mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	lazily built. Also, make it a much more generic SCEV cache, which today exposes only a reduced GEP model description but could be extended in the future to do other profitable caching of SCEV information. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238124 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1016 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1016 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass implements a simple loop unroller.  It works best when loops have
 | |
| // been canonicalized by the -indvars pass, allowing it to determine the trip
 | |
| // counts of loops easily.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/Analysis/AssumptionCache.h"
 | |
| #include "llvm/Analysis/CodeMetrics.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DiagnosticInfo.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/InstVisitor.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Metadata.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Utils/UnrollLoop.h"
 | |
| #include <climits>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "loop-unroll"
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
| UnrollThreshold("unroll-threshold", cl::init(150), cl::Hidden,
 | |
|   cl::desc("The cut-off point for automatic loop unrolling"));
 | |
| 
 | |
| static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
 | |
|     "unroll-max-iteration-count-to-analyze", cl::init(0), cl::Hidden,
 | |
|     cl::desc("Don't allow loop unrolling to simulate more than this number of"
 | |
|              "iterations when checking full unroll profitability"));
 | |
| 
 | |
| static cl::opt<unsigned> UnrollMinPercentOfOptimized(
 | |
|     "unroll-percent-of-optimized-for-complete-unroll", cl::init(20), cl::Hidden,
 | |
|     cl::desc("If complete unrolling could trigger further optimizations, and, "
 | |
|              "by that, remove the given percent of instructions, perform the "
 | |
|              "complete unroll even if it's beyond the threshold"));
 | |
| 
 | |
| static cl::opt<unsigned> UnrollAbsoluteThreshold(
 | |
|     "unroll-absolute-threshold", cl::init(2000), cl::Hidden,
 | |
|     cl::desc("Don't unroll if the unrolled size is bigger than this threshold,"
 | |
|              " even if we can remove big portion of instructions later."));
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
| UnrollCount("unroll-count", cl::init(0), cl::Hidden,
 | |
|   cl::desc("Use this unroll count for all loops including those with "
 | |
|            "unroll_count pragma values, for testing purposes"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| UnrollAllowPartial("unroll-allow-partial", cl::init(false), cl::Hidden,
 | |
|   cl::desc("Allows loops to be partially unrolled until "
 | |
|            "-unroll-threshold loop size is reached."));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::init(false), cl::Hidden,
 | |
|   cl::desc("Unroll loops with run-time trip counts"));
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
| PragmaUnrollThreshold("pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
 | |
|   cl::desc("Unrolled size limit for loops with an unroll(full) or "
 | |
|            "unroll_count pragma."));
 | |
| 
 | |
| namespace {
 | |
|   class LoopUnroll : public LoopPass {
 | |
|   public:
 | |
|     static char ID; // Pass ID, replacement for typeid
 | |
|     LoopUnroll(int T = -1, int C = -1, int P = -1, int R = -1) : LoopPass(ID) {
 | |
|       CurrentThreshold = (T == -1) ? UnrollThreshold : unsigned(T);
 | |
|       CurrentAbsoluteThreshold = UnrollAbsoluteThreshold;
 | |
|       CurrentMinPercentOfOptimized = UnrollMinPercentOfOptimized;
 | |
|       CurrentCount = (C == -1) ? UnrollCount : unsigned(C);
 | |
|       CurrentAllowPartial = (P == -1) ? UnrollAllowPartial : (bool)P;
 | |
|       CurrentRuntime = (R == -1) ? UnrollRuntime : (bool)R;
 | |
| 
 | |
|       UserThreshold = (T != -1) || (UnrollThreshold.getNumOccurrences() > 0);
 | |
|       UserAbsoluteThreshold = (UnrollAbsoluteThreshold.getNumOccurrences() > 0);
 | |
|       UserPercentOfOptimized =
 | |
|           (UnrollMinPercentOfOptimized.getNumOccurrences() > 0);
 | |
|       UserAllowPartial = (P != -1) ||
 | |
|                          (UnrollAllowPartial.getNumOccurrences() > 0);
 | |
|       UserRuntime = (R != -1) || (UnrollRuntime.getNumOccurrences() > 0);
 | |
|       UserCount = (C != -1) || (UnrollCount.getNumOccurrences() > 0);
 | |
| 
 | |
|       initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     /// A magic value for use with the Threshold parameter to indicate
 | |
|     /// that the loop unroll should be performed regardless of how much
 | |
|     /// code expansion would result.
 | |
|     static const unsigned NoThreshold = UINT_MAX;
 | |
| 
 | |
|     // Threshold to use when optsize is specified (and there is no
 | |
|     // explicit -unroll-threshold).
 | |
|     static const unsigned OptSizeUnrollThreshold = 50;
 | |
| 
 | |
|     // Default unroll count for loops with run-time trip count if
 | |
|     // -unroll-count is not set
 | |
|     static const unsigned UnrollRuntimeCount = 8;
 | |
| 
 | |
|     unsigned CurrentCount;
 | |
|     unsigned CurrentThreshold;
 | |
|     unsigned CurrentAbsoluteThreshold;
 | |
|     unsigned CurrentMinPercentOfOptimized;
 | |
|     bool     CurrentAllowPartial;
 | |
|     bool     CurrentRuntime;
 | |
|     bool     UserCount;            // CurrentCount is user-specified.
 | |
|     bool     UserThreshold;        // CurrentThreshold is user-specified.
 | |
|     bool UserAbsoluteThreshold;    // CurrentAbsoluteThreshold is
 | |
|                                    // user-specified.
 | |
|     bool UserPercentOfOptimized;   // CurrentMinPercentOfOptimized is
 | |
|                                    // user-specified.
 | |
|     bool     UserAllowPartial;     // CurrentAllowPartial is user-specified.
 | |
|     bool     UserRuntime;          // CurrentRuntime is user-specified.
 | |
| 
 | |
|     bool runOnLoop(Loop *L, LPPassManager &LPM) override;
 | |
| 
 | |
|     /// This transformation requires natural loop information & requires that
 | |
|     /// loop preheaders be inserted into the CFG...
