mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@13881 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1402 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1402 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- ModuloScheduling.cpp - ModuloScheduling  ----------------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // 
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "ModuloSched"
 | |
| 
 | |
| #include "ModuloScheduling.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Target/TargetSchedInfo.h"
 | |
| #include "Support/Debug.h"
 | |
| #include "Support/GraphWriter.h"
 | |
| #include "Support/StringExtras.h"
 | |
| #include <vector>
 | |
| #include <utility>
 | |
| #include <iostream>
 | |
| #include <fstream>
 | |
| #include <sstream>
 | |
| 
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| /// Create ModuloSchedulingPass
 | |
| ///
 | |
| FunctionPass *llvm::createModuloSchedulingPass(TargetMachine & targ) {
 | |
|   DEBUG(std::cerr << "Created ModuloSchedulingPass\n");
 | |
|   return new ModuloSchedulingPass(targ); 
 | |
| }
 | |
| 
 | |
| template<typename GraphType>
 | |
| static void WriteGraphToFile(std::ostream &O, const std::string &GraphName,
 | |
|                              const GraphType >) {
 | |
|   std::string Filename = GraphName + ".dot";
 | |
|   O << "Writing '" << Filename << "'...";
 | |
|   std::ofstream F(Filename.c_str());
 | |
|   
 | |
|   if (F.good())
 | |
|     WriteGraph(F, GT);
 | |
|   else
 | |
|     O << "  error opening file for writing!";
 | |
|   O << "\n";
 | |
| };
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
|   template<>
 | |
|   struct DOTGraphTraits<MSchedGraph*> : public DefaultDOTGraphTraits {
 | |
|     static std::string getGraphName(MSchedGraph *F) {
 | |
|       return "Dependence Graph";
 | |
|     }
 | |
|     
 | |
|     static std::string getNodeLabel(MSchedGraphNode *Node, MSchedGraph *Graph) {
 | |
|       if (Node->getInst()) {
 | |
| 	std::stringstream ss;
 | |
| 	ss << *(Node->getInst());
 | |
| 	return ss.str(); //((MachineInstr*)Node->getInst());
 | |
|       }
 | |
|       else
 | |
| 	return "No Inst";
 | |
|     }
 | |
|     static std::string getEdgeSourceLabel(MSchedGraphNode *Node,
 | |
| 					  MSchedGraphNode::succ_iterator I) {
 | |
|       //Label each edge with the type of dependence
 | |
|       std::string edgelabel = "";
 | |
|       switch (I.getEdge().getDepOrderType()) {
 | |
| 	
 | |
|       case MSchedGraphEdge::TrueDep: 
 | |
| 	edgelabel = "True";
 | |
| 	break;
 | |
|     
 | |
|       case MSchedGraphEdge::AntiDep: 
 | |
| 	edgelabel =  "Anti";
 | |
| 	break;
 | |
| 	
 | |
|       case MSchedGraphEdge::OutputDep: 
 | |
| 	edgelabel = "Output";
 | |
| 	break;
 | |
| 	
 | |
|       default:
 | |
| 	edgelabel = "Unknown";
 | |
| 	break;
 | |
|       }
 | |
| 
 | |
|       //FIXME
 | |
|       int iteDiff = I.getEdge().getIteDiff();
 | |
|       std::string intStr = "(IteDiff: ";
 | |
|       intStr += itostr(iteDiff);
 | |
| 
 | |
|       intStr += ")";
 | |
|       edgelabel += intStr;
 | |
| 
 | |
|       return edgelabel;
 | |
|     }
 | |
|     
 | |
|     
 | |
|     
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// ModuloScheduling::runOnFunction - main transformation entry point
 | |
| bool ModuloSchedulingPass::runOnFunction(Function &F) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   DEBUG(std::cerr << "Creating ModuloSchedGraph for each BasicBlock in" + F.getName() + "\n");
 | |
|   
 | |
|   //Get MachineFunction
 | |
|   MachineFunction &MF = MachineFunction::get(&F);
 | |
| 
 | |
|   //Iterate over BasicBlocks and do ModuloScheduling if they are valid
 | |
|   for (MachineFunction::const_iterator BI = MF.begin(); BI != MF.end(); ++BI) {
 | |
|     if(MachineBBisValid(BI)) {
