mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235734 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1301 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1301 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- LoopInterchange.cpp - Loop interchange pass------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This Pass handles loop interchange transform.
 | |
| // This pass interchanges loops to provide a more cache-friendly memory access
 | |
| // patterns.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/AliasSetTracker.h"
 | |
| #include "llvm/Analysis/AssumptionCache.h"
 | |
| #include "llvm/Analysis/BlockFrequencyInfo.h"
 | |
| #include "llvm/Analysis/CodeMetrics.h"
 | |
| #include "llvm/Analysis/DependenceAnalysis.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/LoopIterator.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpander.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/InstIterator.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/LoopUtils.h"
 | |
| #include "llvm/Transforms/Utils/SSAUpdater.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "loop-interchange"
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| typedef SmallVector<Loop *, 8> LoopVector;
 | |
| 
 | |
| // TODO: Check if we can use a sparse matrix here.
 | |
| typedef std::vector<std::vector<char>> CharMatrix;
 | |
| 
 | |
| // Maximum number of dependencies that can be handled in the dependency matrix.
 | |
| static const unsigned MaxMemInstrCount = 100;
 | |
| 
 | |
| // Maximum loop depth supported.
 | |
| static const unsigned MaxLoopNestDepth = 10;
 | |
| 
 | |
| struct LoopInterchange;
 | |
| 
 | |
| #ifdef DUMP_DEP_MATRICIES
 | |
| void printDepMatrix(CharMatrix &DepMatrix) {
 | |
|   for (auto I = DepMatrix.begin(), E = DepMatrix.end(); I != E; ++I) {
 | |
|     std::vector<char> Vec = *I;
 | |
|     for (auto II = Vec.begin(), EE = Vec.end(); II != EE; ++II)
 | |
|       DEBUG(dbgs() << *II << " ");
 | |
|     DEBUG(dbgs() << "\n");
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
 | |
|                                      Loop *L, DependenceAnalysis *DA) {
 | |
|   typedef SmallVector<Value *, 16> ValueVector;
 | |
|   ValueVector MemInstr;
 | |
| 
 | |
|   if (Level > MaxLoopNestDepth) {
 | |
|     DEBUG(dbgs() << "Cannot handle loops of depth greater than "
 | |
|                  << MaxLoopNestDepth << "\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // For each block.
 | |
|   for (Loop::block_iterator BB = L->block_begin(), BE = L->block_end();
 | |
|        BB != BE; ++BB) {
 | |
|     // Scan the BB and collect legal loads and stores.
 | |
|     for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E;
 | |
|          ++I) {
 | |
|       Instruction *Ins = dyn_cast<Instruction>(I);
 | |
|       if (!Ins)
 | |
|         return false;
 | |
|       LoadInst *Ld = dyn_cast<LoadInst>(I);
 | |
|       StoreInst *St = dyn_cast<StoreInst>(I);
 | |
|       if (!St && !Ld)
 | |
|         continue;
 | |
|       if (Ld && !Ld->isSimple())
 | |
|         return false;
 | |
|       if (St && !St->isSimple())
 | |
|         return false;
 | |
|       MemInstr.push_back(I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "Found " << MemInstr.size()
 | |
|                << " Loads and Stores to analyze\n");
 | |
| 
 | |
|   ValueVector::iterator I, IE, J, JE;
 | |
| 
 | |
|   for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
 | |
|     for (J = I, JE = MemInstr.end(); J != JE; ++J) {
 | |
|       std::vector<char> Dep;
 | |
|       Instruction *Src = dyn_cast<Instruction>(*I);
 | |
|       Instruction *Des = dyn_cast<Instruction>(*J);
 | |
|       if (Src == Des)
 | |
|         continue;
 | |
|       if (isa<LoadInst>(Src) && isa<LoadInst>(Des))
 | |
|         continue;
 | |
|       if (auto D = DA->depends(Src, Des, true)) {
 | |
|         DEBUG(dbgs() << "Found Dependency between Src=" << Src << " Des=" << Des
 | |
|                      << "\n");
 | |
|         if (D->isFlow()) {
 | |
|           // TODO: Handle Flow dependence.Check if it is sufficient to populate
 | |
|           // the Dependence Matrix with the direction reversed.
 | |
|           DEBUG(dbgs() << "Flow dependence not handled");
 | |
|           return false;
 | |
|         }
 | |
|         if (D->isAnti()) {
 | |
|           DEBUG(dbgs() << "Found Anti dependence \n");
 | |
|           unsigned Levels = D->getLevels();
 | |
|           char Direction;
 | |
|           for (unsigned II = 1; II <= Levels; ++II) {
 | |
|             const SCEV *Distance = D->getDistance(II);
 | |
|             const SCEVConstant *SCEVConst =
 | |
|                 dyn_cast_or_null<SCEVConstant>(Distance);
 | |
|             if (SCEVConst) {
 | |
|               const ConstantInt *CI = SCEVConst->getValue();
 | |
|               if (CI->isNegative())
 | |
|                 Direction = '<';
 | |
|               else if (CI->isZero())
 | |
|                 Direction = '=';
 | |
|               else
 | |
|                 Direction = '>';
 | |
|               Dep.push_back(Direction);
 | |
|             } else if (D->isScalar(II)) {
 | |
|               Direction = 'S';
 | |
|               Dep.push_back(Direction);
 | |
|             } else {
 | |
|               unsigned Dir = D->getDirection(II);
 | |
|               if (Dir == Dependence::DVEntry::LT ||
 | |
|                   Dir == Dependence::DVEntry::LE)
 | |
|                 Direction = '<';
 | |
|               else if (Dir == Dependence::DVEntry::GT ||
 | |
|                        Dir == Dependence::DVEntry::GE)
 | |
|                 Direction = '>';
 | |
|               else if (Dir == Dependence::DVEntry::EQ)
 | |
|                 Direction = '=';
 | |
|               else
 | |
|                 Direction = '*';
 | |
|               Dep.push_back(Direction);
 | |
|             }
 | |
|           }
 | |
|           while (Dep.size() != Level) {
 | |
|             Dep.push_back('I');
 | |
|           }
 | |
| 
 | |
|           DepMatrix.push_back(Dep);
 | |
|           if (DepMatrix.size() > MaxMemInstrCount) {
 | |
|             DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
 | |
|                          << " dependencies inside loop\n");
 | |
|             return false;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We don't have a DepMatrix to check legality return false
 | |
|   if (DepMatrix.size() == 0)
 | |
|     return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // A loop is moved from index 'from' to an index 'to'. Update the Dependence
 | |
| // matrix by exchanging the two columns.