 | |
|     ///
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|       AU.addRequired<AssumptionCacheTracker>();
 | |
|       AU.addRequired<LoopInfoWrapperPass>();
 | |
|       AU.addPreserved<LoopInfoWrapperPass>();
 | |
|       AU.addRequiredID(LoopSimplifyID);
 | |
|       AU.addPreservedID(LoopSimplifyID);
 | |
|       AU.addRequiredID(LCSSAID);
 | |
|       AU.addPreservedID(LCSSAID);
 | |
|       AU.addRequired<ScalarEvolution>();
 | |
|       AU.addPreserved<ScalarEvolution>();
 | |
|       AU.addRequired<TargetTransformInfoWrapperPass>();
 | |
|       // FIXME: Loop unroll requires LCSSA. And LCSSA requires dom info.
 | |
|       // If loop unroll does not preserve dom info then LCSSA pass on next
 | |
|       // loop will receive invalid dom info.
 | |
|       // For now, recreate dom info, if loop is unrolled.
 | |
|       AU.addPreserved<DominatorTreeWrapperPass>();
 | |
|     }
 | |
| 
 | |
|     // Fill in the UnrollingPreferences parameter with values from the
 | |
|     // TargetTransformationInfo.
 | |
|     void getUnrollingPreferences(Loop *L, const TargetTransformInfo &TTI,
 | |
|                                  TargetTransformInfo::UnrollingPreferences &UP) {
 | |
|       UP.Threshold = CurrentThreshold;
 | |
|       UP.AbsoluteThreshold = CurrentAbsoluteThreshold;
 | |
|       UP.MinPercentOfOptimized = CurrentMinPercentOfOptimized;
 | |
|       UP.OptSizeThreshold = OptSizeUnrollThreshold;
 | |
|       UP.PartialThreshold = CurrentThreshold;
 | |
|       UP.PartialOptSizeThreshold = OptSizeUnrollThreshold;
 | |
|       UP.Count = CurrentCount;
 | |
|       UP.MaxCount = UINT_MAX;
 | |
|       UP.Partial = CurrentAllowPartial;
 | |
|       UP.Runtime = CurrentRuntime;
 | |
|       UP.AllowExpensiveTripCount = false;
 | |
|       TTI.getUnrollingPreferences(L, UP);
 | |
|     }
 | |
| 
 | |
|     // Select and return an unroll count based on parameters from
 | |
|     // user, unroll preferences, unroll pragmas, or a heuristic.
 | |
|     // SetExplicitly is set to true if the unroll count is is set by
 | |
|     // the user or a pragma rather than selected heuristically.
 | |
|     unsigned
 | |
|     selectUnrollCount(const Loop *L, unsigned TripCount, bool PragmaFullUnroll,
 | |
|                       unsigned PragmaCount,
 | |
|                       const TargetTransformInfo::UnrollingPreferences &UP,
 | |
|                       bool &SetExplicitly);
 | |
| 
 | |
|     // Select threshold values used to limit unrolling based on a
 | |
|     // total unrolled size.  Parameters Threshold and PartialThreshold
 | |
|     // are set to the maximum unrolled size for fully and partially
 | |
|     // unrolled loops respectively.
 | |
|     void selectThresholds(const Loop *L, bool HasPragma,
 | |
|                           const TargetTransformInfo::UnrollingPreferences &UP,
 | |
|                           unsigned &Threshold, unsigned &PartialThreshold,
 | |
|                           unsigned &AbsoluteThreshold,
 | |
|                           unsigned &PercentOfOptimizedForCompleteUnroll) {
 | |
|       // Determine the current unrolling threshold.  While this is
 | |
|       // normally set from UnrollThreshold, it is overridden to a
 | |
|       // smaller value if the current function is marked as
 | |
|       // optimize-for-size, and the unroll threshold was not user
 | |
|       // specified.
 | |
|       Threshold = UserThreshold ? CurrentThreshold : UP.Threshold;
 | |
|       PartialThreshold = UserThreshold ? CurrentThreshold : UP.PartialThreshold;
 | |
|       AbsoluteThreshold = UserAbsoluteThreshold ? CurrentAbsoluteThreshold
 | |
|                                                 : UP.AbsoluteThreshold;
 | |
|       PercentOfOptimizedForCompleteUnroll = UserPercentOfOptimized
 | |
|                                                 ? CurrentMinPercentOfOptimized
 | |
|                                                 : UP.MinPercentOfOptimized;
 | |
| 
 | |
|       if (!UserThreshold &&
 | |
|           L->getHeader()->getParent()->hasFnAttribute(
 | |
|               Attribute::OptimizeForSize)) {
 | |
|         Threshold = UP.OptSizeThreshold;
 | |
|         PartialThreshold = UP.PartialOptSizeThreshold;
 | |
|       }
 | |
|       if (HasPragma) {
 | |
|         // If the loop has an unrolling pragma, we want to be more
 | |
|         // aggressive with unrolling limits.  Set thresholds to at
 | |
|         // least the PragmaTheshold value which is larger than the
 | |
|         // default limits.
 | |
|         if (Threshold != NoThreshold)
 | |
|           Threshold = std::max<unsigned>(Threshold, PragmaUnrollThreshold);
 | |
|         if (PartialThreshold != NoThreshold)
 | |
|           PartialThreshold =
 | |
|               std::max<unsigned>(PartialThreshold, PragmaUnrollThreshold);
 | |
|       }
 | |
|     }
 | |
|     bool canUnrollCompletely(Loop *L, unsigned Threshold,
 | |
|                              unsigned AbsoluteThreshold, uint64_t UnrolledSize,
 | |
|                              unsigned NumberOfOptimizedInstructions,
 | |
|                              unsigned PercentOfOptimizedForCompleteUnroll);
 | |
|   };
 | |
| }
 | |
| 
 | |
| char LoopUnroll::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
 | |
| INITIALIZE_PASS_DEPENDENCY(LCSSA)
 | |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
 | |
| INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
 | |
| 
 | |
| Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial,
 | |
|                                  int Runtime) {
 | |
|   return new LoopUnroll(Threshold, Count, AllowPartial, Runtime);
 | |
| }
 | |
| 
 | |
| Pass *llvm::createSimpleLoopUnrollPass() {
 | |
|   return llvm::createLoopUnrollPass(-1, -1, 0, 0);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// \brief SCEV expressions visitor used for finding expressions that would
 | |
| /// become constants if the loop L is unrolled.