 | |
|       MSchedGraph *MSG = new MSchedGraph(BI, target);
 | |
|     
 | |
|       //Write Graph out to file
 | |
|       DEBUG(WriteGraphToFile(std::cerr, F.getName(), MSG));
 | |
| 
 | |
|       //Print out BB for debugging
 | |
|       DEBUG(BI->print(std::cerr));
 | |
| 
 | |
|       //Calculate Resource II
 | |
|       int ResMII = calculateResMII(BI);
 | |
|   
 | |
|       //Calculate Recurrence II
 | |
|       int RecMII = calculateRecMII(MSG, ResMII);
 | |
| 
 | |
|       II = std::max(RecMII, ResMII);
 | |
| 
 | |
|       
 | |
|       DEBUG(std::cerr << "II starts out as " << II << " ( RecMII=" << RecMII << "and ResMII=" << ResMII << "\n");
 | |
| 
 | |
|       //Calculate Node Properties
 | |
|       calculateNodeAttributes(MSG, ResMII);
 | |
| 
 | |
|       //Dump node properties if in debug mode
 | |
|       for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I =  nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I !=E; ++I) {
 | |
| 	DEBUG(std::cerr << "Node: " << *(I->first) << " ASAP: " << I->second.ASAP << " ALAP: " << I->second.ALAP << " MOB: " << I->second.MOB << " Depth: " << I->second.depth << " Height: " << I->second.height << "\n");
 | |
|       }
 | |
|     
 | |
|       //Put nodes in order to schedule them
 | |
|       computePartialOrder();
 | |
| 
 | |
|       //Dump out partial order
 | |
|       for(std::vector<std::vector<MSchedGraphNode*> >::iterator I = partialOrder.begin(), E = partialOrder.end(); I !=E; ++I) {
 | |
| 	DEBUG(std::cerr << "Start set in PO\n");
 | |
| 	for(std::vector<MSchedGraphNode*>::iterator J = I->begin(), JE = I->end(); J != JE; ++J)
 | |
| 	  DEBUG(std::cerr << "PO:" << **J << "\n");
 | |
|       }
 | |
| 
 | |
|       orderNodes();
 | |
| 
 | |
|       //Dump out order of nodes
 | |
|       for(std::vector<MSchedGraphNode*>::iterator I = FinalNodeOrder.begin(), E = FinalNodeOrder.end(); I != E; ++I)
 | |
| 	DEBUG(std::cerr << "FO:" << **I << "\n");
 | |
| 
 | |
| 
 | |
|       //Finally schedule nodes
 | |
|       computeSchedule();
 | |
| 
 | |
|       DEBUG(schedule.print(std::cerr));
 | |
|    
 | |
|       reconstructLoop(BI);
 | |
| 
 | |
| 
 | |
|       nodeToAttributesMap.clear();
 | |
|       partialOrder.clear();
 | |
|       recurrenceList.clear();
 | |
|       FinalNodeOrder.clear();
 | |
|       schedule.clear();
 | |
|       }
 | |
|     
 | |
|   }
 | |
| 
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool ModuloSchedulingPass::MachineBBisValid(const MachineBasicBlock *BI) {
 | |
| 
 | |
|   //Valid basic blocks must be loops and can not have if/else statements or calls.
 | |
|   bool isLoop = false;
 | |
|   
 | |
|   //Check first if its a valid loop
 | |
|   for(succ_const_iterator I = succ_begin(BI->getBasicBlock()), 
 | |
| 	E = succ_end(BI->getBasicBlock()); I != E; ++I) {
 | |
|     if (*I == BI->getBasicBlock())    // has single block loop
 | |
|       isLoop = true;
 | |
|   }
 | |
|   
 | |
|   if(!isLoop) {
 | |
|     DEBUG(std::cerr << "Basic Block is not a loop\n");
 | |
|     return false;
 | |
|   }
 | |
|   else 
 | |
|     DEBUG(std::cerr << "Basic Block is a loop\n");
 | |
|   
 | |
|   //Get Target machine instruction info
 | |
|   /*const TargetInstrInfo& TMI = targ.getInstrInfo();
 | |
|     
 | |
|   //Check each instruction and look for calls or if/else statements
 | |
|   unsigned count = 0;
 | |
|   for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) {
 | |
|   //Get opcode to check instruction type
 | |
|   MachineOpCode OC = I->getOpcode();
 | |
|   if(TMI.isControlFlow(OC) && (count+1 < BI->size()))
 | |
|   return false;
 | |
|   count++;
 | |
|   }*/
 | |
|   return true;
 | |
| 
 | |
| }
 | |
| 
 | |
| //ResMII is calculated by determining the usage count for each resource
 | |
| //and using the maximum.
