mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	Updated test case and reverted change to the PerfectShuffle Table. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131529 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			573 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			573 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- PerfectShuffle.cpp - Perfect Shuffle Generator --------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file computes an optimal sequence of instructions for doing all shuffles
 | 
						|
// of two 4-element vectors.  With a release build and when configured to emit
 | 
						|
// an altivec instruction table, this takes about 30s to run on a 2.7Ghz
 | 
						|
// PowerPC G5.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include <iostream>
 | 
						|
#include <iomanip>
 | 
						|
#include <vector>
 | 
						|
#include <cassert>
 | 
						|
#include <cstdlib>
 | 
						|
struct Operator;
 | 
						|
 | 
						|
// Masks are 4-nibble hex numbers.  Values 0-7 in any nibble means that it takes
 | 
						|
// an element from that value of the input vectors.  A value of 8 means the
 | 
						|
// entry is undefined.
 | 
						|
 | 
						|
// Mask manipulation functions.
 | 
						|
static inline unsigned short MakeMask(unsigned V0, unsigned V1,
 | 
						|
                                      unsigned V2, unsigned V3) {
 | 
						|
  return (V0 << (3*4)) | (V1 << (2*4)) | (V2 << (1*4)) | (V3 << (0*4));
 | 
						|
}
 | 
						|
 | 
						|
/// getMaskElt - Return element N of the specified mask.
 | 
						|
static unsigned getMaskElt(unsigned Mask, unsigned Elt) {
 | 
						|
  return (Mask >> ((3-Elt)*4)) & 0xF;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned setMaskElt(unsigned Mask, unsigned Elt, unsigned NewVal) {
 | 
						|
  unsigned FieldShift = ((3-Elt)*4);
 | 
						|
  return (Mask & ~(0xF << FieldShift)) | (NewVal << FieldShift);
 | 
						|
}
 | 
						|
 | 
						|
// Reject elements where the values are 9-15.
 | 
						|
static bool isValidMask(unsigned short Mask) {
 | 
						|
  unsigned short UndefBits = Mask & 0x8888;
 | 
						|
  return (Mask & ((UndefBits >> 1)|(UndefBits>>2)|(UndefBits>>3))) == 0;
 | 
						|
}
 | 
						|
 | 
						|
/// hasUndefElements - Return true if any of the elements in the mask are undefs
 | 
						|
///
 | 
						|
static bool hasUndefElements(unsigned short Mask) {
 | 
						|
  return (Mask & 0x8888) != 0;
 | 
						|
}
 | 
						|
 | 
						|
/// isOnlyLHSMask - Return true if this mask only refers to its LHS, not
 | 
						|
/// including undef values..
 | 
						|
static bool isOnlyLHSMask(unsigned short Mask) {
 | 
						|
  return (Mask & 0x4444) == 0;
 | 
						|
}
 | 
						|
 | 
						|
/// getLHSOnlyMask - Given a mask that refers to its LHS and RHS, modify it to
 | 
						|
/// refer to the LHS only (for when one argument value is passed into the same
 | 
						|
/// function twice).
 | 
						|
#if 0
 | 
						|
static unsigned short getLHSOnlyMask(unsigned short Mask) {
 | 
						|
  return Mask & 0xBBBB;  // Keep only LHS and Undefs.
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/// getCompressedMask - Turn a 16-bit uncompressed mask (where each elt uses 4
 | 
						|
/// bits) into a compressed 13-bit mask, where each elt is multiplied by 9.
 | 
						|
static unsigned getCompressedMask(unsigned short Mask) {
 | 
						|
  return getMaskElt(Mask, 0)*9*9*9 + getMaskElt(Mask, 1)*9*9 +
 | 
						|
         getMaskElt(Mask, 2)*9     + getMaskElt(Mask, 3);
 | 
						|
}
 | 
						|
 | 
						|
static void PrintMask(unsigned i, std::ostream &OS) {
 | 
						|
  OS << "<" << (char)(getMaskElt(i, 0) == 8 ? 'u' : ('0'+getMaskElt(i, 0)))
 | 
						|
     << "," << (char)(getMaskElt(i, 1) == 8 ? 'u' : ('0'+getMaskElt(i, 1)))
 | 
						|
     << "," << (char)(getMaskElt(i, 2) == 8 ? 'u' : ('0'+getMaskElt(i, 2)))
 | 
						|
     << "," << (char)(getMaskElt(i, 3) == 8 ? 'u' : ('0'+getMaskElt(i, 3)))
 | 
						|
     << ">";
 | 
						|
}
 | 
						|
 | 
						|
/// ShuffleVal - This represents a shufflevector operation.
