mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 00:16:48 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@50659 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			364 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			364 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //=== llvm/Analysis/DominatorInternals.h - Dominator Calculation -*- C++ -*-==//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_ANALYSIS_DOMINATOR_INTERNALS_H
 | |
| #define LLVM_ANALYSIS_DOMINATOR_INTERNALS_H
 | |
| 
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // DominatorTree construction - This pass constructs immediate dominator
 | |
| // information for a flow-graph based on the algorithm described in this
 | |
| // document:
 | |
| //
 | |
| //   A Fast Algorithm for Finding Dominators in a Flowgraph
 | |
| //   T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141.
 | |
| //
 | |
| // This implements both the O(n*ack(n)) and the O(n*log(n)) versions of EVAL and
 | |
| // LINK, but it turns out that the theoretically slower O(n*log(n))
 | |
| // implementation is actually faster than the "efficient" algorithm (even for
 | |
| // large CFGs) because the constant overheads are substantially smaller.  The
 | |
| // lower-complexity version can be enabled with the following #define:
 | |
| //
 | |
| #define BALANCE_IDOM_TREE 0
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| template<class GraphT>
 | |
| unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
 | |
|                  typename GraphT::NodeType* V, unsigned N) {
 | |
|   // This is more understandable as a recursive algorithm, but we can't use the
 | |
|   // recursive algorithm due to stack depth issues.  Keep it here for
 | |
|   // documentation purposes.
 | |
| #if 0
 | |
|   InfoRec &VInfo = DT.Info[DT.Roots[i]];
 | |
|   VInfo.DFSNum = VInfo.Semi = ++N;
 | |
|   VInfo.Label = V;
 | |
| 
 | |
|   Vertex.push_back(V);        // Vertex[n] = V;
 | |
|   //Info[V].Ancestor = 0;     // Ancestor[n] = 0
 | |
|   //Info[V].Child = 0;        // Child[v] = 0
 | |
|   VInfo.Size = 1;             // Size[v] = 1
 | |
| 
 | |
|   for (succ_iterator SI = succ_begin(V), E = succ_end(V); SI != E; ++SI) {
 | |
|     InfoRec &SuccVInfo = DT.Info[*SI];
 | |
|     if (SuccVInfo.Semi == 0) {
 | |
|       SuccVInfo.Parent = V;
 | |
|       N = DTDFSPass(DT, *SI, N);
 | |
|     }
 | |
|   }
 | |
| #else
 | |
|   bool IsChilOfArtificialExit = (N != 0);
 | |
| 
 | |
|   std::vector<std::pair<typename GraphT::NodeType*,
 | |
|                         typename GraphT::ChildIteratorType> > Worklist;
 | |
|   Worklist.push_back(std::make_pair(V, GraphT::child_begin(V)));
 | |
|   while (!Worklist.empty()) {
 | |
|     typename GraphT::NodeType* BB = Worklist.back().first;
 | |
|     typename GraphT::ChildIteratorType NextSucc = Worklist.back().second;
 | |
| 
 | |
|     typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo =
 | |
|                                                                     DT.Info[BB];
 | |
| 
 | |
|     // First time we visited this BB?
 | |
|     if (NextSucc == GraphT::child_begin(BB)) {
 | |
|       BBInfo.DFSNum = BBInfo.Semi = ++N;
 | |
|       BBInfo.Label = BB;
 | |
| 
 | |
|       DT.Vertex.push_back(BB);       // Vertex[n] = V;
 | |
|       //BBInfo[V].Ancestor = 0;   // Ancestor[n] = 0
 | |
|       //BBInfo[V].Child = 0;      // Child[v] = 0
 | |
|       BBInfo.Size = 1;            // Size[v] = 1
 | |
| 
 | |
|       if (IsChilOfArtificialExit)
 | |
|         BBInfo.Parent = 1;
 | |
| 
 | |
|       IsChilOfArtificialExit = false;
 | |
|     }
 | |
| 
 | |
|     // store the DFS number of the current BB - the reference to BBInfo might
 | |
|     // get invalidated when processing the successors.
 | |
|     unsigned BBDFSNum = BBInfo.DFSNum;
 | |
| 
 | |
|     // If we are done with this block, remove it from the worklist.
 | |
|     if (NextSucc == GraphT::child_end(BB)) {
 | |
|       Worklist.pop_back();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Increment the successor number for the next time we get to it.
 | |
|     ++Worklist.back().second;
 | |
|     
 | |
|     // Visit the successor next, if it isn't already visited.