 | |
| //FIXME: In future there should be a way to get alternative resources
 | |
| //for each instruction
 | |
| int ModuloSchedulingPass::calculateResMII(const MachineBasicBlock *BI) {
 | |
|   
 | |
|   const TargetInstrInfo & mii = target.getInstrInfo();
 | |
|   const TargetSchedInfo & msi = target.getSchedInfo();
 | |
| 
 | |
|   int ResMII = 0;
 | |
|   
 | |
|   //Map to keep track of usage count of each resource
 | |
|   std::map<unsigned, unsigned> resourceUsageCount;
 | |
| 
 | |
|   for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) {
 | |
| 
 | |
|     //Get resource usage for this instruction
 | |
|     InstrRUsage rUsage = msi.getInstrRUsage(I->getOpcode());
 | |
|     std::vector<std::vector<resourceId_t> > resources = rUsage.resourcesByCycle;
 | |
| 
 | |
|     //Loop over resources in each cycle and increments their usage count
 | |
|     for(unsigned i=0; i < resources.size(); ++i)
 | |
|       for(unsigned j=0; j < resources[i].size(); ++j) {
 | |
| 	if( resourceUsageCount.find(resources[i][j]) == resourceUsageCount.end()) {
 | |
| 	  resourceUsageCount[resources[i][j]] = 1;
 | |
| 	}
 | |
| 	else {
 | |
| 	  resourceUsageCount[resources[i][j]] =  resourceUsageCount[resources[i][j]] + 1;
 | |
| 	}
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   //Find maximum usage count
 | |
|   
 | |
|   //Get max number of instructions that can be issued at once. (FIXME)
 | |
|   int issueSlots = msi.maxNumIssueTotal;
 | |
| 
 | |
|   for(std::map<unsigned,unsigned>::iterator RB = resourceUsageCount.begin(), RE = resourceUsageCount.end(); RB != RE; ++RB) {
 | |
|     
 | |
|     //Get the total number of the resources in our cpu
 | |
|     int resourceNum = CPUResource::getCPUResource(RB->first)->maxNumUsers;
 | |
|     
 | |
|     //Get total usage count for this resources
 | |
|     unsigned usageCount = RB->second;
 | |
|     
 | |
|     //Divide the usage count by either the max number we can issue or the number of
 | |
|     //resources (whichever is its upper bound)
 | |
|     double finalUsageCount;
 | |
|     if( resourceNum <= issueSlots)
 | |
|       finalUsageCount = ceil(1.0 * usageCount / resourceNum);
 | |
|     else
 | |
|       finalUsageCount = ceil(1.0 * usageCount / issueSlots);
 | |
|     
 | |
|     
 | |
|     DEBUG(std::cerr << "Resource ID: " << RB->first << " (usage=" << usageCount << ", resourceNum=X" << ", issueSlots=" << issueSlots << ", finalUsage=" << finalUsageCount << ")\n");
 | |
| 
 | |
|     //Only keep track of the max
 | |
|     ResMII = std::max( (int) finalUsageCount, ResMII);
 | |
| 
 | |
|   }
 | |
| 
 | |
|   DEBUG(std::cerr << "Final Resource MII: " << ResMII << "\n");
 | |
|   
 | |
|   return ResMII;
 | |
| 
 | |
| }
 | |
| 
 | |
| int ModuloSchedulingPass::calculateRecMII(MSchedGraph *graph, int MII) {
 | |
|   std::vector<MSchedGraphNode*> vNodes;
 | |
|   //Loop over all nodes in the graph
 | |
|   for(MSchedGraph::iterator I = graph->begin(), E = graph->end(); I != E; ++I) {
 | |
|     findAllReccurrences(I->second, vNodes, MII);
 | |
|     vNodes.clear();
 | |
|   }
 | |
| 
 | |
|   int RecMII = 0;
 | |
|   
 | |
|   for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::iterator I = recurrenceList.begin(), E=recurrenceList.end(); I !=E; ++I) {
