mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	Require the pointee type to be passed explicitly and assert that it is correct. For now it's possible to pass nullptr here (and I've done so in a few places in this patch) but eventually that will be disallowed once all clients have been updated or removed. It'll be a long road to get all the way there... but if you have the cahnce to update your callers to pass the type explicitly without depending on a pointer's element type, that would be a good thing to do soon and a necessary thing to do eventually. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233938 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1947 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1947 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements sparse conditional constant propagation and merging:
 | |
| //
 | |
| // Specifically, this:
 | |
| //   * Assumes values are constant unless proven otherwise
 | |
| //   * Assumes BasicBlocks are dead unless proven otherwise
 | |
| //   * Proves values to be constant, and replaces them with constants
 | |
| //   * Proves conditional branches to be unconditional
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/PointerIntPair.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/IR/CallSite.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/InstVisitor.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/IPO.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "sccp"
 | |
| 
 | |
| STATISTIC(NumInstRemoved, "Number of instructions removed");
 | |
| STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
 | |
| 
 | |
| STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
 | |
| STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
 | |
| STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
 | |
| 
 | |
| namespace {
 | |
| /// LatticeVal class - This class represents the different lattice values that
 | |
| /// an LLVM value may occupy.  It is a simple class with value semantics.
 | |
| ///
 | |
| class LatticeVal {
 | |
|   enum LatticeValueTy {
 | |
|     /// undefined - This LLVM Value has no known value yet.
 | |
|     undefined,
 | |
| 
 | |
|     /// constant - This LLVM Value has a specific constant value.
 | |
|     constant,
 | |
| 
 | |
|     /// forcedconstant - This LLVM Value was thought to be undef until
 | |
|     /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged
 | |
|     /// with another (different) constant, it goes to overdefined, instead of
 | |
|     /// asserting.
 | |
|     forcedconstant,
 | |
| 
 | |
|     /// overdefined - This instruction is not known to be constant, and we know
 | |
|     /// it has a value.
 | |
|     overdefined
 | |
|   };
 | |
| 
 | |
|   /// Val: This stores the current lattice value along with the Constant* for
 | |
|   /// the constant if this is a 'constant' or 'forcedconstant' value.
 | |
|   PointerIntPair<Constant *, 2, LatticeValueTy> Val;
 | |
| 
 | |
|   LatticeValueTy getLatticeValue() const {
 | |
|     return Val.getInt();
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   LatticeVal() : Val(nullptr, undefined) {}
 | |
| 
 | |
|   bool isUndefined() const { return getLatticeValue() == undefined; }
 | |
|   bool isConstant() const {
 | |
|     return getLatticeValue() == constant || getLatticeValue() == forcedconstant;
 | |
|   }
 | |
|   bool isOverdefined() const { return getLatticeValue() == overdefined; }
 | |
| 
 | |
|   Constant *getConstant() const {
 | |
|     assert(isConstant() && "Cannot get the constant of a non-constant!");
 | |
|     return Val.getPointer();
 | |
|   }
 | |
| 
 | |
|   /// markOverdefined - Return true if this is a change in status.
 | |
|   bool markOverdefined() {
 | |
|     if (isOverdefined())
 | |
|       return false;
 | |
| 
 | |
|     Val.setInt(overdefined);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// markConstant - Return true if this is a change in status.
 | |
|   bool markConstant(Constant *V) {
 | |
|     if (getLatticeValue() == constant) { // Constant but not forcedconstant.
 | |
|       assert(getConstant() == V && "Marking constant with different value");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (isUndefined()) {
 | |
|       Val.setInt(constant);
 | |
|       assert(V && "Marking constant with NULL");
 | |
|       Val.setPointer(V);
 | |
|     } else {
 | |
|       assert(getLatticeValue() == forcedconstant &&
 | |
|              "Cannot move from overdefined to constant!");
 | |
|       // Stay at forcedconstant if the constant is the same.
 | |
|       if (V == getConstant()) return false;
 | |
| 
 | |
|       // Otherwise, we go to overdefined.  Assumptions made based on the
 | |
|       // forced value are possibly wrong.  Assuming this is another constant
 | |
|       // could expose a contradiction.
 | |
|       Val.setInt(overdefined);
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// getConstantInt - If this is a constant with a ConstantInt value, return it
 | |
|   /// otherwise return null.
 | |
|   ConstantInt *getConstantInt() const {
 | |
|     if (isConstant())
 | |
|       return dyn_cast<ConstantInt>(getConstant());
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   void markForcedConstant(Constant *V) {
 | |
|     assert(isUndefined() && "Can't force a defined value!");
 | |
|     Val.setInt(forcedconstant);
 | |
|     Val.setPointer(V);
 | |
|   }
 | |
| };
 | |
| } // end anonymous namespace.
 | |
| 
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| /// SCCPSolver - This class is a general purpose solver for Sparse Conditional
 | |
| /// Constant Propagation.
 | |
| ///
 | |
| class SCCPSolver : public InstVisitor<SCCPSolver> {
 | |
|   const DataLayout &DL;
 | |
|   const TargetLibraryInfo *TLI;
 | |
|   SmallPtrSet<BasicBlock*, 8> BBExecutable; // The BBs that are executable.
 | |
|   DenseMap<Value*, LatticeVal> ValueState;  // The state each value is in.
 | |
| 
 | |
|   /// StructValueState - This maintains ValueState for values that have
 | |
|   /// StructType, for example for formal arguments, calls, insertelement, etc.
 | |
|   ///
 | |
|   DenseMap<std::pair<Value*, unsigned>, LatticeVal> StructValueState;
 | |
| 
 | |
|   /// GlobalValue - If we are tracking any values for the contents of a global
 | |
|   /// variable, we keep a mapping from the constant accessor to the element of
 | |
|   /// the global, to the currently known value.  If the value becomes
 | |
|   /// overdefined, it's entry is simply removed from this map.
 | |
|   DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
 | |
| 
 | |
|   /// TrackedRetVals - If we are tracking arguments into and the return
 | |
|   /// value out of a function, it will have an entry in this map, indicating
 | |
|   /// what the known return value for the function is.
 | |
|   DenseMap<Function*, LatticeVal> TrackedRetVals;
 | |
| 
 | |
|   /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
 | |
|   /// that return multiple values.
 | |
|   DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
 | |
| 
 | |
|   /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
 | |
|   /// represented here for efficient lookup.
 | |
|   SmallPtrSet<Function*, 16> MRVFunctionsTracked;
 | |
| 
 | |
|   /// TrackingIncomingArguments - This is the set of functions for whose
 | |
|   /// arguments we make optimistic assumptions about and try to prove as
 | |
|   /// constants.
 | |
|   SmallPtrSet<Function*, 16> TrackingIncomingArguments;
 | |
| 
 | |
|   /// The reason for two worklists is that overdefined is the lowest state
 | |
|   /// on the lattice, and moving things to overdefined as fast as possible
 | |
|   /// makes SCCP converge much faster.
 | |
|   ///
 | |
|   /// By having a separate worklist, we accomplish this because everything
 | |
|   /// possibly overdefined will become overdefined at the soonest possible
 | |
|   /// point.
 | |
|   SmallVector<Value*, 64> OverdefinedInstWorkList;
 | |
|   SmallVector<Value*, 64> InstWorkList;
 | |
| 
 | |
| 
 | |
|   SmallVector<BasicBlock*, 64>  BBWorkList;  // The BasicBlock work list
 | |
| 
 | |
|   /// KnownFeasibleEdges - Entries in this set are edges which have already had
 | |
|   /// PHI nodes retriggered.
 | |
|   typedef std::pair<BasicBlock*, BasicBlock*> Edge;
 | |
|   DenseSet<Edge> KnownFeasibleEdges;
 | |
| public:
 | |
|   SCCPSolver(const DataLayout &DL, const TargetLibraryInfo *tli)
 | |
|       : DL(DL), TLI(tli) {}
 | |
| 
 | |
|   /// MarkBlockExecutable - This method can be used by clients to mark all of
 | |
|   /// the blocks that are known to be intrinsically live in the processed unit.
 | |
|   ///
 | |
|   /// This returns true if the block was not considered live before.
 | |
|   bool MarkBlockExecutable(BasicBlock *BB) {
 | |
|     if (!BBExecutable.insert(BB).second)
 | |
|       return false;
 | |
|     DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
 | |
|     BBWorkList.push_back(BB);  // Add the block to the work list!
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// TrackValueOfGlobalVariable - Clients can use this method to
 | |
|   /// inform the SCCPSolver that it should track loads and stores to the
 | |
|   /// specified global variable if it can.  This is only legal to call if
 | |
|   /// performing Interprocedural SCCP.
 | |
|   void TrackValueOfGlobalVariable(GlobalVariable *GV) {
 | |
|     // We only track the contents of scalar globals.
 | |
|     if (GV->getType()->getElementType()->isSingleValueType()) {
 | |
|       LatticeVal &IV = TrackedGlobals[GV];
 | |
|       if (!isa<UndefValue>(GV->getInitializer()))
 | |
|         IV.markConstant(GV->getInitializer());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
 | |
|   /// and out of the specified function (which cannot have its address taken),
 | |
|   /// this method must be called.
 | |
|   void AddTrackedFunction(Function *F) {
 | |
|     // Add an entry, F -> undef.
 | |
|     if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
 | |
|       MRVFunctionsTracked.insert(F);
 | |
|       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
 | |
|         TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
 | |
|                                                      LatticeVal()));
 | |
|     } else
 | |
|       TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
 | |
|   }
 | |
| 
 | |
|   void AddArgumentTrackedFunction(Function *F) {
 | |
|     TrackingIncomingArguments.insert(F);
 | |
|   }
 | |
| 
 | |
|   /// Solve - Solve for constants and executable blocks.
 | |
|   ///
 | |
|   void Solve();
 | |
| 
 | |
|   /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
 | |
|   /// that branches on undef values cannot reach any of their successors.
 | |
|   /// However, this is not a safe assumption.  After we solve dataflow, this
 | |
|   /// method should be use to handle this.  If this returns true, the solver
 | |
|   /// should be rerun.