 | 
						|
struct ShuffleVal {
 | 
						|
  unsigned Cost;  // Number of instrs used to generate this value.
 | 
						|
  Operator *Op;   // The Operation used to generate this value.
 | 
						|
  unsigned short Arg0, Arg1;  // Input operands for this value.
 | 
						|
 | 
						|
  ShuffleVal() : Cost(1000000) {}
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/// ShufTab - This is the actual shuffle table that we are trying to generate.
 | 
						|
///
 | 
						|
static ShuffleVal ShufTab[65536];
 | 
						|
 | 
						|
/// TheOperators - All of the operators that this target supports.
 | 
						|
static std::vector<Operator*> TheOperators;
 | 
						|
 | 
						|
/// Operator - This is a vector operation that is available for use.
 | 
						|
struct Operator {
 | 
						|
  unsigned short ShuffleMask;
 | 
						|
  unsigned short OpNum;
 | 
						|
  const char *Name;
 | 
						|
  unsigned Cost;
 | 
						|
 | 
						|
  Operator(unsigned short shufflemask, const char *name, unsigned opnum,
 | 
						|
           unsigned cost = 1)
 | 
						|
    : ShuffleMask(shufflemask), OpNum(opnum), Name(name), Cost(cost) {
 | 
						|
    TheOperators.push_back(this);
 | 
						|
  }
 | 
						|
  ~Operator() {
 | 
						|
    assert(TheOperators.back() == this);
 | 
						|
    TheOperators.pop_back();
 | 
						|
  }
 | 
						|
 | 
						|
  bool isOnlyLHSOperator() const {
 | 
						|
    return isOnlyLHSMask(ShuffleMask);
 | 
						|
  }
 | 
						|
 | 
						|
  const char *getName() const { return Name; }
 | 
						|
  unsigned getCost() const { return Cost; }
 | 
						|
 | 
						|
  unsigned short getTransformedMask(unsigned short LHSMask, unsigned RHSMask) {
 | 
						|
    // Extract the elements from LHSMask and RHSMask, as appropriate.
 | 
						|
    unsigned Result = 0;
 | 
						|
    for (unsigned i = 0; i != 4; ++i) {
 | 
						|
      unsigned SrcElt = (ShuffleMask >> (4*i)) & 0xF;
 | 
						|
      unsigned ResElt;
 | 
						|
      if (SrcElt < 4)
 | 
						|
        ResElt = getMaskElt(LHSMask, SrcElt);
 | 
						|
      else if (SrcElt < 8)
 | 
						|
        ResElt = getMaskElt(RHSMask, SrcElt-4);
 | 
						|
      else {
 | 
						|
        assert(SrcElt == 8 && "Bad src elt!");
 | 
						|
        ResElt = 8;
 | 
						|
      }
 | 
						|
      Result |= ResElt << (4*i);
 | 
						|
    }
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
static const char *getZeroCostOpName(unsigned short Op) {
 | 
						|
  if (ShufTab[Op].Arg0 == 0x0123)
 | 
						|
    return "LHS";
 | 
						|
  else if (ShufTab[Op].Arg0 == 0x4567)
 | 
						|
    return "RHS";
 | 
						|
  else {
 | 
						|
    assert(0 && "bad zero cost operation");
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void PrintOperation(unsigned ValNo, unsigned short Vals[]) {
 | 
						|
  unsigned short ThisOp = Vals[ValNo];
 | 
						|
  std::cerr << "t" << ValNo;
 | 
						|
  PrintMask(ThisOp, std::cerr);
 | 
						|
  std::cerr << " = " << ShufTab[ThisOp].Op->getName() << "(";
 | 
						|
 | 
						|
  if (ShufTab[ShufTab[ThisOp].Arg0].Cost == 0) {
 | 
						|
    std::cerr << getZeroCostOpName(ShufTab[ThisOp].Arg0);
 | 
						|
    PrintMask(ShufTab[ThisOp].Arg0, std::cerr);
 | 
						|
  } else {
 | 
						|
    // Figure out what tmp # it is.
