mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	documentation that this module needs to be made independent of the register file description of the current target. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@13125 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			736 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			736 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- SchedGraph.cpp - Scheduling Graph Implementation -------------------===//
 | |
| // 
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| // 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Scheduling graph based on SSA graph plus extra dependence edges capturing
 | |
| // dependences due to machine resources (machine registers, CC registers, and
 | |
| // any others).
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "SchedGraph.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/iOther.h"
 | |
| #include "llvm/CodeGen/MachineCodeForInstruction.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "../../Target/SparcV9/SparcV9RegInfo.h"
 | |
| #include "Support/STLExtras.h"
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| //*********************** Internal Data Structures *************************/
 | |
| 
 | |
| // The following two types need to be classes, not typedefs, so we can use
 | |
| // opaque declarations in SchedGraph.h
 | |
| // 
 | |
| struct RefVec: public std::vector<std::pair<SchedGraphNode*, int> > {
 | |
|   typedef std::vector<std::pair<SchedGraphNode*,int> >::iterator iterator;
 | |
|   typedef
 | |
|   std::vector<std::pair<SchedGraphNode*,int> >::const_iterator const_iterator;
 | |
| };
 | |
| 
 | |
| struct RegToRefVecMap: public hash_map<int, RefVec> {
 | |
|   typedef hash_map<int, RefVec>::      iterator       iterator;
 | |
|   typedef hash_map<int, RefVec>::const_iterator const_iterator;
 | |
| };
 | |
| 
 | |
| struct ValueToDefVecMap: public hash_map<const Value*, RefVec> {
 | |
|   typedef hash_map<const Value*, RefVec>::      iterator       iterator;
 | |
|   typedef hash_map<const Value*, RefVec>::const_iterator const_iterator;
 | |
| };
 | |
| 
 | |
| 
 | |
| // 
 | |
| // class SchedGraphNode
 | |
| // 
 | |
| 
 | |
| SchedGraphNode::SchedGraphNode(unsigned NID, MachineBasicBlock *mbb,
 | |
|                                int   indexInBB, const TargetMachine& Target)
 | |
|   : SchedGraphNodeCommon(NID,indexInBB), MBB(mbb), MI(0) {
 | |
|   if (mbb) {
 | |
|     MachineBasicBlock::iterator I = MBB->begin();
 | |
|     std::advance(I, indexInBB);
 | |
|     MI = I;
 | |
| 
 | |
|     MachineOpCode mopCode = MI->getOpcode();
 | |
|     latency = Target.getInstrInfo().hasResultInterlock(mopCode)
 | |
|       ? Target.getInstrInfo().minLatency(mopCode)
 | |
|       : Target.getInstrInfo().maxLatency(mopCode);
 | |
|   }
 | |
| }
 | |
| 
 | |
| //
 | |
| // Method: SchedGraphNode Destructor
 | |
| //
 | |
| // Description:
 | |
| //	Free memory allocated by the SchedGraphNode object.
 | |
| //
 | |
| // Notes:
 | |
| //	Do not delete the edges here.  The base class will take care of that.
 | |
| //	Only handle subclass specific stuff here (where currently there is
 | |
| //	none).
 | |
| //
 | |
| SchedGraphNode::~SchedGraphNode() {
 | |
| }
 | |
| 
 | |
| // 
 | |
| // class SchedGraph
 | |
| // 
 | |
| SchedGraph::SchedGraph(MachineBasicBlock &mbb, const TargetMachine& target)
 | |
|   : MBB(mbb) {
 | |
|   buildGraph(target);
 | |
| }
 | |
| 
 | |
| //
 | |
| // Method: SchedGraph Destructor
 | |
| //
 | |
| // Description:
 | |
| //	This method deletes memory allocated by the SchedGraph object.
 | |
| //
 | |
| // Notes:
 | |
| //	Do not delete the graphRoot or graphLeaf here.  The base class handles
 | |
| //	that bit of work.