 | |
|     std::cerr << "Recurrence: \n";
 | |
|     for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) {
 | |
|       std::cerr << **N << "\n";
 | |
|     }
 | |
|     RecMII = std::max(RecMII, I->first);
 | |
|     std::cerr << "End Recurrence with RecMII: " << I->first << "\n";
 | |
|     }
 | |
|   DEBUG(std::cerr << "RecMII: " << RecMII << "\n");
 | |
|   
 | |
|   return MII;
 | |
| }
 | |
| 
 | |
| void ModuloSchedulingPass::calculateNodeAttributes(MSchedGraph *graph, int MII) {
 | |
| 
 | |
|   //Loop over the nodes and add them to the map
 | |
|   for(MSchedGraph::iterator I = graph->begin(), E = graph->end(); I != E; ++I) {
 | |
|     //Assert if its already in the map
 | |
|     assert(nodeToAttributesMap.find(I->second) == nodeToAttributesMap.end() && "Node attributes are already in the map");
 | |
|     
 | |
|     //Put into the map with default attribute values
 | |
|     nodeToAttributesMap[I->second] = MSNodeAttributes();
 | |
|   }
 | |
| 
 | |
|   //Create set to deal with reccurrences
 | |
|   std::set<MSchedGraphNode*> visitedNodes;
 | |
|   
 | |
|   //Now Loop over map and calculate the node attributes
 | |
|   for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
 | |
|     calculateASAP(I->first, MII, (MSchedGraphNode*) 0);
 | |
|     visitedNodes.clear();
 | |
|   }
 | |
|   
 | |
|   int maxASAP = findMaxASAP();
 | |
|   //Calculate ALAP which depends on ASAP being totally calculated
 | |
|   for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
 | |
|     calculateALAP(I->first, MII, maxASAP, (MSchedGraphNode*) 0);
 | |
|     visitedNodes.clear();
 | |
|   }
 | |
| 
 | |
|   //Calculate MOB which depends on ASAP being totally calculated, also do depth and height
 | |
|   for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
 | |
|     (I->second).MOB = std::max(0,(I->second).ALAP - (I->second).ASAP);
 | |
|    
 | |
|     DEBUG(std::cerr << "MOB: " << (I->second).MOB << " (" << *(I->first) << ")\n");
 | |
|     calculateDepth(I->first, (MSchedGraphNode*) 0);
 | |
|     calculateHeight(I->first, (MSchedGraphNode*) 0);
 | |
|   }
 | |
| 
 | |
| 
 | |
| }
 | |
| 
 | |
| bool ModuloSchedulingPass::ignoreEdge(MSchedGraphNode *srcNode, MSchedGraphNode *destNode) {
 | |
|   if(destNode == 0 || srcNode ==0)
 | |
|     return false;
 | |
| 
 | |
|   bool findEdge = edgesToIgnore.count(std::make_pair(srcNode, destNode->getInEdgeNum(srcNode)));
 | |
|   
 | |
|   return findEdge;
 | |
| }
 | |
| 
 | |
| int  ModuloSchedulingPass::calculateASAP(MSchedGraphNode *node, int MII, MSchedGraphNode *destNode) {
 | |
|     
 | |
|   DEBUG(std::cerr << "Calculating ASAP for " << *node << "\n");
 | |
| 
 | |
|   //Get current node attributes
 | |
|   MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
 | |
| 
 | |
|   if(attributes.ASAP != -1)
 | |
|     return attributes.ASAP;
 | |
|   
 | |
|   int maxPredValue = 0;
 | |
|   
 | |
|   //Iterate over all of the predecessors and find max
 | |
|   for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) {
 | |
|     
 | |
|     //Only process if we are not ignoring the edge
 | |
|     if(!ignoreEdge(*P, node)) {
 | |
|       int predASAP = -1;
 | |
|       predASAP = calculateASAP(*P, MII, node);
 | |
|     
 | |