 | |
| static void interChangeDepedencies(CharMatrix &DepMatrix, unsigned FromIndx,
 | |
|                                    unsigned ToIndx) {
 | |
|   unsigned numRows = DepMatrix.size();
 | |
|   for (unsigned i = 0; i < numRows; ++i) {
 | |
|     char TmpVal = DepMatrix[i][ToIndx];
 | |
|     DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx];
 | |
|     DepMatrix[i][FromIndx] = TmpVal;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is
 | |
| // '>'
 | |
| static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row,
 | |
|                                    unsigned Column) {
 | |
|   for (unsigned i = 0; i <= Column; ++i) {
 | |
|     if (DepMatrix[Row][i] == '<')
 | |
|       return false;
 | |
|     if (DepMatrix[Row][i] == '>')
 | |
|       return true;
 | |
|   }
 | |
|   // All dependencies were '=','S' or 'I'
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Checks if no dependence exist in the dependency matrix in Row before Column.
 | |
| static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row,
 | |
|                                  unsigned Column) {
 | |
|   for (unsigned i = 0; i < Column; ++i) {
 | |
|     if (DepMatrix[Row][i] != '=' || DepMatrix[Row][i] != 'S' ||
 | |
|         DepMatrix[Row][i] != 'I')
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row,
 | |
|                                 unsigned OuterLoopId, char InnerDep,
 | |
|                                 char OuterDep) {
 | |
| 
 | |
|   if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId))
 | |
|     return false;
 | |
| 
 | |
|   if (InnerDep == OuterDep)
 | |
|     return true;
 | |
| 
 | |
|   // It is legal to interchange if and only if after interchange no row has a
 | |
|   // '>' direction as the leftmost non-'='.
 | |
| 
 | |
|   if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I')
 | |
|     return true;
 | |
| 
 | |
|   if (InnerDep == '<')
 | |
|     return true;
 | |
| 
 | |
|   if (InnerDep == '>') {
 | |
|     // If OuterLoopId represents outermost loop then interchanging will make the
 | |
|     // 1st dependency as '>'
 | |
|     if (OuterLoopId == 0)
 | |
|       return false;
 | |
| 
 | |
|     // If all dependencies before OuterloopId are '=','S'or 'I'. Then
 | |
|     // interchanging will result in this row having an outermost non '='
 | |
|     // dependency of '>'
 | |
|     if (!containsNoDependence(DepMatrix, Row, OuterLoopId))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Checks if it is legal to interchange 2 loops.
 | |
| // [Theorem] A permutation of the loops in a perfect nest is legal if and only
 | |
| // if
 | |
| // the direction matrix, after the same permutation is applied to its columns,
 | |
| // has no ">" direction as the leftmost non-"=" direction in any row.
 | |
| static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
 | |
|                                       unsigned InnerLoopId,
 | |
|                                       unsigned OuterLoopId) {
 | |
| 
 | |
|   unsigned NumRows = DepMatrix.size();
 | |
|   // For each row check if it is valid to interchange.
 | |
|   for (unsigned Row = 0; Row < NumRows; ++Row) {
 | |
|     char InnerDep = DepMatrix[Row][InnerLoopId];
 | |
|     char OuterDep = DepMatrix[Row][OuterLoopId];
 | |
|     if (InnerDep == '*' || OuterDep == '*')
 | |
|       return false;
 | |
|     else if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep,
 | |
|                                   OuterDep))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static void populateWorklist(Loop &L, SmallVector<LoopVector, 8> &V) {
 | |
| 
 | |
|   DEBUG(dbgs() << "Calling populateWorklist called\n");
 | |
|   LoopVector LoopList;
 | |
|   Loop *CurrentLoop = &L;
 | |
|   std::vector<Loop *> vec = CurrentLoop->getSubLoopsVector();
 | |
|   while (vec.size() != 0) {
 | |
|     // The current loop has multiple subloops in it hence it is not tightly
 | |
|     // nested.
 | |
|     // Discard all loops above it added into Worklist.
 | |
|     if (vec.size() != 1) {
 | |
|       LoopList.clear();
 | |
|       return;
 | |
|     }
 | |
|     LoopList.push_back(CurrentLoop);
 | |
|     CurrentLoop = *(vec.begin());
 | |
|     vec = CurrentLoop->getSubLoopsVector();
 | |
|   }
 | |
|   LoopList.push_back(CurrentLoop);
 | |
|   V.push_back(LoopList);
 | |
| }
 | |
| 
 | |
| static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) {
 | |
|   PHINode *InnerIndexVar = L->getCanonicalInductionVariable();
 | |
|   if (InnerIndexVar)
 | |
|     return InnerIndexVar;
 | |
|   if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr)
 | |
|     return nullptr;
 | |
|   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
 | |
|     PHINode *PhiVar = cast<PHINode>(I);
 | |
|     Type *PhiTy = PhiVar->getType();
 | |
|     if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
 | |
|         !PhiTy->isPointerTy())
 | |
|       return nullptr;
 | |
|     const SCEVAddRecExpr *AddRec =
 | |
|         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar));
 | |
|     if (!AddRec || !AddRec->isAffine())
 | |
|       continue;
 | |
|     const SCEV *Step = AddRec->getStepRecurrence(*SE);
 | |
|     const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
 | |
|     if (!C)
 | |
|       continue;
 | |
|     // Found the induction variable.
 | |
|     // FIXME: Handle loops with more than one induction variable. Note that,
 | |
|     // currently, legality makes sure we have only one induction variable.
 | |
|     return PhiVar;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// LoopInterchangeLegality checks if it is legal to interchange the loop.
 | |
| class LoopInterchangeLegality {
 | |
| public:
 | |
|   LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
 | |
|                           LoopInterchange *Pass)
 | |
|       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), CurrentPass(Pass),
 | |
|         InnerLoopHasReduction(false) {}
 | |
| 
 | |
|   /// Check if the loops can be interchanged.
 | |
|   bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
 | |
|                            CharMatrix &DepMatrix);
 | |
|   /// Check if the loop structure is understood. We do not handle triangular
 | |
|   /// loops for now.
 | |
|   bool isLoopStructureUnderstood(PHINode *InnerInductionVar);
 | |
| 
 | |
|   bool currentLimitations();
 | |
| 
 | |
|   bool hasInnerLoopReduction() { return InnerLoopHasReduction; }
 | |
| 
 | |
| private:
 | |
|   bool tightlyNested(Loop *Outer, Loop *Inner);
 | |
|   bool containsUnsafeInstructionsInHeader(BasicBlock *BB);
 | |
|   bool areAllUsesReductions(Instruction *Ins, Loop *L);
 | |
|   bool containsUnsafeInstructionsInLatch(BasicBlock *BB);
 | |
|   bool findInductionAndReductions(Loop *L,
 | |
|                                   SmallVector<PHINode *, 8> &Inductions,
 | |
|                                   SmallVector<PHINode *, 8> &Reductions);
 | |
|   Loop *OuterLoop;
 | |
|   Loop *InnerLoop;
 | |
| 
 | |
|   /// Scev analysis.
 | |
|   ScalarEvolution *SE;
 | |
|   LoopInterchange *CurrentPass;
 | |
| 
 | |
|   bool InnerLoopHasReduction;
 | |
| };
 | |
| 
 | |
| /// LoopInterchangeProfitability checks if it is profitable to interchange the
 | |
| /// loop.