 | |
| //
 | |
| SchedGraph::~SchedGraph() {
 | |
|   for (const_iterator I = begin(); I != end(); ++I)
 | |
|     delete I->second;
 | |
| }
 | |
| 
 | |
| void SchedGraph::dump() const {
 | |
|   std::cerr << "  Sched Graph for Basic Block: "
 | |
|             << MBB.getBasicBlock()->getName()
 | |
|             << " (" << MBB.getBasicBlock() << ")"
 | |
|             << "\n\n    Actual Root nodes: ";
 | |
|   for (SchedGraphNodeCommon::const_iterator I = graphRoot->beginOutEdges(),
 | |
|                                             E = graphRoot->endOutEdges();
 | |
|        I != E; ++I) {
 | |
|     std::cerr << (*I)->getSink ()->getNodeId ();
 | |
|     if (I + 1 != E) { std::cerr << ", "; }
 | |
|   }
 | |
|   std::cerr << "\n    Graph Nodes:\n";
 | |
|   for (const_iterator I = begin(), E = end(); I != E; ++I)
 | |
|     std::cerr << "\n" << *I->second;
 | |
|   std::cerr << "\n";
 | |
| }
 | |
| 
 | |
| void SchedGraph::addDummyEdges() {
 | |
|   assert(graphRoot->getNumOutEdges() == 0);
 | |
|   
 | |
|   for (const_iterator I=begin(); I != end(); ++I) {
 | |
|     SchedGraphNode* node = (*I).second;
 | |
|     assert(node != graphRoot && node != graphLeaf);
 | |
|     if (node->beginInEdges() == node->endInEdges())
 | |
|       (void) new SchedGraphEdge(graphRoot, node, SchedGraphEdge::CtrlDep,
 | |
|                                 SchedGraphEdge::NonDataDep, 0);
 | |
|     if (node->beginOutEdges() == node->endOutEdges())
 | |
|       (void) new SchedGraphEdge(node, graphLeaf, SchedGraphEdge::CtrlDep,
 | |
|                                 SchedGraphEdge::NonDataDep, 0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void SchedGraph::addCDEdges(const TerminatorInst* term,
 | |
| 			    const TargetMachine& target) {
 | |
|   const TargetInstrInfo& mii = target.getInstrInfo();
 | |
|   MachineCodeForInstruction &termMvec = MachineCodeForInstruction::get(term);
 | |
|   
 | |
|   // Find the first branch instr in the sequence of machine instrs for term
 | |
|   // 
 | |
|   unsigned first = 0;
 | |
|   while (! mii.isBranch(termMvec[first]->getOpcode()) &&
 | |
|          ! mii.isReturn(termMvec[first]->getOpcode()))
 | |
|     ++first;
 | |
|   assert(first < termMvec.size() &&
 | |
| 	 "No branch instructions for terminator?  Ok, but weird!");
 | |
|   if (first == termMvec.size())
 | |
|     return;
 | |
|   
 | |
|   SchedGraphNode* firstBrNode = getGraphNodeForInstr(termMvec[first]);
 | |
|   
 | |
|   // Add CD edges from each instruction in the sequence to the
 | |
|   // *last preceding* branch instr. in the sequence 
 | |
|   // Use a latency of 0 because we only need to prevent out-of-order issue.
 | |
|   // 
 | |
|   for (unsigned i = termMvec.size(); i > first+1; --i) {
 | |
|     SchedGraphNode* toNode = getGraphNodeForInstr(termMvec[i-1]);
 | |
|     assert(toNode && "No node for instr generated for branch/ret?");
 | |
|     
 | |
|     for (unsigned j = i-1; j != 0; --j) 
 | |
|       if (mii.isBranch(termMvec[j-1]->getOpcode()) ||
 | |
|           mii.isReturn(termMvec[j-1]->getOpcode())) {
 | |
|         SchedGraphNode* brNode = getGraphNodeForInstr(termMvec[j-1]);
 | |
|         assert(brNode && "No node for instr generated for branch/ret?");
 | |
|         (void) new SchedGraphEdge(brNode, toNode, SchedGraphEdge::CtrlDep,
 | |
|                                   SchedGraphEdge::NonDataDep, 0);
 | |
|         break;			// only one incoming edge is enough
 | |
|       }
 | |
|   }
 | |
|   
 | |
|   // Add CD edges from each instruction preceding the first branch
 | |
|   // to the first branch.  Use a latency of 0 as above.
 | |
|   // 
 | |
|   for (unsigned i = first; i != 0; --i) {
 | |
|     SchedGraphNode* fromNode = getGraphNodeForInstr(termMvec[i-1]);
 | |
|     assert(fromNode && "No node for instr generated for branch?");
 | |
|     (void) new SchedGraphEdge(fromNode, firstBrNode, SchedGraphEdge::CtrlDep,
 | |
|                               SchedGraphEdge::NonDataDep, 0);
 | |
|   }
 | |
|   
 | |
|   // Now add CD edges to the first branch instruction in the sequence from
 | |
|   // all preceding instructions in the basic block.  Use 0 latency again.
 | |
|   // 
 | |
|   for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I){
 | |
|     if (&*I == termMvec[first])   // reached the first branch
 | |
|       break;
 | |
|     
 | |
|     SchedGraphNode* fromNode = getGraphNodeForInstr(I);
 | |
|     if (fromNode == NULL)
 | |
|       continue;			// dummy instruction, e.g., PHI
 | |
|     
 | |
|     (void) new SchedGraphEdge(fromNode, firstBrNode,
 | |
|                               SchedGraphEdge::CtrlDep,
 | |
|                               SchedGraphEdge::NonDataDep, 0);
 | |
|       
 | |
|     // If we find any other machine instructions (other than due to
 | |
|     // the terminator) that also have delay slots, add an outgoing edge
 | |
|     // from the instruction to the instructions in the delay slots.