 | |
|   bool ResolvedUndefsIn(Function &F);
 | |
| 
 | |
|   bool isBlockExecutable(BasicBlock *BB) const {
 | |
|     return BBExecutable.count(BB);
 | |
|   }
 | |
| 
 | |
|   LatticeVal getLatticeValueFor(Value *V) const {
 | |
|     DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V);
 | |
|     assert(I != ValueState.end() && "V is not in valuemap!");
 | |
|     return I->second;
 | |
|   }
 | |
| 
 | |
|   /// getTrackedRetVals - Get the inferred return value map.
 | |
|   ///
 | |
|   const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
 | |
|     return TrackedRetVals;
 | |
|   }
 | |
| 
 | |
|   /// getTrackedGlobals - Get and return the set of inferred initializers for
 | |
|   /// global variables.
 | |
|   const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
 | |
|     return TrackedGlobals;
 | |
|   }
 | |
| 
 | |
|   void markOverdefined(Value *V) {
 | |
|     assert(!V->getType()->isStructTy() && "Should use other method");
 | |
|     markOverdefined(ValueState[V], V);
 | |
|   }
 | |
| 
 | |
|   /// markAnythingOverdefined - Mark the specified value overdefined.  This
 | |
|   /// works with both scalars and structs.
 | |
|   void markAnythingOverdefined(Value *V) {
 | |
|     if (StructType *STy = dyn_cast<StructType>(V->getType()))
 | |
|       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
 | |
|         markOverdefined(getStructValueState(V, i), V);
 | |
|     else
 | |
|       markOverdefined(V);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   // markConstant - Make a value be marked as "constant".  If the value
 | |
|   // is not already a constant, add it to the instruction work list so that
 | |
|   // the users of the instruction are updated later.
 | |
|   //
 | |
|   void markConstant(LatticeVal &IV, Value *V, Constant *C) {
 | |
|     if (!IV.markConstant(C)) return;
 | |
|     DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
 | |
|     if (IV.isOverdefined())
 | |
|       OverdefinedInstWorkList.push_back(V);
 | |
|     else
 | |
|       InstWorkList.push_back(V);
 | |
|   }
 | |
| 
 | |
|   void markConstant(Value *V, Constant *C) {
 | |
|     assert(!V->getType()->isStructTy() && "Should use other method");
 | |
|     markConstant(ValueState[V], V, C);
 | |
|   }
 | |
| 
 | |
|   void markForcedConstant(Value *V, Constant *C) {
 | |
|     assert(!V->getType()->isStructTy() && "Should use other method");
 | |
|     LatticeVal &IV = ValueState[V];
 | |
|     IV.markForcedConstant(C);
 | |
|     DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n');
 | |
|     if (IV.isOverdefined())
 | |
|       OverdefinedInstWorkList.push_back(V);
 | |
|     else
 | |
|       InstWorkList.push_back(V);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // markOverdefined - Make a value be marked as "overdefined". If the
 | |
|   // value is not already overdefined, add it to the overdefined instruction
 | |
|   // work list so that the users of the instruction are updated later.
 | |
|   void markOverdefined(LatticeVal &IV, Value *V) {
 | |
|     if (!IV.markOverdefined()) return;
 | |
| 
 | |
|     DEBUG(dbgs() << "markOverdefined: ";
 | |
|           if (Function *F = dyn_cast<Function>(V))
 | |
|             dbgs() << "Function '" << F->getName() << "'\n";
 | |
|           else
 | |
|             dbgs() << *V << '\n');
 | |
|     // Only instructions go on the work list
 | |
|     OverdefinedInstWorkList.push_back(V);
 | |
|   }
 | |
| 
 | |
|   void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) {
 | |
|     if (IV.isOverdefined() || MergeWithV.isUndefined())
 | |
|       return;  // Noop.
 | |
|     if (MergeWithV.isOverdefined())
 | |
|       markOverdefined(IV, V);
 | |
|     else if (IV.isUndefined())
 | |
|       markConstant(IV, V, MergeWithV.getConstant());
 | |
|     else if (IV.getConstant() != MergeWithV.getConstant())
 | |
|       markOverdefined(IV, V);
 | |
|   }
 | |
| 
 | |
|   void mergeInValue(Value *V, LatticeVal MergeWithV) {
 | |
|     assert(!V->getType()->isStructTy() && "Should use other method");
 | |
|     mergeInValue(ValueState[V], V, MergeWithV);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /// getValueState - Return the LatticeVal object that corresponds to the
 | |
|   /// value.  This function handles the case when the value hasn't been seen yet
 | |
|   /// by properly seeding constants etc.
 | |
|   LatticeVal &getValueState(Value *V) {
 | |
|     assert(!V->getType()->isStructTy() && "Should use getStructValueState");
 | |
| 
 | |
|     std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I =
 | |
|       ValueState.insert(std::make_pair(V, LatticeVal()));
 | |
|     LatticeVal &LV = I.first->second;
 | |
| 
 | |
|     if (!I.second)
 | |
|       return LV;  // Common case, already in the map.
 | |
| 
 | |
|     if (Constant *C = dyn_cast<Constant>(V)) {
 | |
|       // Undef values remain undefined.
 | |
|       if (!isa<UndefValue>(V))
 | |
|         LV.markConstant(C);          // Constants are constant
 | |
|     }
 | |
| 
 | |
|     // All others are underdefined by default.
 | |
|     return LV;
 | |
|   }
 | |
| 
 | |
|   /// getStructValueState - Return the LatticeVal object that corresponds to the
 | |
|   /// value/field pair.  This function handles the case when the value hasn't
 | |
|   /// been seen yet by properly seeding constants etc.
 | |
|   LatticeVal &getStructValueState(Value *V, unsigned i) {
 | |
|     assert(V->getType()->isStructTy() && "Should use getValueState");
 | |
|     assert(i < cast<StructType>(V->getType())->getNumElements() &&
 | |
|            "Invalid element #");
 | |
| 
 | |
|     std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator,
 | |
|               bool> I = StructValueState.insert(
 | |
|                         std::make_pair(std::make_pair(V, i), LatticeVal()));
 | |
|     LatticeVal &LV = I.first->second;
 | |
| 
 | |
|     if (!I.second)
 | |
|       return LV;  // Common case, already in the map.
 | |
| 
 | |
|     if (Constant *C = dyn_cast<Constant>(V)) {
 | |
|       Constant *Elt = C->getAggregateElement(i);
 | |
| 
 | |
|       if (!Elt)
 | |
|         LV.markOverdefined();      // Unknown sort of constant.
 | |
|       else if (isa<UndefValue>(Elt))
 | |
|         ; // Undef values remain undefined.
 | |
|       else
 | |
|         LV.markConstant(Elt);      // Constants are constant.
 | |
|     }
 | |
| 
 | |
|     // All others are underdefined by default.
 | |
|     return LV;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
 | |
|   /// work list if it is not already executable.
 | |
|   void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
 | |
|     if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
 | |
|       return;  // This edge is already known to be executable!
 | |
| 
 | |
|     if (!MarkBlockExecutable(Dest)) {
 | |
|       // If the destination is already executable, we just made an *edge*
 | |
|       // feasible that wasn't before.  Revisit the PHI nodes in the block
 | |
|       // because they have potentially new operands.
 | |
|       DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
 | |
|             << " -> " << Dest->getName() << '\n');
 | |
| 
 | |
|       PHINode *PN;
 | |
|       for (BasicBlock::iterator I = Dest->begin();
 | |
|            (PN = dyn_cast<PHINode>(I)); ++I)
 | |
|         visitPHINode(*PN);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // getFeasibleSuccessors - Return a vector of booleans to indicate which
 | |
|   // successors are reachable from a given terminator instruction.
 | |
|   //
 | |
|   void getFeasibleSuccessors(TerminatorInst &TI, SmallVectorImpl<bool> &Succs);
 | |
| 
 | |
|   // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
 | |
|   // block to the 'To' basic block is currently feasible.
 | |
|   //
 | |
|   bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
 | |
| 
 | |
|   // OperandChangedState - This method is invoked on all of the users of an
 | |
|   // instruction that was just changed state somehow.  Based on this
 | |
|   // information, we need to update the specified user of this instruction.
 | |
|   //
 | |
|   void OperandChangedState(Instruction *I) {
 | |
|     if (BBExecutable.count(I->getParent()))   // Inst is executable?
 | |
|       visit(*I);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   friend class InstVisitor<SCCPSolver>;
 | |
| 
 | |
|   // visit implementations - Something changed in this instruction.  Either an
 | |
|   // operand made a transition, or the instruction is newly executable.  Change
 | |
|   // the value type of I to reflect these changes if appropriate.
 | |
|   void visitPHINode(PHINode &I);
 | |
| 
 | |
|   // Terminators
 | |
|   void visitReturnInst(ReturnInst &I);
 | |
|   void visitTerminatorInst(TerminatorInst &TI);
 | |
| 
 | |
|   void visitCastInst(CastInst &I);
 | |
|   void visitSelectInst(SelectInst &I);
 | |
|   void visitBinaryOperator(Instruction &I);
 | |
|   void visitCmpInst(CmpInst &I);
 | |
|   void visitExtractElementInst(ExtractElementInst &I);
 | |
|   void visitInsertElementInst(InsertElementInst &I);
 | |
|   void visitShuffleVectorInst(ShuffleVectorInst &I);
 | |
|   void visitExtractValueInst(ExtractValueInst &EVI);
 | |
|   void visitInsertValueInst(InsertValueInst &IVI);
 | |
|   void visitLandingPadInst(LandingPadInst &I) { markAnythingOverdefined(&I); }
 | |
| 
 | |
|   // Instructions that cannot be folded away.