 | 
						|
    for (unsigned i = 0; ; ++i)
 | 
						|
      if (Vals[i] == ShufTab[ThisOp].Arg0) {
 | 
						|
        std::cerr << "t" << i;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!ShufTab[Vals[ValNo]].Op->isOnlyLHSOperator()) {
 | 
						|
    std::cerr << ", ";
 | 
						|
    if (ShufTab[ShufTab[ThisOp].Arg1].Cost == 0) {
 | 
						|
      std::cerr << getZeroCostOpName(ShufTab[ThisOp].Arg1);
 | 
						|
      PrintMask(ShufTab[ThisOp].Arg1, std::cerr);
 | 
						|
    } else {
 | 
						|
      // Figure out what tmp # it is.
 | 
						|
      for (unsigned i = 0; ; ++i)
 | 
						|
        if (Vals[i] == ShufTab[ThisOp].Arg1) {
 | 
						|
          std::cerr << "t" << i;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  std::cerr << ")  ";
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getNumEntered() {
 | 
						|
  unsigned Count = 0;
 | 
						|
  for (unsigned i = 0; i != 65536; ++i)
 | 
						|
    Count += ShufTab[i].Cost < 100;
 | 
						|
  return Count;
 | 
						|
}
 | 
						|
 | 
						|
static void EvaluateOps(unsigned short Elt, unsigned short Vals[],
 | 
						|
                        unsigned &NumVals) {
 | 
						|
  if (ShufTab[Elt].Cost == 0) return;
 | 
						|
 | 
						|
  // If this value has already been evaluated, it is free.  FIXME: match undefs.
 | 
						|
  for (unsigned i = 0, e = NumVals; i != e; ++i)
 | 
						|
    if (Vals[i] == Elt) return;
 | 
						|
 | 
						|
  // Otherwise, get the operands of the value, then add it.
 | 
						|
  unsigned Arg0 = ShufTab[Elt].Arg0, Arg1 = ShufTab[Elt].Arg1;
 | 
						|
  if (ShufTab[Arg0].Cost)
 | 
						|
    EvaluateOps(Arg0, Vals, NumVals);
 | 
						|
  if (Arg0 != Arg1 && ShufTab[Arg1].Cost)
 | 
						|
    EvaluateOps(Arg1, Vals, NumVals);
 | 
						|
 | 
						|
  Vals[NumVals++] = Elt;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int main() {
 | 
						|
  // Seed the table with accesses to the LHS and RHS.
 | 
						|
  ShufTab[0x0123].Cost = 0;
 | 
						|
  ShufTab[0x0123].Op = 0;
 | 
						|
  ShufTab[0x0123].Arg0 = 0x0123;
 | 
						|
  ShufTab[0x4567].Cost = 0;
 | 
						|
  ShufTab[0x4567].Op = 0;
 | 
						|
  ShufTab[0x4567].Arg0 = 0x4567;
 | 
						|
 | 
						|
  // Seed the first-level of shuffles, shuffles whose inputs are the input to
 | 
						|
  // the vectorshuffle operation.
 | 
						|
  bool MadeChange = true;
 | 
						|
  unsigned OpCount = 0;
 | 
						|
  while (MadeChange) {
 | 
						|
    MadeChange = false;
 | 
						|
    ++OpCount;
 | 
						|
    std::cerr << "Starting iteration #" << OpCount << " with "
 | 
						|
              << getNumEntered() << " entries established.\n";
 | 
						|
 | 
						|
    // Scan the table for two reasons: First, compute the maximum cost of any
 | 
						|
    // operation left in the table.  Second, make sure that values with undefs
 | 
						|
    // have the cheapest alternative that they match.
 | 
						|
    unsigned MaxCost = ShufTab[0].Cost;
 | 
						|
    for (unsigned i = 1; i != 0x8889; ++i) {
 | 
						|
      if (!isValidMask(i)) continue;
 | 
						|
      if (ShufTab[i].Cost > MaxCost)
 | 
						|
        MaxCost = ShufTab[i].Cost;
 | 
						|
 | 
						|
      // If this value has an undef, make it be computed the cheapest possible
 | 
						|
      // way of any of the things that it matches.