 | |
|     // 
 | |
|     unsigned d = mii.getNumDelaySlots(I->getOpcode());
 | |
| 
 | |
|     MachineBasicBlock::iterator J = I; ++J;
 | |
|     for (unsigned j=1; j <= d; j++, ++J) {
 | |
|       SchedGraphNode* toNode = this->getGraphNodeForInstr(J);
 | |
|       assert(toNode && "No node for machine instr in delay slot?");
 | |
|       (void) new SchedGraphEdge(fromNode, toNode,
 | |
|                                 SchedGraphEdge::CtrlDep,
 | |
|                                 SchedGraphEdge::NonDataDep, 0);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static const int SG_LOAD_REF  = 0;
 | |
| static const int SG_STORE_REF = 1;
 | |
| static const int SG_CALL_REF  = 2;
 | |
| 
 | |
| static const unsigned int SG_DepOrderArray[][3] = {
 | |
|   { SchedGraphEdge::NonDataDep,
 | |
|     SchedGraphEdge::AntiDep,
 | |
|     SchedGraphEdge::AntiDep },
 | |
|   { SchedGraphEdge::TrueDep,
 | |
|     SchedGraphEdge::OutputDep,
 | |
|     SchedGraphEdge::TrueDep | SchedGraphEdge::OutputDep },
 | |
|   { SchedGraphEdge::TrueDep,
 | |
|     SchedGraphEdge::AntiDep | SchedGraphEdge::OutputDep,
 | |
|     SchedGraphEdge::TrueDep | SchedGraphEdge::AntiDep
 | |
|     | SchedGraphEdge::OutputDep }
 | |
| };
 | |
| 
 | |
| 
 | |
| // Add a dependence edge between every pair of machine load/store/call
 | |
| // instructions, where at least one is a store or a call.
 | |
| // Use latency 1 just to ensure that memory operations are ordered;
 | |
| // latency does not otherwise matter (true dependences enforce that).
 | |
| // 
 | |
| void SchedGraph::addMemEdges(const std::vector<SchedGraphNode*>& memNodeVec,
 | |
| 			     const TargetMachine& target) {
 | |
|   const TargetInstrInfo& mii = target.getInstrInfo();
 | |
|   
 | |
|   // Instructions in memNodeVec are in execution order within the basic block,
 | |
|   // so simply look at all pairs <memNodeVec[i], memNodeVec[j: j > i]>.
 | |
|   // 
 | |
|   for (unsigned im=0, NM=memNodeVec.size(); im < NM; im++) {
 | |
|     MachineOpCode fromOpCode = memNodeVec[im]->getOpcode();
 | |
|     int fromType = (mii.isCall(fromOpCode)? SG_CALL_REF
 | |
|                     : (mii.isLoad(fromOpCode)? SG_LOAD_REF
 | |
|                        : SG_STORE_REF));
 | |
|     for (unsigned jm=im+1; jm < NM; jm++) {
 | |
|       MachineOpCode toOpCode = memNodeVec[jm]->getOpcode();
 | |
|       int toType = (mii.isCall(toOpCode)? SG_CALL_REF
 | |
|                     : (mii.isLoad(toOpCode)? SG_LOAD_REF
 | |
|                        : SG_STORE_REF));
 | |
|       
 | |
|       if (fromType != SG_LOAD_REF || toType != SG_LOAD_REF)
 | |
|         (void) new SchedGraphEdge(memNodeVec[im], memNodeVec[jm],
 | |
|                                   SchedGraphEdge::MemoryDep,
 | |
|                                   SG_DepOrderArray[fromType][toType], 1);
 | |
|     }
 | |
|   }
 | |
| } 
 | |
| 
 | |
| // Add edges from/to CC reg instrs to/from call instrs.
 | |
| // Essentially this prevents anything that sets or uses a CC reg from being
 | |
| // reordered w.r.t. a call.
 | |
| // Use a latency of 0 because we only need to prevent out-of-order issue,
 | |
| // like with control dependences.
 | |
| // 
 | |
| void SchedGraph::addCallDepEdges(const std::vector<SchedGraphNode*>& callDepNodeVec,
 | |
| 				 const TargetMachine& target) {
 | |
|   const TargetInstrInfo& mii = target.getInstrInfo();
 | |
|   
 | |
|   // Instructions in memNodeVec are in execution order within the basic block,
 | |
|   // so simply look at all pairs <memNodeVec[i], memNodeVec[j: j > i]>.