 | |
|   void visitStoreInst     (StoreInst &I);
 | |
|   void visitLoadInst      (LoadInst &I);
 | |
|   void visitGetElementPtrInst(GetElementPtrInst &I);
 | |
|   void visitCallInst      (CallInst &I) {
 | |
|     visitCallSite(&I);
 | |
|   }
 | |
|   void visitInvokeInst    (InvokeInst &II) {
 | |
|     visitCallSite(&II);
 | |
|     visitTerminatorInst(II);
 | |
|   }
 | |
|   void visitCallSite      (CallSite CS);
 | |
|   void visitResumeInst    (TerminatorInst &I) { /*returns void*/ }
 | |
|   void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
 | |
|   void visitFenceInst     (FenceInst &I) { /*returns void*/ }
 | |
|   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
 | |
|     markAnythingOverdefined(&I);
 | |
|   }
 | |
|   void visitAtomicRMWInst (AtomicRMWInst &I) { markOverdefined(&I); }
 | |
|   void visitAllocaInst    (Instruction &I) { markOverdefined(&I); }
 | |
|   void visitVAArgInst     (Instruction &I) { markAnythingOverdefined(&I); }
 | |
| 
 | |
|   void visitInstruction(Instruction &I) {
 | |
|     // If a new instruction is added to LLVM that we don't handle.
 | |
|     dbgs() << "SCCP: Don't know how to handle: " << I << '\n';
 | |
|     markAnythingOverdefined(&I);   // Just in case
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| 
 | |
| // getFeasibleSuccessors - Return a vector of booleans to indicate which
 | |
| // successors are reachable from a given terminator instruction.
 | |
| //
 | |
| void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
 | |
|                                        SmallVectorImpl<bool> &Succs) {
 | |
|   Succs.resize(TI.getNumSuccessors());
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
 | |
|     if (BI->isUnconditional()) {
 | |
|       Succs[0] = true;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     LatticeVal BCValue = getValueState(BI->getCondition());
 | |
|     ConstantInt *CI = BCValue.getConstantInt();
 | |
|     if (!CI) {
 | |
|       // Overdefined condition variables, and branches on unfoldable constant
 | |
|       // conditions, mean the branch could go either way.
 | |
|       if (!BCValue.isUndefined())
 | |
|         Succs[0] = Succs[1] = true;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Constant condition variables mean the branch can only go a single way.
 | |
|     Succs[CI->isZero()] = true;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (isa<InvokeInst>(TI)) {
 | |
|     // Invoke instructions successors are always executable.
 | |
|     Succs[0] = Succs[1] = true;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
 | |
|     if (!SI->getNumCases()) {
 | |
|       Succs[0] = true;
 | |
|       return;
 | |
|     }
 | |
|     LatticeVal SCValue = getValueState(SI->getCondition());
 | |
|     ConstantInt *CI = SCValue.getConstantInt();
 | |
| 
 | |
|     if (!CI) {   // Overdefined or undefined condition?
 | |
|       // All destinations are executable!
 | |
|       if (!SCValue.isUndefined())
 | |
|         Succs.assign(TI.getNumSuccessors(), true);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     Succs[SI->findCaseValue(CI).getSuccessorIndex()] = true;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
 | |
|   if (isa<IndirectBrInst>(&TI)) {
 | |
|     // Just mark all destinations executable!
 | |
|     Succs.assign(TI.getNumSuccessors(), true);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   dbgs() << "Unknown terminator instruction: " << TI << '\n';
 | |
| #endif
 | |
|   llvm_unreachable("SCCP: Don't know how to handle this terminator!");
 | |
| }
 | |
| 
 | |
| 
 | |
| // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
 | |
| // block to the 'To' basic block is currently feasible.
 | |
| //
 | |
| bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
 | |
|   assert(BBExecutable.count(To) && "Dest should always be alive!");
 | |
| 
 | |
|   // Make sure the source basic block is executable!!
 | |
|   if (!BBExecutable.count(From)) return false;
 | |
| 
 | |
|   // Check to make sure this edge itself is actually feasible now.
 | |
|   TerminatorInst *TI = From->getTerminator();
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
 | |
|     if (BI->isUnconditional())
 | |
|       return true;
 | |
| 
 | |
|     LatticeVal BCValue = getValueState(BI->getCondition());
 | |
| 
 | |
|     // Overdefined condition variables mean the branch could go either way,
 | |
|     // undef conditions mean that neither edge is feasible yet.
 | |
|     ConstantInt *CI = BCValue.getConstantInt();
 | |
|     if (!CI)
 | |
|       return !BCValue.isUndefined();
 | |
| 
 | |
|     // Constant condition variables mean the branch can only go a single way.
 | |
|     return BI->getSuccessor(CI->isZero()) == To;
 | |
|   }
 | |
| 
 | |
|   // Invoke instructions successors are always executable.
 | |
|   if (isa<InvokeInst>(TI))
 | |
|     return true;
 | |
| 
 | |
|   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
 | |
|     if (SI->getNumCases() < 1)
 | |
|       return true;
 | |
| 
 | |
|     LatticeVal SCValue = getValueState(SI->getCondition());
 | |
|     ConstantInt *CI = SCValue.getConstantInt();
 | |
| 
 | |
|     if (!CI)
 | |
|       return !SCValue.isUndefined();
 | |
| 
 | |
|     return SI->findCaseValue(CI).getCaseSuccessor() == To;
 | |
|   }
 | |
| 
 | |
|   // Just mark all destinations executable!
 | |
|   // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
 | |
|   if (isa<IndirectBrInst>(TI))
 | |
|     return true;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   dbgs() << "Unknown terminator instruction: " << *TI << '\n';
 | |
| #endif
 | |
|   llvm_unreachable(nullptr);
 | |
| }
 | |
| 
 | |
| // visit Implementations - Something changed in this instruction, either an
 | |
| // operand made a transition, or the instruction is newly executable.  Change
 | |
| // the value type of I to reflect these changes if appropriate.  This method
 | |
| // makes sure to do the following actions:
 | |
| //
 | |
| // 1. If a phi node merges two constants in, and has conflicting value coming
 | |
| //    from different branches, or if the PHI node merges in an overdefined
 | |
| //    value, then the PHI node becomes overdefined.
 | |
| // 2. If a phi node merges only constants in, and they all agree on value, the
 | |
| //    PHI node becomes a constant value equal to that.
 | |
| // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
 | |
| // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
 | |
| // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
 | |
| // 6. If a conditional branch has a value that is constant, make the selected
 | |
| //    destination executable
 | |
| // 7. If a conditional branch has a value that is overdefined, make all
 | |
| //    successors executable.
 | |
| //
 | |
| void SCCPSolver::visitPHINode(PHINode &PN) {
 | |
|   // If this PN returns a struct, just mark the result overdefined.
 | |
|   // TODO: We could do a lot better than this if code actually uses this.
 | |
|   if (PN.getType()->isStructTy())
 | |
|     return markAnythingOverdefined(&PN);
 | |
| 
 | |
|   if (getValueState(&PN).isOverdefined())
 | |
|     return;  // Quick exit
 | |
| 
 | |
|   // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
 | |
|   // and slow us down a lot.  Just mark them overdefined.
 | |
|   if (PN.getNumIncomingValues() > 64)
 | |
|     return markOverdefined(&PN);
 | |
| 
 | |
|   // Look at all of the executable operands of the PHI node.  If any of them
 | |
|   // are overdefined, the PHI becomes overdefined as well.  If they are all
 | |
|   // constant, and they agree with each other, the PHI becomes the identical
 | |
|   // constant.  If they are constant and don't agree, the PHI is overdefined.
 | |
|   // If there are no executable operands, the PHI remains undefined.
 | |
|   //
 | |
|   Constant *OperandVal = nullptr;
 | |
|   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
 | |
|     LatticeVal IV = getValueState(PN.getIncomingValue(i));
 | |
|     if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
 | |
| 
 | |
|     if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
 | |
|       continue;
 | |
| 
 | |
|     if (IV.isOverdefined())    // PHI node becomes overdefined!
 | |
|       return markOverdefined(&PN);
 | |
| 
 | |
|     if (!OperandVal) {   // Grab the first value.
 | |
|       OperandVal = IV.getConstant();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // There is already a reachable operand.  If we conflict with it,
 | |
|     // then the PHI node becomes overdefined.  If we agree with it, we
 | |
|     // can continue on.
 | |
| 
 | |
|     // Check to see if there are two different constants merging, if so, the PHI
 | |
|     // node is overdefined.
 | |
|     if (IV.getConstant() != OperandVal)
 | |
|       return markOverdefined(&PN);
 | |
|   }
 | |
| 
 | |
|   // If we exited the loop, this means that the PHI node only has constant
 | |
|   // arguments that agree with each other(and OperandVal is the constant) or
 | |
|   // OperandVal is null because there are no defined incoming arguments.  If
 | |
|   // this is the case, the PHI remains undefined.
 | |
|   //
 | |
|   if (OperandVal)
 | |
|     markConstant(&PN, OperandVal);      // Acquire operand value
 | |
| }
 | |
| 
 | |
| void SCCPSolver::visitReturnInst(ReturnInst &I) {
 | |
|   if (I.getNumOperands() == 0) return;  // ret void
 | |
| 
 | |
|   Function *F = I.getParent()->getParent();
 | |
|   Value *ResultOp = I.getOperand(0);
 | |
| 
 | |
|   // If we are tracking the return value of this function, merge it in.
 | |
|   if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
 | |
|     DenseMap<Function*, LatticeVal>::iterator TFRVI =
 | |
|       TrackedRetVals.find(F);
 | |
|     if (TFRVI != TrackedRetVals.end()) {
 | |
|       mergeInValue(TFRVI->second, F, getValueState(ResultOp));
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Handle functions that return multiple values.
 | |
|   if (!TrackedMultipleRetVals.empty()) {
 | |
|     if (StructType *STy = dyn_cast<StructType>(ResultOp->getType()))
 | |
|       if (MRVFunctionsTracked.count(F))
 | |
|         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
 | |
|           mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
 | |
|                        getStructValueState(ResultOp, i));
 | |
| 
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
 | |
|   SmallVector<bool, 16> SuccFeasible;
 | |
|   getFeasibleSuccessors(TI, SuccFeasible);
 | |
| 
 | |
|   BasicBlock *BB = TI.getParent();
 | |
| 
 | |
|   // Mark all feasible successors executable.
