mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	operands to an early clobber register. This fixes <rdar://problem/9566076>. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132738 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1535 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1535 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the TwoAddress instruction pass which is used
 | |
| // by most register allocators. Two-Address instructions are rewritten
 | |
| // from:
 | |
| //
 | |
| //     A = B op C
 | |
| //
 | |
| // to:
 | |
| //
 | |
| //     A = B
 | |
| //     A op= C
 | |
| //
 | |
| // Note that if a register allocator chooses to use this pass, that it
 | |
| // has to be capable of handling the non-SSA nature of these rewritten
 | |
| // virtual registers.
 | |
| //
 | |
| // It is also worth noting that the duplicate operand of the two
 | |
| // address instruction is removed.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "twoaddrinstr"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/CodeGen/LiveVariables.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/ADT/BitVector.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
 | |
| STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
 | |
| STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
 | |
| STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
 | |
| STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
 | |
| STATISTIC(NumReMats,           "Number of instructions re-materialized");
 | |
| STATISTIC(NumDeletes,          "Number of dead instructions deleted");
 | |
| 
 | |
| namespace {
 | |
|   class TwoAddressInstructionPass : public MachineFunctionPass {
 | |
|     const TargetInstrInfo *TII;
 | |
|     const TargetRegisterInfo *TRI;
 | |
|     MachineRegisterInfo *MRI;
 | |
|     LiveVariables *LV;
 | |
|     AliasAnalysis *AA;
 | |
| 
 | |
|     // DistanceMap - Keep track the distance of a MI from the start of the
 | |
|     // current basic block.
 | |
|     DenseMap<MachineInstr*, unsigned> DistanceMap;
 | |
| 
 | |
|     // SrcRegMap - A map from virtual registers to physical registers which
 | |
|     // are likely targets to be coalesced to due to copies from physical
 | |
|     // registers to virtual registers. e.g. v1024 = move r0.
 | |
|     DenseMap<unsigned, unsigned> SrcRegMap;
 | |
| 
 | |
|     // DstRegMap - A map from virtual registers to physical registers which
 | |
|     // are likely targets to be coalesced to due to copies to physical
 | |
|     // registers from virtual registers. e.g. r1 = move v1024.
 | |
|     DenseMap<unsigned, unsigned> DstRegMap;
 | |
| 
 | |
|     /// RegSequences - Keep track the list of REG_SEQUENCE instructions seen
 | |
|     /// during the initial walk of the machine function.
 | |
|     SmallVector<MachineInstr*, 16> RegSequences;
 | |
| 
 | |
|     bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
 | |
|                               unsigned Reg,
 | |
|                               MachineBasicBlock::iterator OldPos);
 | |
| 
 | |
|     bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
 | |
|                              MachineInstr *MI, MachineInstr *DefMI,
 | |
|                              MachineBasicBlock *MBB, unsigned Loc);
 | |
| 
 | |
|     bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
 | |
|                            unsigned &LastDef);
 | |
| 
 | |
|     MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB,
 | |
|                                    unsigned Dist);
 | |
| 
 | |
|     bool isProfitableToCommute(unsigned regB, unsigned regC,
 | |
|                                MachineInstr *MI, MachineBasicBlock *MBB,
 | |
|                                unsigned Dist);
 | |
| 
 | |
|     bool CommuteInstruction(MachineBasicBlock::iterator &mi,
 | |
|                             MachineFunction::iterator &mbbi,
 | |
|                             unsigned RegB, unsigned RegC, unsigned Dist);
 | |
| 
 | |
|     bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB);
 | |
| 
 | |
|     bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
 | |
|                             MachineBasicBlock::iterator &nmi,
 | |
|                             MachineFunction::iterator &mbbi,
 | |
|                             unsigned RegA, unsigned RegB, unsigned Dist);
 | |
| 
 | |
|     typedef std::pair<std::pair<unsigned, bool>, MachineInstr*> NewKill;
 | |
|     bool canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
 | |
|                                SmallVector<NewKill, 4> &NewKills,
 | |
|                                MachineBasicBlock *MBB, unsigned Dist);
 | |
|     bool DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
 | |
|                            MachineBasicBlock::iterator &nmi,
 | |
|                            MachineFunction::iterator &mbbi, unsigned Dist);
 | |
| 
 | |
|     bool TryInstructionTransform(MachineBasicBlock::iterator &mi,
 | |
|                                  MachineBasicBlock::iterator &nmi,
 | |
|                                  MachineFunction::iterator &mbbi,
 | |
|                                  unsigned SrcIdx, unsigned DstIdx,
 | |
|                                  unsigned Dist,
 | |
|                                  SmallPtrSet<MachineInstr*, 8> &Processed);
 | |
| 
 | |
|     void ScanUses(unsigned DstReg, MachineBasicBlock *MBB,
 | |
|                   SmallPtrSet<MachineInstr*, 8> &Processed);
 | |
| 
 | |
|     void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB,
 | |
|                      SmallPtrSet<MachineInstr*, 8> &Processed);
 | |
| 
 | |
|     void CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs, unsigned DstReg);
 | |
| 
 | |
|     /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
 | |
|     /// of the de-ssa process. This replaces sources of REG_SEQUENCE as
 | |
|     /// sub-register references of the register defined by REG_SEQUENCE.
 | |
|     bool EliminateRegSequences();
 | |
| 
 | |
|   public:
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     TwoAddressInstructionPass() : MachineFunctionPass(ID) {
 | |
|       initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.setPreservesCFG();
 | |
|       AU.addRequired<AliasAnalysis>();
 | |
|       AU.addPreserved<LiveVariables>();
 | |
|       AU.addPreservedID(MachineLoopInfoID);
 | |
|       AU.addPreservedID(MachineDominatorsID);
 | |
|       AU.addPreservedID(PHIEliminationID);
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|     }
 | |
| 
 | |
|     /// runOnMachineFunction - Pass entry point.
 | |
|     bool runOnMachineFunction(MachineFunction&);
 | |
|   };
 | |
| }
 | |
| 
 | |
| char TwoAddressInstructionPass::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction",
 | |
|                 "Two-Address instruction pass", false, false)
 | |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | |
| INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction",
 | |
|                 "Two-Address instruction pass", false, false)
 | |
| 
 | |
| char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
 | |
| 
 | |
| /// Sink3AddrInstruction - A two-address instruction has been converted to a
 | |
| /// three-address instruction to avoid clobbering a register. Try to sink it
 | |
| /// past the instruction that would kill the above mentioned register to reduce
 | |
| /// register pressure.
 | |
| bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
 | |
|                                            MachineInstr *MI, unsigned SavedReg,
 | |
|                                            MachineBasicBlock::iterator OldPos) {
 | |
|   // Check if it's safe to move this instruction.
 | |
|   bool SeenStore = true; // Be conservative.
 | |
|   if (!MI->isSafeToMove(TII, AA, SeenStore))
 | |
|     return false;
 | |
| 
 | |
|   unsigned DefReg = 0;
 | |
|   SmallSet<unsigned, 4> UseRegs;
 | |
| 
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI->getOperand(i);
 | |
|     if (!MO.isReg())
 | |
|       continue;
 | |
|     unsigned MOReg = MO.getReg();
 | |
|     if (!MOReg)
 | |
|       continue;
 | |
|     if (MO.isUse() && MOReg != SavedReg)
 | |
|       UseRegs.insert(MO.getReg());
 | |
|     if (!MO.isDef())
 | |
|       continue;
 | |
|     if (MO.isImplicit())
 | |
|       // Don't try to move it if it implicitly defines a register.
 | |
|       return false;
 | |
|     if (DefReg)
 | |
|       // For now, don't move any instructions that define multiple registers.
 | |
|       return false;
 | |
|     DefReg = MO.getReg();
 | |
|   }
 | |
| 
 | |
|   // Find the instruction that kills SavedReg.
 | |
|   MachineInstr *KillMI = NULL;
 | |
|   for (MachineRegisterInfo::use_nodbg_iterator
 | |
|          UI = MRI->use_nodbg_begin(SavedReg),
 | |
|          UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
 | |
|     MachineOperand &UseMO = UI.getOperand();
 | |
|     if (!UseMO.isKill())
 | |
|       continue;
 | |
|     KillMI = UseMO.getParent();
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (!KillMI || KillMI->getParent() != MBB || KillMI == MI)
 | |
|     return false;
 | |
| 
 | |
|   // If any of the definitions are used by another instruction between the
 | |
|   // position and the kill use, then it's not safe to sink it.