 | |
|   // 
 | |
|   for (unsigned ic=0, NC=callDepNodeVec.size(); ic < NC; ic++)
 | |
|     if (mii.isCall(callDepNodeVec[ic]->getOpcode())) {
 | |
|       // Add SG_CALL_REF edges from all preds to this instruction.
 | |
|       for (unsigned jc=0; jc < ic; jc++)
 | |
| 	(void) new SchedGraphEdge(callDepNodeVec[jc], callDepNodeVec[ic],
 | |
| 				  SchedGraphEdge::MachineRegister,
 | |
| 				  MachineIntRegsRID,  0);
 | |
|       
 | |
|       // And do the same from this instruction to all successors.
 | |
|       for (unsigned jc=ic+1; jc < NC; jc++)
 | |
| 	(void) new SchedGraphEdge(callDepNodeVec[ic], callDepNodeVec[jc],
 | |
| 				  SchedGraphEdge::MachineRegister,
 | |
| 				  MachineIntRegsRID,  0);
 | |
|     }
 | |
|   
 | |
| #ifdef CALL_DEP_NODE_VEC_CANNOT_WORK
 | |
|   // Find the call instruction nodes and put them in a vector.
 | |
|   std::vector<SchedGraphNode*> callNodeVec;
 | |
|   for (unsigned im=0, NM=memNodeVec.size(); im < NM; im++)
 | |
|     if (mii.isCall(memNodeVec[im]->getOpcode()))
 | |
|       callNodeVec.push_back(memNodeVec[im]);
 | |
|   
 | |
|   // Now walk the entire basic block, looking for CC instructions *and*
 | |
|   // call instructions, and keep track of the order of the instructions.
 | |
|   // Use the call node vec to quickly find earlier and later call nodes
 | |
|   // relative to the current CC instruction.
 | |
|   // 
 | |
|   int lastCallNodeIdx = -1;
 | |
|   for (unsigned i=0, N=bbMvec.size(); i < N; i++)
 | |
|     if (mii.isCall(bbMvec[i]->getOpcode())) {
 | |
|       ++lastCallNodeIdx;
 | |
|       for ( ; lastCallNodeIdx < (int)callNodeVec.size(); ++lastCallNodeIdx)
 | |
|         if (callNodeVec[lastCallNodeIdx]->getMachineInstr() == bbMvec[i])
 | |
|           break;
 | |
|       assert(lastCallNodeIdx < (int)callNodeVec.size() && "Missed Call?");
 | |
|     }
 | |
|     else if (mii.isCCInstr(bbMvec[i]->getOpcode())) {
 | |
|       // Add incoming/outgoing edges from/to preceding/later calls
 | |
|       SchedGraphNode* ccNode = this->getGraphNodeForInstr(bbMvec[i]);
 | |
|       int j=0;
 | |
|       for ( ; j <= lastCallNodeIdx; j++)
 | |
|         (void) new SchedGraphEdge(callNodeVec[j], ccNode,
 | |
|                                   MachineCCRegsRID, 0);
 | |
|       for ( ; j < (int) callNodeVec.size(); j++)
 | |
|         (void) new SchedGraphEdge(ccNode, callNodeVec[j],
 | |
|                                   MachineCCRegsRID, 0);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| void SchedGraph::addMachineRegEdges(RegToRefVecMap& regToRefVecMap,
 | |
| 				    const TargetMachine& target) {
 | |
|   // This code assumes that two registers with different numbers are
 | |
|   // not aliased!
 | |
|   // 
 | |
|   for (RegToRefVecMap::iterator I = regToRefVecMap.begin();
 | |
|        I != regToRefVecMap.end(); ++I) {
 | |
|     int regNum        = (*I).first;
 | |
|     RefVec& regRefVec = (*I).second;
 | |
|     
 | |
|     // regRefVec is ordered by control flow order in the basic block
 | |
|     for (unsigned i=0; i < regRefVec.size(); ++i) {
 | |
|       SchedGraphNode* node = regRefVec[i].first;
 | |
|       unsigned int opNum   = regRefVec[i].second;
 | |
|       const MachineOperand& mop =
 | |
|         node->getMachineInstr()->getExplOrImplOperand(opNum);
 | |
|       bool isDef = mop.isDef() && !mop.isUse();
 | |
|       bool isDefAndUse = mop.isDef() && mop.isUse();
 | |
|           
 | |
|       for (unsigned p=0; p < i; ++p) {
 | |
|         SchedGraphNode* prevNode = regRefVec[p].first;
 | |
|         if (prevNode != node) {
 | |
|           unsigned int prevOpNum = regRefVec[p].second;
 | |
|           const MachineOperand& prevMop =
 | |
|             prevNode->getMachineInstr()->getExplOrImplOperand(prevOpNum);
 | |
|           bool prevIsDef = prevMop.isDef() && !prevMop.isUse();
 | |
|           bool prevIsDefAndUse = prevMop.isDef() && prevMop.isUse();
 | |
|           if (isDef) {
 | |
|             if (prevIsDef)
 | |
|               new SchedGraphEdge(prevNode, node, regNum,
 | |
|                                  SchedGraphEdge::OutputDep);
 | |
|             if (!prevIsDef || prevIsDefAndUse)
 | |
|               new SchedGraphEdge(prevNode, node, regNum,
 | |
|                                  SchedGraphEdge::AntiDep);
 | |
|           }
 | |
| 	  
 | |
|           if (prevIsDef)
 | |
|             if (!isDef || isDefAndUse)
 | |
|               new SchedGraphEdge(prevNode, node, regNum,
 | |
|                                  SchedGraphEdge::TrueDep);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // Adds dependences to/from refNode from/to all other defs
 | |
| // in the basic block.  refNode may be a use, a def, or both.