 | |
|   for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
 | |
|     if (SuccFeasible[i])
 | |
|       markEdgeExecutable(BB, TI.getSuccessor(i));
 | |
| }
 | |
| 
 | |
| void SCCPSolver::visitCastInst(CastInst &I) {
 | |
|   LatticeVal OpSt = getValueState(I.getOperand(0));
 | |
|   if (OpSt.isOverdefined())          // Inherit overdefinedness of operand
 | |
|     markOverdefined(&I);
 | |
|   else if (OpSt.isConstant())        // Propagate constant value
 | |
|     markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
 | |
|                                            OpSt.getConstant(), I.getType()));
 | |
| }
 | |
| 
 | |
| 
 | |
| void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
 | |
|   // If this returns a struct, mark all elements over defined, we don't track
 | |
|   // structs in structs.
 | |
|   if (EVI.getType()->isStructTy())
 | |
|     return markAnythingOverdefined(&EVI);
 | |
| 
 | |
|   // If this is extracting from more than one level of struct, we don't know.
 | |
|   if (EVI.getNumIndices() != 1)
 | |
|     return markOverdefined(&EVI);
 | |
| 
 | |
|   Value *AggVal = EVI.getAggregateOperand();
 | |
|   if (AggVal->getType()->isStructTy()) {
 | |
|     unsigned i = *EVI.idx_begin();
 | |
|     LatticeVal EltVal = getStructValueState(AggVal, i);
 | |
|     mergeInValue(getValueState(&EVI), &EVI, EltVal);
 | |
|   } else {
 | |
|     // Otherwise, must be extracting from an array.
 | |
|     return markOverdefined(&EVI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
 | |
|   StructType *STy = dyn_cast<StructType>(IVI.getType());
 | |
|   if (!STy)
 | |
|     return markOverdefined(&IVI);
 | |
| 
 | |
|   // If this has more than one index, we can't handle it, drive all results to
 | |
|   // undef.
 | |
|   if (IVI.getNumIndices() != 1)
 | |
|     return markAnythingOverdefined(&IVI);
 | |
| 
 | |
|   Value *Aggr = IVI.getAggregateOperand();
 | |
|   unsigned Idx = *IVI.idx_begin();
 | |
| 
 | |
|   // Compute the result based on what we're inserting.
 | |
|   for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
 | |
|     // This passes through all values that aren't the inserted element.
 | |
|     if (i != Idx) {
 | |
|       LatticeVal EltVal = getStructValueState(Aggr, i);
 | |
|       mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     Value *Val = IVI.getInsertedValueOperand();
 | |
|     if (Val->getType()->isStructTy())
 | |
|       // We don't track structs in structs.
 | |
|       markOverdefined(getStructValueState(&IVI, i), &IVI);
 | |
|     else {
 | |
|       LatticeVal InVal = getValueState(Val);
 | |
|       mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SCCPSolver::visitSelectInst(SelectInst &I) {
 | |
|   // If this select returns a struct, just mark the result overdefined.
 | |
|   // TODO: We could do a lot better than this if code actually uses this.
 | |
|   if (I.getType()->isStructTy())
 | |
|     return markAnythingOverdefined(&I);
 | |
| 
 | |
|   LatticeVal CondValue = getValueState(I.getCondition());
 | |
|   if (CondValue.isUndefined())
 | |
|     return;
 | |
| 
 | |
|   if (ConstantInt *CondCB = CondValue.getConstantInt()) {
 | |
|     Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
 | |
|     mergeInValue(&I, getValueState(OpVal));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, the condition is overdefined or a constant we can't evaluate.
 | |
|   // See if we can produce something better than overdefined based on the T/F
 | |
|   // value.
 | |
|   LatticeVal TVal = getValueState(I.getTrueValue());
 | |
|   LatticeVal FVal = getValueState(I.getFalseValue());
 | |
| 
 | |
|   // select ?, C, C -> C.
 | |
|   if (TVal.isConstant() && FVal.isConstant() &&
 | |
|       TVal.getConstant() == FVal.getConstant())
 | |
|     return markConstant(&I, FVal.getConstant());
 | |
| 
 | |
|   if (TVal.isUndefined())   // select ?, undef, X -> X.
 | |
|     return mergeInValue(&I, FVal);
 | |
|   if (FVal.isUndefined())   // select ?, X, undef -> X.
 | |
|     return mergeInValue(&I, TVal);
 | |
|   markOverdefined(&I);
 | |
| }
 | |
| 
 | |
| // Handle Binary Operators.
 | |
| void SCCPSolver::visitBinaryOperator(Instruction &I) {
 | |
|   LatticeVal V1State = getValueState(I.getOperand(0));
 | |
|   LatticeVal V2State = getValueState(I.getOperand(1));
 | |
| 
 | |
|   LatticeVal &IV = ValueState[&I];
 | |
|   if (IV.isOverdefined()) return;
 | |
| 
 | |
|   if (V1State.isConstant() && V2State.isConstant())
 | |
|     return markConstant(IV, &I,
 | |
|                         ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
 | |
|                                           V2State.getConstant()));
 | |
| 
 | |
|   // If something is undef, wait for it to resolve.
 | |
|   if (!V1State.isOverdefined() && !V2State.isOverdefined())
 | |
|     return;
 | |
| 
 | |
|   // Otherwise, one of our operands is overdefined.  Try to produce something
 | |
|   // better than overdefined with some tricks.
 | |
| 
 | |
|   // If this is an AND or OR with 0 or -1, it doesn't matter that the other
 | |
|   // operand is overdefined.
 | |
|   if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
 | |
|     LatticeVal *NonOverdefVal = nullptr;
 | |
|     if (!V1State.isOverdefined())
 | |
|       NonOverdefVal = &V1State;
 | |
|     else if (!V2State.isOverdefined())
 | |
|       NonOverdefVal = &V2State;
 | |
| 
 | |
|     if (NonOverdefVal) {
 | |
|       if (NonOverdefVal->isUndefined()) {
 | |
|         // Could annihilate value.
 | |
|         if (I.getOpcode() == Instruction::And)
 | |
|           markConstant(IV, &I, Constant::getNullValue(I.getType()));
 | |
|         else if (VectorType *PT = dyn_cast<VectorType>(I.getType()))
 | |
|           markConstant(IV, &I, Constant::getAllOnesValue(PT));
 | |
|         else
 | |
|           markConstant(IV, &I,
 | |
|                        Constant::getAllOnesValue(I.getType()));
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       if (I.getOpcode() == Instruction::And) {
 | |
|         // X and 0 = 0
 | |
|         if (NonOverdefVal->getConstant()->isNullValue())
 | |
|           return markConstant(IV, &I, NonOverdefVal->getConstant());
 | |
|       } else {
 | |
|         if (ConstantInt *CI = NonOverdefVal->getConstantInt())
 | |
|           if (CI->isAllOnesValue())     // X or -1 = -1
 | |
|             return markConstant(IV, &I, NonOverdefVal->getConstant());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
| 
 | |
|   markOverdefined(&I);
 | |
| }
 | |
| 
 | |
| // Handle ICmpInst instruction.
 | |
| void SCCPSolver::visitCmpInst(CmpInst &I) {
 | |
|   LatticeVal V1State = getValueState(I.getOperand(0));
 | |
|   LatticeVal V2State = getValueState(I.getOperand(1));
 | |
| 
 | |
|   LatticeVal &IV = ValueState[&I];
 | |
|   if (IV.isOverdefined()) return;
 | |
| 
 | |
|   if (V1State.isConstant() && V2State.isConstant())
 | |
|     return markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
 | |
|                                                          V1State.getConstant(),
 | |
|                                                         V2State.getConstant()));
 | |
| 
 | |
|   // If operands are still undefined, wait for it to resolve.
 | |
|   if (!V1State.isOverdefined() && !V2State.isOverdefined())
 | |
|     return;
 | |
| 
 | |
|   markOverdefined(&I);
 | |
| }
 | |
| 
 | |
| void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
 | |
|   // TODO : SCCP does not handle vectors properly.
 | |
|   return markOverdefined(&I);
 | |
| 
 | |
| #if 0
 | |
|   LatticeVal &ValState = getValueState(I.getOperand(0));
 | |
|   LatticeVal &IdxState = getValueState(I.getOperand(1));
 | |
| 
 | |
|   if (ValState.isOverdefined() || IdxState.isOverdefined())
 | |
|     markOverdefined(&I);
 | |
|   else if(ValState.isConstant() && IdxState.isConstant())
 | |
|     markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
 | |
|                                                      IdxState.getConstant()));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
 | |
|   // TODO : SCCP does not handle vectors properly.
 | |
|   return markOverdefined(&I);
 | |
| #if 0
 | |
|   LatticeVal &ValState = getValueState(I.getOperand(0));
 | |
|   LatticeVal &EltState = getValueState(I.getOperand(1));
 | |
|   LatticeVal &IdxState = getValueState(I.getOperand(2));
 | |
| 
 | |
|   if (ValState.isOverdefined() || EltState.isOverdefined() ||
 | |
|       IdxState.isOverdefined())
 | |
|     markOverdefined(&I);
 | |
|   else if(ValState.isConstant() && EltState.isConstant() &&
 | |
|           IdxState.isConstant())
 | |
|     markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
 | |
|                                                     EltState.getConstant(),
 | |
|                                                     IdxState.getConstant()));
 | |
|   else if (ValState.isUndefined() && EltState.isConstant() &&
 | |
|            IdxState.isConstant())
 | |
|     markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
 | |
|                                                    EltState.getConstant(),
 | |
|                                                    IdxState.getConstant()));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
 | |
|   // TODO : SCCP does not handle vectors properly.
 | |
|   return markOverdefined(&I);
 | |
| #if 0
 | |
|   LatticeVal &V1State   = getValueState(I.getOperand(0));
 | |
|   LatticeVal &V2State   = getValueState(I.getOperand(1));
 | |
|   LatticeVal &MaskState = getValueState(I.getOperand(2));
 | |
| 
 | |
|   if (MaskState.isUndefined() ||
 | |
|       (V1State.isUndefined() && V2State.isUndefined()))
 | |
|     return;  // Undefined output if mask or both inputs undefined.