 | |
|   // 
 | |
|   // FIXME: This can be sped up if there is an easy way to query whether an
 | |
|   // instruction is before or after another instruction. Then we can use
 | |
|   // MachineRegisterInfo def / use instead.
 | |
|   MachineOperand *KillMO = NULL;
 | |
|   MachineBasicBlock::iterator KillPos = KillMI;
 | |
|   ++KillPos;
 | |
| 
 | |
|   unsigned NumVisited = 0;
 | |
|   for (MachineBasicBlock::iterator I = llvm::next(OldPos); I != KillPos; ++I) {
 | |
|     MachineInstr *OtherMI = I;
 | |
|     // DBG_VALUE cannot be counted against the limit.
 | |
|     if (OtherMI->isDebugValue())
 | |
|       continue;
 | |
|     if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
 | |
|       return false;
 | |
|     ++NumVisited;
 | |
|     for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand &MO = OtherMI->getOperand(i);
 | |
|       if (!MO.isReg())
 | |
|         continue;
 | |
|       unsigned MOReg = MO.getReg();
 | |
|       if (!MOReg)
 | |
|         continue;
 | |
|       if (DefReg == MOReg)
 | |
|         return false;
 | |
| 
 | |
|       if (MO.isKill()) {
 | |
|         if (OtherMI == KillMI && MOReg == SavedReg)
 | |
|           // Save the operand that kills the register. We want to unset the kill
 | |
|           // marker if we can sink MI past it.
 | |
|           KillMO = &MO;
 | |
|         else if (UseRegs.count(MOReg))
 | |
|           // One of the uses is killed before the destination.
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Update kill and LV information.
 | |
|   KillMO->setIsKill(false);
 | |
|   KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
 | |
|   KillMO->setIsKill(true);
 | |
|   
 | |
|   if (LV)
 | |
|     LV->replaceKillInstruction(SavedReg, KillMI, MI);
 | |
| 
 | |
|   // Move instruction to its destination.
 | |
|   MBB->remove(MI);
 | |
|   MBB->insert(KillPos, MI);
 | |
| 
 | |
|   ++Num3AddrSunk;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isTwoAddrUse - Return true if the specified MI is using the specified
 | |
| /// register as a two-address operand.
 | |
| static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
 | |
|   const TargetInstrDesc &TID = UseMI->getDesc();
 | |
|   for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = UseMI->getOperand(i);
 | |
|     if (MO.isReg() && MO.getReg() == Reg &&
 | |
|         (MO.isDef() || UseMI->isRegTiedToDefOperand(i)))
 | |
|       // Earlier use is a two-address one.
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isProfitableToReMat - Return true if the heuristics determines it is likely
 | |
| /// to be profitable to re-materialize the definition of Reg rather than copy
 | |
| /// the register.
 | |
| bool
 | |
| TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
 | |
|                                          const TargetRegisterClass *RC,
 | |
|                                          MachineInstr *MI, MachineInstr *DefMI,
 | |
|                                          MachineBasicBlock *MBB, unsigned Loc) {
 | |
|   bool OtherUse = false;
 | |
|   for (MachineRegisterInfo::use_nodbg_iterator UI = MRI->use_nodbg_begin(Reg),
 | |
|          UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
 | |
|     MachineOperand &UseMO = UI.getOperand();
 | |
|     MachineInstr *UseMI = UseMO.getParent();
 | |
|     MachineBasicBlock *UseMBB = UseMI->getParent();
 | |
|     if (UseMBB == MBB) {
 | |
|       DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
 | |
|       if (DI != DistanceMap.end() && DI->second == Loc)
 | |
|         continue;  // Current use.
 | |
|       OtherUse = true;
 | |
|       // There is at least one other use in the MBB that will clobber the
 | |
|       // register. 
 | |
|       if (isTwoAddrUse(UseMI, Reg))
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If other uses in MBB are not two-address uses, then don't remat.
 | |
|   if (OtherUse)
 | |
|     return false;
 | |
| 
 | |
|   // No other uses in the same block, remat if it's defined in the same
 | |
|   // block so it does not unnecessarily extend the live range.
 | |
|   return MBB == DefMI->getParent();
 | |
| }
 | |
| 
 | |
| /// NoUseAfterLastDef - Return true if there are no intervening uses between the
 | |
| /// last instruction in the MBB that defines the specified register and the
 | |
| /// two-address instruction which is being processed. It also returns the last
 | |
| /// def location by reference
 | |
| bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
 | |
|                                            MachineBasicBlock *MBB, unsigned Dist,
 | |
|                                            unsigned &LastDef) {
 | |
|   LastDef = 0;
 | |
|   unsigned LastUse = Dist;
 | |
|   for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
 | |
|          E = MRI->reg_end(); I != E; ++I) {
 | |
|     MachineOperand &MO = I.getOperand();
 | |
|     MachineInstr *MI = MO.getParent();
 | |
|     if (MI->getParent() != MBB || MI->isDebugValue())
 | |
|       continue;
 | |
|     DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
 | |
|     if (DI == DistanceMap.end())
 | |
|       continue;
 | |
|     if (MO.isUse() && DI->second < LastUse)
 | |
|       LastUse = DI->second;
 | |
|     if (MO.isDef() && DI->second > LastDef)
 | |
|       LastDef = DI->second;
 | |
|   }
 | |
| 
 | |
|   return !(LastUse > LastDef && LastUse < Dist);
 | |
| }
 | |
| 
 | |
| MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg,
 | |
|                                                          MachineBasicBlock *MBB,
 | |
|                                                          unsigned Dist) {
 | |
|   unsigned LastUseDist = 0;
 | |
|   MachineInstr *LastUse = 0;
 | |
|   for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
 | |
|          E = MRI->reg_end(); I != E; ++I) {
 | |
|     MachineOperand &MO = I.getOperand();
 | |
|     MachineInstr *MI = MO.getParent();
 | |
|     if (MI->getParent() != MBB || MI->isDebugValue())
 | |
|       continue;
 | |
|     DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
 | |
|     if (DI == DistanceMap.end())
 | |
|       continue;
 | |
|     if (DI->second >= Dist)
 | |
|       continue;
 | |
| 
 | |
|     if (MO.isUse() && DI->second > LastUseDist) {
 | |
|       LastUse = DI->first;
 | |
|       LastUseDist = DI->second;
 | |
|     }
 | |
|   }
 | |
|   return LastUse;
 | |
| }
 | |
| 
 | |
| /// isCopyToReg - Return true if the specified MI is a copy instruction or
 | |
| /// a extract_subreg instruction. It also returns the source and destination
 | |
| /// registers and whether they are physical registers by reference.
 | |
| static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
 | |
|                         unsigned &SrcReg, unsigned &DstReg,
 | |
|                         bool &IsSrcPhys, bool &IsDstPhys) {
 | |
|   SrcReg = 0;
 | |
|   DstReg = 0;
 | |
|   if (MI.isCopy()) {
 | |
|     DstReg = MI.getOperand(0).getReg();
 | |
|     SrcReg = MI.getOperand(1).getReg();
 | |
|   } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
 | |
|     DstReg = MI.getOperand(0).getReg();
 | |
|     SrcReg = MI.getOperand(2).getReg();
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
 | |
|   IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isKilled - Test if the given register value, which is used by the given
 | |
| /// instruction, is killed by the given instruction. This looks through
 | |
| /// coalescable copies to see if the original value is potentially not killed.
 | |
| ///
 | |
| /// For example, in this code:
 | |
| ///
 | |
| ///   %reg1034 = copy %reg1024
 | |
| ///   %reg1035 = copy %reg1025<kill>
 | |
| ///   %reg1036 = add %reg1034<kill>, %reg1035<kill>
 | |
| ///
 | |
| /// %reg1034 is not considered to be killed, since it is copied from a
 | |
| /// register which is not killed. Treating it as not killed lets the
 | |
| /// normal heuristics commute the (two-address) add, which lets
 | |
| /// coalescing eliminate the extra copy.
 | |
| ///
 | |
| static bool isKilled(MachineInstr &MI, unsigned Reg,
 | |
|                      const MachineRegisterInfo *MRI,
 | |
|                      const TargetInstrInfo *TII) {
 | |
|   MachineInstr *DefMI = &MI;
 | |
|   for (;;) {
 | |
|     if (!DefMI->killsRegister(Reg))
 | |
|       return false;
 | |
|     if (TargetRegisterInfo::isPhysicalRegister(Reg))
 | |
|       return true;
 | |
|     MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
 | |
|     // If there are multiple defs, we can't do a simple analysis, so just
 | |
|     // go with what the kill flag says.