|       assert(predASAP != -1 && "ASAP has not been calculated");
 | |
|       int iteDiff = node->getInEdge(*P).getIteDiff();
 | |
|       
 | |
|       int currentPredValue = predASAP + (*P)->getLatency() - (iteDiff * MII);
 | |
|       DEBUG(std::cerr << "pred ASAP: " << predASAP << ", iteDiff: " << iteDiff << ", PredLatency: " << (*P)->getLatency() << ", Current ASAP pred: " << currentPredValue << "\n");
 | |
|       maxPredValue = std::max(maxPredValue, currentPredValue);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   attributes.ASAP = maxPredValue;
 | |
| 
 | |
|   DEBUG(std::cerr << "ASAP: " << attributes.ASAP << " (" << *node << ")\n");
 | |
|   
 | |
|   return maxPredValue;
 | |
| }
 | |
| 
 | |
| 
 | |
| int ModuloSchedulingPass::calculateALAP(MSchedGraphNode *node, int MII, 
 | |
| 					int maxASAP, MSchedGraphNode *srcNode) {
 | |
|   
 | |
|   DEBUG(std::cerr << "Calculating ALAP for " << *node << "\n");
 | |
|   
 | |
|   MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
 | |
|  
 | |
|   if(attributes.ALAP != -1)
 | |
|     return attributes.ALAP;
 | |
|  
 | |
|   if(node->hasSuccessors()) {
 | |
|     
 | |
|     //Trying to deal with the issue where the node has successors, but
 | |
|     //we are ignoring all of the edges to them. So this is my hack for
 | |
|     //now.. there is probably a more elegant way of doing this (FIXME)
 | |
|     bool processedOneEdge = false;
 | |
| 
 | |
|     //FIXME, set to something high to start
 | |
|     int minSuccValue = 9999999;
 | |
|     
 | |
|     //Iterate over all of the predecessors and fine max
 | |
|     for(MSchedGraphNode::succ_iterator P = node->succ_begin(), 
 | |
| 	  E = node->succ_end(); P != E; ++P) {
 | |
|       
 | |
|       //Only process if we are not ignoring the edge
 | |
|       if(!ignoreEdge(node, *P)) {
 | |
| 	processedOneEdge = true;
 | |
| 	int succALAP = -1;
 | |
| 	succALAP = calculateALAP(*P, MII, maxASAP, node);
 | |
| 	
 | |
| 	assert(succALAP != -1 && "Successors ALAP should have been caclulated");
 | |
| 	
 | |
| 	int iteDiff = P.getEdge().getIteDiff();
 | |
| 	
 | |
| 	int currentSuccValue = succALAP - node->getLatency() + iteDiff * MII;
 | |
| 	
 | |
| 	DEBUG(std::cerr << "succ ALAP: " << succALAP << ", iteDiff: " << iteDiff << ", SuccLatency: " << (*P)->getLatency() << ", Current ALAP succ: " << currentSuccValue << "\n");
 | |
| 
 | |
| 	minSuccValue = std::min(minSuccValue, currentSuccValue);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     if(processedOneEdge)
 | |
|     	attributes.ALAP = minSuccValue;
 | |
|     
 | |
|     else
 | |
|       attributes.ALAP = maxASAP;
 | |
|   }
 | |
|   else
 | |
|     attributes.ALAP = maxASAP;
 | |
| 
 | |
|   DEBUG(std::cerr << "ALAP: " << attributes.ALAP << " (" << *node << ")\n");
 | |
| 
 | |
|   if(attributes.ALAP < 0)
 | |
|     attributes.ALAP = 0;
 | |
| 
 | |
|   return attributes.ALAP;
 | |
| }
 | |
| 
 | |
| int ModuloSchedulingPass::findMaxASAP() {
 | |
|   int maxASAP = 0;
 | |
| 
 | |
|   for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(),
 | |
| 	E = nodeToAttributesMap.end(); I != E; ++I)
 | |
|     maxASAP = std::max(maxASAP, I->second.ASAP);
 | |
|   return maxASAP;
 | |
| }
 | |
| 
 | |
| 
 | |
| int ModuloSchedulingPass::calculateHeight(MSchedGraphNode *node,MSchedGraphNode *srcNode) {