 | |
| class LoopInterchangeProfitability {
 | |
| public:
 | |
|   LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE)
 | |
|       : OuterLoop(Outer), InnerLoop(Inner), SE(SE) {}
 | |
| 
 | |
|   /// Check if the loop interchange is profitable
 | |
|   bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId,
 | |
|                     CharMatrix &DepMatrix);
 | |
| 
 | |
| private:
 | |
|   int getInstrOrderCost();
 | |
| 
 | |
|   Loop *OuterLoop;
 | |
|   Loop *InnerLoop;
 | |
| 
 | |
|   /// Scev analysis.
 | |
|   ScalarEvolution *SE;
 | |
| };
 | |
| 
 | |
| /// LoopInterchangeTransform interchanges the loop
 | |
| class LoopInterchangeTransform {
 | |
| public:
 | |
|   LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
 | |
|                            LoopInfo *LI, DominatorTree *DT,
 | |
|                            LoopInterchange *Pass, BasicBlock *LoopNestExit,
 | |
|                            bool InnerLoopContainsReductions)
 | |
|       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
 | |
|         LoopExit(LoopNestExit),
 | |
|         InnerLoopHasReduction(InnerLoopContainsReductions) {}
 | |
| 
 | |
|   /// Interchange OuterLoop and InnerLoop.
 | |
|   bool transform();
 | |
|   void restructureLoops(Loop *InnerLoop, Loop *OuterLoop);
 | |
|   void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
 | |
| 
 | |
| private:
 | |
|   void splitInnerLoopLatch(Instruction *);
 | |
|   void splitOuterLoopLatch();
 | |
|   void splitInnerLoopHeader();
 | |
|   bool adjustLoopLinks();
 | |
|   void adjustLoopPreheaders();
 | |
|   void adjustOuterLoopPreheader();
 | |
|   void adjustInnerLoopPreheader();
 | |
|   bool adjustLoopBranches();
 | |
|   void updateIncomingBlock(BasicBlock *CurrBlock, BasicBlock *OldPred,
 | |
|                            BasicBlock *NewPred);
 | |
| 
 | |
|   Loop *OuterLoop;
 | |
|   Loop *InnerLoop;
 | |
| 
 | |
|   /// Scev analysis.
 | |
|   ScalarEvolution *SE;
 | |
|   LoopInfo *LI;
 | |
|   DominatorTree *DT;
 | |
|   BasicBlock *LoopExit;
 | |
|   bool InnerLoopHasReduction;
 | |
| };
 | |
| 
 | |
| // Main LoopInterchange Pass
 | |
| struct LoopInterchange : public FunctionPass {
 | |
|   static char ID;
 | |
|   ScalarEvolution *SE;
 | |
|   LoopInfo *LI;
 | |
|   DependenceAnalysis *DA;
 | |
|   DominatorTree *DT;
 | |
|   LoopInterchange()
 | |
|       : FunctionPass(ID), SE(nullptr), LI(nullptr), DA(nullptr), DT(nullptr) {
 | |
|     initializeLoopInterchangePass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.addRequired<ScalarEvolution>();
 | |
|     AU.addRequired<AliasAnalysis>();
 | |
|     AU.addRequired<DominatorTreeWrapperPass>();
 | |
|     AU.addRequired<LoopInfoWrapperPass>();
 | |
|     AU.addRequired<DependenceAnalysis>();
 | |
|     AU.addRequiredID(LoopSimplifyID);
 | |
|     AU.addRequiredID(LCSSAID);
 | |
|   }
 | |
| 
 | |
|   bool runOnFunction(Function &F) override {
 | |
|     SE = &getAnalysis<ScalarEvolution>();
 | |
|     LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | |
|     DA = &getAnalysis<DependenceAnalysis>();
 | |
|     auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
 | |
|     DT = DTWP ? &DTWP->getDomTree() : nullptr;
 | |
|     // Build up a worklist of loop pairs to analyze.
 | |
|     SmallVector<LoopVector, 8> Worklist;
 | |
| 
 | |
|     for (Loop *L : *LI)
 | |
|       populateWorklist(*L, Worklist);
 | |
| 
 | |
|     DEBUG(dbgs() << "Worklist size = " << Worklist.size() << "\n");
 | |
|     bool Changed = true;
 | |
|     while (!Worklist.empty()) {
 | |
|       LoopVector LoopList = Worklist.pop_back_val();
 | |
|       Changed = processLoopList(LoopList, F);
 | |
|     }
 | |
|     return Changed;
 | |
|   }
 | |
| 
 | |
|   bool isComputableLoopNest(LoopVector LoopList) {
 | |
|     for (auto I = LoopList.begin(), E = LoopList.end(); I != E; ++I) {
 | |
|       Loop *L = *I;
 | |
|       const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
 | |
|       if (ExitCountOuter == SE->getCouldNotCompute()) {
 | |
|         DEBUG(dbgs() << "Couldn't compute Backedge count\n");
 | |
|         return false;
 | |
|       }
 | |
|       if (L->getNumBackEdges() != 1) {
 | |
|         DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
 | |
|         return false;
 | |
|       }
 | |
|       if (!L->getExitingBlock()) {
 | |
|         DEBUG(dbgs() << "Loop Doesn't have unique exit block\n");
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   unsigned selectLoopForInterchange(LoopVector LoopList) {
 | |
|     // TODO: Add a better heuristic to select the loop to be interchanged based
 | |
|     // on the dependece matrix. Currently we select the innermost loop.
 | |
|     return LoopList.size() - 1;
 | |
|   }
 | |
| 
 | |
|   bool processLoopList(LoopVector LoopList, Function &F) {
 | |
| 
 | |
|     bool Changed = false;
 | |
|     CharMatrix DependencyMatrix;
 | |
|     if (LoopList.size() < 2) {
 | |
|       DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
 | |
|       return false;
 | |
|     }
 | |
|     if (!isComputableLoopNest(LoopList)) {
 | |
|       DEBUG(dbgs() << "Not vaild loop candidate for interchange\n");
 | |
|       return false;
 | |
|     }
 | |
|     Loop *OuterMostLoop = *(LoopList.begin());
 | |
| 
 | |
|     DEBUG(dbgs() << "Processing LoopList of size = " << LoopList.size()
 | |
|                  << "\n");
 | |
| 
 | |
|     if (!populateDependencyMatrix(DependencyMatrix, LoopList.size(),
 | |
|                                   OuterMostLoop, DA)) {
 | |
|       DEBUG(dbgs() << "Populating Dependency matrix failed\n");
 | |
|       return false;
 | |
|     }
 | |
| #ifdef DUMP_DEP_MATRICIES
 | |
|     DEBUG(dbgs() << "Dependence before inter change \n");
 | |
|     printDepMatrix(DependencyMatrix);
 | |
| #endif
 | |
| 
 | |
|     BasicBlock *OuterMostLoopLatch = OuterMostLoop->getLoopLatch();
 | |
|     BranchInst *OuterMostLoopLatchBI =
 | |
|         dyn_cast<BranchInst>(OuterMostLoopLatch->getTerminator());
 | |
|     if (!OuterMostLoopLatchBI)
 | |
|       return false;
 | |
| 
 | |
|     // Since we currently do not handle LCSSA PHI's any failure in loop
 | |
|     // condition will now branch to LoopNestExit.