 | |
| struct FindConstantPointers {
 | |
|   /// \brief Shows whether the expression is ConstAddress+Constant or not.
 | |
|   bool IndexIsConstant;
 | |
| 
 | |
|   /// \brief Used for filtering out SCEV expressions with two or more AddRec
 | |
|   /// subexpressions.
 | |
|   ///
 | |
|   /// Used to filter out complicated SCEV expressions, having several AddRec
 | |
|   /// sub-expressions. We don't handle them, because unrolling one loop
 | |
|   /// would help to replace only one of these inductions with a constant, and
 | |
|   /// consequently, the expression would remain non-constant.
 | |
|   bool HaveSeenAR;
 | |
| 
 | |
|   /// \brief If the SCEV expression becomes ConstAddress+Constant, this value
 | |
|   /// holds ConstAddress. Otherwise, it's nullptr.
 | |
|   Value *BaseAddress;
 | |
| 
 | |
|   /// \brief The loop, which we try to completely unroll.
 | |
|   const Loop *L;
 | |
| 
 | |
|   ScalarEvolution &SE;
 | |
| 
 | |
|   FindConstantPointers(const Loop *L, ScalarEvolution &SE)
 | |
|       : IndexIsConstant(true), HaveSeenAR(false), BaseAddress(nullptr),
 | |
|         L(L), SE(SE) {}
 | |
| 
 | |
|   /// Examine the given expression S and figure out, if it can be a part of an
 | |
|   /// expression, that could become a constant after the loop is unrolled.
 | |
|   /// The routine sets IndexIsConstant and HaveSeenAR according to the analysis
 | |
|   /// results.
 | |
|   /// \returns true if we need to examine subexpressions, and false otherwise.
 | |
|   bool follow(const SCEV *S) {
 | |
|     if (const SCEVUnknown *SC = dyn_cast<SCEVUnknown>(S)) {
 | |
|       // We've reached the leaf node of SCEV, it's most probably just a
 | |
|       // variable.
 | |
|       // If it's the only one SCEV-subexpression, then it might be a base
 | |
|       // address of an index expression.
 | |
|       // If we've already recorded base address, then just give up on this SCEV
 | |
|       // - it's too complicated.
 | |
|       if (BaseAddress) {
 | |
|         IndexIsConstant = false;
 | |
|         return false;
 | |
|       }
 | |
|       BaseAddress = SC->getValue();
 | |
|       return false;
 | |
|     }
 | |
|     if (isa<SCEVConstant>(S))
 | |
|       return false;
 | |
|     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
 | |
|       // If the current SCEV expression is AddRec, and its loop isn't the loop
 | |
|       // we are about to unroll, then we won't get a constant address after
 | |
|       // unrolling, and thus, won't be able to eliminate the load.
 | |
|       if (AR->getLoop() != L) {
 | |
|         IndexIsConstant = false;
 | |
|         return false;
 | |
|       }
 | |
|       // We don't handle multiple AddRecs here, so give up in this case.
 | |
|       if (HaveSeenAR) {
 | |
|         IndexIsConstant = false;
 | |
|         return false;
 | |
|       }
 | |
|       HaveSeenAR = true;
 | |
|     }
 | |
| 
 | |
|     // Continue traversal.
 | |
|     return true;
 | |
|   }
 | |
|   bool isDone() const { return !IndexIsConstant; }
 | |
| };
 | |
| } // End anonymous namespace.
 | |
| 
 | |
| namespace {
 | |
| /// \brief A cache of SCEV results used to optimize repeated queries to SCEV on
 | |
| /// the same set of instructions.
 | |
| ///
 | |
| /// The primary cost this saves is the cost of checking the validity of a SCEV
 | |
| /// every time it is looked up. However, in some cases we can provide a reduced
 | |
| /// and especially useful model for an instruction based upon SCEV that is
 | |
| /// non-trivial to compute but more useful to clients.
 | |
| class SCEVCache {
 | |
| public:
 | |
|   /// \brief Struct to represent a GEP whose start and step are known fixed
 | |
|   /// offsets from a base address due to SCEV's analysis.
 | |
|   struct GEPDescriptor {
 | |
|     Value *BaseAddr = nullptr;
 | |
|     unsigned Start = 0;
 | |
|     unsigned Step = 0;
 | |
|   };
 | |
| 
 | |
|   Optional<GEPDescriptor> getGEPDescriptor(GetElementPtrInst *GEP);
 | |
| 
 | |
|   SCEVCache(const Loop &L, ScalarEvolution &SE) : L(L), SE(SE) {}
 | |
| 
 | |
| private:
 | |
|   const Loop &L;
 | |
|   ScalarEvolution &SE;
 | |
| 
 | |
|   SmallDenseMap<GetElementPtrInst *, GEPDescriptor> GEPDescriptors;
 | |
| };
 | |
| } // End anonymous namespace.
 | |
| 
 | |
| /// \brief Get a simplified descriptor for a GEP instruction.
 | |
| ///
 | |
| /// Where possible, this produces a simplified descriptor for a GEP instruction
 | |
| /// using SCEV analysis of the containing loop. If this isn't possible, it
 | |
| /// returns an empty optional.
 | |
| ///
 | |
| /// The model is a base address, an initial offset, and a per-iteration step.
 | |
| /// This fits very common patterns of GEPs inside loops and is something we can
 | |
| /// use to simulate the behavior of a particular iteration of a loop.
 | |
| ///
 | |
| /// This is a cached interface. The first call may do non-trivial work to
 | |
| /// compute the result, but all subsequent calls will return a fast answer
 | |
| /// based on a cached result. This includes caching negative results.
 | |
| Optional<SCEVCache::GEPDescriptor>
 | |
| SCEVCache::getGEPDescriptor(GetElementPtrInst *GEP) {
 | |
|   decltype(GEPDescriptors)::iterator It;
 | |
|   bool Inserted;
 | |
| 
 | |
|   std::tie(It, Inserted) = GEPDescriptors.insert({GEP, {}});
 | |
| 
 | |
|   if (!Inserted) {
 | |
|     if (!It->second.BaseAddr)
 | |
|       return None;
 | |
| 
 | |
|     return It->second;
 | |
|   }
 | |
| 
 | |
|   // We've inserted a new record into the cache, so compute the GEP descriptor
 | |
|   // if possible.