 | |
|   
 | |
|   MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
 | |
| 
 | |
|   if(attributes.height != -1)
 | |
|     return attributes.height;
 | |
| 
 | |
|   int maxHeight = 0;
 | |
|     
 | |
|   //Iterate over all of the predecessors and find max
 | |
|   for(MSchedGraphNode::succ_iterator P = node->succ_begin(), 
 | |
| 	E = node->succ_end(); P != E; ++P) {
 | |
|     
 | |
|     
 | |
|     if(!ignoreEdge(node, *P)) {
 | |
|       int succHeight = calculateHeight(*P, node);
 | |
| 
 | |
|       assert(succHeight != -1 && "Successors Height should have been caclulated");
 | |
| 
 | |
|       int currentHeight = succHeight + node->getLatency();
 | |
|       maxHeight = std::max(maxHeight, currentHeight);
 | |
|     }
 | |
|   }
 | |
|   attributes.height = maxHeight;
 | |
|   DEBUG(std::cerr << "Height: " << attributes.height << " (" << *node << ")\n");
 | |
|   return maxHeight;
 | |
| }
 | |
| 
 | |
| 
 | |
| int ModuloSchedulingPass::calculateDepth(MSchedGraphNode *node, 
 | |
| 					  MSchedGraphNode *destNode) {
 | |
| 
 | |
|   MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
 | |
| 
 | |
|   if(attributes.depth != -1)
 | |
|     return attributes.depth;
 | |
| 
 | |
|   int maxDepth = 0;
 | |
|       
 | |
|   //Iterate over all of the predecessors and fine max
 | |
|   for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) {
 | |
| 
 | |
|     if(!ignoreEdge(*P, node)) {
 | |
|       int predDepth = -1;
 | |
|       predDepth = calculateDepth(*P, node);
 | |
|       
 | |
|       assert(predDepth != -1 && "Predecessors ASAP should have been caclulated");
 | |
| 
 | |
|       int currentDepth = predDepth + (*P)->getLatency();
 | |
|       maxDepth = std::max(maxDepth, currentDepth);
 | |
|     }
 | |
|   }
 | |
|   attributes.depth = maxDepth;
 | |
|   
 | |
|   DEBUG(std::cerr << "Depth: " << attributes.depth << " (" << *node << "*)\n");
 | |
|   return maxDepth;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| void ModuloSchedulingPass::addReccurrence(std::vector<MSchedGraphNode*> &recurrence, int II, MSchedGraphNode *srcBENode, MSchedGraphNode *destBENode) {
 | |
|   //Check to make sure that this recurrence is unique
 | |
|   bool same = false;
 | |
| 
 | |
| 
 | |
|   //Loop over all recurrences already in our list
 | |
|   for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::iterator R = recurrenceList.begin(), RE = recurrenceList.end(); R != RE; ++R) {
 | |
|     
 | |
|     bool all_same = true;
 | |
|      //First compare size
 | |
|     if(R->second.size() == recurrence.size()) {
 | |
|       
 | |
|       for(std::vector<MSchedGraphNode*>::const_iterator node = R->second.begin(), end = R->second.end(); node != end; ++node) {
 | |
| 	if(find(recurrence.begin(), recurrence.end(), *node) == recurrence.end()) {
 | |
| 	  all_same = all_same && false;
 | |
| 	  break;
 | |
| 	}
 | |
| 	else
 | |
| 	  all_same = all_same && true;
 | |
|       }
 | |
|       if(all_same) {
 | |
| 	same = true;
 | |
| 	break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if(!same) {
 | |
|     srcBENode = recurrence.back();
 | |
|     destBENode = recurrence.front();
 | |
|     
 | |
|     //FIXME
 | |
|     if(destBENode->getInEdge(srcBENode).getIteDiff() == 0) {