 | |
| // We do not consider other uses because we are not building use-use deps.
 | |
| // 
 | |
| void SchedGraph::addEdgesForValue(SchedGraphNode* refNode,
 | |
| 				  const RefVec& defVec,
 | |
| 				  const Value* defValue,
 | |
| 				  bool  refNodeIsDef,
 | |
| 				  bool  refNodeIsUse,
 | |
| 				  const TargetMachine& target) {
 | |
|   // Add true or output dep edges from all def nodes before refNode in BB.
 | |
|   // Add anti or output dep edges to all def nodes after refNode.
 | |
|   for (RefVec::const_iterator I=defVec.begin(), E=defVec.end(); I != E; ++I) {
 | |
|     if ((*I).first == refNode)
 | |
|       continue;                       // Dont add any self-loops
 | |
|     
 | |
|     if ((*I).first->getOrigIndexInBB() < refNode->getOrigIndexInBB()) {
 | |
|       // (*).first is before refNode
 | |
|       if (refNodeIsDef && !refNodeIsUse)
 | |
|         (void) new SchedGraphEdge((*I).first, refNode, defValue,
 | |
|                                   SchedGraphEdge::OutputDep);
 | |
|       if (refNodeIsUse)
 | |
|         (void) new SchedGraphEdge((*I).first, refNode, defValue,
 | |
|                                   SchedGraphEdge::TrueDep);
 | |
|     } else {
 | |
|       // (*).first is after refNode
 | |
|       if (refNodeIsDef && !refNodeIsUse)
 | |
|         (void) new SchedGraphEdge(refNode, (*I).first, defValue,
 | |
|                                   SchedGraphEdge::OutputDep);
 | |
|       if (refNodeIsUse)
 | |
|         (void) new SchedGraphEdge(refNode, (*I).first, defValue,
 | |
|                                   SchedGraphEdge::AntiDep);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void SchedGraph::addEdgesForInstruction(const MachineInstr& MI,
 | |
| 					const ValueToDefVecMap& valueToDefVecMap,
 | |
| 					const TargetMachine& target) {
 | |
|   SchedGraphNode* node = getGraphNodeForInstr(&MI);
 | |
|   if (node == NULL)
 | |
|     return;
 | |
|   
 | |
|   // Add edges for all operands of the machine instruction.
 | |
|   // 
 | |
|   for (unsigned i = 0, numOps = MI.getNumOperands(); i != numOps; ++i) {
 | |
|     switch (MI.getOperand(i).getType()) {
 | |
|     case MachineOperand::MO_VirtualRegister:
 | |
|     case MachineOperand::MO_CCRegister:
 | |
|       if (const Value* srcI = MI.getOperand(i).getVRegValue()) {
 | |
|         ValueToDefVecMap::const_iterator I = valueToDefVecMap.find(srcI);
 | |
|         if (I != valueToDefVecMap.end())
 | |
|           addEdgesForValue(node, I->second, srcI,
 | |
|                            MI.getOperand(i).isDef(), MI.getOperand(i).isUse(),
 | |
|                            target);
 | |
|       }
 | |
|       break;
 | |
|       
 | |
|     case MachineOperand::MO_MachineRegister:
 | |
|       break; 
 | |
|       
 | |
|     case MachineOperand::MO_SignExtendedImmed:
 | |
|     case MachineOperand::MO_UnextendedImmed:
 | |
|     case MachineOperand::MO_PCRelativeDisp:
 | |
|     case MachineOperand::MO_ConstantPoolIndex:
 | |
|       break;	// nothing to do for immediate fields
 | |
|       
 | |
|     default:
 | |
|       assert(0 && "Unknown machine operand type in SchedGraph builder");
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Add edges for values implicitly used by the machine instruction.