 | |
|   Value *V = cast<Value>(GEP);
 | |
|   if (!SE.isSCEVable(V->getType()))
 | |
|     return None;
 | |
|   const SCEV *S = SE.getSCEV(V);
 | |
| 
 | |
|   // FIXME: It'd be nice if the worklist and set used by the
 | |
|   // SCEVTraversal could be re-used between loop iterations, but the
 | |
|   // interface doesn't support that. There is no way to clear the visited
 | |
|   // sets between uses.
 | |
|   FindConstantPointers Visitor(&L, SE);
 | |
|   SCEVTraversal<FindConstantPointers> T(Visitor);
 | |
| 
 | |
|   // Try to find (BaseAddress+Step+Offset) tuple.
 | |
|   // If succeeded, save it to the cache - it might help in folding
 | |
|   // loads.
 | |
|   T.visitAll(S);
 | |
|   if (!Visitor.IndexIsConstant || !Visitor.BaseAddress)
 | |
|     return None;
 | |
| 
 | |
|   const SCEV *BaseAddrSE = SE.getSCEV(Visitor.BaseAddress);
 | |
|   if (BaseAddrSE->getType() != S->getType())
 | |
|     return None;
 | |
|   const SCEV *OffSE = SE.getMinusSCEV(S, BaseAddrSE);
 | |
|   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OffSE);
 | |
| 
 | |
|   if (!AR)
 | |
|     return None;
 | |
| 
 | |
|   const SCEVConstant *StepSE =
 | |
|       dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE));
 | |
|   const SCEVConstant *StartSE = dyn_cast<SCEVConstant>(AR->getStart());
 | |
|   if (!StepSE || !StartSE)
 | |
|     return None;
 | |
| 
 | |
|   // Check and skip caching if doing so would require lots of bits to
 | |
|   // avoid overflow.
 | |
|   APInt Start = StartSE->getValue()->getValue();
 | |
|   APInt Step = StepSE->getValue()->getValue();
 | |
|   if (Start.getActiveBits() > 32 || Step.getActiveBits() > 32)
 | |
|     return None;
 | |
| 
 | |
|   // We found a cacheable SCEV model for the GEP.
 | |
|   It->second.BaseAddr = Visitor.BaseAddress;
 | |
|   It->second.Start = Start.getLimitedValue();
 | |
|   It->second.Step = Step.getLimitedValue();
 | |
|   return It->second;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| // This class is used to get an estimate of the optimization effects that we
 | |
| // could get from complete loop unrolling. It comes from the fact that some
 | |
| // loads might be replaced with concrete constant values and that could trigger
 | |
| // a chain of instruction simplifications.
 | |
| //
 | |
| // E.g. we might have:
 | |
| //   int a[] = {0, 1, 0};
 | |
| //   v = 0;
 | |
| //   for (i = 0; i < 3; i ++)
 | |
| //     v += b[i]*a[i];
 | |
| // If we completely unroll the loop, we would get:
 | |
| //   v = b[0]*a[0] + b[1]*a[1] + b[2]*a[2]
 | |
| // Which then will be simplified to:
 | |
| //   v = b[0]* 0 + b[1]* 1 + b[2]* 0
 | |
| // And finally:
 | |
| //   v = b[1]
 | |
| class UnrolledInstAnalyzer : private InstVisitor<UnrolledInstAnalyzer, bool> {
 | |
|   typedef InstVisitor<UnrolledInstAnalyzer, bool> Base;
 | |
|   friend class InstVisitor<UnrolledInstAnalyzer, bool>;
 | |
| 
 | |
| public:
 | |
|   UnrolledInstAnalyzer(unsigned Iteration,
 | |
|                        DenseMap<Value *, Constant *> &SimplifiedValues,
 | |
|                        SCEVCache &SC)
 | |
|       : Iteration(Iteration), SimplifiedValues(SimplifiedValues), SC(SC) {}
 | |
| 
 | |
|   // Allow access to the initial visit method.
 | |
|   using Base::visit;
 | |
| 
 | |
| private:
 | |
|   /// \brief Number of currently simulated iteration.
 | |
|   ///
 | |
|   /// If an expression is ConstAddress+Constant, then the Constant is
 | |
|   /// Start + Iteration*Step, where Start and Step could be obtained from
 | |
|   /// SCEVGEPCache.
 | |
|   unsigned Iteration;
 | |
| 
 | |
|   // While we walk the loop instructions, we we build up and maintain a mapping
 | |
|   // of simplified values specific to this iteration.  The idea is to propagate
 | |
|   // any special information we have about loads that can be replaced with
 | |
|   // constants after complete unrolling, and account for likely simplifications
 | |
|   // post-unrolling.
 | |
|   DenseMap<Value *, Constant *> &SimplifiedValues;
 | |
| 
 | |
|   // We use a cache to wrap all our SCEV queries.
 | |
|   SCEVCache &SC;
 | |
| 
 | |
|   /// Base case for the instruction visitor.
 | |
|   bool visitInstruction(Instruction &I) { return false; };
 | |
| 
 | |
|   /// TODO: Add visitors for other instruction types, e.g. ZExt, SExt.
 | |
| 
 | |
|   /// Try to simplify binary operator I.
 | |
|   ///
 | |
|   /// TODO: Probaly it's worth to hoist the code for estimating the
 | |
|   /// simplifications effects to a separate class, since we have a very similar
 | |
|   /// code in InlineCost already.
 | |
|   bool visitBinaryOperator(BinaryOperator &I) {
 | |
|     Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
 | |
|     if (!isa<Constant>(LHS))
 | |
|       if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
 | |
|         LHS = SimpleLHS;
 | |
|     if (!isa<Constant>(RHS))
 | |
|       if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
 | |
|         RHS = SimpleRHS;
 | |
|     Value *SimpleV = nullptr;
 | |
|     const DataLayout &DL = I.getModule()->getDataLayout();
 | |
|     if (auto FI = dyn_cast<FPMathOperator>(&I))
 | |
|       SimpleV =
 | |
|           SimplifyFPBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL);
 | |
|     else
 | |
|       SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL);
 | |
| 
 | |
|     if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
 | |
|       SimplifiedValues[&I] = C;
 | |
| 
 | |
|     return SimpleV;
 | |
|   }
 | |
| 
 | |
|   /// Try to fold load I.