 | |
|       //DEBUG(std::cerr << "NOT A BACKEDGE\n");
 | |
|       //find actual backedge HACK HACK 
 | |
|       for(unsigned i=0; i< recurrence.size()-1; ++i) {
 | |
| 	if(recurrence[i+1]->getInEdge(recurrence[i]).getIteDiff() == 1) {
 | |
| 	  srcBENode = recurrence[i];
 | |
| 	  destBENode = recurrence[i+1];
 | |
| 	  break;
 | |
| 	}
 | |
| 	  
 | |
|       }
 | |
|       
 | |
|     }
 | |
|     DEBUG(std::cerr << "Back Edge to Remove: " << *srcBENode << " to " << *destBENode << "\n");
 | |
|     edgesToIgnore.insert(std::make_pair(srcBENode, destBENode->getInEdgeNum(srcBENode)));
 | |
|     recurrenceList.insert(std::make_pair(II, recurrence));
 | |
|   }
 | |
|   
 | |
| }
 | |
| 
 | |
| void ModuloSchedulingPass::findAllReccurrences(MSchedGraphNode *node, 
 | |
| 					       std::vector<MSchedGraphNode*> &visitedNodes,
 | |
| 					       int II) {
 | |
| 
 | |
|   if(find(visitedNodes.begin(), visitedNodes.end(), node) != visitedNodes.end()) {
 | |
|     std::vector<MSchedGraphNode*> recurrence;
 | |
|     bool first = true;
 | |
|     int delay = 0;
 | |
|     int distance = 0;
 | |
|     int RecMII = II; //Starting value
 | |
|     MSchedGraphNode *last = node;
 | |
|     MSchedGraphNode *srcBackEdge;
 | |
|     MSchedGraphNode *destBackEdge;
 | |
|     
 | |
| 
 | |
| 
 | |
|     for(std::vector<MSchedGraphNode*>::iterator I = visitedNodes.begin(), E = visitedNodes.end();
 | |
| 	I !=E; ++I) {
 | |
| 
 | |
|       if(*I == node) 
 | |
| 	first = false;
 | |
|       if(first)
 | |
| 	continue;
 | |
| 
 | |
|       delay = delay + (*I)->getLatency();
 | |
| 
 | |
|       if(*I != node) {
 | |
| 	int diff = (*I)->getInEdge(last).getIteDiff();
 | |
| 	distance += diff;
 | |
| 	if(diff > 0) {
 | |
| 	  srcBackEdge = last;
 | |
| 	  destBackEdge = *I;
 | |
| 	}
 | |
|       }
 | |
| 
 | |
|       recurrence.push_back(*I);
 | |
|       last = *I;
 | |
|     }
 | |
| 
 | |
| 
 | |
|       
 | |
|     //Get final distance calc
 | |
|     distance += node->getInEdge(last).getIteDiff();
 | |
|    
 | |
| 
 | |
|     //Adjust II until we get close to the inequality delay - II*distance <= 0
 | |
|     
 | |
|     int value = delay-(RecMII * distance);
 | |
|     int lastII = II;
 | |
|     while(value <= 0) {
 | |
|       
 | |
|       lastII = RecMII;
 | |
|       RecMII--;
 | |
|       value = delay-(RecMII * distance);
 | |
|     }
 | |
|     
 | |
|     
 | |
|     DEBUG(std::cerr << "Final II for this recurrence: " << lastII << "\n");
 | |
|     addReccurrence(recurrence, lastII, srcBackEdge, destBackEdge);
 | |
|     assert(distance != 0 && "Recurrence distance should not be zero");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   for(MSchedGraphNode::succ_iterator I = node->succ_begin(), E = node->succ_end(); I != E; ++I) {
 | |
|     visitedNodes.push_back(node);
 | |
|     findAllReccurrences(*I, visitedNodes, II);
 | |
|     visitedNodes.pop_back();
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| void ModuloSchedulingPass::computePartialOrder() {
 | |
|   
 | |
|   
 | |
|   //Loop over all recurrences and add to our partial order
 | |
|   //be sure to remove nodes that are already in the partial order in
 | |
|   //a different recurrence and don't add empty recurrences.