 | |
|     if (llvm::next(Begin) != MRI->def_end())
 | |
|       return true;
 | |
|     DefMI = &*Begin;
 | |
|     bool IsSrcPhys, IsDstPhys;
 | |
|     unsigned SrcReg,  DstReg;
 | |
|     // If the def is something other than a copy, then it isn't going to
 | |
|     // be coalesced, so follow the kill flag.
 | |
|     if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
 | |
|       return true;
 | |
|     Reg = SrcReg;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isTwoAddrUse - Return true if the specified MI uses the specified register
 | |
| /// as a two-address use. If so, return the destination register by reference.
 | |
| static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
 | |
|   const TargetInstrDesc &TID = MI.getDesc();
 | |
|   unsigned NumOps = MI.isInlineAsm() ? MI.getNumOperands():TID.getNumOperands();
 | |
|   for (unsigned i = 0; i != NumOps; ++i) {
 | |
|     const MachineOperand &MO = MI.getOperand(i);
 | |
|     if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
 | |
|       continue;
 | |
|     unsigned ti;
 | |
|     if (MI.isRegTiedToDefOperand(i, &ti)) {
 | |
|       DstReg = MI.getOperand(ti).getReg();
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// findOnlyInterestingUse - Given a register, if has a single in-basic block
 | |
| /// use, return the use instruction if it's a copy or a two-address use.
 | |
| static
 | |
| MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
 | |
|                                      MachineRegisterInfo *MRI,
 | |
|                                      const TargetInstrInfo *TII,
 | |
|                                      bool &IsCopy,
 | |
|                                      unsigned &DstReg, bool &IsDstPhys) {
 | |
|   if (!MRI->hasOneNonDBGUse(Reg))
 | |
|     // None or more than one use.
 | |
|     return 0;
 | |
|   MachineInstr &UseMI = *MRI->use_nodbg_begin(Reg);
 | |
|   if (UseMI.getParent() != MBB)
 | |
|     return 0;
 | |
|   unsigned SrcReg;
 | |
|   bool IsSrcPhys;
 | |
|   if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
 | |
|     IsCopy = true;
 | |
|     return &UseMI;
 | |
|   }
 | |
|   IsDstPhys = false;
 | |
|   if (isTwoAddrUse(UseMI, Reg, DstReg)) {
 | |
|     IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
 | |
|     return &UseMI;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// getMappedReg - Return the physical register the specified virtual register
 | |
| /// might be mapped to.
 | |
| static unsigned
 | |
| getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
 | |
|   while (TargetRegisterInfo::isVirtualRegister(Reg))  {
 | |
|     DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
 | |
|     if (SI == RegMap.end())
 | |
|       return 0;
 | |
|     Reg = SI->second;
 | |
|   }
 | |
|   if (TargetRegisterInfo::isPhysicalRegister(Reg))
 | |
|     return Reg;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// regsAreCompatible - Return true if the two registers are equal or aliased.
 | |
| ///
 | |
| static bool
 | |
| regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
 | |
|   if (RegA == RegB)
 | |
|     return true;
 | |
|   if (!RegA || !RegB)
 | |
|     return false;
 | |
|   return TRI->regsOverlap(RegA, RegB);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isProfitableToReMat - Return true if it's potentially profitable to commute
 | |
| /// the two-address instruction that's being processed.
 | |
| bool
 | |
| TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
 | |
|                                        MachineInstr *MI, MachineBasicBlock *MBB,
 | |
|                                        unsigned Dist) {
 | |
|   // Determine if it's profitable to commute this two address instruction. In
 | |
|   // general, we want no uses between this instruction and the definition of
 | |
|   // the two-address register.
 | |
|   // e.g.
 | |
|   // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
 | |
|   // %reg1029<def> = MOV8rr %reg1028
 | |
|   // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
 | |
|   // insert => %reg1030<def> = MOV8rr %reg1028
 | |
|   // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
 | |
|   // In this case, it might not be possible to coalesce the second MOV8rr
 | |
|   // instruction if the first one is coalesced. So it would be profitable to
 | |
|   // commute it:
 | |
|   // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
 | |
|   // %reg1029<def> = MOV8rr %reg1028
 | |
|   // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
 | |
|   // insert => %reg1030<def> = MOV8rr %reg1029
 | |
|   // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>  
 | |
| 
 | |
|   if (!MI->killsRegister(regC))
 | |
|     return false;
 | |
| 
 | |
|   // Ok, we have something like:
 | |
|   // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
 | |
|   // let's see if it's worth commuting it.
 | |
| 
 | |
|   // Look for situations like this:
 | |
|   // %reg1024<def> = MOV r1
 | |
|   // %reg1025<def> = MOV r0
 | |
|   // %reg1026<def> = ADD %reg1024, %reg1025
 | |
|   // r0            = MOV %reg1026
 | |
|   // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
 | |
|   unsigned FromRegB = getMappedReg(regB, SrcRegMap);
 | |
|   unsigned FromRegC = getMappedReg(regC, SrcRegMap);
 | |
|   unsigned ToRegB = getMappedReg(regB, DstRegMap);
 | |
|   unsigned ToRegC = getMappedReg(regC, DstRegMap);
 | |
|   if ((FromRegB && ToRegB && !regsAreCompatible(FromRegB, ToRegB, TRI)) &&
 | |
|       ((!FromRegC && !ToRegC) ||
 | |
|        regsAreCompatible(FromRegB, ToRegC, TRI) ||
 | |
|        regsAreCompatible(FromRegC, ToRegB, TRI)))
 | |
|     return true;
 | |
| 
 | |
|   // If there is a use of regC between its last def (could be livein) and this
 | |
|   // instruction, then bail.
 | |
|   unsigned LastDefC = 0;
 | |
|   if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC))
 | |
|     return false;
 | |
| 
 | |
|   // If there is a use of regB between its last def (could be livein) and this
 | |
|   // instruction, then go ahead and make this transformation.
 | |
|   unsigned LastDefB = 0;
 | |
|   if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB))
 | |
|     return true;
 | |
| 
 | |
|   // Since there are no intervening uses for both registers, then commute
 | |
|   // if the def of regC is closer. Its live interval is shorter.
 | |
|   return LastDefB && LastDefC && LastDefC > LastDefB;
 | |
| }
 | |
| 
 | |
| /// CommuteInstruction - Commute a two-address instruction and update the basic
 | |
| /// block, distance map, and live variables if needed. Return true if it is
 | |
| /// successful.
 | |
| bool
 | |
| TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
 | |
|                                MachineFunction::iterator &mbbi,
 | |
|                                unsigned RegB, unsigned RegC, unsigned Dist) {
 | |
|   MachineInstr *MI = mi;
 | |
|   DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI);
 | |
|   MachineInstr *NewMI = TII->commuteInstruction(MI);
 | |
| 
 | |
|   if (NewMI == 0) {
 | |
|     DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
 | |
|   // If the instruction changed to commute it, update livevar.
 | |
|   if (NewMI != MI) {
 | |
|     if (LV)
 | |
|       // Update live variables
 | |
|       LV->replaceKillInstruction(RegC, MI, NewMI);
 | |
| 
 | |
|     mbbi->insert(mi, NewMI);           // Insert the new inst
 | |
|     mbbi->erase(mi);                   // Nuke the old inst.
 | |
|     mi = NewMI;
 | |
|     DistanceMap.insert(std::make_pair(NewMI, Dist));
 | |
|   }
 | |
| 
 | |
|   // Update source register map.
 | |
|   unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
 | |
|   if (FromRegC) {
 | |
|     unsigned RegA = MI->getOperand(0).getReg();
 | |
|     SrcRegMap[RegA] = FromRegC;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isProfitableToConv3Addr - Return true if it is profitable to convert the
 | |
| /// given 2-address instruction to a 3-address one.
 | |
| bool
 | |
| TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){
 | |
|   // Look for situations like this:
 | |
|   // %reg1024<def> = MOV r1
 | |
|   // %reg1025<def> = MOV r0
 | |
|   // %reg1026<def> = ADD %reg1024, %reg1025
 | |
|   // r2            = MOV %reg1026
 | |
|   // Turn ADD into a 3-address instruction to avoid a copy.
 | |
|   unsigned FromRegB = getMappedReg(RegB, SrcRegMap);
 | |
|   if (!FromRegB)
 | |
|     return false;
 | |
|   unsigned ToRegA = getMappedReg(RegA, DstRegMap);
 | |
|   return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
 | |
| }
 | |
| 
 | |
| /// ConvertInstTo3Addr - Convert the specified two-address instruction into a
 | |
| /// three address one. Return true if this transformation was successful.