 | |
|   bool visitLoad(LoadInst &I) {
 | |
|     Value *AddrOp = I.getPointerOperand();
 | |
|     if (!isa<Constant>(AddrOp))
 | |
|       if (Constant *SimplifiedAddrOp = SimplifiedValues.lookup(AddrOp))
 | |
|         AddrOp = SimplifiedAddrOp;
 | |
| 
 | |
|     auto *GEP = dyn_cast<GetElementPtrInst>(AddrOp);
 | |
|     if (!GEP)
 | |
|       return false;
 | |
|     auto OptionalGEPDesc = SC.getGEPDescriptor(GEP);
 | |
|     if (!OptionalGEPDesc)
 | |
|       return false;
 | |
| 
 | |
|     auto GV = dyn_cast<GlobalVariable>(OptionalGEPDesc->BaseAddr);
 | |
|     // We're only interested in loads that can be completely folded to a
 | |
|     // constant.
 | |
|     if (!GV || !GV->hasInitializer())
 | |
|       return false;
 | |
| 
 | |
|     ConstantDataSequential *CDS =
 | |
|         dyn_cast<ConstantDataSequential>(GV->getInitializer());
 | |
|     if (!CDS)
 | |
|       return false;
 | |
| 
 | |
|     // This calculation should never overflow because we bound Iteration quite
 | |
|     // low and both the start and step are 32-bit integers. We use signed
 | |
|     // integers so that UBSan will catch if a bug sneaks into the code.
 | |
|     int ElemSize = CDS->getElementType()->getPrimitiveSizeInBits() / 8U;
 | |
|     int64_t Index = ((int64_t)OptionalGEPDesc->Start +
 | |
|                      (int64_t)OptionalGEPDesc->Step * (int64_t)Iteration) /
 | |
|                     ElemSize;
 | |
|     if (Index >= CDS->getNumElements()) {
 | |
|       // FIXME: For now we conservatively ignore out of bound accesses, but
 | |
|       // we're allowed to perform the optimization in this case.
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     Constant *CV = CDS->getElementAsConstant(Index);
 | |
|     assert(CV && "Constant expected.");
 | |
|     SimplifiedValues[&I] = CV;
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| 
 | |
| namespace {
 | |
| struct EstimatedUnrollCost {
 | |
|   /// \brief Count the number of optimized instructions.
 | |
|   unsigned NumberOfOptimizedInstructions;
 | |
| 
 | |
|   /// \brief Count the total number of instructions.
 | |
|   unsigned UnrolledLoopSize;
 | |
| };
 | |
| }
 | |
| 
 | |
| /// \brief Figure out if the loop is worth full unrolling.
 | |
| ///
 | |
| /// Complete loop unrolling can make some loads constant, and we need to know
 | |
| /// if that would expose any further optimization opportunities.  This routine
 | |
| /// estimates this optimization.  It assigns computed number of instructions,
 | |
| /// that potentially might be optimized away, to
 | |
| /// NumberOfOptimizedInstructions, and total number of instructions to
 | |
| /// UnrolledLoopSize (not counting blocks that won't be reached, if we were
 | |
| /// able to compute the condition).
 | |
| /// \returns false if we can't analyze the loop, or if we discovered that
 | |
| /// unrolling won't give anything. Otherwise, returns true.
 | |
| Optional<EstimatedUnrollCost>
 | |
| analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, ScalarEvolution &SE,
 | |
|                       const TargetTransformInfo &TTI,
 | |
|                       unsigned MaxUnrolledLoopSize) {
 | |
|   // We want to be able to scale offsets by the trip count and add more offsets
 | |
|   // to them without checking for overflows, and we already don't want to
 | |
|   // analyze *massive* trip counts, so we force the max to be reasonably small.
 | |
|   assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) &&
 | |
|          "The unroll iterations max is too large!");
 | |
| 
 | |
|   // Don't simulate loops with a big or unknown tripcount
 | |
|   if (!UnrollMaxIterationsCountToAnalyze || !TripCount ||
 | |
|       TripCount > UnrollMaxIterationsCountToAnalyze)
 | |
|     return None;
 | |
| 
 | |
|   SmallSetVector<BasicBlock *, 16> BBWorklist;
 | |
|   DenseMap<Value *, Constant *> SimplifiedValues;
 | |
| 
 | |
|   // Use a cache to access SCEV expressions so that we don't pay the cost on
 | |
|   // each iteration. This cache is lazily self-populating.
 | |
|   SCEVCache SC(*L, SE);
 | |
| 
 | |
|   unsigned NumberOfOptimizedInstructions = 0;
 | |
|   unsigned UnrolledLoopSize = 0;
 | |
| 
 | |
|   // Simulate execution of each iteration of the loop counting instructions,
 | |
|   // which would be simplified.
 | |
|   // Since the same load will take different values on different iterations,
 | |
|   // we literally have to go through all loop's iterations.
 | |
|   for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
 | |
|     SimplifiedValues.clear();
 | |
|     UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SC);
 | |
| 
 | |
|     BBWorklist.clear();
 | |
|     BBWorklist.insert(L->getHeader());
 | |
|     // Note that we *must not* cache the size, this loop grows the worklist.
 | |
|     for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
 | |
|       BasicBlock *BB = BBWorklist[Idx];
 | |
| 
 | |
|       // Visit all instructions in the given basic block and try to simplify
 | |
|       // it.  We don't change the actual IR, just count optimization
 | |
|       // opportunities.
 | |
|       for (Instruction &I : *BB) {
 | |
|         UnrolledLoopSize += TTI.getUserCost(&I);
 | |
| 
 | |
|         // Visit the instruction to analyze its loop cost after unrolling,
 | |
|         // and if the visitor returns true, then we can optimize this
 | |
|         // instruction away.
 | |
|         if (Analyzer.visit(I))
 | |
|           NumberOfOptimizedInstructions += TTI.getUserCost(&I);
 | |
| 
 | |
|         // If unrolled body turns out to be too big, bail out.
 | |
|         if (UnrolledLoopSize - NumberOfOptimizedInstructions >
 | |
|             MaxUnrolledLoopSize)
 | |
|           return None;
 | |
|       }
 | |
| 
 | |
|       // Add BB's successors to the worklist.