 | |
|   // Examples include function arguments to a Call instructions or the return
 | |
|   // value of a Ret instruction.
 | |
|   // 
 | |
|   for (unsigned i=0, N=MI.getNumImplicitRefs(); i < N; ++i)
 | |
|     if (MI.getImplicitOp(i).isUse())
 | |
|       if (const Value* srcI = MI.getImplicitRef(i)) {
 | |
|         ValueToDefVecMap::const_iterator I = valueToDefVecMap.find(srcI);
 | |
|         if (I != valueToDefVecMap.end())
 | |
|           addEdgesForValue(node, I->second, srcI,
 | |
|                            MI.getImplicitOp(i).isDef(),
 | |
|                            MI.getImplicitOp(i).isUse(), target);
 | |
|       }
 | |
| }
 | |
| 
 | |
| 
 | |
| void SchedGraph::findDefUseInfoAtInstr(const TargetMachine& target,
 | |
| 				       SchedGraphNode* node,
 | |
| 				       std::vector<SchedGraphNode*>& memNodeVec,
 | |
| 				       std::vector<SchedGraphNode*>& callDepNodeVec,
 | |
| 				       RegToRefVecMap& regToRefVecMap,
 | |
| 				       ValueToDefVecMap& valueToDefVecMap) {
 | |
|   const TargetInstrInfo& mii = target.getInstrInfo();
 | |
|   
 | |
|   MachineOpCode opCode = node->getOpcode();
 | |
|   
 | |
|   if (mii.isCall(opCode) || mii.isCCInstr(opCode))
 | |
|     callDepNodeVec.push_back(node);
 | |
|   
 | |
|   if (mii.isLoad(opCode) || mii.isStore(opCode) || mii.isCall(opCode))
 | |
|     memNodeVec.push_back(node);
 | |
|   
 | |
|   // Collect the register references and value defs. for explicit operands
 | |
|   // 
 | |
|   const MachineInstr& MI = *node->getMachineInstr();
 | |
|   for (int i=0, numOps = (int) MI.getNumOperands(); i < numOps; i++) {
 | |
|     const MachineOperand& mop = MI.getOperand(i);
 | |
|     
 | |
|     // if this references a register other than the hardwired
 | |
|     // "zero" register, record the reference.
 | |
|     if (mop.hasAllocatedReg()) {
 | |
|       unsigned regNum = mop.getReg();
 | |
|       
 | |
|       // If this is not a dummy zero register, record the reference in order
 | |
|       if (regNum != target.getRegInfo().getZeroRegNum())
 | |
|         regToRefVecMap[mop.getReg()]
 | |
|           .push_back(std::make_pair(node, i));
 | |
| 
 | |
|       // If this is a volatile register, add the instruction to callDepVec
 | |
|       // (only if the node is not already on the callDepVec!)
 | |
|       if (callDepNodeVec.size() == 0 || callDepNodeVec.back() != node)
 | |
|         {
 | |
|           unsigned rcid;
 | |
|           int regInClass = target.getRegInfo().getClassRegNum(regNum, rcid);
 | |
|           if (target.getRegInfo().getMachineRegClass(rcid)
 | |
|               ->isRegVolatile(regInClass))
 | |
|             callDepNodeVec.push_back(node);
 | |
|         }
 | |
|           
 | |
|       continue;                     // nothing more to do
 | |
|     }
 | |
|     
 | |
|     // ignore all other non-def operands
 | |
|     if (!MI.getOperand(i).isDef())
 | |
|       continue;
 | |
|       
 | |
|     // We must be defining a value.
 | |
|     assert((mop.getType() == MachineOperand::MO_VirtualRegister ||
 | |
|             mop.getType() == MachineOperand::MO_CCRegister)
 | |
|            && "Do not expect any other kind of operand to be defined!");
 | |
|     assert(mop.getVRegValue() != NULL && "Null value being defined?");
 | |
|     
 | |
|     valueToDefVecMap[mop.getVRegValue()].push_back(std::make_pair(node, i)); 
 | |
|   }
 | |
|   
 | |
|   // 
 | |
|   // Collect value defs. for implicit operands.  They may have allocated
 | |
|   // physical registers also.