 | 
						|
      if (hasUndefElements(i)) {
 | 
						|
        // This code is a little bit tricky, so here's the idea: consider some
 | 
						|
        // permutation, like 7u4u.  To compute the lowest cost for 7u4u, we
 | 
						|
        // need to take the minimum cost of all of 7[0-8]4[0-8], 81 entries.  If
 | 
						|
        // there are 3 undefs, the number rises to 729 entries we have to scan,
 | 
						|
        // and for the 4 undef case, we have to scan the whole table.
 | 
						|
        //
 | 
						|
        // Instead of doing this huge amount of scanning, we process the table
 | 
						|
        // entries *in order*, and use the fact that 'u' is 8, larger than any
 | 
						|
        // valid index.  Given an entry like 7u4u then, we only need to scan
 | 
						|
        // 7[0-7]4u - 8 entries.  We can get away with this, because we already
 | 
						|
        // know that each of 704u, 714u, 724u, etc contain the minimum value of
 | 
						|
        // all of the 704[0-8], 714[0-8] and 724[0-8] entries respectively.
 | 
						|
        unsigned UndefIdx;
 | 
						|
        if (i & 0x8000)
 | 
						|
          UndefIdx = 0;
 | 
						|
        else if (i & 0x0800)
 | 
						|
          UndefIdx = 1;
 | 
						|
        else if (i & 0x0080)
 | 
						|
          UndefIdx = 2;
 | 
						|
        else if (i & 0x0008)
 | 
						|
          UndefIdx = 3;
 | 
						|
        else
 | 
						|
          abort();
 | 
						|
 | 
						|
        unsigned MinVal  = i;
 | 
						|
        unsigned MinCost = ShufTab[i].Cost;
 | 
						|
 | 
						|
        // Scan the 8 entries.
 | 
						|
        for (unsigned j = 0; j != 8; ++j) {
 | 
						|
          unsigned NewElt = setMaskElt(i, UndefIdx, j);
 | 
						|
          if (ShufTab[NewElt].Cost < MinCost) {
 | 
						|
            MinCost = ShufTab[NewElt].Cost;
 | 
						|
            MinVal = NewElt;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // If we found something cheaper than what was here before, use it.
 | 
						|
        if (i != MinVal) {
 | 
						|
          MadeChange = true;
 | 
						|
          ShufTab[i] = ShufTab[MinVal];
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    for (unsigned LHS = 0; LHS != 0x8889; ++LHS) {
 | 
						|
      if (!isValidMask(LHS)) continue;
 | 
						|
      if (ShufTab[LHS].Cost > 1000) continue;
 | 
						|
 | 
						|
      // If nothing involving this operand could possibly be cheaper than what
 | 
						|
      // we already have, don't consider it.
 | 
						|
      if (ShufTab[LHS].Cost + 1 >= MaxCost)
 | 
						|
        continue;
 | 
						|
 | 
						|
      for (unsigned opnum = 0, e = TheOperators.size(); opnum != e; ++opnum) {
 | 
						|
        Operator *Op = TheOperators[opnum];
 | 
						|
 | 
						|
        // Evaluate op(LHS,LHS)
 | 
						|
        unsigned ResultMask = Op->getTransformedMask(LHS, LHS);
 | 
						|
 | 
						|
        unsigned Cost = ShufTab[LHS].Cost + Op->getCost();
 | 
						|
        if (Cost < ShufTab[ResultMask].Cost) {
 | 
						|
          ShufTab[ResultMask].Cost = Cost;
 | 
						|
          ShufTab[ResultMask].Op = Op;
 | 
						|
          ShufTab[ResultMask].Arg0 = LHS;
 | 
						|
          ShufTab[ResultMask].Arg1 = LHS;
 | 
						|
          MadeChange = true;
 | 
						|
        }
 | 
						|
 | 
						|
        // If this is a two input instruction, include the op(x,y) cases.  If
 | 
						|
        // this is a one input instruction, skip this.
 | 
						|
        if (Op->isOnlyLHSOperator()) continue;
 | 
						|
 | 
						|
        for (unsigned RHS = 0; RHS != 0x8889; ++RHS) {
 | 
						|
          if (!isValidMask(RHS)) continue;
 | 
						|
          if (ShufTab[RHS].Cost > 1000) continue;
 | 
						|
 | 
						|
          // If nothing involving this operand could possibly be cheaper than
 | 
						|
          // what we already have, don't consider it.