 | |
| bool
 | |
| TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
 | |
|                                               MachineBasicBlock::iterator &nmi,
 | |
|                                               MachineFunction::iterator &mbbi,
 | |
|                                               unsigned RegA, unsigned RegB,
 | |
|                                               unsigned Dist) {
 | |
|   MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
 | |
|   if (NewMI) {
 | |
|     DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
 | |
|     DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI);
 | |
|     bool Sunk = false;
 | |
| 
 | |
|     if (NewMI->findRegisterUseOperand(RegB, false, TRI))
 | |
|       // FIXME: Temporary workaround. If the new instruction doesn't
 | |
|       // uses RegB, convertToThreeAddress must have created more
 | |
|       // then one instruction.
 | |
|       Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi);
 | |
| 
 | |
|     mbbi->erase(mi); // Nuke the old inst.
 | |
| 
 | |
|     if (!Sunk) {
 | |
|       DistanceMap.insert(std::make_pair(NewMI, Dist));
 | |
|       mi = NewMI;
 | |
|       nmi = llvm::next(mi);
 | |
|     }
 | |
| 
 | |
|     // Update source and destination register maps.
 | |
|     SrcRegMap.erase(RegA);
 | |
|     DstRegMap.erase(RegB);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ScanUses - Scan forward recursively for only uses, update maps if the use
 | |
| /// is a copy or a two-address instruction.
 | |
| void
 | |
| TwoAddressInstructionPass::ScanUses(unsigned DstReg, MachineBasicBlock *MBB,
 | |
|                                     SmallPtrSet<MachineInstr*, 8> &Processed) {
 | |
|   SmallVector<unsigned, 4> VirtRegPairs;
 | |
|   bool IsDstPhys;
 | |
|   bool IsCopy = false;
 | |
|   unsigned NewReg = 0;
 | |
|   unsigned Reg = DstReg;
 | |
|   while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
 | |
|                                                       NewReg, IsDstPhys)) {
 | |
|     if (IsCopy && !Processed.insert(UseMI))
 | |
|       break;
 | |
| 
 | |
|     DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
 | |
|     if (DI != DistanceMap.end())
 | |
|       // Earlier in the same MBB.Reached via a back edge.
 | |
|       break;
 | |
| 
 | |
|     if (IsDstPhys) {
 | |
|       VirtRegPairs.push_back(NewReg);
 | |
|       break;
 | |
|     }
 | |
|     bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second;
 | |
|     if (!isNew)
 | |
|       assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!");
 | |
|     VirtRegPairs.push_back(NewReg);
 | |
|     Reg = NewReg;
 | |
|   }
 | |
| 
 | |
|   if (!VirtRegPairs.empty()) {
 | |
|     unsigned ToReg = VirtRegPairs.back();
 | |
|     VirtRegPairs.pop_back();
 | |
|     while (!VirtRegPairs.empty()) {
 | |
|       unsigned FromReg = VirtRegPairs.back();
 | |
|       VirtRegPairs.pop_back();
 | |
|       bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
 | |
|       if (!isNew)
 | |
|         assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
 | |
|       ToReg = FromReg;
 | |
|     }
 | |
|     bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
 | |
|     if (!isNew)
 | |
|       assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ProcessCopy - If the specified instruction is not yet processed, process it
 | |
| /// if it's a copy. For a copy instruction, we find the physical registers the
 | |
| /// source and destination registers might be mapped to. These are kept in
 | |
| /// point-to maps used to determine future optimizations. e.g.
 | |
| /// v1024 = mov r0
 | |
| /// v1025 = mov r1
 | |
| /// v1026 = add v1024, v1025
 | |
| /// r1    = mov r1026
 | |
| /// If 'add' is a two-address instruction, v1024, v1026 are both potentially
 | |
| /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
 | |
| /// potentially joined with r1 on the output side. It's worthwhile to commute
 | |
| /// 'add' to eliminate a copy.
 | |
| void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI,
 | |
|                                      MachineBasicBlock *MBB,
 | |
|                                      SmallPtrSet<MachineInstr*, 8> &Processed) {
 | |
|   if (Processed.count(MI))
 | |
|     return;
 | |
| 
 | |
|   bool IsSrcPhys, IsDstPhys;
 | |
|   unsigned SrcReg, DstReg;
 | |
|   if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
 | |
|     return;
 | |
| 
 | |
|   if (IsDstPhys && !IsSrcPhys)
 | |
|     DstRegMap.insert(std::make_pair(SrcReg, DstReg));
 | |
|   else if (!IsDstPhys && IsSrcPhys) {
 | |
|     bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
 | |
|     if (!isNew)
 | |
|       assert(SrcRegMap[DstReg] == SrcReg &&
 | |
|              "Can't map to two src physical registers!");
 | |
| 
 | |
|     ScanUses(DstReg, MBB, Processed);
 | |
|   }
 | |
| 
 | |
|   Processed.insert(MI);
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /// isSafeToDelete - If the specified instruction does not produce any side
 | |
| /// effects and all of its defs are dead, then it's safe to delete.
 | |
| static bool isSafeToDelete(MachineInstr *MI,
 | |
|                            const TargetInstrInfo *TII,
 | |
|                            SmallVector<unsigned, 4> &Kills) {
 | |
|   const TargetInstrDesc &TID = MI->getDesc();
 | |
|   if (TID.mayStore() || TID.isCall())
 | |
|     return false;
 | |
|   if (TID.isTerminator() || MI->hasUnmodeledSideEffects())
 | |
|     return false;
 | |
| 
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI->getOperand(i);
 | |
|     if (!MO.isReg())
 | |
|       continue;
 | |
|     if (MO.isDef() && !MO.isDead())
 | |
|       return false;
 | |
|     if (MO.isUse() && MO.isKill())
 | |
|       Kills.push_back(MO.getReg());
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// canUpdateDeletedKills - Check if all the registers listed in Kills are
 | |
| /// killed by instructions in MBB preceding the current instruction at
 | |
| /// position Dist.  If so, return true and record information about the
 | |
| /// preceding kills in NewKills.
 | |
| bool TwoAddressInstructionPass::
 | |
| canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
 | |
|                       SmallVector<NewKill, 4> &NewKills,
 | |
|                       MachineBasicBlock *MBB, unsigned Dist) {
 | |
|   while (!Kills.empty()) {
 | |
|     unsigned Kill = Kills.back();
 | |
|     Kills.pop_back();
 | |
|     if (TargetRegisterInfo::isPhysicalRegister(Kill))
 | |
|       return false;
 | |
| 
 | |
|     MachineInstr *LastKill = FindLastUseInMBB(Kill, MBB, Dist);
 | |
|     if (!LastKill)
 | |
|       return false;
 | |
| 
 | |
|     bool isModRef = LastKill->definesRegister(Kill);
 | |
|     NewKills.push_back(std::make_pair(std::make_pair(Kill, isModRef),
 | |
|                                       LastKill));
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// DeleteUnusedInstr - If an instruction with a tied register operand can
 | |
| /// be safely deleted, just delete it.
 | |
| bool
 | |
| TwoAddressInstructionPass::DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
 | |
|                                              MachineBasicBlock::iterator &nmi,
 | |
|                                              MachineFunction::iterator &mbbi,
 | |
|                                              unsigned Dist) {
 | |
|   // Check if the instruction has no side effects and if all its defs are dead.
 | |
|   SmallVector<unsigned, 4> Kills;
 | |
|   if (!isSafeToDelete(mi, TII, Kills))
 | |
|     return false;
 | |
| 
 | |
|   // If this instruction kills some virtual registers, we need to
 | |
|   // update the kill information. If it's not possible to do so,
 | |
|   // then bail out.
 | |
|   SmallVector<NewKill, 4> NewKills;
 | |
|   if (!canUpdateDeletedKills(Kills, NewKills, &*mbbi, Dist))
 | |
|     return false;
 | |
| 
 | |
|   if (LV) {
 | |
|     while (!NewKills.empty()) {
 | |
|       MachineInstr *NewKill = NewKills.back().second;
 | |
|       unsigned Kill = NewKills.back().first.first;
 | |
|       bool isDead = NewKills.back().first.second;
 | |
|       NewKills.pop_back();
 | |
|       if (LV->removeVirtualRegisterKilled(Kill, mi)) {
 | |
|         if (isDead)
 | |
|           LV->addVirtualRegisterDead(Kill, NewKill);
 | |
|         else
 | |
|           LV->addVirtualRegisterKilled(Kill, NewKill);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   mbbi->erase(mi); // Nuke the old inst.