 | |
|       for (BasicBlock *Succ : successors(BB))
 | |
|         if (L->contains(Succ))
 | |
|           BBWorklist.insert(Succ);
 | |
|     }
 | |
| 
 | |
|     // If we found no optimization opportunities on the first iteration, we
 | |
|     // won't find them on later ones too.
 | |
|     if (!NumberOfOptimizedInstructions)
 | |
|       return None;
 | |
|   }
 | |
|   return {{NumberOfOptimizedInstructions, UnrolledLoopSize}};
 | |
| }
 | |
| 
 | |
| /// ApproximateLoopSize - Approximate the size of the loop.
 | |
| static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls,
 | |
|                                     bool &NotDuplicatable,
 | |
|                                     const TargetTransformInfo &TTI,
 | |
|                                     AssumptionCache *AC) {
 | |
|   SmallPtrSet<const Value *, 32> EphValues;
 | |
|   CodeMetrics::collectEphemeralValues(L, AC, EphValues);
 | |
| 
 | |
|   CodeMetrics Metrics;
 | |
|   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
 | |
|        I != E; ++I)
 | |
|     Metrics.analyzeBasicBlock(*I, TTI, EphValues);
 | |
|   NumCalls = Metrics.NumInlineCandidates;
 | |
|   NotDuplicatable = Metrics.notDuplicatable;
 | |
| 
 | |
|   unsigned LoopSize = Metrics.NumInsts;
 | |
| 
 | |
|   // Don't allow an estimate of size zero.  This would allows unrolling of loops
 | |
|   // with huge iteration counts, which is a compile time problem even if it's
 | |
|   // not a problem for code quality. Also, the code using this size may assume
 | |
|   // that each loop has at least three instructions (likely a conditional
 | |
|   // branch, a comparison feeding that branch, and some kind of loop increment
 | |
|   // feeding that comparison instruction).
 | |
|   LoopSize = std::max(LoopSize, 3u);
 | |
| 
 | |
|   return LoopSize;
 | |
| }
 | |
| 
 | |
| // Returns the loop hint metadata node with the given name (for example,
 | |
| // "llvm.loop.unroll.count").  If no such metadata node exists, then nullptr is
 | |
| // returned.
 | |
| static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) {
 | |
|   if (MDNode *LoopID = L->getLoopID())
 | |
|     return GetUnrollMetadata(LoopID, Name);
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| // Returns true if the loop has an unroll(full) pragma.
 | |
| static bool HasUnrollFullPragma(const Loop *L) {
 | |
|   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
 | |
| }
 | |
| 
 | |
| // Returns true if the loop has an unroll(disable) pragma.
 | |
| static bool HasUnrollDisablePragma(const Loop *L) {
 | |
|   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable");
 | |
| }
 | |
| 
 | |
| // Returns true if the loop has an runtime unroll(disable) pragma.
 | |
| static bool HasRuntimeUnrollDisablePragma(const Loop *L) {
 | |
|   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
 | |
| }
 | |
| 
 | |
| // If loop has an unroll_count pragma return the (necessarily
 | |
| // positive) value from the pragma.  Otherwise return 0.
 | |
| static unsigned UnrollCountPragmaValue(const Loop *L) {
 | |
|   MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
 | |
|   if (MD) {
 | |
|     assert(MD->getNumOperands() == 2 &&
 | |
|            "Unroll count hint metadata should have two operands.");
 | |
|     unsigned Count =
 | |
|         mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
 | |
|     assert(Count >= 1 && "Unroll count must be positive.");
 | |
|     return Count;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // Remove existing unroll metadata and add unroll disable metadata to
 | |
| // indicate the loop has already been unrolled.  This prevents a loop
 | |
| // from being unrolled more than is directed by a pragma if the loop
 | |
| // unrolling pass is run more than once (which it generally is).
 | |
| static void SetLoopAlreadyUnrolled(Loop *L) {
 | |
|   MDNode *LoopID = L->getLoopID();
 | |
|   if (!LoopID) return;
 | |
| 
 | |
|   // First remove any existing loop unrolling metadata.
 | |
|   SmallVector<Metadata *, 4> MDs;
 | |
|   // Reserve first location for self reference to the LoopID metadata node.
 | |
|   MDs.push_back(nullptr);
 | |
|   for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
 | |
|     bool IsUnrollMetadata = false;
 | |
|     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
 | |
|     if (MD) {
 | |
|       const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
 | |
|       IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
 | |
|     }
 | |
|     if (!IsUnrollMetadata)
 | |
|       MDs.push_back(LoopID->getOperand(i));
 | |
|   }
 | |
| 
 | |
|   // Add unroll(disable) metadata to disable future unrolling.
 | |
|   LLVMContext &Context = L->getHeader()->getContext();
 | |
|   SmallVector<Metadata *, 1> DisableOperands;
 | |
|   DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
 | |
|   MDNode *DisableNode = MDNode::get(Context, DisableOperands);
 | |
|   MDs.push_back(DisableNode);
 | |
| 
 | |
|   MDNode *NewLoopID = MDNode::get(Context, MDs);
 | |
|   // Set operand 0 to refer to the loop id itself.