 | |
|     // TODO: This should be removed once we handle LCSSA PHI nodes.
 | |
| 
 | |
|     // Get the Outermost loop exit.
 | |
|     BasicBlock *LoopNestExit;
 | |
|     if (OuterMostLoopLatchBI->getSuccessor(0) == OuterMostLoop->getHeader())
 | |
|       LoopNestExit = OuterMostLoopLatchBI->getSuccessor(1);
 | |
|     else
 | |
|       LoopNestExit = OuterMostLoopLatchBI->getSuccessor(0);
 | |
| 
 | |
|     if (isa<PHINode>(LoopNestExit->begin())) {
 | |
|       DEBUG(dbgs() << "PHI Nodes in loop nest exit is not handled for now "
 | |
|                       "since on failure all loops branch to loop nest exit.\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     unsigned SelecLoopId = selectLoopForInterchange(LoopList);
 | |
|     // Move the selected loop outwards to the best posible position.
 | |
|     for (unsigned i = SelecLoopId; i > 0; i--) {
 | |
|       bool Interchanged =
 | |
|           processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix);
 | |
|       if (!Interchanged)
 | |
|         return Changed;
 | |
|       // Loops interchanged reflect the same in LoopList
 | |
|       std::swap(LoopList[i - 1], LoopList[i]);
 | |
| 
 | |
|       // Update the DependencyMatrix
 | |
|       interChangeDepedencies(DependencyMatrix, i, i - 1);
 | |
|       DT->recalculate(F);
 | |
| #ifdef DUMP_DEP_MATRICIES
 | |
|       DEBUG(dbgs() << "Dependence after inter change \n");
 | |
|       printDepMatrix(DependencyMatrix);
 | |
| #endif
 | |
|       Changed |= Interchanged;
 | |
|     }
 | |
|     return Changed;
 | |
|   }
 | |
| 
 | |
|   bool processLoop(LoopVector LoopList, unsigned InnerLoopId,
 | |
|                    unsigned OuterLoopId, BasicBlock *LoopNestExit,
 | |
|                    std::vector<std::vector<char>> &DependencyMatrix) {
 | |
| 
 | |
|     DEBUG(dbgs() << "Processing Innder Loop Id = " << InnerLoopId
 | |
|                  << " and OuterLoopId = " << OuterLoopId << "\n");
 | |
|     Loop *InnerLoop = LoopList[InnerLoopId];
 | |
|     Loop *OuterLoop = LoopList[OuterLoopId];
 | |
| 
 | |
|     LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, this);
 | |
|     if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
 | |
|       DEBUG(dbgs() << "Not interchanging Loops. Cannot prove legality\n");
 | |
|       return false;
 | |
|     }
 | |
|     DEBUG(dbgs() << "Loops are legal to interchange\n");
 | |
|     LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE);
 | |
|     if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) {
 | |
|       DEBUG(dbgs() << "Interchanging Loops not profitable\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, this,
 | |
|                                  LoopNestExit, LIL.hasInnerLoopReduction());
 | |
|     LIT.transform();
 | |
|     DEBUG(dbgs() << "Loops interchanged\n");
 | |
|     return true;
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end of namespace
 | |
| bool LoopInterchangeLegality::areAllUsesReductions(Instruction *Ins, Loop *L) {
 | |
|   return !std::any_of(Ins->user_begin(), Ins->user_end(), [=](User *U) -> bool {
 | |
|     PHINode *UserIns = dyn_cast<PHINode>(U);
 | |
|     ReductionDescriptor RD;
 | |
|     return !UserIns || !ReductionDescriptor::isReductionPHI(UserIns, L, RD);
 | |
|   });
 | |
| }
 | |
| 
 | |
| bool LoopInterchangeLegality::containsUnsafeInstructionsInHeader(
 | |
|     BasicBlock *BB) {
 | |
|   for (auto I = BB->begin(), E = BB->end(); I != E; ++I) {
 | |
|     // Load corresponding to reduction PHI's are safe while concluding if
 | |
|     // tightly nested.
 | |
|     if (LoadInst *L = dyn_cast<LoadInst>(I)) {
 | |
|       if (!areAllUsesReductions(L, InnerLoop))
 | |
|         return true;
 | |
|     } else if (I->mayHaveSideEffects() || I->mayReadFromMemory())
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool LoopInterchangeLegality::containsUnsafeInstructionsInLatch(
 | |
|     BasicBlock *BB) {
 | |
|   for (auto I = BB->begin(), E = BB->end(); I != E; ++I) {
 | |
|     // Stores corresponding to reductions are safe while concluding if tightly
 | |
|     // nested.
 | |
|     if (StoreInst *L = dyn_cast<StoreInst>(I)) {
 | |
|       PHINode *PHI = dyn_cast<PHINode>(L->getOperand(0));
 | |
|       if (!PHI)
 | |
|         return true;
 | |
|     } else if (I->mayHaveSideEffects() || I->mayReadFromMemory())
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
 | |
|   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
 | |
|   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
 | |
|   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
 | |
| 
 | |
|   DEBUG(dbgs() << "Checking if Loops are Tightly Nested\n");
 | |
| 
 | |
|   // A perfectly nested loop will not have any branch in between the outer and
 | |
|   // inner block i.e. outer header will branch to either inner preheader and
 | |
|   // outerloop latch.
 | |
|   BranchInst *outerLoopHeaderBI =
 | |
|       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
 | |
|   if (!outerLoopHeaderBI)
 | |
|     return false;
 | |
|   unsigned num = outerLoopHeaderBI->getNumSuccessors();
 | |
|   for (unsigned i = 0; i < num; i++) {
 | |
|     if (outerLoopHeaderBI->getSuccessor(i) != InnerLoopPreHeader &&
 | |
|         outerLoopHeaderBI->getSuccessor(i) != OuterLoopLatch)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch \n");
 | |
|   // We do not have any basic block in between now make sure the outer header
 | |
|   // and outer loop latch doesnt contain any unsafe instructions.
 | |
|   if (containsUnsafeInstructionsInHeader(OuterLoopHeader) ||
 | |
|       containsUnsafeInstructionsInLatch(OuterLoopLatch))
 | |
|     return false;
 | |
| 
 | |
|   DEBUG(dbgs() << "Loops are perfectly nested \n");
 | |
|   // We have a perfect loop nest.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool LoopInterchangeLegality::isLoopStructureUnderstood(
 | |
|     PHINode *InnerInduction) {
 | |
| 
 | |
|   unsigned Num = InnerInduction->getNumOperands();
 | |
|   BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
 | |
|   for (unsigned i = 0; i < Num; ++i) {
 | |
|     Value *Val = InnerInduction->getOperand(i);
 | |
|     if (isa<Constant>(Val))
 | |
|       continue;
 | |
|     Instruction *I = dyn_cast<Instruction>(Val);
 | |
|     if (!I)
 | |
|       return false;
 | |
|     // TODO: Handle triangular loops.