 | 
						|
          if (ShufTab[RHS].Cost + 1 >= MaxCost)
 | 
						|
            continue;
 | 
						|
 | 
						|
 | 
						|
          // Evaluate op(LHS,RHS)
 | 
						|
          unsigned ResultMask = Op->getTransformedMask(LHS, RHS);
 | 
						|
 | 
						|
          if (ShufTab[ResultMask].Cost <= OpCount ||
 | 
						|
              ShufTab[ResultMask].Cost <= ShufTab[LHS].Cost ||
 | 
						|
              ShufTab[ResultMask].Cost <= ShufTab[RHS].Cost)
 | 
						|
            continue;
 | 
						|
 | 
						|
          // Figure out the cost to evaluate this, knowing that CSE's only need
 | 
						|
          // to be evaluated once.
 | 
						|
          unsigned short Vals[30];
 | 
						|
          unsigned NumVals = 0;
 | 
						|
          EvaluateOps(LHS, Vals, NumVals);
 | 
						|
          EvaluateOps(RHS, Vals, NumVals);
 | 
						|
 | 
						|
          unsigned Cost = NumVals + Op->getCost();
 | 
						|
          if (Cost < ShufTab[ResultMask].Cost) {
 | 
						|
            ShufTab[ResultMask].Cost = Cost;
 | 
						|
            ShufTab[ResultMask].Op = Op;
 | 
						|
            ShufTab[ResultMask].Arg0 = LHS;
 | 
						|
            ShufTab[ResultMask].Arg1 = RHS;
 | 
						|
            MadeChange = true;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  std::cerr << "Finished Table has " << getNumEntered()
 | 
						|
            << " entries established.\n";
 | 
						|
 | 
						|
  unsigned CostArray[10] = { 0 };
 | 
						|
 | 
						|
  // Compute a cost histogram.
 | 
						|
  for (unsigned i = 0; i != 65536; ++i) {
 | 
						|
    if (!isValidMask(i)) continue;
 | 
						|
    if (ShufTab[i].Cost > 9)
 | 
						|
      ++CostArray[9];
 | 
						|
    else
 | 
						|
      ++CostArray[ShufTab[i].Cost];
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = 0; i != 9; ++i)
 | 
						|
    if (CostArray[i])
 | 
						|
      std::cout << "// " << CostArray[i] << " entries have cost " << i << "\n";
 | 
						|
  if (CostArray[9])
 | 
						|
    std::cout << "// " << CostArray[9] << " entries have higher cost!\n";
 | 
						|
 | 
						|
 | 
						|
  // Build up the table to emit.
 | 
						|
  std::cout << "\n// This table is 6561*4 = 26244 bytes in size.\n";
 | 
						|
  std::cout << "static const unsigned PerfectShuffleTable[6561+1] = {\n";
 | 
						|
 | 
						|
  for (unsigned i = 0; i != 0x8889; ++i) {
 | 
						|
    if (!isValidMask(i)) continue;
 | 
						|
 | 
						|
    // CostSat - The cost of this operation saturated to two bits.
 | 
						|
    unsigned CostSat = ShufTab[i].Cost;
 | 
						|
    if (CostSat > 4) CostSat = 4;
 | 
						|
    if (CostSat == 0) CostSat = 1;
 | 
						|
    --CostSat;  // Cost is now between 0-3.
 | 
						|
 | 
						|
    unsigned OpNum = ShufTab[i].Op ? ShufTab[i].Op->OpNum : 0;
 | 
						|
    assert(OpNum < 16 && "Too few bits to encode operation!");
 | 
						|
 | 
						|
    unsigned LHS = getCompressedMask(ShufTab[i].Arg0);
 | 
						|
    unsigned RHS = getCompressedMask(ShufTab[i].Arg1);
 | 
						|
 | 
						|
    // Encode this as 2 bits of saturated cost, 4 bits of opcodes, 13 bits of
 | 
						|
    // LHS, and 13 bits of RHS = 32 bits.