 | |
|   // 
 | |
|   for (unsigned i=0, N = MI.getNumImplicitRefs(); i != N; ++i) {
 | |
|     const MachineOperand& mop = MI.getImplicitOp(i);
 | |
|     if (mop.hasAllocatedReg()) {
 | |
|       unsigned regNum = mop.getReg();
 | |
|       if (regNum != target.getRegInfo().getZeroRegNum())
 | |
|         regToRefVecMap[mop.getReg()]
 | |
|           .push_back(std::make_pair(node, i + MI.getNumOperands()));
 | |
|       continue;                     // nothing more to do
 | |
|     }
 | |
| 
 | |
|     if (mop.isDef()) {
 | |
|       assert(MI.getImplicitRef(i) != NULL && "Null value being defined?");
 | |
|       valueToDefVecMap[MI.getImplicitRef(i)].push_back(
 | |
|         std::make_pair(node, -i)); 
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void SchedGraph::buildNodesForBB(const TargetMachine& target,
 | |
| 				 MachineBasicBlock& MBB,
 | |
| 				 std::vector<SchedGraphNode*>& memNodeVec,
 | |
| 				 std::vector<SchedGraphNode*>& callDepNodeVec,
 | |
| 				 RegToRefVecMap& regToRefVecMap,
 | |
| 				 ValueToDefVecMap& valueToDefVecMap) {
 | |
|   const TargetInstrInfo& mii = target.getInstrInfo();
 | |
|   
 | |
|   // Build graph nodes for each VM instruction and gather def/use info.
 | |
|   // Do both those together in a single pass over all machine instructions.
 | |
|   unsigned i = 0;
 | |
|   for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E;
 | |
|        ++I, ++i)
 | |
|     if (!mii.isDummyPhiInstr(I->getOpcode())) {
 | |
|       SchedGraphNode* node = new SchedGraphNode(getNumNodes(), &MBB, i, target);
 | |
|       noteGraphNodeForInstr(I, node);
 | |
|       
 | |
|       // Remember all register references and value defs
 | |
|       findDefUseInfoAtInstr(target, node, memNodeVec, callDepNodeVec,
 | |
|                             regToRefVecMap, valueToDefVecMap);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| void SchedGraph::buildGraph(const TargetMachine& target) {
 | |
|   // Use this data structure to note all machine operands that compute
 | |
|   // ordinary LLVM values.  These must be computed defs (i.e., instructions). 
 | |
|   // Note that there may be multiple machine instructions that define
 | |
|   // each Value.
 | |
|   ValueToDefVecMap valueToDefVecMap;
 | |
|   
 | |
|   // Use this data structure to note all memory instructions.
 | |
|   // We use this to add memory dependence edges without a second full walk.
 | |
|   std::vector<SchedGraphNode*> memNodeVec;
 | |
| 
 | |
|   // Use this data structure to note all instructions that access physical
 | |
|   // registers that can be modified by a call (including call instructions)
 | |
|   std::vector<SchedGraphNode*> callDepNodeVec;
 | |
|   
 | |
|   // Use this data structure to note any uses or definitions of
 | |
|   // machine registers so we can add edges for those later without
 | |
|   // extra passes over the nodes.
 | |
|   // The vector holds an ordered list of references to the machine reg,
 | |
|   // ordered according to control-flow order.  This only works for a
 | |
|   // single basic block, hence the assertion.  Each reference is identified
 | |
|   // by the pair: <node, operand-number>.
 | |
|   // 
 | |
|   RegToRefVecMap regToRefVecMap;
 | |
|   
 | |
|   // Make a dummy root node.  We'll add edges to the real roots later.
 | |
|   graphRoot = new SchedGraphNode(0, NULL, -1, target);
 | |
|   graphLeaf = new SchedGraphNode(1, NULL, -1, target);
 | |
| 
 | |
|   //----------------------------------------------------------------
 | |
|   // First add nodes for all the machine instructions in the basic block
 | |
|   // because this greatly simplifies identifying which edges to add.
 | |
|   // Do this one VM instruction at a time since the SchedGraphNode needs that.
 | |
|   // Also, remember the load/store instructions to add memory deps later.
 | |
|   //----------------------------------------------------------------
 | |
| 
 | |
|   buildNodesForBB(target, MBB, memNodeVec, callDepNodeVec,
 | |
|                   regToRefVecMap, valueToDefVecMap);
 | |
|   
 | |
|   //----------------------------------------------------------------
 | |
|   // Now add edges for the following (all are incoming edges except (4)):
 | |
|   // (1) operands of the machine instruction, including hidden operands
 | |
|   // (2) machine register dependences
 | |
|   // (3) memory load/store dependences
 | |
|   // (3) other resource dependences for the machine instruction, if any
 | |
|   // (4) output dependences when multiple machine instructions define the
 | |
|   //     same value; all must have been generated from a single VM instrn
 | |
|   // (5) control dependences to branch instructions generated for the
 | |
|   //     terminator instruction of the BB. Because of delay slots and
 | |
|   //     2-way conditional branches, multiple CD edges are needed
 | |
|   //     (see addCDEdges for details).
 | |
|   // Also, note any uses or defs of machine registers.
 | |
|   // 
 | |
|   //----------------------------------------------------------------
 | |
|       
 | |
|   // First, add edges to the terminator instruction of the basic block.