 | |
|     // e.g. for(int i=0;i<N;i++)
 | |
|     //        for(int j=i;j<N;j++)
 | |
|     unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
 | |
|     if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
 | |
|             InnerLoopPreheader &&
 | |
|         !OuterLoop->isLoopInvariant(I)) {
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool LoopInterchangeLegality::findInductionAndReductions(
 | |
|     Loop *L, SmallVector<PHINode *, 8> &Inductions,
 | |
|     SmallVector<PHINode *, 8> &Reductions) {
 | |
|   if (!L->getLoopLatch() || !L->getLoopPredecessor())
 | |
|     return false;
 | |
|   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
 | |
|     ReductionDescriptor RD;
 | |
|     PHINode *PHI = cast<PHINode>(I);
 | |
|     ConstantInt *StepValue = nullptr;
 | |
|     if (isInductionPHI(PHI, SE, StepValue))
 | |
|       Inductions.push_back(PHI);
 | |
|     else if (ReductionDescriptor::isReductionPHI(PHI, L, RD))
 | |
|       Reductions.push_back(PHI);
 | |
|     else {
 | |
|       DEBUG(
 | |
|           dbgs() << "Failed to recognize PHI as an induction or reduction.\n");
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool containsSafePHI(BasicBlock *Block, bool isOuterLoopExitBlock) {
 | |
|   for (auto I = Block->begin(); isa<PHINode>(I); ++I) {
 | |
|     PHINode *PHI = cast<PHINode>(I);
 | |
|     // Reduction lcssa phi will have only 1 incoming block that from loop latch.
 | |
|     if (PHI->getNumIncomingValues() > 1)
 | |
|       return false;
 | |
|     Instruction *Ins = dyn_cast<Instruction>(PHI->getIncomingValue(0));
 | |
|     if (!Ins)
 | |
|       return false;
 | |
|     // Incoming value for lcssa phi's in outer loop exit can only be inner loop
 | |
|     // exits lcssa phi else it would not be tightly nested.
 | |
|     if (!isa<PHINode>(Ins) && isOuterLoopExitBlock)
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static BasicBlock *getLoopLatchExitBlock(BasicBlock *LatchBlock,
 | |
|                                          BasicBlock *LoopHeader) {
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator())) {
 | |
|     unsigned Num = BI->getNumSuccessors();
 | |
|     assert(Num == 2);
 | |
|     for (unsigned i = 0; i < Num; ++i) {
 | |
|       if (BI->getSuccessor(i) == LoopHeader)
 | |
|         continue;
 | |
|       return BI->getSuccessor(i);
 | |
|     }
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| // This function indicates the current limitations in the transform as a result
 | |
| // of which we do not proceed.
 | |
| bool LoopInterchangeLegality::currentLimitations() {
 | |
| 
 | |
|   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
 | |
|   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
 | |
|   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
 | |
|   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
 | |
|   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
 | |
| 
 | |
|   PHINode *InnerInductionVar;
 | |
|   SmallVector<PHINode *, 8> Inductions;
 | |
|   SmallVector<PHINode *, 8> Reductions;
 | |
|   if (!findInductionAndReductions(InnerLoop, Inductions, Reductions))
 | |
|     return true;
 | |
| 
 | |
|   // TODO: Currently we handle only loops with 1 induction variable.
 | |
|   if (Inductions.size() != 1) {
 | |
|     DEBUG(dbgs() << "We currently only support loops with 1 induction variable."
 | |
|                  << "Failed to interchange due to current limitation\n");
 | |
|     return true;
 | |
|   }
 | |
|   if (Reductions.size() > 0)
 | |
|     InnerLoopHasReduction = true;
 | |
| 
 | |
|   InnerInductionVar = Inductions.pop_back_val();
 | |
|   Reductions.clear();
 | |
|   if (!findInductionAndReductions(OuterLoop, Inductions, Reductions))
 | |
|     return true;
 | |
| 
 | |
|   // Outer loop cannot have reduction because then loops will not be tightly
 | |
|   // nested.
 | |
|   if (!Reductions.empty())
 | |
|     return true;
 | |
|   // TODO: Currently we handle only loops with 1 induction variable.
 | |
|   if (Inductions.size() != 1)
 | |
|     return true;
 | |
| 
 | |
|   // TODO: Triangular loops are not handled for now.
 | |
|   if (!isLoopStructureUnderstood(InnerInductionVar)) {
 | |
|     DEBUG(dbgs() << "Loop structure not understood by pass\n");
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // TODO: We only handle LCSSA PHI's corresponding to reduction for now.
 | |
|   BasicBlock *LoopExitBlock =
 | |
|       getLoopLatchExitBlock(OuterLoopLatch, OuterLoopHeader);
 | |
|   if (!LoopExitBlock || !containsSafePHI(LoopExitBlock, true))
 | |
|     return true;
 | |
| 
 | |
|   LoopExitBlock = getLoopLatchExitBlock(InnerLoopLatch, InnerLoopHeader);
 | |
|   if (!LoopExitBlock || !containsSafePHI(LoopExitBlock, false))
 | |
|     return true;
 | |
| 
 | |
|   // TODO: Current limitation: Since we split the inner loop latch at the point
 | |
|   // were induction variable is incremented (induction.next); We cannot have
 | |
|   // more than 1 user of induction.next since it would result in broken code
 | |
|   // after split.
 | |
|   // e.g.
 | |
|   // for(i=0;i<N;i++) {
 | |
|   //    for(j = 0;j<M;j++) {
 | |
|   //      A[j+1][i+2] = A[j][i]+k;
 | |
|   //  }
 | |
|   // }
 | |
|   bool FoundInduction = false;
 | |
|   Instruction *InnerIndexVarInc = nullptr;
 | |
|   if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader)
 | |
|     InnerIndexVarInc =
 | |
|         dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1));
 | |
|   else
 | |
|     InnerIndexVarInc =
 | |
|         dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0));
 | |
| 
 | |
|   if (!InnerIndexVarInc)
 | |
|     return true;
 | |
| 
 | |
|   // Since we split the inner loop latch on this induction variable. Make sure
 | |
|   // we do not have any instruction between the induction variable and branch
 | |
|   // instruction.
 | |
| 
 | |
|   for (auto I = InnerLoopLatch->rbegin(), E = InnerLoopLatch->rend();
 | |
|        I != E && !FoundInduction; ++I) {
 | |
|     if (isa<BranchInst>(*I) || isa<CmpInst>(*I) || isa<TruncInst>(*I))
 | |
|       continue;
 | |
|     const Instruction &Ins = *I;
 | |
|     // We found an instruction. If this is not induction variable then it is not
 | |
|     // safe to split this loop latch.
 | |
|     if (!Ins.isIdenticalTo(InnerIndexVarInc))
 | |
|       return true;
 | |
|     else
 | |
|       FoundInduction = true;
 | |
|   }
 | |
|   // The loop latch ended and we didnt find the induction variable return as
 | |
|   // current limitation.