 | 
						|
    unsigned Val = (CostSat << 30) | (OpNum << 26) | (LHS << 13) | RHS;
 | 
						|
 | 
						|
    std::cout << "  " << std::setw(10) << Val << "U, // ";
 | 
						|
    PrintMask(i, std::cout);
 | 
						|
    std::cout << ": Cost " << ShufTab[i].Cost;
 | 
						|
    std::cout << " " << (ShufTab[i].Op ? ShufTab[i].Op->getName() : "copy");
 | 
						|
    std::cout << " ";
 | 
						|
    if (ShufTab[ShufTab[i].Arg0].Cost == 0) {
 | 
						|
      std::cout << getZeroCostOpName(ShufTab[i].Arg0);
 | 
						|
    } else {
 | 
						|
      PrintMask(ShufTab[i].Arg0, std::cout);
 | 
						|
    }
 | 
						|
 | 
						|
    if (ShufTab[i].Op && !ShufTab[i].Op->isOnlyLHSOperator()) {
 | 
						|
      std::cout << ", ";
 | 
						|
      if (ShufTab[ShufTab[i].Arg1].Cost == 0) {
 | 
						|
        std::cout << getZeroCostOpName(ShufTab[i].Arg1);
 | 
						|
      } else {
 | 
						|
        PrintMask(ShufTab[i].Arg1, std::cout);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    std::cout << "\n";
 | 
						|
  }
 | 
						|
  std::cout << "  0\n};\n";
 | 
						|
 | 
						|
  if (0) {
 | 
						|
    // Print out the table.
 | 
						|
    for (unsigned i = 0; i != 0x8889; ++i) {
 | 
						|
      if (!isValidMask(i)) continue;
 | 
						|
      if (ShufTab[i].Cost < 1000) {
 | 
						|
        PrintMask(i, std::cerr);
 | 
						|
        std::cerr << " - Cost " << ShufTab[i].Cost << " - ";
 | 
						|
 | 
						|
        unsigned short Vals[30];
 | 
						|
        unsigned NumVals = 0;
 | 
						|
        EvaluateOps(i, Vals, NumVals);
 | 
						|
 | 
						|
        for (unsigned j = 0, e = NumVals; j != e; ++j)
 | 
						|
          PrintOperation(j, Vals);
 | 
						|
        std::cerr << "\n";
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#ifdef GENERATE_ALTIVEC
 | 
						|
 | 
						|
///===---------------------------------------------------------------------===//
 | 
						|
/// The altivec instruction definitions.  This is the altivec-specific part of
 | 
						|
/// this file.
 | 
						|
///===---------------------------------------------------------------------===//
 | 
						|
 | 
						|
// Note that the opcode numbers here must match those in the PPC backend.
 | 
						|
enum {
 | 
						|
  OP_COPY = 0,   // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
 | 
						|
  OP_VMRGHW,
 | 
						|
  OP_VMRGLW,
 | 
						|
  OP_VSPLTISW0,
 | 
						|
  OP_VSPLTISW1,
 | 
						|
  OP_VSPLTISW2,
 | 
						|
  OP_VSPLTISW3,
 | 
						|
  OP_VSLDOI4,
 | 
						|
  OP_VSLDOI8,
 | 
						|
  OP_VSLDOI12
 | 
						|
};
 | 
						|
 | 
						|
struct vmrghw : public Operator {
 | 
						|
  vmrghw() : Operator(0x0415, "vmrghw", OP_VMRGHW) {}
 | 
						|
} the_vmrghw;
 | 
						|
 | 
						|
struct vmrglw : public Operator {
 | 
						|
  vmrglw() : Operator(0x2637, "vmrglw", OP_VMRGLW) {}
 | 
						|
} the_vmrglw;
 | 
						|
 | 
						|
template<unsigned Elt>
 | 
						|
struct vspltisw : public Operator {
 | 
						|
  vspltisw(const char *N, unsigned Opc)
 | 
						|
    : Operator(MakeMask(Elt, Elt, Elt, Elt), N, Opc) {}
 | 
						|
};
 | 
						|
 | 
						|
vspltisw<0> the_vspltisw0("vspltisw0", OP_VSPLTISW0);
 | 
						|