 | |
|   mi = nmi;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// TryInstructionTransform - For the case where an instruction has a single
 | |
| /// pair of tied register operands, attempt some transformations that may
 | |
| /// either eliminate the tied operands or improve the opportunities for
 | |
| /// coalescing away the register copy.  Returns true if the tied operands
 | |
| /// are eliminated altogether.
 | |
| bool TwoAddressInstructionPass::
 | |
| TryInstructionTransform(MachineBasicBlock::iterator &mi,
 | |
|                         MachineBasicBlock::iterator &nmi,
 | |
|                         MachineFunction::iterator &mbbi,
 | |
|                         unsigned SrcIdx, unsigned DstIdx, unsigned Dist,
 | |
|                         SmallPtrSet<MachineInstr*, 8> &Processed) {
 | |
|   const TargetInstrDesc &TID = mi->getDesc();
 | |
|   unsigned regA = mi->getOperand(DstIdx).getReg();
 | |
|   unsigned regB = mi->getOperand(SrcIdx).getReg();
 | |
| 
 | |
|   assert(TargetRegisterInfo::isVirtualRegister(regB) &&
 | |
|          "cannot make instruction into two-address form");
 | |
| 
 | |
|   // If regA is dead and the instruction can be deleted, just delete
 | |
|   // it so it doesn't clobber regB.
 | |
|   bool regBKilled = isKilled(*mi, regB, MRI, TII);
 | |
|   if (!regBKilled && mi->getOperand(DstIdx).isDead() &&
 | |
|       DeleteUnusedInstr(mi, nmi, mbbi, Dist)) {
 | |
|     ++NumDeletes;
 | |
|     return true; // Done with this instruction.
 | |
|   }
 | |
| 
 | |
|   // Check if it is profitable to commute the operands.
 | |
|   unsigned SrcOp1, SrcOp2;
 | |
|   unsigned regC = 0;
 | |
|   unsigned regCIdx = ~0U;
 | |
|   bool TryCommute = false;
 | |
|   bool AggressiveCommute = false;
 | |
|   if (TID.isCommutable() && mi->getNumOperands() >= 3 &&
 | |
|       TII->findCommutedOpIndices(mi, SrcOp1, SrcOp2)) {
 | |
|     if (SrcIdx == SrcOp1)
 | |
|       regCIdx = SrcOp2;
 | |
|     else if (SrcIdx == SrcOp2)
 | |
|       regCIdx = SrcOp1;
 | |
| 
 | |
|     if (regCIdx != ~0U) {
 | |
|       regC = mi->getOperand(regCIdx).getReg();
 | |
|       if (!regBKilled && isKilled(*mi, regC, MRI, TII))
 | |
|         // If C dies but B does not, swap the B and C operands.
 | |
|         // This makes the live ranges of A and C joinable.
 | |
|         TryCommute = true;
 | |
|       else if (isProfitableToCommute(regB, regC, mi, mbbi, Dist)) {
 | |
|         TryCommute = true;
 | |
|         AggressiveCommute = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If it's profitable to commute, try to do so.
 | |
|   if (TryCommute && CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
 | |
|     ++NumCommuted;
 | |
|     if (AggressiveCommute)
 | |
|       ++NumAggrCommuted;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (TargetRegisterInfo::isVirtualRegister(regA))
 | |
|     ScanUses(regA, &*mbbi, Processed);
 | |
| 
 | |
|   if (TID.isConvertibleTo3Addr()) {
 | |
|     // This instruction is potentially convertible to a true
 | |
|     // three-address instruction.  Check if it is profitable.
 | |
|     if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
 | |
|       // Try to convert it.
 | |
|       if (ConvertInstTo3Addr(mi, nmi, mbbi, regA, regB, Dist)) {
 | |
|         ++NumConvertedTo3Addr;
 | |
|         return true; // Done with this instruction.
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this is an instruction with a load folded into it, try unfolding
 | |
|   // the load, e.g. avoid this:
 | |
|   //   movq %rdx, %rcx
 | |
|   //   addq (%rax), %rcx
 | |
|   // in favor of this:
 | |
|   //   movq (%rax), %rcx
 | |
|   //   addq %rdx, %rcx
 | |
|   // because it's preferable to schedule a load than a register copy.
 | |
|   if (TID.mayLoad() && !regBKilled) {
 | |
|     // Determine if a load can be unfolded.
 | |
|     unsigned LoadRegIndex;
 | |
|     unsigned NewOpc =
 | |
|       TII->getOpcodeAfterMemoryUnfold(mi->getOpcode(),
 | |
|                                       /*UnfoldLoad=*/true,
 | |
|                                       /*UnfoldStore=*/false,
 | |
|                                       &LoadRegIndex);
 | |
|     if (NewOpc != 0) {
 | |
|       const TargetInstrDesc &UnfoldTID = TII->get(NewOpc);
 | |
|       if (UnfoldTID.getNumDefs() == 1) {
 | |
|         MachineFunction &MF = *mbbi->getParent();
 | |
| 
 | |
|         // Unfold the load.
 | |
|         DEBUG(dbgs() << "2addr:   UNFOLDING: " << *mi);
 | |
|         const TargetRegisterClass *RC =
 | |
|           UnfoldTID.OpInfo[LoadRegIndex].getRegClass(TRI);
 | |
|         unsigned Reg = MRI->createVirtualRegister(RC);
 | |
|         SmallVector<MachineInstr *, 2> NewMIs;
 | |
|         if (!TII->unfoldMemoryOperand(MF, mi, Reg,
 | |
|                                       /*UnfoldLoad=*/true,/*UnfoldStore=*/false,
 | |
|                                       NewMIs)) {
 | |
|           DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
 | |
|           return false;
 | |
|         }
 | |
|         assert(NewMIs.size() == 2 &&
 | |
|                "Unfolded a load into multiple instructions!");
 | |
|         // The load was previously folded, so this is the only use.
 | |
|         NewMIs[1]->addRegisterKilled(Reg, TRI);
 | |
| 
 | |
|         // Tentatively insert the instructions into the block so that they
 | |
|         // look "normal" to the transformation logic.
 | |
|         mbbi->insert(mi, NewMIs[0]);
 | |
|         mbbi->insert(mi, NewMIs[1]);
 | |
| 
 | |
|         DEBUG(dbgs() << "2addr:    NEW LOAD: " << *NewMIs[0]
 | |
|                      << "2addr:    NEW INST: " << *NewMIs[1]);
 | |
| 
 | |
|         // Transform the instruction, now that it no longer has a load.
 | |
|         unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
 | |
|         unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
 | |
|         MachineBasicBlock::iterator NewMI = NewMIs[1];
 | |
|         bool TransformSuccess =
 | |
|           TryInstructionTransform(NewMI, mi, mbbi,
 | |
|                                   NewSrcIdx, NewDstIdx, Dist, Processed);
 | |
|         if (TransformSuccess ||
 | |
|             NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
 | |
|           // Success, or at least we made an improvement. Keep the unfolded
 | |
|           // instructions and discard the original.
 | |
|           if (LV) {
 | |
|             for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
 | |
|               MachineOperand &MO = mi->getOperand(i);
 | |
|               if (MO.isReg() && 
 | |
|                   TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
 | |
|                 if (MO.isUse()) {
 | |
|                   if (MO.isKill()) {
 | |
|                     if (NewMIs[0]->killsRegister(MO.getReg()))
 | |
|                       LV->replaceKillInstruction(MO.getReg(), mi, NewMIs[0]);
 | |
|                     else {
 | |
|                       assert(NewMIs[1]->killsRegister(MO.getReg()) &&
 | |
|                              "Kill missing after load unfold!");
 | |
|                       LV->replaceKillInstruction(MO.getReg(), mi, NewMIs[1]);
 | |
|                     }
 | |
|                   }
 | |
|                 } else if (LV->removeVirtualRegisterDead(MO.getReg(), mi)) {
 | |
|                   if (NewMIs[1]->registerDefIsDead(MO.getReg()))
 | |
|                     LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]);
 | |
|                   else {
 | |
|                     assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
 | |
|                            "Dead flag missing after load unfold!");
 | |
|                     LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]);
 | |
|                   }
 | |
|                 }
 | |
|               }
 | |
|             }
 | |
|             LV->addVirtualRegisterKilled(Reg, NewMIs[1]);
 | |
|           }
 | |
|           mi->eraseFromParent();
 | |
|           mi = NewMIs[1];
 | |
|           if (TransformSuccess)
 | |
|             return true;
 | |
|         } else {
 | |
|           // Transforming didn't eliminate the tie and didn't lead to an
 | |
|           // improvement. Clean up the unfolded instructions and keep the
 | |
|           // original.