 | |
|   if (!FoundInduction)
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
 | |
|                                                   unsigned OuterLoopId,
 | |
|                                                   CharMatrix &DepMatrix) {
 | |
| 
 | |
|   if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
 | |
|     DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
 | |
|                  << "and OuterLoopId = " << OuterLoopId
 | |
|                  << "due to dependence\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Create unique Preheaders if we already do not have one.
 | |
|   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
 | |
|   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
 | |
| 
 | |
|   // Create  a unique outer preheader -
 | |
|   // 1) If OuterLoop preheader is not present.
 | |
|   // 2) If OuterLoop Preheader is same as OuterLoop Header
 | |
|   // 3) If OuterLoop Preheader is same as Header of the previous loop.
 | |
|   // 4) If OuterLoop Preheader is Entry node.
 | |
|   if (!OuterLoopPreHeader || OuterLoopPreHeader == OuterLoop->getHeader() ||
 | |
|       isa<PHINode>(OuterLoopPreHeader->begin()) ||
 | |
|       !OuterLoopPreHeader->getUniquePredecessor()) {
 | |
|     OuterLoopPreHeader = InsertPreheaderForLoop(OuterLoop, CurrentPass);
 | |
|   }
 | |
| 
 | |
|   if (!InnerLoopPreHeader || InnerLoopPreHeader == InnerLoop->getHeader() ||
 | |
|       InnerLoopPreHeader == OuterLoop->getHeader()) {
 | |
|     InnerLoopPreHeader = InsertPreheaderForLoop(InnerLoop, CurrentPass);
 | |
|   }
 | |
| 
 | |
|   // TODO: The loops could not be interchanged due to current limitations in the
 | |
|   // transform module.
 | |
|   if (currentLimitations()) {
 | |
|     DEBUG(dbgs() << "Not legal because of current transform limitation\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Check if the loops are tightly nested.
 | |
|   if (!tightlyNested(OuterLoop, InnerLoop)) {
 | |
|     DEBUG(dbgs() << "Loops not tightly nested\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| int LoopInterchangeProfitability::getInstrOrderCost() {
 | |
|   unsigned GoodOrder, BadOrder;
 | |
|   BadOrder = GoodOrder = 0;
 | |
|   for (auto BI = InnerLoop->block_begin(), BE = InnerLoop->block_end();
 | |
|        BI != BE; ++BI) {
 | |
|     for (auto I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I) {
 | |
|       const Instruction &Ins = *I;
 | |
|       if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
 | |
|         unsigned NumOp = GEP->getNumOperands();
 | |
|         bool FoundInnerInduction = false;
 | |
|         bool FoundOuterInduction = false;
 | |
|         for (unsigned i = 0; i < NumOp; ++i) {
 | |
|           const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
 | |
|           const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
 | |
|           if (!AR)
 | |
|             continue;
 | |
| 
 | |
|           // If we find the inner induction after an outer induction e.g.
 | |
|           // for(int i=0;i<N;i++)
 | |
|           //   for(int j=0;j<N;j++)
 | |
|           //     A[i][j] = A[i-1][j-1]+k;
 | |
|           // then it is a good order.
 | |
|           if (AR->getLoop() == InnerLoop) {
 | |
|             // We found an InnerLoop induction after OuterLoop induction. It is
 | |
|             // a good order.
 | |
|             FoundInnerInduction = true;
 | |
|             if (FoundOuterInduction) {
 | |
|               GoodOrder++;
 | |
|               break;
 | |
|             }
 | |
|           }
 | |
|           // If we find the outer induction after an inner induction e.g.
 | |
|           // for(int i=0;i<N;i++)
 | |
|           //   for(int j=0;j<N;j++)
 | |
|           //     A[j][i] = A[j-1][i-1]+k;
 | |
|           // then it is a bad order.
 | |
|           if (AR->getLoop() == OuterLoop) {
 | |
|             // We found an OuterLoop induction after InnerLoop induction. It is
 | |
|             // a bad order.
 | |
|             FoundOuterInduction = true;
 | |
|             if (FoundInnerInduction) {
 | |
|               BadOrder++;
 | |
|               break;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return GoodOrder - BadOrder;
 | |
| }
 | |
| 
 | |
| static bool isProfitabileForVectorization(unsigned InnerLoopId,
 | |
|                                           unsigned OuterLoopId,
 | |
|                                           CharMatrix &DepMatrix) {
 | |
|   // TODO: Improve this heuristic to catch more cases.
 | |
|   // If the inner loop is loop independent or doesn't carry any dependency it is
 | |
|   // profitable to move this to outer position.
 | |
|   unsigned Row = DepMatrix.size();
 | |
|   for (unsigned i = 0; i < Row; ++i) {
 | |
|     if (DepMatrix[i][InnerLoopId] != 'S' && DepMatrix[i][InnerLoopId] != 'I')
 | |
|       return false;
 | |
|     // TODO: We need to improve this heuristic.
 | |
|     if (DepMatrix[i][OuterLoopId] != '=')
 | |
|       return false;
 | |
|   }
 | |
|   // If outer loop has dependence and inner loop is loop independent then it is
 | |
|   // profitable to interchange to enable parallelism.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId,
 | |
|                                                 unsigned OuterLoopId,
 | |
|                                                 CharMatrix &DepMatrix) {
 | |
| 
 | |
|   // TODO: Add Better Profitibility checks.
 | |
|   // e.g
 | |
|   // 1) Construct dependency matrix and move the one with no loop carried dep
 | |
|   //    inside to enable vectorization.
 | |
| 
 | |
|   // This is rough cost estimation algorithm. It counts the good and bad order
 | |
|   // of induction variables in the instruction and allows reordering if number
 | |
|   // of bad orders is more than good.
 | |
|   int Cost = 0;
 | |
|   Cost += getInstrOrderCost();
 | |
|   DEBUG(dbgs() << "Cost = " << Cost << "\n");
 | |
|   if (Cost < 0)
 | |
|     return true;
 | |
| 
 | |
|   // It is not profitable as per current cache profitibility model. But check if
 | |
|   // we can move this loop outside to improve parallelism.
 | |
|   bool ImprovesPar =
 | |
|       isProfitabileForVectorization(InnerLoopId, OuterLoopId, DepMatrix);
 | |
|   return ImprovesPar;
 | |
| }
 | |
| 
 | |
| void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
 | |
|                                                Loop *InnerLoop) {
 | |
|   for (Loop::iterator I = OuterLoop->begin(), E = OuterLoop->end(); I != E;
 | |
|        ++I) {
 | |
|     if (*I == InnerLoop) {
 | |
|       OuterLoop->removeChildLoop(I);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   assert(false && "Couldn't find loop");
 | |
| }
 | |
| 
 | |
| void LoopInterchangeTransform::restructureLoops(Loop *InnerLoop,
 | |
|                                                 Loop *OuterLoop) {
 | |
|   Loop *OuterLoopParent = OuterLoop->getParentLoop();
 | |
|   if (OuterLoopParent) {
 | |
|     // Remove the loop from its parent loop.