 | |
| 
 | |
|   if (V1State.isOverdefined() || V2State.isOverdefined() ||
 | |
|       MaskState.isOverdefined()) {
 | |
|     markOverdefined(&I);
 | |
|   } else {
 | |
|     // A mix of constant/undef inputs.
 | |
|     Constant *V1 = V1State.isConstant() ?
 | |
|         V1State.getConstant() : UndefValue::get(I.getType());
 | |
|     Constant *V2 = V2State.isConstant() ?
 | |
|         V2State.getConstant() : UndefValue::get(I.getType());
 | |
|     Constant *Mask = MaskState.isConstant() ?
 | |
|       MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
 | |
|     markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Handle getelementptr instructions.  If all operands are constants then we
 | |
| // can turn this into a getelementptr ConstantExpr.
 | |
| //
 | |
| void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
 | |
|   if (ValueState[&I].isOverdefined()) return;
 | |
| 
 | |
|   SmallVector<Constant*, 8> Operands;
 | |
|   Operands.reserve(I.getNumOperands());
 | |
| 
 | |
|   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
 | |
|     LatticeVal State = getValueState(I.getOperand(i));
 | |
|     if (State.isUndefined())
 | |
|       return;  // Operands are not resolved yet.
 | |
| 
 | |
|     if (State.isOverdefined())
 | |
|       return markOverdefined(&I);
 | |
| 
 | |
|     assert(State.isConstant() && "Unknown state!");
 | |
|     Operands.push_back(State.getConstant());
 | |
|   }
 | |
| 
 | |
|   Constant *Ptr = Operands[0];
 | |
|   auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end());
 | |
|   markConstant(&I, ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr,
 | |
|                                                   Indices));
 | |
| }
 | |
| 
 | |
| void SCCPSolver::visitStoreInst(StoreInst &SI) {
 | |
|   // If this store is of a struct, ignore it.
 | |
|   if (SI.getOperand(0)->getType()->isStructTy())
 | |
|     return;
 | |
| 
 | |
|   if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
 | |
|     return;
 | |
| 
 | |
|   GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
 | |
|   DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
 | |
|   if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
 | |
| 
 | |
|   // Get the value we are storing into the global, then merge it.
 | |
|   mergeInValue(I->second, GV, getValueState(SI.getOperand(0)));
 | |
|   if (I->second.isOverdefined())
 | |
|     TrackedGlobals.erase(I);      // No need to keep tracking this!
 | |
| }
 | |
| 
 | |
| 
 | |
| // Handle load instructions.  If the operand is a constant pointer to a constant
 | |
| // global, we can replace the load with the loaded constant value!
 | |
| void SCCPSolver::visitLoadInst(LoadInst &I) {
 | |
|   // If this load is of a struct, just mark the result overdefined.
 | |
|   if (I.getType()->isStructTy())
 | |
|     return markAnythingOverdefined(&I);
 | |
| 
 | |
|   LatticeVal PtrVal = getValueState(I.getOperand(0));
 | |
|   if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
 | |
| 
 | |
|   LatticeVal &IV = ValueState[&I];
 | |
|   if (IV.isOverdefined()) return;
 | |
| 
 | |
|   if (!PtrVal.isConstant() || I.isVolatile())
 | |
|     return markOverdefined(IV, &I);
 | |
| 
 | |
|   Constant *Ptr = PtrVal.getConstant();
 | |
| 
 | |
|   // load null -> null
 | |
|   if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0)
 | |
|     return markConstant(IV, &I, Constant::getNullValue(I.getType()));
 | |
| 
 | |
|   // Transform load (constant global) into the value loaded.
 | |
|   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
 | |
|     if (!TrackedGlobals.empty()) {
 | |
|       // If we are tracking this global, merge in the known value for it.
 | |
|       DenseMap<GlobalVariable*, LatticeVal>::iterator It =
 | |
|         TrackedGlobals.find(GV);
 | |
|       if (It != TrackedGlobals.end()) {
 | |
|         mergeInValue(IV, &I, It->second);
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Transform load from a constant into a constant if possible.
 | |
|   if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, DL))
 | |
|     return markConstant(IV, &I, C);
 | |
| 
 | |
|   // Otherwise we cannot say for certain what value this load will produce.
 | |
|   // Bail out.
 | |
|   markOverdefined(IV, &I);
 | |
| }
 | |
| 
 | |
| void SCCPSolver::visitCallSite(CallSite CS) {
 | |
|   Function *F = CS.getCalledFunction();
 | |
|   Instruction *I = CS.getInstruction();
 | |
| 
 | |
|   // The common case is that we aren't tracking the callee, either because we
 | |
|   // are not doing interprocedural analysis or the callee is indirect, or is
 | |
|   // external.  Handle these cases first.
 | |
|   if (!F || F->isDeclaration()) {
 | |
| CallOverdefined:
 | |
|     // Void return and not tracking callee, just bail.
 | |
|     if (I->getType()->isVoidTy()) return;
 | |
| 
 | |
|     // Otherwise, if we have a single return value case, and if the function is
 | |
|     // a declaration, maybe we can constant fold it.
 | |
|     if (F && F->isDeclaration() && !I->getType()->isStructTy() &&
 | |
|         canConstantFoldCallTo(F)) {
 | |
| 
 | |
|       SmallVector<Constant*, 8> Operands;
 | |
|       for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
 | |
|            AI != E; ++AI) {
 | |
|         LatticeVal State = getValueState(*AI);
 | |
| 
 | |
|         if (State.isUndefined())
 | |
|           return;  // Operands are not resolved yet.
 | |
|         if (State.isOverdefined())
 | |
|           return markOverdefined(I);
 | |
|         assert(State.isConstant() && "Unknown state!");
 | |
|         Operands.push_back(State.getConstant());
 | |
|       }
 | |
| 
 | |
|       if (getValueState(I).isOverdefined())
 | |
|         return;
 | |
| 
 | |
|       // If we can constant fold this, mark the result of the call as a
 | |
|       // constant.
 | |
|       if (Constant *C = ConstantFoldCall(F, Operands, TLI))
 | |
|         return markConstant(I, C);
 | |
|     }
 | |
| 
 | |
|     // Otherwise, we don't know anything about this call, mark it overdefined.
 | |
|     return markAnythingOverdefined(I);
 | |
|   }
 | |
| 
 | |
|   // If this is a local function that doesn't have its address taken, mark its
 | |
|   // entry block executable and merge in the actual arguments to the call into
 | |
|   // the formal arguments of the function.
 | |
|   if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){
 | |
|     MarkBlockExecutable(F->begin());
 | |
| 
 | |
|     // Propagate information from this call site into the callee.
 | |
|     CallSite::arg_iterator CAI = CS.arg_begin();
 | |
|     for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
 | |
|          AI != E; ++AI, ++CAI) {
 | |
|       // If this argument is byval, and if the function is not readonly, there
 | |
|       // will be an implicit copy formed of the input aggregate.
 | |
|       if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
 | |
|         markOverdefined(AI);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (StructType *STy = dyn_cast<StructType>(AI->getType())) {
 | |
|         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
 | |
|           LatticeVal CallArg = getStructValueState(*CAI, i);
 | |
|           mergeInValue(getStructValueState(AI, i), AI, CallArg);
 | |
|         }
 | |
|       } else {
 | |
|         mergeInValue(AI, getValueState(*CAI));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this is a single/zero retval case, see if we're tracking the function.
 | |
|   if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
 | |
|     if (!MRVFunctionsTracked.count(F))
 | |
|       goto CallOverdefined;  // Not tracking this callee.
 | |
| 
 | |
|     // If we are tracking this callee, propagate the result of the function
 | |
|     // into this call site.
 | |
|     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
 | |
|       mergeInValue(getStructValueState(I, i), I,
 | |
|                    TrackedMultipleRetVals[std::make_pair(F, i)]);
 | |
|   } else {
 | |
|     DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
 | |
|     if (TFRVI == TrackedRetVals.end())
 | |
|       goto CallOverdefined;  // Not tracking this callee.
 | |
| 
 | |
|     // If so, propagate the return value of the callee into this call result.
 | |
|     mergeInValue(I, TFRVI->second);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SCCPSolver::Solve() {
 | |
|   // Process the work lists until they are empty!
 | |
|   while (!BBWorkList.empty() || !InstWorkList.empty() ||
 | |
|          !OverdefinedInstWorkList.empty()) {
 | |
|     // Process the overdefined instruction's work list first, which drives other
 | |
|     // things to overdefined more quickly.
 | |
|     while (!OverdefinedInstWorkList.empty()) {
 | |
|       Value *I = OverdefinedInstWorkList.pop_back_val();
 | |
| 
 | |
|       DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
 | |
| 
 | |
|       // "I" got into the work list because it either made the transition from
 | |
|       // bottom to constant, or to overdefined.
 | |
|       //
 | |
|       // Anything on this worklist that is overdefined need not be visited
 | |
|       // since all of its users will have already been marked as overdefined
 | |
|       // Update all of the users of this instruction's value.
 | |
|       //
 | |
|       for (User *U : I->users())
 | |
|         if (Instruction *UI = dyn_cast<Instruction>(U))
 | |
|           OperandChangedState(UI);
 | |
|     }
 | |
| 
 | |
|     // Process the instruction work list.
 | |
|     while (!InstWorkList.empty()) {
 | |
|       Value *I = InstWorkList.pop_back_val();
 | |
| 
 | |
|       DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
 | |
| 
 | |
|       // "I" got into the work list because it made the transition from undef to
 | |
|       // constant.
 | |
|       //
 | |
|       // Anything on this worklist that is overdefined need not be visited
 | |
|       // since all of its users will have already been marked as overdefined.
 | |
|       // Update all of the users of this instruction's value.
 | |
|       //
 | |
|       if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
 | |
|         for (User *U : I->users())
 | |
|           if (Instruction *UI = dyn_cast<Instruction>(U))
 | |
|             OperandChangedState(UI);
 | |
|     }
 | |
| 
 | |
|     // Process the basic block work list.