 | |
|           DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
 | |
|           NewMIs[0]->eraseFromParent();
 | |
|           NewMIs[1]->eraseFromParent();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// runOnMachineFunction - Reduce two-address instructions to two operands.
 | |
| ///
 | |
| bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
 | |
|   DEBUG(dbgs() << "Machine Function\n");
 | |
|   const TargetMachine &TM = MF.getTarget();
 | |
|   MRI = &MF.getRegInfo();
 | |
|   TII = TM.getInstrInfo();
 | |
|   TRI = TM.getRegisterInfo();
 | |
|   LV = getAnalysisIfAvailable<LiveVariables>();
 | |
|   AA = &getAnalysis<AliasAnalysis>();
 | |
| 
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
 | |
|   DEBUG(dbgs() << "********** Function: " 
 | |
|         << MF.getFunction()->getName() << '\n');
 | |
| 
 | |
|   // ReMatRegs - Keep track of the registers whose def's are remat'ed.
 | |
|   BitVector ReMatRegs(MRI->getNumVirtRegs());
 | |
| 
 | |
|   typedef DenseMap<unsigned, SmallVector<std::pair<unsigned, unsigned>, 4> >
 | |
|     TiedOperandMap;
 | |
|   TiedOperandMap TiedOperands(4);
 | |
| 
 | |
|   SmallPtrSet<MachineInstr*, 8> Processed;
 | |
|   for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
 | |
|        mbbi != mbbe; ++mbbi) {
 | |
|     unsigned Dist = 0;
 | |
|     DistanceMap.clear();
 | |
|     SrcRegMap.clear();
 | |
|     DstRegMap.clear();
 | |
|     Processed.clear();
 | |
|     for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
 | |
|          mi != me; ) {
 | |
|       MachineBasicBlock::iterator nmi = llvm::next(mi);
 | |
|       if (mi->isDebugValue()) {
 | |
|         mi = nmi;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Remember REG_SEQUENCE instructions, we'll deal with them later.
 | |
|       if (mi->isRegSequence())
 | |
|         RegSequences.push_back(&*mi);
 | |
| 
 | |
|       const TargetInstrDesc &TID = mi->getDesc();
 | |
|       bool FirstTied = true;
 | |
| 
 | |
|       DistanceMap.insert(std::make_pair(mi, ++Dist));
 | |
| 
 | |
|       ProcessCopy(&*mi, &*mbbi, Processed);
 | |
| 
 | |
|       // First scan through all the tied register uses in this instruction
 | |
|       // and record a list of pairs of tied operands for each register.
 | |
|       unsigned NumOps = mi->isInlineAsm()
 | |
|         ? mi->getNumOperands() : TID.getNumOperands();
 | |
|       for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
 | |
|         unsigned DstIdx = 0;
 | |
|         if (!mi->isRegTiedToDefOperand(SrcIdx, &DstIdx))
 | |
|           continue;
 | |
| 
 | |
|         if (FirstTied) {
 | |
|           FirstTied = false;
 | |
|           ++NumTwoAddressInstrs;
 | |
|           DEBUG(dbgs() << '\t' << *mi);
 | |
|         }
 | |
| 
 | |
|         assert(mi->getOperand(SrcIdx).isReg() &&
 | |
|                mi->getOperand(SrcIdx).getReg() &&
 | |
|                mi->getOperand(SrcIdx).isUse() &&
 | |
|                "two address instruction invalid");
 | |
| 
 | |
|         unsigned regB = mi->getOperand(SrcIdx).getReg();
 | |
|         TiedOperandMap::iterator OI = TiedOperands.find(regB);
 | |
|         if (OI == TiedOperands.end()) {
 | |
|           SmallVector<std::pair<unsigned, unsigned>, 4> TiedPair;
 | |
|           OI = TiedOperands.insert(std::make_pair(regB, TiedPair)).first;
 | |
|         }
 | |
|         OI->second.push_back(std::make_pair(SrcIdx, DstIdx));
 | |
|       }
 | |
| 
 | |
|       // Now iterate over the information collected above.
 | |
|       for (TiedOperandMap::iterator OI = TiedOperands.begin(),
 | |
|              OE = TiedOperands.end(); OI != OE; ++OI) {
 | |
|         SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs = OI->second;
 | |
| 
 | |
|         // If the instruction has a single pair of tied operands, try some
 | |
|         // transformations that may either eliminate the tied operands or
 | |
|         // improve the opportunities for coalescing away the register copy.
 | |
|         if (TiedOperands.size() == 1 && TiedPairs.size() == 1) {
 | |
|           unsigned SrcIdx = TiedPairs[0].first;
 | |
|           unsigned DstIdx = TiedPairs[0].second;
 | |
| 
 | |
|           // If the registers are already equal, nothing needs to be done.
 | |
|           if (mi->getOperand(SrcIdx).getReg() ==
 | |
|               mi->getOperand(DstIdx).getReg())
 | |
|             break; // Done with this instruction.
 | |
| 
 | |
|           if (TryInstructionTransform(mi, nmi, mbbi, SrcIdx, DstIdx, Dist,
 | |
|                                       Processed))
 | |
|             break; // The tied operands have been eliminated.
 | |
|         }
 | |
| 
 | |
|         bool IsEarlyClobber = false;
 | |
|         bool RemovedKillFlag = false;
 | |
|         bool AllUsesCopied = true;
 | |
|         unsigned LastCopiedReg = 0;
 | |
|         unsigned regB = OI->first;
 | |
|         for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
 | |
|           unsigned SrcIdx = TiedPairs[tpi].first;
 | |
|           unsigned DstIdx = TiedPairs[tpi].second;
 | |
| 
 | |
|           const MachineOperand &DstMO = mi->getOperand(DstIdx);
 | |
|           unsigned regA = DstMO.getReg();
 | |
|           IsEarlyClobber |= DstMO.isEarlyClobber();
 | |
| 
 | |
|           // Grab regB from the instruction because it may have changed if the
 | |
|           // instruction was commuted.
 | |
|           regB = mi->getOperand(SrcIdx).getReg();
 | |
| 
 | |
|           if (regA == regB) {
 | |
|             // The register is tied to multiple destinations (or else we would
 | |
|             // not have continued this far), but this use of the register
 | |
|             // already matches the tied destination.  Leave it.
 | |
|             AllUsesCopied = false;
 | |
|             continue;
 | |
|           }
 | |
|           LastCopiedReg = regA;
 | |
| 
 | |
|           assert(TargetRegisterInfo::isVirtualRegister(regB) &&
 | |
|                  "cannot make instruction into two-address form");
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|           // First, verify that we don't have a use of "a" in the instruction
 | |
|           // (a = b + a for example) because our transformation will not
 | |
|           // work. This should never occur because we are in SSA form.
 | |
|           for (unsigned i = 0; i != mi->getNumOperands(); ++i)
 | |
|             assert(i == DstIdx ||
 | |
|                    !mi->getOperand(i).isReg() ||
 | |
|                    mi->getOperand(i).getReg() != regA);
 | |
| #endif
 | |
| 
 | |
|           // Emit a copy or rematerialize the definition.
 | |
|           const TargetRegisterClass *rc = MRI->getRegClass(regB);
 | |
|           MachineInstr *DefMI = MRI->getVRegDef(regB);
 | |
|           // If it's safe and profitable, remat the definition instead of
 | |
|           // copying it.
 | |
|           if (DefMI &&
 | |
|               DefMI->getDesc().isAsCheapAsAMove() &&
 | |
|               DefMI->isSafeToReMat(TII, AA, regB) &&
 | |
|               isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){
 | |
|             DEBUG(dbgs() << "2addr: REMATTING : " << *DefMI << "\n");
 | |
|             unsigned regASubIdx = mi->getOperand(DstIdx).getSubReg();
 | |
|             TII->reMaterialize(*mbbi, mi, regA, regASubIdx, DefMI, *TRI);
 | |
|             ReMatRegs.set(TargetRegisterInfo::virtReg2Index(regB));
 | |
|             ++NumReMats;
 | |
|           } else {
 | |
|             BuildMI(*mbbi, mi, mi->getDebugLoc(), TII->get(TargetOpcode::COPY),
 | |
|                     regA).addReg(regB);
 | |
|           }
 | |
| 
 | |
|           MachineBasicBlock::iterator prevMI = prior(mi);
 | |
|           // Update DistanceMap.