 | |
|     removeChildLoop(OuterLoopParent, OuterLoop);
 | |
|     removeChildLoop(OuterLoop, InnerLoop);
 | |
|     OuterLoopParent->addChildLoop(InnerLoop);
 | |
|   } else {
 | |
|     removeChildLoop(OuterLoop, InnerLoop);
 | |
|     LI->changeTopLevelLoop(OuterLoop, InnerLoop);
 | |
|   }
 | |
| 
 | |
|   while (!InnerLoop->empty())
 | |
|     OuterLoop->addChildLoop(InnerLoop->removeChildLoop(InnerLoop->begin()));
 | |
| 
 | |
|   InnerLoop->addChildLoop(OuterLoop);
 | |
| }
 | |
| 
 | |
| bool LoopInterchangeTransform::transform() {
 | |
| 
 | |
|   DEBUG(dbgs() << "transform\n");
 | |
|   bool Transformed = false;
 | |
|   Instruction *InnerIndexVar;
 | |
| 
 | |
|   if (InnerLoop->getSubLoops().size() == 0) {
 | |
|     BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
 | |
|     DEBUG(dbgs() << "Calling Split Inner Loop\n");
 | |
|     PHINode *InductionPHI = getInductionVariable(InnerLoop, SE);
 | |
|     if (!InductionPHI) {
 | |
|       DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
 | |
|       InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1));
 | |
|     else
 | |
|       InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0));
 | |
| 
 | |
|     //
 | |
|     // Split at the place were the induction variable is
 | |
|     // incremented/decremented.
 | |
|     // TODO: This splitting logic may not work always. Fix this.
 | |
|     splitInnerLoopLatch(InnerIndexVar);
 | |
|     DEBUG(dbgs() << "splitInnerLoopLatch Done\n");
 | |
| 
 | |
|     // Splits the inner loops phi nodes out into a seperate basic block.
 | |
|     splitInnerLoopHeader();
 | |
|     DEBUG(dbgs() << "splitInnerLoopHeader Done\n");
 | |
|   }
 | |
| 
 | |
|   Transformed |= adjustLoopLinks();
 | |
|   if (!Transformed) {
 | |
|     DEBUG(dbgs() << "adjustLoopLinks Failed\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   restructureLoops(InnerLoop, OuterLoop);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void LoopInterchangeTransform::splitInnerLoopLatch(Instruction *Inc) {
 | |
|   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
 | |
|   BasicBlock *InnerLoopLatchPred = InnerLoopLatch;
 | |
|   InnerLoopLatch = SplitBlock(InnerLoopLatchPred, Inc, DT, LI);
 | |
| }
 | |
| 
 | |
| void LoopInterchangeTransform::splitOuterLoopLatch() {
 | |
|   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
 | |
|   BasicBlock *OuterLatchLcssaPhiBlock = OuterLoopLatch;
 | |
|   OuterLoopLatch = SplitBlock(OuterLatchLcssaPhiBlock,
 | |
|                               OuterLoopLatch->getFirstNonPHI(), DT, LI);
 | |
| }
 | |
| 
 | |
| void LoopInterchangeTransform::splitInnerLoopHeader() {
 | |
| 
 | |
|   // Split the inner loop header out. Here make sure that the reduction PHI's
 | |
|   // stay in the innerloop body.
 | |
|   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
 | |
|   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
 | |
|   if (InnerLoopHasReduction) {
 | |
|     // FIXME: Check if the induction PHI will always be the first PHI.
 | |
|     BasicBlock *New = InnerLoopHeader->splitBasicBlock(
 | |
|         ++(InnerLoopHeader->begin()), InnerLoopHeader->getName() + ".split");
 | |
|     if (LI)
 | |
|       if (Loop *L = LI->getLoopFor(InnerLoopHeader))
 | |
|         L->addBasicBlockToLoop(New, *LI);
 | |
| 
 | |
|     // Adjust Reduction PHI's in the block.
 | |
|     SmallVector<PHINode *, 8> PHIVec;
 | |
|     for (auto I = New->begin(); isa<PHINode>(I); ++I) {
 | |
|       PHINode *PHI = dyn_cast<PHINode>(I);
 | |
|       Value *V = PHI->getIncomingValueForBlock(InnerLoopPreHeader);
 | |
|       PHI->replaceAllUsesWith(V);
 | |
|       PHIVec.push_back((PHI));
 | |
|     }
 | |
|     for (auto I = PHIVec.begin(), E = PHIVec.end(); I != E; ++I) {
 | |
|       PHINode *P = *I;
 | |
|       P->eraseFromParent();
 | |
|     }
 | |
|   } else {
 | |
|     SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "Output of splitInnerLoopHeader InnerLoopHeaderSucc & "
 | |
|                   "InnerLoopHeader \n");
 | |
| }
 | |
| 
 | |
| /// \brief Move all instructions except the terminator from FromBB right before
 | |
| /// InsertBefore
 | |
| static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
 | |
|   auto &ToList = InsertBefore->getParent()->getInstList();
 | |
|   auto &FromList = FromBB->getInstList();
 | |
| 
 | |
|   ToList.splice(InsertBefore, FromList, FromList.begin(),
 | |
|                 FromBB->getTerminator());
 | |
| }
 | |
| 
 | |
| void LoopInterchangeTransform::adjustOuterLoopPreheader() {
 | |
|   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
 | |
|   BasicBlock *InnerPreHeader = InnerLoop->getLoopPreheader();
 | |
| 
 | |
|   moveBBContents(OuterLoopPreHeader, InnerPreHeader->getTerminator());
 | |
| }
 | |
| 
 | |
| void LoopInterchangeTransform::adjustInnerLoopPreheader() {
 | |
|   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
 | |
|   BasicBlock *OuterHeader = OuterLoop->getHeader();
 | |
| 
 | |
|   moveBBContents(InnerLoopPreHeader, OuterHeader->getTerminator());
 | |
| }
 | |
| 
 | |
| void LoopInterchangeTransform::updateIncomingBlock(BasicBlock *CurrBlock,
 | |
|                                                    BasicBlock *OldPred,
 | |
|                                                    BasicBlock *NewPred) {
 | |
|   for (auto I = CurrBlock->begin(); isa<PHINode>(I); ++I) {
 | |
|     PHINode *PHI = cast<PHINode>(I);
 | |
|     unsigned Num = PHI->getNumIncomingValues();
 | |
|     for (unsigned i = 0; i < Num; ++i) {
 | |
|       if (PHI->getIncomingBlock(i) == OldPred)
 | |
|         PHI->setIncomingBlock(i, NewPred);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool LoopInterchangeTransform::adjustLoopBranches() {
 | |
| 
 | |
|   DEBUG(dbgs() << "adjustLoopBranches called\n");
 | |
|   // Adjust the loop preheader
 | |
|   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
 | |
|   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
 | |
|   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
 | |
|   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
 | |
|   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
 | |
|   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
 | |
|   BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
 | |
|   BasicBlock *InnerLoopLatchPredecessor =
 | |