 | |
|     while (!BBWorkList.empty()) {
 | |
|       BasicBlock *BB = BBWorkList.back();
 | |
|       BBWorkList.pop_back();
 | |
| 
 | |
|       DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
 | |
| 
 | |
|       // Notify all instructions in this basic block that they are newly
 | |
|       // executable.
 | |
|       visit(BB);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
 | |
| /// that branches on undef values cannot reach any of their successors.
 | |
| /// However, this is not a safe assumption.  After we solve dataflow, this
 | |
| /// method should be use to handle this.  If this returns true, the solver
 | |
| /// should be rerun.
 | |
| ///
 | |
| /// This method handles this by finding an unresolved branch and marking it one
 | |
| /// of the edges from the block as being feasible, even though the condition
 | |
| /// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
 | |
| /// CFG and only slightly pessimizes the analysis results (by marking one,
 | |
| /// potentially infeasible, edge feasible).  This cannot usefully modify the
 | |
| /// constraints on the condition of the branch, as that would impact other users
 | |
| /// of the value.
 | |
| ///
 | |
| /// This scan also checks for values that use undefs, whose results are actually
 | |
| /// defined.  For example, 'zext i8 undef to i32' should produce all zeros
 | |
| /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
 | |
| /// even if X isn't defined.
 | |
| bool SCCPSolver::ResolvedUndefsIn(Function &F) {
 | |
|   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
 | |
|     if (!BBExecutable.count(BB))
 | |
|       continue;
 | |
| 
 | |
|     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
 | |
|       // Look for instructions which produce undef values.
 | |
|       if (I->getType()->isVoidTy()) continue;
 | |
| 
 | |
|       if (StructType *STy = dyn_cast<StructType>(I->getType())) {
 | |
|         // Only a few things that can be structs matter for undef.
 | |
| 
 | |
|         // Tracked calls must never be marked overdefined in ResolvedUndefsIn.
 | |
|         if (CallSite CS = CallSite(I))
 | |
|           if (Function *F = CS.getCalledFunction())
 | |
|             if (MRVFunctionsTracked.count(F))
 | |
|               continue;
 | |
| 
 | |
|         // extractvalue and insertvalue don't need to be marked; they are
 | |
|         // tracked as precisely as their operands.
 | |
|         if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
 | |
|           continue;
 | |
| 
 | |
|         // Send the results of everything else to overdefined.  We could be
 | |
|         // more precise than this but it isn't worth bothering.
 | |
|         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
 | |
|           LatticeVal &LV = getStructValueState(I, i);
 | |
|           if (LV.isUndefined())
 | |
|             markOverdefined(LV, I);
 | |
|         }
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       LatticeVal &LV = getValueState(I);
 | |
|       if (!LV.isUndefined()) continue;
 | |
| 
 | |
|       // extractvalue is safe; check here because the argument is a struct.
 | |
|       if (isa<ExtractValueInst>(I))
 | |
|         continue;
 | |
| 
 | |
|       // Compute the operand LatticeVals, for convenience below.
 | |
|       // Anything taking a struct is conservatively assumed to require
 | |
|       // overdefined markings.
 | |
|       if (I->getOperand(0)->getType()->isStructTy()) {
 | |
|         markOverdefined(I);
 | |
|         return true;
 | |
|       }
 | |
|       LatticeVal Op0LV = getValueState(I->getOperand(0));
 | |
|       LatticeVal Op1LV;
 | |
|       if (I->getNumOperands() == 2) {
 | |
|         if (I->getOperand(1)->getType()->isStructTy()) {
 | |
|           markOverdefined(I);
 | |
|           return true;
 | |
|         }
 | |
| 
 | |
|         Op1LV = getValueState(I->getOperand(1));
 | |
|       }
 | |
|       // If this is an instructions whose result is defined even if the input is
 | |
|       // not fully defined, propagate the information.
 | |
|       Type *ITy = I->getType();
 | |
|       switch (I->getOpcode()) {
 | |
|       case Instruction::Add:
 | |
|       case Instruction::Sub:
 | |
|       case Instruction::Trunc:
 | |
|       case Instruction::FPTrunc:
 | |
|       case Instruction::BitCast:
 | |
|         break; // Any undef -> undef
 | |
|       case Instruction::FSub:
 | |
|       case Instruction::FAdd:
 | |
|       case Instruction::FMul:
 | |
|       case Instruction::FDiv:
 | |
|       case Instruction::FRem:
 | |
|         // Floating-point binary operation: be conservative.
 | |
|         if (Op0LV.isUndefined() && Op1LV.isUndefined())
 | |
|           markForcedConstant(I, Constant::getNullValue(ITy));
 | |
|         else
 | |
|           markOverdefined(I);
 | |
|         return true;
 | |
|       case Instruction::ZExt:
 | |
|       case Instruction::SExt:
 | |
|       case Instruction::FPToUI:
 | |
|       case Instruction::FPToSI:
 | |
|       case Instruction::FPExt:
 | |
|       case Instruction::PtrToInt:
 | |
|       case Instruction::IntToPtr:
 | |
|       case Instruction::SIToFP:
 | |
|       case Instruction::UIToFP:
 | |
|         // undef -> 0; some outputs are impossible
 | |
|         markForcedConstant(I, Constant::getNullValue(ITy));
 | |
|         return true;
 | |
|       case Instruction::Mul:
 | |
|       case Instruction::And:
 | |
|         // Both operands undef -> undef
 | |
|         if (Op0LV.isUndefined() && Op1LV.isUndefined())
 | |
|           break;
 | |
|         // undef * X -> 0.   X could be zero.
 | |
|         // undef & X -> 0.   X could be zero.
 | |
|         markForcedConstant(I, Constant::getNullValue(ITy));
 | |
|         return true;
 | |
| 
 | |
|       case Instruction::Or:
 | |
|         // Both operands undef -> undef
 | |
|         if (Op0LV.isUndefined() && Op1LV.isUndefined())
 | |
|           break;
 | |
|         // undef | X -> -1.   X could be -1.
 | |
|         markForcedConstant(I, Constant::getAllOnesValue(ITy));
 | |
|         return true;
 | |
| 
 | |
|       case Instruction::Xor:
 | |
|         // undef ^ undef -> 0; strictly speaking, this is not strictly
 | |
|         // necessary, but we try to be nice to people who expect this
 | |
|         // behavior in simple cases
 | |
|         if (Op0LV.isUndefined() && Op1LV.isUndefined()) {
 | |
|           markForcedConstant(I, Constant::getNullValue(ITy));
 | |
|           return true;
 | |
|         }
 | |
|         // undef ^ X -> undef
 | |
|         break;
 | |
| 
 | |
|       case Instruction::SDiv:
 | |
|       case Instruction::UDiv:
 | |
|       case Instruction::SRem:
 | |
|       case Instruction::URem:
 | |
|         // X / undef -> undef.  No change.
 | |
|         // X % undef -> undef.  No change.
 | |
|         if (Op1LV.isUndefined()) break;
 | |
| 
 | |
|         // undef / X -> 0.   X could be maxint.
 | |
|         // undef % X -> 0.   X could be 1.
 | |
|         markForcedConstant(I, Constant::getNullValue(ITy));
 | |
|         return true;
 | |
| 
 | |
|       case Instruction::AShr:
 | |
|         // X >>a undef -> undef.
 | |
|         if (Op1LV.isUndefined()) break;
 | |
| 
 | |
|         // undef >>a X -> all ones
 | |
|         markForcedConstant(I, Constant::getAllOnesValue(ITy));
 | |
|         return true;
 | |
|       case Instruction::LShr:
 | |
|       case Instruction::Shl:
 | |
|         // X << undef -> undef.
 | |
|         // X >> undef -> undef.
 | |
|         if (Op1LV.isUndefined()) break;
 | |
| 
 | |
|         // undef << X -> 0
 | |
|         // undef >> X -> 0
 | |
|         markForcedConstant(I, Constant::getNullValue(ITy));
 | |
|         return true;
 | |
|       case Instruction::Select:
 | |
|         Op1LV = getValueState(I->getOperand(1));
 | |
|         // undef ? X : Y  -> X or Y.  There could be commonality between X/Y.
 | |
|         if (Op0LV.isUndefined()) {
 | |
|           if (!Op1LV.isConstant())  // Pick the constant one if there is any.
 | |
|             Op1LV = getValueState(I->getOperand(2));
 | |
|         } else if (Op1LV.isUndefined()) {
 | |
|           // c ? undef : undef -> undef.  No change.
 | |
|           Op1LV = getValueState(I->getOperand(2));
 | |
|           if (Op1LV.isUndefined())
 | |
|             break;
 | |
|           // Otherwise, c ? undef : x -> x.
 | |
|         } else {
 | |
|           // Leave Op1LV as Operand(1)'s LatticeValue.
 | |
|         }
 | |
| 
 | |
|         if (Op1LV.isConstant())
 | |
|           markForcedConstant(I, Op1LV.getConstant());
 | |
|         else
 | |
|           markOverdefined(I);
 | |
|         return true;
 | |
|       case Instruction::Load:
 | |
|         // A load here means one of two things: a load of undef from a global,
 | |
|         // a load from an unknown pointer.  Either way, having it return undef
 | |
|         // is okay.
 | |
|         break;
 | |
|       case Instruction::ICmp:
 | |
|         // X == undef -> undef.  Other comparisons get more complicated.
 | |
|         if (cast<ICmpInst>(I)->isEquality())
 | |
|           break;
 | |
|         markOverdefined(I);
 | |
|         return true;
 | |
|       case Instruction::Call:
 | |
|       case Instruction::Invoke: {
 | |
|         // There are two reasons a call can have an undef result
 | |
|         // 1. It could be tracked.
 | |
|         // 2. It could be constant-foldable.
 | |
|         // Because of the way we solve return values, tracked calls must
 | |
|         // never be marked overdefined in ResolvedUndefsIn.
 | |
|         if (Function *F = CallSite(I).getCalledFunction())
 | |
|           if (TrackedRetVals.count(F))
 | |
|             break;
 | |
| 
 | |
|         // If the call is constant-foldable, we mark it overdefined because
 | |
|         // we do not know what return values are valid.