 | |
|     typename GraphT::NodeType* Succ = *NextSucc;
 | |
| 
 | |
|     typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &SuccVInfo =
 | |
|                                                                   DT.Info[Succ];
 | |
|     if (SuccVInfo.Semi == 0) {
 | |
|       SuccVInfo.Parent = BBDFSNum;
 | |
|       Worklist.push_back(std::make_pair(Succ, GraphT::child_begin(Succ)));
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
|     return N;
 | |
| }
 | |
| 
 | |
| template<class GraphT>
 | |
| void Compress(DominatorTreeBase<typename GraphT::NodeType>& DT,
 | |
|               typename GraphT::NodeType *VIn) {
 | |
|   std::vector<typename GraphT::NodeType*> Work;
 | |
|   SmallPtrSet<typename GraphT::NodeType*, 32> Visited;
 | |
|   typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInVAInfo =
 | |
|                                       DT.Info[DT.Vertex[DT.Info[VIn].Ancestor]];
 | |
| 
 | |
|   if (VInVAInfo.Ancestor != 0)
 | |
|     Work.push_back(VIn);
 | |
|   
 | |
|   while (!Work.empty()) {
 | |
|     typename GraphT::NodeType* V = Work.back();
 | |
|     typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInfo =
 | |
|                                                                      DT.Info[V];
 | |
|     typename GraphT::NodeType* VAncestor = DT.Vertex[VInfo.Ancestor];
 | |
|     typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VAInfo =
 | |
|                                                              DT.Info[VAncestor];
 | |
| 
 | |
|     // Process Ancestor first
 | |
|     if (Visited.insert(VAncestor) &&
 | |
|         VAInfo.Ancestor != 0) {
 | |
|       Work.push_back(VAncestor);
 | |
|       continue;
 | |
|     } 
 | |
|     Work.pop_back(); 
 | |
| 
 | |
|     // Update VInfo based on Ancestor info
 | |
|     if (VAInfo.Ancestor == 0)
 | |
|       continue;
 | |
|     typename GraphT::NodeType* VAncestorLabel = VAInfo.Label;
 | |
|     typename GraphT::NodeType* VLabel = VInfo.Label;
 | |
|     if (DT.Info[VAncestorLabel].Semi < DT.Info[VLabel].Semi)
 | |
|       VInfo.Label = VAncestorLabel;
 | |
|     VInfo.Ancestor = VAInfo.Ancestor;
 | |
|   }
 | |
| }
 | |
| 
 | |
| template<class GraphT>
 | |
| typename GraphT::NodeType* Eval(DominatorTreeBase<typename GraphT::NodeType>& DT,
 | |
|                                 typename GraphT::NodeType *V) {
 | |
|   typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInfo =
 | |
|                                                                      DT.Info[V];
 | |
| #if !BALANCE_IDOM_TREE
 | |
|   // Higher-complexity but faster implementation
 | |
|   if (VInfo.Ancestor == 0)
 | |
|     return V;
 | |
|   Compress<GraphT>(DT, V);
 | |
|   return VInfo.Label;
 | |
| #else
 | |
|   // Lower-complexity but slower implementation
 | |
|   if (VInfo.Ancestor == 0)
 | |
|     return VInfo.Label;
 | |
|   Compress<GraphT>(DT, V);
 | |
|   GraphT::NodeType* VLabel = VInfo.Label;
 | |
| 
 | |
|   GraphT::NodeType* VAncestorLabel = DT.Info[VInfo.Ancestor].Label;
 | |
|   if (DT.Info[VAncestorLabel].Semi >= DT.Info[VLabel].Semi)
 | |
|     return VLabel;
 | |
|   else
 | |
|     return VAncestorLabel;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| template<class GraphT>
 | |
| void Link(DominatorTreeBase<typename GraphT::NodeType>& DT,
 | |
|           unsigned DFSNumV, typename GraphT::NodeType* W,
 | |
|         typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo) {
 | |
| #if !BALANCE_IDOM_TREE
 | |
|   // Higher-complexity but faster implementation
 | |
|   WInfo.Ancestor = DFSNumV;
 | |
| #else
 | |
|   // Lower-complexity but slower implementation
 | |
|   GraphT::NodeType* WLabel = WInfo.Label;
 | |
|   unsigned WLabelSemi = DT.Info[WLabel].Semi;