|       InnerLoopLatch->getUniquePredecessor();
 | |
|   BasicBlock *InnerLoopLatchSuccessor;
 | |
|   BasicBlock *OuterLoopLatchSuccessor;
 | |
| 
 | |
|   BranchInst *OuterLoopLatchBI =
 | |
|       dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
 | |
|   BranchInst *InnerLoopLatchBI =
 | |
|       dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
 | |
|   BranchInst *OuterLoopHeaderBI =
 | |
|       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
 | |
|   BranchInst *InnerLoopHeaderBI =
 | |
|       dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
 | |
| 
 | |
|   if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
 | |
|       !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
 | |
|       !InnerLoopHeaderBI)
 | |
|     return false;
 | |
| 
 | |
|   BranchInst *InnerLoopLatchPredecessorBI =
 | |
|       dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
 | |
|   BranchInst *OuterLoopPredecessorBI =
 | |
|       dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
 | |
| 
 | |
|   if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
 | |
|     return false;
 | |
|   BasicBlock *InnerLoopHeaderSucessor = InnerLoopHeader->getUniqueSuccessor();
 | |
|   if (!InnerLoopHeaderSucessor)
 | |
|     return false;
 | |
| 
 | |
|   // Adjust Loop Preheader and headers
 | |
| 
 | |
|   unsigned NumSucc = OuterLoopPredecessorBI->getNumSuccessors();
 | |
|   for (unsigned i = 0; i < NumSucc; ++i) {
 | |
|     if (OuterLoopPredecessorBI->getSuccessor(i) == OuterLoopPreHeader)
 | |
|       OuterLoopPredecessorBI->setSuccessor(i, InnerLoopPreHeader);
 | |
|   }
 | |
| 
 | |
|   NumSucc = OuterLoopHeaderBI->getNumSuccessors();
 | |
|   for (unsigned i = 0; i < NumSucc; ++i) {
 | |
|     if (OuterLoopHeaderBI->getSuccessor(i) == OuterLoopLatch)
 | |
|       OuterLoopHeaderBI->setSuccessor(i, LoopExit);
 | |
|     else if (OuterLoopHeaderBI->getSuccessor(i) == InnerLoopPreHeader)
 | |
|       OuterLoopHeaderBI->setSuccessor(i, InnerLoopHeaderSucessor);
 | |
|   }
 | |
| 
 | |
|   // Adjust reduction PHI's now that the incoming block has changed.
 | |
|   updateIncomingBlock(InnerLoopHeaderSucessor, InnerLoopHeader,
 | |
|                       OuterLoopHeader);
 | |
| 
 | |
|   BranchInst::Create(OuterLoopPreHeader, InnerLoopHeaderBI);
 | |
|   InnerLoopHeaderBI->eraseFromParent();
 | |
| 
 | |
|   // -------------Adjust loop latches-----------
 | |
|   if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
 | |
|     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
 | |
|   else
 | |
|     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
 | |
| 
 | |
|   NumSucc = InnerLoopLatchPredecessorBI->getNumSuccessors();
 | |
|   for (unsigned i = 0; i < NumSucc; ++i) {
 | |
|     if (InnerLoopLatchPredecessorBI->getSuccessor(i) == InnerLoopLatch)
 | |
|       InnerLoopLatchPredecessorBI->setSuccessor(i, InnerLoopLatchSuccessor);
 | |
|   }
 | |
| 
 | |
|   // Adjust PHI nodes in InnerLoopLatchSuccessor. Update all uses of PHI with
 | |
|   // the value and remove this PHI node from inner loop.
 | |
|   SmallVector<PHINode *, 8> LcssaVec;
 | |
|   for (auto I = InnerLoopLatchSuccessor->begin(); isa<PHINode>(I); ++I) {
 | |
|     PHINode *LcssaPhi = cast<PHINode>(I);
 | |
|     LcssaVec.push_back(LcssaPhi);
 | |
|   }
 | |
|   for (auto I = LcssaVec.begin(), E = LcssaVec.end(); I != E; ++I) {
 | |
|     PHINode *P = *I;
 | |
|     Value *Incoming = P->getIncomingValueForBlock(InnerLoopLatch);
 | |
|     P->replaceAllUsesWith(Incoming);
 | |
|     P->eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
 | |
|     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
 | |
|   else
 | |
|     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
 | |
| 
 | |
|   if (InnerLoopLatchBI->getSuccessor(1) == InnerLoopLatchSuccessor)
 | |
|     InnerLoopLatchBI->setSuccessor(1, OuterLoopLatchSuccessor);
 | |
|   else
 | |
|     InnerLoopLatchBI->setSuccessor(0, OuterLoopLatchSuccessor);
 | |
| 
 | |
|   updateIncomingBlock(OuterLoopLatchSuccessor, OuterLoopLatch, InnerLoopLatch);
 | |
| 
 | |
|   if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopLatchSuccessor) {
 | |
|     OuterLoopLatchBI->setSuccessor(0, InnerLoopLatch);
 | |
|   } else {
 | |
|     OuterLoopLatchBI->setSuccessor(1, InnerLoopLatch);
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| void LoopInterchangeTransform::adjustLoopPreheaders() {
 | |
| 
 | |
|   // We have interchanged the preheaders so we need to interchange the data in
 | |
|   // the preheader as well.
 | |
|   // This is because the content of inner preheader was previously executed
 | |
|   // inside the outer loop.
 | |
|   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
 | |
|   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
 | |
|   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
 | |
|   BranchInst *InnerTermBI =
 | |
|       cast<BranchInst>(InnerLoopPreHeader->getTerminator());
 | |
| 
 | |
|   // These instructions should now be executed inside the loop.
 | |
|   // Move instruction into a new block after outer header.
 | |
|   moveBBContents(InnerLoopPreHeader, OuterLoopHeader->getTerminator());
 | |
|   // These instructions were not executed previously in the loop so move them to
 | |
|   // the older inner loop preheader.
 | |
|   moveBBContents(OuterLoopPreHeader, InnerTermBI);
 | |
| }
 | |
| 
 | |
| bool LoopInterchangeTransform::adjustLoopLinks() {
 | |
| 
 | |
|   // Adjust all branches in the inner and outer loop.
 | |
|   bool Changed = adjustLoopBranches();
 | |
|   if (Changed)
 | |
|     adjustLoopPreheaders();
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| char LoopInterchange::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(LoopInterchange, "loop-interchange",
 | |
|                       "Interchanges loops for cache reuse", false, false)
 | |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | |
| INITIALIZE_PASS_DEPENDENCY(DependenceAnalysis)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
 | |
| INITIALIZE_PASS_DEPENDENCY(LCSSA)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | |
| 
 | |
| INITIALIZE_PASS_END(LoopInterchange, "loop-interchange",
 | |
|                     "Interchanges loops for cache reuse", false, false)
 | |
| 
 | |
| Pass *llvm::createLoopInterchangePass() { return new LoopInterchange(); }
 |