 | |
|   NewLoopID->replaceOperandWith(0, NewLoopID);
 | |
|   L->setLoopID(NewLoopID);
 | |
| }
 | |
| 
 | |
| bool LoopUnroll::canUnrollCompletely(
 | |
|     Loop *L, unsigned Threshold, unsigned AbsoluteThreshold,
 | |
|     uint64_t UnrolledSize, unsigned NumberOfOptimizedInstructions,
 | |
|     unsigned PercentOfOptimizedForCompleteUnroll) {
 | |
| 
 | |
|   if (Threshold == NoThreshold) {
 | |
|     DEBUG(dbgs() << "  Can fully unroll, because no threshold is set.\n");
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (UnrolledSize <= Threshold) {
 | |
|     DEBUG(dbgs() << "  Can fully unroll, because unrolled size: "
 | |
|                  << UnrolledSize << "<" << Threshold << "\n");
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   assert(UnrolledSize && "UnrolledSize can't be 0 at this point.");
 | |
|   unsigned PercentOfOptimizedInstructions =
 | |
|       (uint64_t)NumberOfOptimizedInstructions * 100ull / UnrolledSize;
 | |
| 
 | |
|   if (UnrolledSize <= AbsoluteThreshold &&
 | |
|       PercentOfOptimizedInstructions >= PercentOfOptimizedForCompleteUnroll) {
 | |
|     DEBUG(dbgs() << "  Can fully unroll, because unrolling will help removing "
 | |
|                  << PercentOfOptimizedInstructions
 | |
|                  << "% instructions (threshold: "
 | |
|                  << PercentOfOptimizedForCompleteUnroll << "%)\n");
 | |
|     DEBUG(dbgs() << "  Unrolled size (" << UnrolledSize
 | |
|                  << ") is less than the threshold (" << AbsoluteThreshold
 | |
|                  << ").\n");
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "  Too large to fully unroll:\n");
 | |
|   DEBUG(dbgs() << "    Unrolled size: " << UnrolledSize << "\n");
 | |
|   DEBUG(dbgs() << "    Estimated number of optimized instructions: "
 | |
|                << NumberOfOptimizedInstructions << "\n");
 | |
|   DEBUG(dbgs() << "    Absolute threshold: " << AbsoluteThreshold << "\n");
 | |
|   DEBUG(dbgs() << "    Minimum percent of removed instructions: "
 | |
|                << PercentOfOptimizedForCompleteUnroll << "\n");
 | |
|   DEBUG(dbgs() << "    Threshold for small loops: " << Threshold << "\n");
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| unsigned LoopUnroll::selectUnrollCount(
 | |
|     const Loop *L, unsigned TripCount, bool PragmaFullUnroll,
 | |
|     unsigned PragmaCount, const TargetTransformInfo::UnrollingPreferences &UP,
 | |
|     bool &SetExplicitly) {
 | |
|   SetExplicitly = true;
 | |
| 
 | |
|   // User-specified count (either as a command-line option or
 | |
|   // constructor parameter) has highest precedence.
 | |
|   unsigned Count = UserCount ? CurrentCount : 0;
 | |
| 
 | |
|   // If there is no user-specified count, unroll pragmas have the next
 | |
|   // highest precendence.
 | |
|   if (Count == 0) {
 | |
|     if (PragmaCount) {
 | |
|       Count = PragmaCount;
 | |
|     } else if (PragmaFullUnroll) {
 | |
|       Count = TripCount;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Count == 0)
 | |
|     Count = UP.Count;
 | |
| 
 | |
|   if (Count == 0) {
 | |
|     SetExplicitly = false;
 | |
|     if (TripCount == 0)
 | |
|       // Runtime trip count.
 | |
|       Count = UnrollRuntimeCount;
 | |
|     else
 | |
|       // Conservative heuristic: if we know the trip count, see if we can
 | |
|       // completely unroll (subject to the threshold, checked below); otherwise
 | |
|       // try to find greatest modulo of the trip count which is still under
 | |
|       // threshold value.
 | |
|       Count = TripCount;
 | |
|   }
 | |
|   if (TripCount && Count > TripCount)
 | |
|     return TripCount;
 | |
|   return Count;
 | |
| }
 | |
| 
 | |
| bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
 | |
|   if (skipOptnoneFunction(L))
 | |
|     return false;
 | |
| 
 | |
|   Function &F = *L->getHeader()->getParent();
 | |
| 
 | |
|   LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | |
|   ScalarEvolution *SE = &getAnalysis<ScalarEvolution>();
 | |
|   const TargetTransformInfo &TTI =
 | |
|       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
 | |
|   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
 | |
| 
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   DEBUG(dbgs() << "Loop Unroll: F[" << Header->getParent()->getName()
 | |
|         << "] Loop %" << Header->getName() << "\n");
 | |
| 
 | |
|   if (HasUnrollDisablePragma(L)) {
 | |
|     return false;
 | |
|   }
 | |
|   bool PragmaFullUnroll = HasUnrollFullPragma(L);
 | |
|   unsigned PragmaCount = UnrollCountPragmaValue(L);
 | |
|   bool HasPragma = PragmaFullUnroll || PragmaCount > 0;
 | |
| 
 | |
|   TargetTransformInfo::UnrollingPreferences UP;
 | |
|   getUnrollingPreferences(L, TTI, UP);
 | |
| 
 | |
|   // Find trip count and trip multiple if count is not available
 | |
|   unsigned TripCount = 0;
 | |
|   unsigned TripMultiple = 1;
 | |
|   // If there are multiple exiting blocks but one of them is the latch, use the
 | |
|   // latch for the trip count estimation. Otherwise insist on a single exiting
 | |
|   // block for the trip count estimation.
 | |
|   BasicBlock *ExitingBlock = L->getLoopLatch();
 | |
|   if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
 | |
|     ExitingBlock = L->getExitingBlock();
 | |
|   if (ExitingBlock) {
 | |
|     TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
 | |
|     TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
 | |
|   }
 | |
| 
 | |
|   // Select an initial unroll count.  This may be reduced later based
 | |
|   // on size thresholds.
 | |
|   bool CountSetExplicitly;
 | |
|   unsigned Count = selectUnrollCount(L, TripCount, PragmaFullUnroll,
 | |
|                                      PragmaCount, UP, CountSetExplicitly);
 | |
| 
 | |
|   unsigned NumInlineCandidates;
 | |
|   bool notDuplicatable;
 | |
|   unsigned LoopSize =
 | |
|       ApproximateLoopSize(L, NumInlineCandidates, notDuplicatable, TTI, &AC);
 | |
|   DEBUG(dbgs() << "  Loop Size = " << LoopSize << "\n");
 | |
| 
 | |
|   // When computing the unrolled size, note that the conditional branch on the
 | |
|   // backedge and the comparison feeding it are not replicated like the rest of
 | |
|   // the loop body (which is why 2 is subtracted).