 | |
|   GraphT::NodeType* S = W;
 | |
|   InfoRec *SInfo = &DT.Info[S];
 | |
| 
 | |
|   GraphT::NodeType* SChild = SInfo->Child;
 | |
|   InfoRec *SChildInfo = &DT.Info[SChild];
 | |
| 
 | |
|   while (WLabelSemi < DT.Info[SChildInfo->Label].Semi) {
 | |
|     GraphT::NodeType* SChildChild = SChildInfo->Child;
 | |
|     if (SInfo->Size+DT.Info[SChildChild].Size >= 2*SChildInfo->Size) {
 | |
|       SChildInfo->Ancestor = S;
 | |
|       SInfo->Child = SChild = SChildChild;
 | |
|       SChildInfo = &DT.Info[SChild];
 | |
|     } else {
 | |
|       SChildInfo->Size = SInfo->Size;
 | |
|       S = SInfo->Ancestor = SChild;
 | |
|       SInfo = SChildInfo;
 | |
|       SChild = SChildChild;
 | |
|       SChildInfo = &DT.Info[SChild];
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DominatorTreeBase::InfoRec &VInfo = DT.Info[V];
 | |
|   SInfo->Label = WLabel;
 | |
| 
 | |
|   assert(V != W && "The optimization here will not work in this case!");
 | |
|   unsigned WSize = WInfo.Size;
 | |
|   unsigned VSize = (VInfo.Size += WSize);
 | |
| 
 | |
|   if (VSize < 2*WSize)
 | |
|     std::swap(S, VInfo.Child);
 | |
| 
 | |
|   while (S) {
 | |
|     SInfo = &DT.Info[S];
 | |
|     SInfo->Ancestor = V;
 | |
|     S = SInfo->Child;
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| template<class FuncT, class NodeT>
 | |
| void Calculate(DominatorTreeBase<typename GraphTraits<NodeT>::NodeType>& DT,
 | |
|                FuncT& F) {
 | |
|   typedef GraphTraits<NodeT> GraphT;
 | |
| 
 | |
|   unsigned N = 0;
 | |
|   bool MultipleRoots = (DT.Roots.size() > 1);
 | |
|   if (MultipleRoots) {
 | |
|     typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo =
 | |
|         DT.Info[NULL];
 | |
|     BBInfo.DFSNum = BBInfo.Semi = ++N;
 | |
|     BBInfo.Label = NULL;
 | |
| 
 | |
|     DT.Vertex.push_back(NULL);       // Vertex[n] = V;
 | |
|       //BBInfo[V].Ancestor = 0;   // Ancestor[n] = 0
 | |
|       //BBInfo[V].Child = 0;      // Child[v] = 0
 | |
|     BBInfo.Size = 1;            // Size[v] = 1
 | |
|   }
 | |
| 
 | |
|   // Step #1: Number blocks in depth-first order and initialize variables used
 | |
|   // in later stages of the algorithm.
 | |
|   for (unsigned i = 0, e = static_cast<unsigned>(DT.Roots.size());
 | |
|        i != e; ++i)
 | |
|     N = DFSPass<GraphT>(DT, DT.Roots[i], N);
 | |
| 
 | |
|   // it might be that some blocks did not get a DFS number (e.g., blocks of 
 | |
|   // infinite loops). In these cases an artificial exit node is required.
 | |
|   MultipleRoots |= (DT.isPostDominator() && N != F.size());
 | |
| 
 | |
|   for (unsigned i = N; i >= 2; --i) {
 | |
|     typename GraphT::NodeType* W = DT.Vertex[i];
 | |
|     typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo =
 | |
|                                                                      DT.Info[W];
 | |
| 
 | |
|     // Step #2: Calculate the semidominators of all vertices
 | |
|     bool HasChildOutsideDFS = false;
 | |
| 
 | |
|     // initialize the semi dominator to point to the parent node
 | |
|     WInfo.Semi = WInfo.Parent;
 | |
|     for (typename GraphTraits<Inverse<NodeT> >::ChildIteratorType CI =
 | |
|          GraphTraits<Inverse<NodeT> >::child_begin(W),
 | |
|          E = GraphTraits<Inverse<NodeT> >::child_end(W); CI != E; ++CI) {
 | |
|       if (DT.Info.count(*CI)) {  // Only if this predecessor is reachable!
 | |
|         unsigned SemiU = DT.Info[Eval<GraphT>(DT, *CI)].Semi;
 | |
|         if (SemiU < WInfo.Semi)
 | |
|           WInfo.Semi = SemiU;
 | |
|       }
 | |
|       else {
 | |
|         // if the child has no DFS number it is not post-dominated by any exit, 
 | |
|         // and so is the current block.