vspltisw<1> the_vspltisw1("vspltisw1", OP_VSPLTISW1);
 | 
						|
vspltisw<2> the_vspltisw2("vspltisw2", OP_VSPLTISW2);
 | 
						|
vspltisw<3> the_vspltisw3("vspltisw3", OP_VSPLTISW3);
 | 
						|
 | 
						|
template<unsigned N>
 | 
						|
struct vsldoi : public Operator {
 | 
						|
  vsldoi(const char *Name, unsigned Opc)
 | 
						|
    : Operator(MakeMask(N&7, (N+1)&7, (N+2)&7, (N+3)&7), Name, Opc) {
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
vsldoi<1> the_vsldoi1("vsldoi4" , OP_VSLDOI4);
 | 
						|
vsldoi<2> the_vsldoi2("vsldoi8" , OP_VSLDOI8);
 | 
						|
vsldoi<3> the_vsldoi3("vsldoi12", OP_VSLDOI12);
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#define GENERATE_NEON
 | 
						|
 | 
						|
#ifdef GENERATE_NEON
 | 
						|
enum {
 | 
						|
  OP_COPY = 0,   // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
 | 
						|
  OP_VREV,
 | 
						|
  OP_VDUP0,
 | 
						|
  OP_VDUP1,
 | 
						|
  OP_VDUP2,
 | 
						|
  OP_VDUP3,
 | 
						|
  OP_VEXT1,
 | 
						|
  OP_VEXT2,
 | 
						|
  OP_VEXT3,
 | 
						|
  OP_VUZPL, // VUZP, left result
 | 
						|
  OP_VUZPR, // VUZP, right result
 | 
						|
  OP_VZIPL, // VZIP, left result
 | 
						|
  OP_VZIPR, // VZIP, right result
 | 
						|
  OP_VTRNL, // VTRN, left result
 | 
						|
  OP_VTRNR  // VTRN, right result
 | 
						|
};
 | 
						|
 | 
						|
struct vrev : public Operator {
 | 
						|
  vrev() : Operator(0x1032, "vrev", OP_VREV) {}
 | 
						|
} the_vrev;
 | 
						|
 | 
						|
template<unsigned Elt>
 | 
						|
struct vdup : public Operator {
 | 
						|
  vdup(const char *N, unsigned Opc)
 | 
						|
    : Operator(MakeMask(Elt, Elt, Elt, Elt), N, Opc) {}
 | 
						|
};
 | 
						|
 | 
						|
vdup<0> the_vdup0("vdup0", OP_VDUP0);
 | 
						|
vdup<1> the_vdup1("vdup1", OP_VDUP1);
 | 
						|
vdup<2> the_vdup2("vdup2", OP_VDUP2);
 | 
						|
vdup<3> the_vdup3("vdup3", OP_VDUP3);
 | 
						|
 | 
						|
template<unsigned N>
 | 
						|
struct vext : public Operator {
 | 
						|
  vext(const char *Name, unsigned Opc)
 | 
						|
    : Operator(MakeMask(N&7, (N+1)&7, (N+2)&7, (N+3)&7), Name, Opc) {
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
vext<1> the_vext1("vext1", OP_VEXT1);
 | 
						|
vext<2> the_vext2("vext2", OP_VEXT2);
 | 
						|
vext<3> the_vext3("vext3", OP_VEXT3);
 | 
						|
 | 
						|
struct vuzpl : public Operator {
 | 
						|
  vuzpl() : Operator(0x0246, "vuzpl", OP_VUZPL, 2) {}
 | 
						|
} the_vuzpl;
 | 
						|
 | 
						|
struct vuzpr : public Operator {
 | 
						|
  vuzpr() : Operator(0x1357, "vuzpr", OP_VUZPR, 2) {}
 | 
						|
} the_vuzpr;
 | 
						|
 | 
						|
struct vzipl : public Operator {
 | 
						|
  vzipl() : Operator(0x0415, "vzipl", OP_VZIPL, 2) {}
 | 
						|
} the_vzipl;
 | 
						|
 | 
						|
struct vzipr : public Operator {
 | 
						|
  vzipr() : Operator(0x2637, "vzipr", OP_VZIPR, 2) {}
 | 
						|
} the_vzipr;
 | 
						|
 | 
						|
struct vtrnl : public Operator {
 | 
						|
  vtrnl() : Operator(0x0426, "vtrnl", OP_VTRNL, 2) {}
 | 
						|
} the_vtrnl;
 | 
						|
 | 
						|
struct vtrnr : public Operator {
 | 
						|
  vtrnr() : Operator(0x1537, "vtrnr", OP_VTRNR, 2) {}
 | 
						|
} the_vtrnr;
 | 
						|
 | 
						|
#endif
 |