 | |
|           DistanceMap.insert(std::make_pair(prevMI, Dist));
 | |
|           DistanceMap[mi] = ++Dist;
 | |
| 
 | |
|           DEBUG(dbgs() << "\t\tprepend:\t" << *prevMI);
 | |
| 
 | |
|           MachineOperand &MO = mi->getOperand(SrcIdx);
 | |
|           assert(MO.isReg() && MO.getReg() == regB && MO.isUse() &&
 | |
|                  "inconsistent operand info for 2-reg pass");
 | |
|           if (MO.isKill()) {
 | |
|             MO.setIsKill(false);
 | |
|             RemovedKillFlag = true;
 | |
|           }
 | |
|           MO.setReg(regA);
 | |
|         }
 | |
| 
 | |
|         if (AllUsesCopied) {
 | |
|           if (!IsEarlyClobber) {
 | |
|             // Replace other (un-tied) uses of regB with LastCopiedReg.
 | |
|             for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
 | |
|               MachineOperand &MO = mi->getOperand(i);
 | |
|               if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
 | |
|                 if (MO.isKill()) {
 | |
|                   MO.setIsKill(false);
 | |
|                   RemovedKillFlag = true;
 | |
|                 }
 | |
|                 MO.setReg(LastCopiedReg);
 | |
|               }
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           // Update live variables for regB.
 | |
|           if (RemovedKillFlag && LV && LV->getVarInfo(regB).removeKill(mi))
 | |
|             LV->addVirtualRegisterKilled(regB, prior(mi));
 | |
| 
 | |
|         } else if (RemovedKillFlag) {
 | |
|           // Some tied uses of regB matched their destination registers, so
 | |
|           // regB is still used in this instruction, but a kill flag was
 | |
|           // removed from a different tied use of regB, so now we need to add
 | |
|           // a kill flag to one of the remaining uses of regB.
 | |
|           for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
 | |
|             MachineOperand &MO = mi->getOperand(i);
 | |
|             if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
 | |
|               MO.setIsKill(true);
 | |
|               break;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // Schedule the source copy / remat inserted to form two-address
 | |
|         // instruction. FIXME: Does it matter the distance map may not be
 | |
|         // accurate after it's scheduled?
 | |
|         TII->scheduleTwoAddrSource(prior(mi), mi, *TRI);
 | |
| 
 | |
|         MadeChange = true;
 | |
| 
 | |
|         DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
 | |
|       }
 | |
| 
 | |
|       // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
 | |
|       if (mi->isInsertSubreg()) {
 | |
|         // From %reg = INSERT_SUBREG %reg, %subreg, subidx
 | |
|         // To   %reg:subidx = COPY %subreg
 | |
|         unsigned SubIdx = mi->getOperand(3).getImm();
 | |
|         mi->RemoveOperand(3);
 | |
|         assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
 | |
|         mi->getOperand(0).setSubReg(SubIdx);
 | |
|         mi->RemoveOperand(1);
 | |
|         mi->setDesc(TII->get(TargetOpcode::COPY));
 | |
|         DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
 | |
|       }
 | |
| 
 | |
|       // Clear TiedOperands here instead of at the top of the loop
 | |
|       // since most instructions do not have tied operands.
 | |
|       TiedOperands.clear();
 | |
|       mi = nmi;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Some remat'ed instructions are dead.
 | |
|   for (int i = ReMatRegs.find_first(); i != -1; i = ReMatRegs.find_next(i)) {
 | |
|     unsigned VReg = TargetRegisterInfo::index2VirtReg(i);
 | |
|     if (MRI->use_nodbg_empty(VReg)) {
 | |
|       MachineInstr *DefMI = MRI->getVRegDef(VReg);
 | |
|       DefMI->eraseFromParent();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Eliminate REG_SEQUENCE instructions. Their whole purpose was to preseve
 | |
|   // SSA form. It's now safe to de-SSA.
 | |
|   MadeChange |= EliminateRegSequences();
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| static void UpdateRegSequenceSrcs(unsigned SrcReg,
 | |
|                                   unsigned DstReg, unsigned SubIdx,
 | |
|                                   MachineRegisterInfo *MRI,
 | |
|                                   const TargetRegisterInfo &TRI) {
 | |
|   for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
 | |
|          RE = MRI->reg_end(); RI != RE; ) {
 | |
|     MachineOperand &MO = RI.getOperand();
 | |
|     ++RI;
 | |
|     MO.substVirtReg(DstReg, SubIdx, TRI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CoalesceExtSubRegs - If a number of sources of the REG_SEQUENCE are
 | |
| /// EXTRACT_SUBREG from the same register and to the same virtual register
 | |
| /// with different sub-register indices, attempt to combine the
 | |
| /// EXTRACT_SUBREGs and pre-coalesce them. e.g.
 | |
| /// %reg1026<def> = VLDMQ %reg1025<kill>, 260, pred:14, pred:%reg0
 | |
| /// %reg1029:6<def> = EXTRACT_SUBREG %reg1026, 6
 | |
| /// %reg1029:5<def> = EXTRACT_SUBREG %reg1026<kill>, 5
 | |
| /// Since D subregs 5, 6 can combine to a Q register, we can coalesce
 | |
| /// reg1026 to reg1029.
 | |
| void
 | |
| TwoAddressInstructionPass::CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs,
 | |
|                                               unsigned DstReg) {
 | |
|   SmallSet<unsigned, 4> Seen;
 | |
|   for (unsigned i = 0, e = Srcs.size(); i != e; ++i) {
 | |
|     unsigned SrcReg = Srcs[i];
 | |
|     if (!Seen.insert(SrcReg))
 | |
|       continue;
 | |
| 
 | |
|     // Check that the instructions are all in the same basic block.
 | |
|     MachineInstr *SrcDefMI = MRI->getVRegDef(SrcReg);
 | |
|     MachineInstr *DstDefMI = MRI->getVRegDef(DstReg);
 | |
|     if (SrcDefMI->getParent() != DstDefMI->getParent())
 | |
|       continue;
 | |
| 
 | |
|     // If there are no other uses than copies which feed into
 | |
|     // the reg_sequence, then we might be able to coalesce them.
 | |
|     bool CanCoalesce = true;
 | |
|     SmallVector<unsigned, 4> SrcSubIndices, DstSubIndices;
 | |
|     for (MachineRegisterInfo::use_nodbg_iterator
 | |
|            UI = MRI->use_nodbg_begin(SrcReg),
 | |
|            UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
 | |
|       MachineInstr *UseMI = &*UI;
 | |
|       if (!UseMI->isCopy() || UseMI->getOperand(0).getReg() != DstReg) {
 | |
|         CanCoalesce = false;
 | |
|         break;
 | |
|       }
 | |
|       SrcSubIndices.push_back(UseMI->getOperand(1).getSubReg());
 | |
|       DstSubIndices.push_back(UseMI->getOperand(0).getSubReg());
 | |
|     }
 | |
| 
 | |
|     if (!CanCoalesce || SrcSubIndices.size() < 2)
 | |
|       continue;
 | |
| 
 | |
|     // Check that the source subregisters can be combined.
 | |
|     std::sort(SrcSubIndices.begin(), SrcSubIndices.end());
 | |
|     unsigned NewSrcSubIdx = 0;
 | |
|     if (!TRI->canCombineSubRegIndices(MRI->getRegClass(SrcReg), SrcSubIndices,
 | |
|                                       NewSrcSubIdx))
 | |
|       continue;
 | |
| 
 | |
|     // Check that the destination subregisters can also be combined.
 | |
|     std::sort(DstSubIndices.begin(), DstSubIndices.end());
 | |
|     unsigned NewDstSubIdx = 0;
 | |
|     if (!TRI->canCombineSubRegIndices(MRI->getRegClass(DstReg), DstSubIndices,
 | |
|                                       NewDstSubIdx))
 | |
|       continue;
 | |
| 
 | |
|     // If neither source nor destination can be combined to the full register,
 | |
|     // just give up.  This could be improved if it ever matters.
 | |
|     if (NewSrcSubIdx != 0 && NewDstSubIdx != 0)
 | |
|       continue;
 | |
| 
 | |
|     // Now that we know that all the uses are extract_subregs and that those
 | |
|     // subregs can somehow be combined, scan all the extract_subregs again to
 | |
|     // make sure the subregs are in the right order and can be composed.
