 
 | |
|     // Create identical copies of the original loop for each partition and hook
 | |
|     // them up sequentially.
 | |
|     Partitions.cloneLoops(this);
 | |
| 
 | |
|     // Now, we remove the instruction from each loop that don't belong to that
 | |
|     // partition.
 | |
|     Partitions.removeUnusedInsts();
 | |
|     DEBUG(dbgs() << "\nAfter removing unused Instrs:\n");
 | |
|     DEBUG(Partitions.printBlocks());
 | |
| 
 | |
|     if (LDistVerify) {
 | |
|       LI->verify();
 | |
|       DT->verifyDomTree();
 | |
|     }
 | |
| 
 | |
|     ++NumLoopsDistributed;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Analyses used.
 | |
|   LoopInfo *LI;
 | |
|   LoopAccessAnalysis *LAA;
 | |
|   DominatorTree *DT;
 | |
| };
 | |
| } // anonymous namespace
 | |
| 
 | |
| char LoopDistribute::ID;
 | |
| static const char ldist_name[] = "Loop Distribition";
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(LoopDistribute, LDIST_NAME, ldist_name, false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_END(LoopDistribute, LDIST_NAME, ldist_name, false, false)
 | |
| 
 | |
| namespace llvm {
 | |
| FunctionPass *createLoopDistributePass() { return new LoopDistribute(); }
 | |
| }
 |