 | |
|         markOverdefined(I);
 | |
|         return true;
 | |
|       }
 | |
|       default:
 | |
|         // If we don't know what should happen here, conservatively mark it
 | |
|         // overdefined.
 | |
|         markOverdefined(I);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Check to see if we have a branch or switch on an undefined value.  If so
 | |
|     // we force the branch to go one way or the other to make the successor
 | |
|     // values live.  It doesn't really matter which way we force it.
 | |
|     TerminatorInst *TI = BB->getTerminator();
 | |
|     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
 | |
|       if (!BI->isConditional()) continue;
 | |
|       if (!getValueState(BI->getCondition()).isUndefined())
 | |
|         continue;
 | |
| 
 | |
|       // If the input to SCCP is actually branch on undef, fix the undef to
 | |
|       // false.
 | |
|       if (isa<UndefValue>(BI->getCondition())) {
 | |
|         BI->setCondition(ConstantInt::getFalse(BI->getContext()));
 | |
|         markEdgeExecutable(BB, TI->getSuccessor(1));
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       // Otherwise, it is a branch on a symbolic value which is currently
 | |
|       // considered to be undef.  Handle this by forcing the input value to the
 | |
|       // branch to false.
 | |
|       markForcedConstant(BI->getCondition(),
 | |
|                          ConstantInt::getFalse(TI->getContext()));
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
 | |
|       if (!SI->getNumCases())
 | |
|         continue;
 | |
|       if (!getValueState(SI->getCondition()).isUndefined())
 | |
|         continue;
 | |
| 
 | |
|       // If the input to SCCP is actually switch on undef, fix the undef to
 | |
|       // the first constant.
 | |
|       if (isa<UndefValue>(SI->getCondition())) {
 | |
|         SI->setCondition(SI->case_begin().getCaseValue());
 | |
|         markEdgeExecutable(BB, SI->case_begin().getCaseSuccessor());
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       markForcedConstant(SI->getCondition(), SI->case_begin().getCaseValue());
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| namespace {
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   //
 | |
|   /// SCCP Class - This class uses the SCCPSolver to implement a per-function
 | |
|   /// Sparse Conditional Constant Propagator.
 | |
|   ///
 | |
|   struct SCCP : public FunctionPass {
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|       AU.addRequired<TargetLibraryInfoWrapperPass>();
 | |
|     }
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     SCCP() : FunctionPass(ID) {
 | |
|       initializeSCCPPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     // runOnFunction - Run the Sparse Conditional Constant Propagation
 | |
|     // algorithm, and return true if the function was modified.
 | |
|     //
 | |
|     bool runOnFunction(Function &F) override;
 | |
|   };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char SCCP::ID = 0;
 | |
| INITIALIZE_PASS(SCCP, "sccp",
 | |
|                 "Sparse Conditional Constant Propagation", false, false)
 | |
| 
 | |
| // createSCCPPass - This is the public interface to this file.
 | |
| FunctionPass *llvm::createSCCPPass() {
 | |
|   return new SCCP();
 | |
| }
 | |
| 
 | |
| static void DeleteInstructionInBlock(BasicBlock *BB) {
 | |
|   DEBUG(dbgs() << "  BasicBlock Dead:" << *BB);
 | |
|   ++NumDeadBlocks;
 | |
| 
 | |
|   // Check to see if there are non-terminating instructions to delete.
 | |
|   if (isa<TerminatorInst>(BB->begin()))
 | |
|     return;
 | |
| 
 | |
|   // Delete the instructions backwards, as it has a reduced likelihood of having
 | |
|   // to update as many def-use and use-def chains.
 | |
|   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
 | |
|   while (EndInst != BB->begin()) {
 | |
|     // Delete the next to last instruction.
 | |
|     BasicBlock::iterator I = EndInst;
 | |
|     Instruction *Inst = --I;
 | |
|     if (!Inst->use_empty())
 | |
|       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
 | |
|     if (isa<LandingPadInst>(Inst)) {
 | |
|       EndInst = Inst;
 | |
|       continue;
 | |
|     }
 | |
|     BB->getInstList().erase(Inst);
 | |
|     ++NumInstRemoved;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
 | |
| // and return true if the function was modified.
 | |
| //
 | |
| bool SCCP::runOnFunction(Function &F) {
 | |
|   if (skipOptnoneFunction(F))
 | |
|     return false;
 | |
| 
 | |
|   DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
 | |
|   const DataLayout &DL = F.getParent()->getDataLayout();
 | |
|   const TargetLibraryInfo *TLI =
 | |
|       &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
 | |
|   SCCPSolver Solver(DL, TLI);
 | |
| 
 | |
|   // Mark the first block of the function as being executable.
 | |
|   Solver.MarkBlockExecutable(F.begin());
 | |
| 
 | |
|   // Mark all arguments to the function as being overdefined.
 | |
|   for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
 | |
|     Solver.markAnythingOverdefined(AI);
 | |
| 
 | |
|   // Solve for constants.
 | |
|   bool ResolvedUndefs = true;
 | |
|   while (ResolvedUndefs) {
 | |
|     Solver.Solve();
 | |
|     DEBUG(dbgs() << "RESOLVING UNDEFs\n");
 | |
|     ResolvedUndefs = Solver.ResolvedUndefsIn(F);
 | |
|   }
 | |
| 
 | |
|   bool MadeChanges = false;
 | |
| 
 | |
|   // If we decided that there are basic blocks that are dead in this function,
 | |
|   // delete their contents now.  Note that we cannot actually delete the blocks,
 | |
|   // as we cannot modify the CFG of the function.
 | |
| 
 | |
|   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
 | |
|     if (!Solver.isBlockExecutable(BB)) {
 | |
|       DeleteInstructionInBlock(BB);
 | |
|       MadeChanges = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Iterate over all of the instructions in a function, replacing them with
 | |
|     // constants if we have found them to be of constant values.
 | |
|     //
 | |
|     for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
 | |
|       Instruction *Inst = BI++;
 | |
|       if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst))
 | |
|         continue;
 | |
| 
 | |
|       // TODO: Reconstruct structs from their elements.
 | |
|       if (Inst->getType()->isStructTy())
 | |
|         continue;
 | |
| 
 | |
|       LatticeVal IV = Solver.getLatticeValueFor(Inst);
 | |
|       if (IV.isOverdefined())
 | |
|         continue;
 | |
| 
 | |
|       Constant *Const = IV.isConstant()
 | |
|         ? IV.getConstant() : UndefValue::get(Inst->getType());
 | |
|       DEBUG(dbgs() << "  Constant: " << *Const << " = " << *Inst << '\n');
 | |
| 
 | |
|       // Replaces all of the uses of a variable with uses of the constant.
 | |
|       Inst->replaceAllUsesWith(Const);
 | |
| 
 | |
|       // Delete the instruction.
 | |
|       Inst->eraseFromParent();
 | |
| 
 | |
|       // Hey, we just changed something!
 | |
|       MadeChanges = true;
 | |
|       ++NumInstRemoved;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return MadeChanges;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   //
 | |
|   /// IPSCCP Class - This class implements interprocedural Sparse Conditional
 | |
|   /// Constant Propagation.
 | |
|   ///
 | |
|   struct IPSCCP : public ModulePass {
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|       AU.addRequired<TargetLibraryInfoWrapperPass>();
 | |
|     }
 | |
|     static char ID;
 | |
|     IPSCCP() : ModulePass(ID) {
 | |
|       initializeIPSCCPPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
|     bool runOnModule(Module &M) override;
 | |
|   };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char IPSCCP::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(IPSCCP, "ipsccp",
 | |
|                 "Interprocedural Sparse Conditional Constant Propagation",
 | |
|                 false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | |
| INITIALIZE_PASS_END(IPSCCP, "ipsccp",
 | |
|                 "Interprocedural Sparse Conditional Constant Propagation",
 | |
|                 false, false)
 | |
| 
 | |
| // createIPSCCPPass - This is the public interface to this file.
 | |
| ModulePass *llvm::createIPSCCPPass() {
 | |
|   return new IPSCCP();
 | |
| }
 | |
| 
 | |
| 
 | |
| static bool AddressIsTaken(const GlobalValue *GV) {
 | |
|   // Delete any dead constantexpr klingons.
 | |
|   GV->removeDeadConstantUsers();
 | |
| 
 | |
|   for (const Use &U : GV->uses()) {
 | |
|     const User *UR = U.getUser();
 | |
|     if (const StoreInst *SI = dyn_cast<StoreInst>(UR)) {
 | |
|       if (SI->getOperand(0) == GV || SI->isVolatile())
 | |
|         return true;  // Storing addr of GV.
 | |
|     } else if (isa<InvokeInst>(UR) || isa<CallInst>(UR)) {
 | |
|       // Make sure we are calling the function, not passing the address.
 | |
|       ImmutableCallSite CS(cast<Instruction>(UR));
 | |
|       if (!CS.isCallee(&U))
 | |
|         return true;
 | |
|     } else if (const LoadInst *LI = dyn_cast<LoadInst>(UR)) {
 | |
|       if (LI->isVolatile())
 | |
|         return true;
 | |
|     } else if (isa<BlockAddress>(UR)) {
 | |
|       // blockaddress doesn't take the address of the function, it takes addr
 | |
|       // of label.
 | |
|     } else {
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool IPSCCP::runOnModule(Module &M) {
 | |
|   const DataLayout &DL = M.getDataLayout();
 | |
|   const TargetLibraryInfo *TLI =
 | |
|       &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
 | |
|   SCCPSolver Solver(DL, TLI);
 | |
| 
 | |
|   // AddressTakenFunctions - This set keeps track of the address-taken functions
 | |
|   // that are in the input.  As IPSCCP runs through and simplifies code,
 | |
|   // functions that were address taken can end up losing their
 | |
|   // address-taken-ness.  Because of this, we keep track of their addresses from
 | |
|   // the first pass so we can use them for the later simplification pass.
 | |
|   SmallPtrSet<Function*, 32> AddressTakenFunctions;
 | |
| 
 | |
|   // Loop over all functions, marking arguments to those with their addresses
 | |
|   // taken or that are external as overdefined.