 | |
|     MachineInstr *SomeMI = 0;
 | |
|     CanCoalesce = true;
 | |
|     for (MachineRegisterInfo::use_nodbg_iterator
 | |
|            UI = MRI->use_nodbg_begin(SrcReg),
 | |
|            UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
 | |
|       MachineInstr *UseMI = &*UI;
 | |
|       assert(UseMI->isCopy());
 | |
|       unsigned DstSubIdx = UseMI->getOperand(0).getSubReg();
 | |
|       unsigned SrcSubIdx = UseMI->getOperand(1).getSubReg();
 | |
|       assert(DstSubIdx != 0 && "missing subreg from RegSequence elimination");
 | |
|       if ((NewDstSubIdx == 0 &&
 | |
|            TRI->composeSubRegIndices(NewSrcSubIdx, DstSubIdx) != SrcSubIdx) ||
 | |
|           (NewSrcSubIdx == 0 &&
 | |
|            TRI->composeSubRegIndices(NewDstSubIdx, SrcSubIdx) != DstSubIdx)) {
 | |
|         CanCoalesce = false;
 | |
|         break;
 | |
|       }
 | |
|       // Keep track of one of the uses.
 | |
|       SomeMI = UseMI;
 | |
|     }
 | |
|     if (!CanCoalesce)
 | |
|       continue;
 | |
| 
 | |
|     // Insert a copy to replace the original.
 | |
|     MachineInstr *CopyMI = BuildMI(*SomeMI->getParent(), SomeMI,
 | |
|                                    SomeMI->getDebugLoc(),
 | |
|                                    TII->get(TargetOpcode::COPY))
 | |
|       .addReg(DstReg, RegState::Define, NewDstSubIdx)
 | |
|       .addReg(SrcReg, 0, NewSrcSubIdx);
 | |
| 
 | |
|     // Remove all the old extract instructions.
 | |
|     for (MachineRegisterInfo::use_nodbg_iterator
 | |
|            UI = MRI->use_nodbg_begin(SrcReg),
 | |
|            UE = MRI->use_nodbg_end(); UI != UE; ) {
 | |
|       MachineInstr *UseMI = &*UI;
 | |
|       ++UI;
 | |
|       if (UseMI == CopyMI)
 | |
|         continue;
 | |
|       assert(UseMI->isCopy());
 | |
|       // Move any kills to the new copy or extract instruction.
 | |
|       if (UseMI->getOperand(1).isKill()) {
 | |
|         CopyMI->getOperand(1).setIsKill();
 | |
|         if (LV)
 | |
|           // Update live variables
 | |
|           LV->replaceKillInstruction(SrcReg, UseMI, &*CopyMI);
 | |
|       }
 | |
|       UseMI->eraseFromParent();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool HasOtherRegSequenceUses(unsigned Reg, MachineInstr *RegSeq,
 | |
|                                     MachineRegisterInfo *MRI) {
 | |
|   for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
 | |
|          UE = MRI->use_end(); UI != UE; ++UI) {
 | |
|     MachineInstr *UseMI = &*UI;
 | |
|     if (UseMI != RegSeq && UseMI->isRegSequence())
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
 | |
| /// of the de-ssa process. This replaces sources of REG_SEQUENCE as
 | |
| /// sub-register references of the register defined by REG_SEQUENCE. e.g.
 | |
| ///
 | |
| /// %reg1029<def>, %reg1030<def> = VLD1q16 %reg1024<kill>, ...
 | |
| /// %reg1031<def> = REG_SEQUENCE %reg1029<kill>, 5, %reg1030<kill>, 6
 | |
| /// =>
 | |
| /// %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
 | |
| bool TwoAddressInstructionPass::EliminateRegSequences() {
 | |
|   if (RegSequences.empty())
 | |
|     return false;
 | |
| 
 | |
|   for (unsigned i = 0, e = RegSequences.size(); i != e; ++i) {
 | |
|     MachineInstr *MI = RegSequences[i];
 | |
|     unsigned DstReg = MI->getOperand(0).getReg();
 | |
|     if (MI->getOperand(0).getSubReg() ||
 | |
|         TargetRegisterInfo::isPhysicalRegister(DstReg) ||
 | |
|         !(MI->getNumOperands() & 1)) {
 | |
|       DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
 | |
|       llvm_unreachable(0);
 | |
|     }
 | |
| 
 | |
|     bool IsImpDef = true;
 | |
|     SmallVector<unsigned, 4> RealSrcs;
 | |
|     SmallSet<unsigned, 4> Seen;
 | |
|     for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
 | |
|       unsigned SrcReg = MI->getOperand(i).getReg();
 | |
|       unsigned SubIdx = MI->getOperand(i+1).getImm();
 | |
|       if (MI->getOperand(i).getSubReg() ||
 | |
|           TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
 | |
|         DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
 | |
|         llvm_unreachable(0);
 | |
|       }
 | |
| 
 | |
|       MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
 | |
|       if (DefMI->isImplicitDef()) {
 | |
|         DefMI->eraseFromParent();
 | |
|         continue;
 | |
|       }
 | |
|       IsImpDef = false;
 | |
| 
 | |
|       // Remember COPY sources. These might be candidate for coalescing.
 | |
|       if (DefMI->isCopy() && DefMI->getOperand(1).getSubReg())
 | |
|         RealSrcs.push_back(DefMI->getOperand(1).getReg());
 | |
| 
 | |
|       bool isKill = MI->getOperand(i).isKill();
 | |
|       if (!Seen.insert(SrcReg) || MI->getParent() != DefMI->getParent() ||
 | |
|           !isKill || HasOtherRegSequenceUses(SrcReg, MI, MRI) ||
 | |
|           !TRI->getMatchingSuperRegClass(MRI->getRegClass(DstReg),
 | |
|                                          MRI->getRegClass(SrcReg), SubIdx)) {
 | |
|         // REG_SEQUENCE cannot have duplicated operands, add a copy.
 | |
|         // Also add an copy if the source is live-in the block. We don't want
 | |
|         // to end up with a partial-redef of a livein, e.g.
 | |
|         // BB0:
 | |
|         // reg1051:10<def> =
 | |
|         // ...
 | |
|         // BB1:
 | |
|         // ... = reg1051:10
 | |
|         // BB2:
 | |
|         // reg1051:9<def> =
 | |
|         // LiveIntervalAnalysis won't like it.
 | |
|         //
 | |
|         // If the REG_SEQUENCE doesn't kill its source, keeping live variables
 | |
|         // correctly up to date becomes very difficult. Insert a copy.
 | |
| 
 | |
|         // Defer any kill flag to the last operand using SrcReg. Otherwise, we
 | |
|         // might insert a COPY that uses SrcReg after is was killed.
 | |
|         if (isKill)
 | |
|           for (unsigned j = i + 2; j < e; j += 2)
 | |
|             if (MI->getOperand(j).getReg() == SrcReg) {
 | |
|               MI->getOperand(j).setIsKill();
 | |
|               isKill = false;
 | |
|               break;
 | |
|             }
 | |
| 
 | |
|         MachineBasicBlock::iterator InsertLoc = MI;
 | |
|         MachineInstr *CopyMI = BuildMI(*MI->getParent(), InsertLoc,
 | |
|                                 MI->getDebugLoc(), TII->get(TargetOpcode::COPY))
 | |
|             .addReg(DstReg, RegState::Define, SubIdx)
 | |
|             .addReg(SrcReg, getKillRegState(isKill));
 | |
|         MI->getOperand(i).setReg(0);
 | |
|         if (LV && isKill)
 | |
|           LV->replaceKillInstruction(SrcReg, MI, CopyMI);
 | |
|         DEBUG(dbgs() << "Inserted: " << *CopyMI);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
 | |
|       unsigned SrcReg = MI->getOperand(i).getReg();
 | |
|       if (!SrcReg) continue;
 | |
|       unsigned SubIdx = MI->getOperand(i+1).getImm();
 | |
|       UpdateRegSequenceSrcs(SrcReg, DstReg, SubIdx, MRI, *TRI);
 | |
|     }
 | |
| 
 | |
|     if (IsImpDef) {
 | |
|       DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF");
 | |
|       MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
 | |
|       for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j)
 | |
|         MI->RemoveOperand(j);      
 | |
|     } else {
 | |
|       DEBUG(dbgs() << "Eliminated: " << *MI);
 | |
|       MI->eraseFromParent();
 | |
|     }
 | |
| 
 | |
|     // Try coalescing some EXTRACT_SUBREG instructions. This can create
 | |
|     // INSERT_SUBREG instructions that must have <undef> flags added by
 | |
|     // LiveIntervalAnalysis, so only run it when LiveVariables is available.
 | |
|     if (LV)
 | |
|       CoalesceExtSubRegs(RealSrcs, DstReg);
 | |
|   }
 | |
| 
 | |
|   RegSequences.clear();
 | |
|   return true;
 | |
| }
 |