 | |
|         HasChildOutsideDFS = true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // if some child has no DFS number it is not post-dominated by any exit, 
 | |
|     // and so is the current block.
 | |
|     if (DT.isPostDominator() && HasChildOutsideDFS)
 | |
|       WInfo.Semi = 0;
 | |
| 
 | |
|     DT.Info[DT.Vertex[WInfo.Semi]].Bucket.push_back(W);
 | |
| 
 | |
|     typename GraphT::NodeType* WParent = DT.Vertex[WInfo.Parent];
 | |
|     Link<GraphT>(DT, WInfo.Parent, W, WInfo);
 | |
| 
 | |
|     // Step #3: Implicitly define the immediate dominator of vertices
 | |
|     std::vector<typename GraphT::NodeType*> &WParentBucket =
 | |
|                                                         DT.Info[WParent].Bucket;
 | |
|     while (!WParentBucket.empty()) {
 | |
|       typename GraphT::NodeType* V = WParentBucket.back();
 | |
|       WParentBucket.pop_back();
 | |
|       typename GraphT::NodeType* U = Eval<GraphT>(DT, V);
 | |
|       DT.IDoms[V] = DT.Info[U].Semi < DT.Info[V].Semi ? U : WParent;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Step #4: Explicitly define the immediate dominator of each vertex
 | |
|   for (unsigned i = 2; i <= N; ++i) {
 | |
|     typename GraphT::NodeType* W = DT.Vertex[i];
 | |
|     typename GraphT::NodeType*& WIDom = DT.IDoms[W];
 | |
|     if (WIDom != DT.Vertex[DT.Info[W].Semi])
 | |
|       WIDom = DT.IDoms[WIDom];
 | |
|   }
 | |
| 
 | |
|   if (DT.Roots.empty()) return;
 | |
| 
 | |
|   // Add a node for the root.  This node might be the actual root, if there is
 | |
|   // one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0)
 | |
|   // which postdominates all real exits if there are multiple exit blocks, or
 | |
|   // an infinite loop.
 | |
|   typename GraphT::NodeType* Root = !MultipleRoots ? DT.Roots[0] : 0;
 | |
| 
 | |
|   DT.DomTreeNodes[Root] = DT.RootNode =
 | |
|                         new DomTreeNodeBase<typename GraphT::NodeType>(Root, 0);
 | |
| 
 | |
|   // Loop over all of the reachable blocks in the function...
 | |
|   for (unsigned i = 2; i <= N; ++i) {
 | |
|     typename GraphT::NodeType* W = DT.Vertex[i];
 | |
| 
 | |
|     DomTreeNodeBase<typename GraphT::NodeType> *BBNode = DT.DomTreeNodes[W];
 | |
|     if (BBNode) continue;  // Haven't calculated this node yet?
 | |
| 
 | |
|     typename GraphT::NodeType* ImmDom = DT.getIDom(W);
 | |
| 
 | |
|     assert(ImmDom || DT.DomTreeNodes[NULL]);
 | |
| 
 | |
|     // Get or calculate the node for the immediate dominator
 | |
|     DomTreeNodeBase<typename GraphT::NodeType> *IDomNode =
 | |
|                                                      DT.getNodeForBlock(ImmDom);
 | |
| 
 | |
|     // Add a new tree node for this BasicBlock, and link it as a child of
 | |
|     // IDomNode
 | |
|     DomTreeNodeBase<typename GraphT::NodeType> *C =
 | |
|                     new DomTreeNodeBase<typename GraphT::NodeType>(W, IDomNode);
 | |
|     DT.DomTreeNodes[W] = IDomNode->addChild(C);
 | |
|   }
 | |
| 
 | |
|   // Free temporary memory used to construct idom's
 | |
|   DT.IDoms.clear();
 | |
|   DT.Info.clear();
 | |
|   std::vector<typename GraphT::NodeType*>().swap(DT.Vertex);
 | |
|   
 | |
|   // FIXME: This does not work on PostDomTrees.  It seems likely that this is
 | |
|   // due to an error in the algorithm for post-dominators.  This really should
 | |
|   // be investigated and fixed at some point.
 | |
|   // DT.updateDFSNumbers();
 | |
| 
 | |
|   // Start out with the DFS numbers being invalid.  Let them be computed if
 | |
|   // demanded.
 | |
|   DT.DFSInfoValid = false;
 | |
| }
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 |