 | |
|   uint64_t UnrolledSize = (uint64_t)(LoopSize-2) * Count + 2;
 | |
|   if (notDuplicatable) {
 | |
|     DEBUG(dbgs() << "  Not unrolling loop which contains non-duplicatable"
 | |
|                  << " instructions.\n");
 | |
|     return false;
 | |
|   }
 | |
|   if (NumInlineCandidates != 0) {
 | |
|     DEBUG(dbgs() << "  Not unrolling loop with inlinable calls.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   unsigned Threshold, PartialThreshold;
 | |
|   unsigned AbsoluteThreshold, PercentOfOptimizedForCompleteUnroll;
 | |
|   selectThresholds(L, HasPragma, UP, Threshold, PartialThreshold,
 | |
|                    AbsoluteThreshold, PercentOfOptimizedForCompleteUnroll);
 | |
| 
 | |
|   // Given Count, TripCount and thresholds determine the type of
 | |
|   // unrolling which is to be performed.
 | |
|   enum { Full = 0, Partial = 1, Runtime = 2 };
 | |
|   int Unrolling;
 | |
|   if (TripCount && Count == TripCount) {
 | |
|     Unrolling = Partial;
 | |
|     // If the loop is really small, we don't need to run an expensive analysis.
 | |
|     if (canUnrollCompletely(
 | |
|             L, Threshold, AbsoluteThreshold,
 | |
|             UnrolledSize, 0, 100)) {
 | |
|       Unrolling = Full;
 | |
|     } else {
 | |
|       // The loop isn't that small, but we still can fully unroll it if that
 | |
|       // helps to remove a significant number of instructions.
 | |
|       // To check that, run additional analysis on the loop.
 | |
|       if (Optional<EstimatedUnrollCost> Cost =
 | |
|               analyzeLoopUnrollCost(L, TripCount, *SE, TTI, AbsoluteThreshold))
 | |
|         if (canUnrollCompletely(L, Threshold, AbsoluteThreshold,
 | |
|                                 Cost->UnrolledLoopSize,
 | |
|                                 Cost->NumberOfOptimizedInstructions,
 | |
|                                 PercentOfOptimizedForCompleteUnroll)) {
 | |
|           Unrolling = Full;
 | |
|         }
 | |
|     }
 | |
|   } else if (TripCount && Count < TripCount) {
 | |
|     Unrolling = Partial;
 | |
|   } else {
 | |
|     Unrolling = Runtime;
 | |
|   }
 | |
| 
 | |
|   // Reduce count based on the type of unrolling and the threshold values.
 | |
|   unsigned OriginalCount = Count;
 | |
|   bool AllowRuntime = UserRuntime ? CurrentRuntime : UP.Runtime;
 | |
|   if (HasRuntimeUnrollDisablePragma(L)) {
 | |
|     AllowRuntime = false;
 | |
|   }
 | |
|   if (Unrolling == Partial) {
 | |
|     bool AllowPartial = UserAllowPartial ? CurrentAllowPartial : UP.Partial;
 | |
|     if (!AllowPartial && !CountSetExplicitly) {
 | |
|       DEBUG(dbgs() << "  will not try to unroll partially because "
 | |
|                    << "-unroll-allow-partial not given\n");
 | |
|       return false;
 | |
|     }
 | |
|     if (PartialThreshold != NoThreshold && UnrolledSize > PartialThreshold) {
 | |
|       // Reduce unroll count to be modulo of TripCount for partial unrolling.
 | |
|       Count = (std::max(PartialThreshold, 3u)-2) / (LoopSize-2);
 | |
|       while (Count != 0 && TripCount % Count != 0)
 | |
|         Count--;
 | |
|     }
 | |
|   } else if (Unrolling == Runtime) {
 | |
|     if (!AllowRuntime && !CountSetExplicitly) {
 | |
|       DEBUG(dbgs() << "  will not try to unroll loop with runtime trip count "
 | |
|                    << "-unroll-runtime not given\n");
 | |
|       return false;
 | |
|     }
 | |
|     // Reduce unroll count to be the largest power-of-two factor of
 | |
|     // the original count which satisfies the threshold limit.
 | |
|     while (Count != 0 && UnrolledSize > PartialThreshold) {
 | |
|       Count >>= 1;
 | |
|       UnrolledSize = (LoopSize-2) * Count + 2;
 | |
|     }
 | |
|     if (Count > UP.MaxCount)
 | |
|       Count = UP.MaxCount;
 | |
|     DEBUG(dbgs() << "  partially unrolling with count: " << Count << "\n");
 | |
|   }
 | |
| 
 | |
|   if (HasPragma) {
 | |
|     if (PragmaCount != 0)
 | |
|       // If loop has an unroll count pragma mark loop as unrolled to prevent
 | |
|       // unrolling beyond that requested by the pragma.
 | |
|       SetLoopAlreadyUnrolled(L);
 | |
| 
 | |
|     // Emit optimization remarks if we are unable to unroll the loop
 | |
|     // as directed by a pragma.
 | |
|     DebugLoc LoopLoc = L->getStartLoc();
 | |
|     Function *F = Header->getParent();
 | |
|     LLVMContext &Ctx = F->getContext();
 | |
|     if (PragmaFullUnroll && PragmaCount == 0) {
 | |
|       if (TripCount && Count != TripCount) {
 | |
|         emitOptimizationRemarkMissed(
 | |
|             Ctx, DEBUG_TYPE, *F, LoopLoc,
 | |
|             "Unable to fully unroll loop as directed by unroll(full) pragma "
 | |
|             "because unrolled size is too large.");
 | |
|       } else if (!TripCount) {
 | |
|         emitOptimizationRemarkMissed(
 | |
|             Ctx, DEBUG_TYPE, *F, LoopLoc,
 | |
|             "Unable to fully unroll loop as directed by unroll(full) pragma "
 | |
|             "because loop has a runtime trip count.");
 | |
|       }
 | |
|     } else if (PragmaCount > 0 && Count != OriginalCount) {
 | |
|       emitOptimizationRemarkMissed(
 | |
|           Ctx, DEBUG_TYPE, *F, LoopLoc,
 | |
|           "Unable to unroll loop the number of times directed by "
 | |
|           "unroll_count pragma because unrolled size is too large.");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Unrolling != Full && Count < 2) {
 | |
|     // Partial unrolling by 1 is a nop.  For full unrolling, a factor
 | |
|     // of 1 makes sense because loop control can be eliminated.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Unroll the loop.
 | |
|   if (!UnrollLoop(L, Count, TripCount, AllowRuntime, UP.AllowExpensiveTripCount,
 | |
|                   TripMultiple, LI, this, &LPM, &AC))
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 |