 | |
|   //
 | |
|   for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
 | |
|     if (F->isDeclaration())
 | |
|       continue;
 | |
| 
 | |
|     // If this is a strong or ODR definition of this function, then we can
 | |
|     // propagate information about its result into callsites of it.
 | |
|     if (!F->mayBeOverridden())
 | |
|       Solver.AddTrackedFunction(F);
 | |
| 
 | |
|     // If this function only has direct calls that we can see, we can track its
 | |
|     // arguments and return value aggressively, and can assume it is not called
 | |
|     // unless we see evidence to the contrary.
 | |
|     if (F->hasLocalLinkage()) {
 | |
|       if (AddressIsTaken(F))
 | |
|         AddressTakenFunctions.insert(F);
 | |
|       else {
 | |
|         Solver.AddArgumentTrackedFunction(F);
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Assume the function is called.
 | |
|     Solver.MarkBlockExecutable(F->begin());
 | |
| 
 | |
|     // Assume nothing about the incoming arguments.
 | |
|     for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
 | |
|          AI != E; ++AI)
 | |
|       Solver.markAnythingOverdefined(AI);
 | |
|   }
 | |
| 
 | |
|   // Loop over global variables.  We inform the solver about any internal global
 | |
|   // variables that do not have their 'addresses taken'.  If they don't have
 | |
|   // their addresses taken, we can propagate constants through them.
 | |
|   for (Module::global_iterator G = M.global_begin(), E = M.global_end();
 | |
|        G != E; ++G)
 | |
|     if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G))
 | |
|       Solver.TrackValueOfGlobalVariable(G);
 | |
| 
 | |
|   // Solve for constants.
 | |
|   bool ResolvedUndefs = true;
 | |
|   while (ResolvedUndefs) {
 | |
|     Solver.Solve();
 | |
| 
 | |
|     DEBUG(dbgs() << "RESOLVING UNDEFS\n");
 | |
|     ResolvedUndefs = false;
 | |
|     for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
 | |
|       ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
 | |
|   }
 | |
| 
 | |
|   bool MadeChanges = false;
 | |
| 
 | |
|   // Iterate over all of the instructions in the module, replacing them with
 | |
|   // constants if we have found them to be of constant values.
 | |
|   //
 | |
|   SmallVector<BasicBlock*, 512> BlocksToErase;
 | |
| 
 | |
|   for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
 | |
|     if (Solver.isBlockExecutable(F->begin())) {
 | |
|       for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
 | |
|            AI != E; ++AI) {
 | |
|         if (AI->use_empty() || AI->getType()->isStructTy()) continue;
 | |
| 
 | |
|         // TODO: Could use getStructLatticeValueFor to find out if the entire
 | |
|         // result is a constant and replace it entirely if so.
 | |
| 
 | |
|         LatticeVal IV = Solver.getLatticeValueFor(AI);
 | |
|         if (IV.isOverdefined()) continue;
 | |
| 
 | |
|         Constant *CST = IV.isConstant() ?
 | |
|         IV.getConstant() : UndefValue::get(AI->getType());
 | |
|         DEBUG(dbgs() << "***  Arg " << *AI << " = " << *CST <<"\n");
 | |
| 
 | |
|         // Replaces all of the uses of a variable with uses of the
 | |
|         // constant.
 | |
|         AI->replaceAllUsesWith(CST);
 | |
|         ++IPNumArgsElimed;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
 | |
|       if (!Solver.isBlockExecutable(BB)) {
 | |
|         DeleteInstructionInBlock(BB);
 | |
|         MadeChanges = true;
 | |
| 
 | |
|         TerminatorInst *TI = BB->getTerminator();
 | |
|         for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
 | |
|           BasicBlock *Succ = TI->getSuccessor(i);
 | |
|           if (!Succ->empty() && isa<PHINode>(Succ->begin()))
 | |
|             TI->getSuccessor(i)->removePredecessor(BB);
 | |
|         }
 | |
|         if (!TI->use_empty())
 | |
|           TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
 | |
|         TI->eraseFromParent();
 | |
| 
 | |
|         if (&*BB != &F->front())
 | |
|           BlocksToErase.push_back(BB);
 | |
|         else
 | |
|           new UnreachableInst(M.getContext(), BB);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
 | |
|         Instruction *Inst = BI++;
 | |
|         if (Inst->getType()->isVoidTy() || Inst->getType()->isStructTy())
 | |
|           continue;
 | |
| 
 | |
|         // TODO: Could use getStructLatticeValueFor to find out if the entire
 | |
|         // result is a constant and replace it entirely if so.
 | |
| 
 | |
|         LatticeVal IV = Solver.getLatticeValueFor(Inst);
 | |
|         if (IV.isOverdefined())
 | |
|           continue;
 | |
| 
 | |
|         Constant *Const = IV.isConstant()
 | |
|           ? IV.getConstant() : UndefValue::get(Inst->getType());
 | |
|         DEBUG(dbgs() << "  Constant: " << *Const << " = " << *Inst << '\n');
 | |
| 
 | |
|         // Replaces all of the uses of a variable with uses of the
 | |
|         // constant.
 | |
|         Inst->replaceAllUsesWith(Const);
 | |
| 
 | |
|         // Delete the instruction.
 | |
|         if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst))
 | |
|           Inst->eraseFromParent();
 | |
| 
 | |
|         // Hey, we just changed something!
 | |
|         MadeChanges = true;
 | |
|         ++IPNumInstRemoved;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Now that all instructions in the function are constant folded, erase dead
 | |
|     // blocks, because we can now use ConstantFoldTerminator to get rid of
 | |
|     // in-edges.
 | |
|     for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
 | |
|       // If there are any PHI nodes in this successor, drop entries for BB now.
 | |
|       BasicBlock *DeadBB = BlocksToErase[i];
 | |
|       for (Value::user_iterator UI = DeadBB->user_begin(),
 | |
|                                 UE = DeadBB->user_end();
 | |
|            UI != UE;) {
 | |
|         // Grab the user and then increment the iterator early, as the user
 | |
|         // will be deleted. Step past all adjacent uses from the same user.
 | |
|         Instruction *I = dyn_cast<Instruction>(*UI);
 | |
|         do { ++UI; } while (UI != UE && *UI == I);
 | |
| 
 | |
|         // Ignore blockaddress users; BasicBlock's dtor will handle them.
 | |
|         if (!I) continue;
 | |
| 
 | |
|         bool Folded = ConstantFoldTerminator(I->getParent());
 | |
|         if (!Folded) {
 | |
|           // The constant folder may not have been able to fold the terminator
 | |
|           // if this is a branch or switch on undef.  Fold it manually as a
 | |
|           // branch to the first successor.
 | |
| #ifndef NDEBUG
 | |
|           if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
 | |
|             assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
 | |
|                    "Branch should be foldable!");
 | |
|           } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
 | |
|             assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
 | |
|           } else {
 | |
|             llvm_unreachable("Didn't fold away reference to block!");
 | |
|           }
 | |
| #endif
 | |
| 
 | |
|           // Make this an uncond branch to the first successor.
 | |
|           TerminatorInst *TI = I->getParent()->getTerminator();
 | |
|           BranchInst::Create(TI->getSuccessor(0), TI);
 | |
| 
 | |
|           // Remove entries in successor phi nodes to remove edges.
 | |
|           for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
 | |
|             TI->getSuccessor(i)->removePredecessor(TI->getParent());
 | |
| 
 | |
|           // Remove the old terminator.
 | |
|           TI->eraseFromParent();
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Finally, delete the basic block.
 | |
|       F->getBasicBlockList().erase(DeadBB);
 | |
|     }
 | |
|     BlocksToErase.clear();
 | |
|   }
 | |
| 
 | |
|   // If we inferred constant or undef return values for a function, we replaced
 | |
|   // all call uses with the inferred value.  This means we don't need to bother
 | |
|   // actually returning anything from the function.  Replace all return
 | |
|   // instructions with return undef.
 | |
|   //
 | |
|   // Do this in two stages: first identify the functions we should process, then
 | |
|   // actually zap their returns.  This is important because we can only do this
 | |
|   // if the address of the function isn't taken.  In cases where a return is the
 | |
|   // last use of a function, the order of processing functions would affect
 | |
|   // whether other functions are optimizable.
 | |
|   SmallVector<ReturnInst*, 8> ReturnsToZap;
 | |
| 
 | |
|   // TODO: Process multiple value ret instructions also.
 | |
|   const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
 | |
|   for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
 | |
|        E = RV.end(); I != E; ++I) {
 | |
|     Function *F = I->first;
 | |
|     if (I->second.isOverdefined() || F->getReturnType()->isVoidTy())
 | |
|       continue;
 | |
| 
 | |
|     // We can only do this if we know that nothing else can call the function.
 | |
|     if (!F->hasLocalLinkage() || AddressTakenFunctions.count(F))
 | |
|       continue;
 | |
| 
 | |
|     for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
 | |
|       if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
 | |
|         if (!isa<UndefValue>(RI->getOperand(0)))
 | |
|           ReturnsToZap.push_back(RI);
 | |
|   }
 | |
| 
 | |
|   // Zap all returns which we've identified as zap to change.
 | |
|   for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
 | |
|     Function *F = ReturnsToZap[i]->getParent()->getParent();
 | |
|     ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
 | |
|   }
 | |
| 
 | |
|   // If we inferred constant or undef values for globals variables, we can
 | |
|   // delete the global and any stores that remain to it.
 | |
|   const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
 | |
|   for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
 | |
|          E = TG.end(); I != E; ++I) {
 | |
|     GlobalVariable *GV = I->first;
 | |
|     assert(!I->second.isOverdefined() &&
 | |
|            "Overdefined values should have been taken out of the map!");
 | |
|     DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n");
 | |
|     while (!GV->use_empty()) {
 | |
|       StoreInst *SI = cast<StoreInst>(GV->user_back());
 | |
|       SI->eraseFromParent();
 | |
|     }
 | |
|     M.getGlobalList().erase(GV);
 | |
|     ++IPNumGlobalConst;
 | |
|   }
 | |
| 
 | |
|   return MadeChanges;
 | |
| }
 |