 | |
|   this->addCDEdges(MBB.getBasicBlock()->getTerminator(), target);
 | |
|       
 | |
|   // Then add memory dep edges: store->load, load->store, and store->store.
 | |
|   // Call instructions are treated as both load and store.
 | |
|   this->addMemEdges(memNodeVec, target);
 | |
| 
 | |
|   // Then add edges between call instructions and CC set/use instructions
 | |
|   this->addCallDepEdges(callDepNodeVec, target);
 | |
|   
 | |
|   // Then add incoming def-use (SSA) edges for each machine instruction.
 | |
|   for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I)
 | |
|     addEdgesForInstruction(*I, valueToDefVecMap, target);
 | |
| 
 | |
|   // Then add edges for dependences on machine registers
 | |
|   this->addMachineRegEdges(regToRefVecMap, target);
 | |
| 
 | |
|   // Finally, add edges from the dummy root and to dummy leaf
 | |
|   this->addDummyEdges();		
 | |
| }
 | |
| 
 | |
| 
 | |
| // 
 | |
| // class SchedGraphSet
 | |
| // 
 | |
| SchedGraphSet::SchedGraphSet(const Function* _function,
 | |
| 			     const TargetMachine& target) :
 | |
|   function(_function) {
 | |
|   buildGraphsForMethod(function, target);
 | |
| }
 | |
| 
 | |
| SchedGraphSet::~SchedGraphSet() {
 | |
|   // delete all the graphs
 | |
|   for(iterator I = begin(), E = end(); I != E; ++I)
 | |
|     delete *I;  // destructor is a friend
 | |
| }
 | |
| 
 | |
| 
 | |
| void SchedGraphSet::dump() const {
 | |
|   std::cerr << "======== Sched graphs for function `" << function->getName()
 | |
|             << "' ========\n\n";
 | |
|   
 | |
|   for (const_iterator I=begin(); I != end(); ++I)
 | |
|     (*I)->dump();
 | |
|   
 | |
|   std::cerr << "\n====== End graphs for function `" << function->getName()
 | |
|             << "' ========\n\n";
 | |
| }
 | |
| 
 | |
| 
 | |
| void SchedGraphSet::buildGraphsForMethod(const Function *F,
 | |
| 					 const TargetMachine& target) {
 | |
|   MachineFunction &MF = MachineFunction::get(F);
 | |
|   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
 | |
|     addGraph(new SchedGraph(*I, target));
 | |
| }
 | |
| 
 | |
| 
 | |
| void SchedGraphEdge::print(std::ostream &os) const {
 | |
|   os << "edge [" << src->getNodeId() << "] -> ["
 | |
|      << sink->getNodeId() << "] : ";
 | |
|   
 | |
|   switch(depType) {
 | |
|   case SchedGraphEdge::CtrlDep:		
 | |
|     os<< "Control Dep"; 
 | |
|     break;
 | |
|   case SchedGraphEdge::ValueDep:        
 | |
|     os<< "Reg Value " << val; 
 | |
|     break;
 | |
|   case SchedGraphEdge::MemoryDep:	
 | |
|     os<< "Memory Dep"; 
 | |
|     break;
 | |
|   case SchedGraphEdge::MachineRegister: 
 | |
|     os<< "Reg " << machineRegNum;
 | |
|     break;
 | |
|   case SchedGraphEdge::MachineResource:
 | |
|     os<<"Resource "<< resourceId;
 | |
|     break;
 | |
|   default: 
 | |
|     assert(0); 
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   os << " : delay = " << minDelay << "\n";
 | |
| }
 | |
| 
 | |
| void SchedGraphNode::print(std::ostream &os) const {
 | |
|   os << std::string(8, ' ')
 | |
|      << "Node " << ID << " : "
 | |
|      << "latency = " << latency << "\n" << std::string(12, ' ');
 | |
|   
 | |
|   if (getMachineInstr() == NULL)
 | |
|     os << "(Dummy node)\n";
 | |
|   else {
 | |
|     os << *getMachineInstr() << "\n" << std::string(12, ' ');
 | |
|     os << inEdges.size() << " Incoming Edges:\n";
 | |
|     for (unsigned i=0, N = inEdges.size(); i < N; i++)
 | |
|       os << std::string(16, ' ') << *inEdges[i];
 | |
|   
 | |
|     os << std::string(12, ' ') << outEdges.size()
 | |
|        << " Outgoing Edges:\n";
 | |
|     for (unsigned i=0, N= outEdges.size(); i < N; i++)
 | |
|       os << std::string(16, ' ') << *outEdges[i];
 | |
|   }
 | |
| }
 | |
| 
 | |
| } // End llvm namespace
 |