 | |
|   for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::reverse_iterator I = recurrenceList.rbegin(), E=recurrenceList.rend(); I !=E; ++I) {
 | |
|     
 | |
|     //Add nodes that connect this recurrence to the previous recurrence
 | |
|     
 | |
|     //If this is the first recurrence in the partial order, add all predecessors
 | |
|     for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) {
 | |
| 
 | |
|     }
 | |
| 
 | |
| 
 | |
|     std::vector<MSchedGraphNode*> new_recurrence;
 | |
|     //Loop through recurrence and remove any nodes already in the partial order
 | |
|     for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) {
 | |
|       bool found = false;
 | |
|       for(std::vector<std::vector<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), PE = partialOrder.end(); PO != PE; ++PO) {
 | |
| 	if(find(PO->begin(), PO->end(), *N) != PO->end())
 | |
| 	  found = true;
 | |
|       }
 | |
|       if(!found) {
 | |
| 	new_recurrence.push_back(*N);
 | |
| 	 
 | |
| 	if(partialOrder.size() == 0)
 | |
| 	  //For each predecessors, add it to this recurrence ONLY if it is not already in it
 | |
| 	  for(MSchedGraphNode::pred_iterator P = (*N)->pred_begin(), 
 | |
| 		PE = (*N)->pred_end(); P != PE; ++P) {
 | |
| 	    
 | |
| 	    //Check if we are supposed to ignore this edge or not
 | |
| 	    if(!ignoreEdge(*P, *N))
 | |
| 	      //Check if already in this recurrence
 | |
| 	      if(find(I->second.begin(), I->second.end(), *P) == I->second.end()) {
 | |
| 		//Also need to check if in partial order
 | |
| 		bool predFound = false;
 | |
| 		for(std::vector<std::vector<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), PEND = partialOrder.end(); PO != PEND; ++PO) {
 | |
| 		  if(find(PO->begin(), PO->end(), *P) != PO->end())
 | |
| 		    predFound = true;
 | |
| 		}
 | |
| 		
 | |
| 		if(!predFound)
 | |
| 		  if(find(new_recurrence.begin(), new_recurrence.end(), *P) == new_recurrence.end())
 | |
| 		     new_recurrence.push_back(*P);
 | |
| 		
 | |
| 	      }
 | |
| 	  }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|         
 | |
|     if(new_recurrence.size() > 0)
 | |
|       partialOrder.push_back(new_recurrence);
 | |
|   }
 | |
|   
 | |
|   //Add any nodes that are not already in the partial order
 | |
|   std::vector<MSchedGraphNode*> lastNodes;
 | |
|   for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
 | |
|     bool found = false;
 | |
|     //Check if its already in our partial order, if not add it to the final vector
 | |
|     for(std::vector<std::vector<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), PE = partialOrder.end(); PO != PE; ++PO) {
 | |
|       if(find(PO->begin(), PO->end(), I->first) != PO->end())
 | |
| 	found = true;
 | |
|     }
 | |
|     if(!found)
 | |
|       lastNodes.push_back(I->first);
 | |
|   }
 | |
| 
 | |
|   if(lastNodes.size() > 0)
 | |
|     partialOrder.push_back(lastNodes);
 | |
|   
 | |
| }
 | |
| 
 | |
| 
 | |
| void ModuloSchedulingPass::predIntersect(std::vector<MSchedGraphNode*> &CurrentSet, std::vector<MSchedGraphNode*> &IntersectResult) {
 | |
|   
 | |
|   //Sort CurrentSet so we can use lowerbound
 | |
|   sort(CurrentSet.begin(), CurrentSet.end());
 | |
|   
 | |
|   for(unsigned j=0; j < FinalNodeOrder.size(); ++j) {
 | |
|     for(MSchedGraphNode::pred_iterator P = FinalNodeOrder[j]->pred_begin(), 
 | |
| 	  E = FinalNodeOrder[j]->pred_end(); P != E; ++P) {
 | |
|    
 | |
|       //Check if we are supposed to ignore this edge or not
 | |
|       if(ignoreEdge(*P,FinalNodeOrder[j]))
 | |
| 	continue;
 | |
| 	 
 | |
|       if(find(CurrentSet.begin(), 
 | |
| 		     CurrentSet.end(), *P) != CurrentSet.end())
 | |
| 	if(find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end())
 | |
| 	  IntersectResult.push_back(*P);
 | |
|     }
 | |
|   } 
 | |
| }
 | |
| 
 | |
| void ModuloSchedulingPass::succIntersect(std::vector<MSchedGraphNode*> &CurrentSet, std::vector<MSchedGraphNode*> &IntersectResult) {
 | |
| 
 | |
|   //Sort CurrentSet so we can use lowerbound
 | |
|   sort(CurrentSet.begin(), CurrentSet.end());
 | |
|   
 | |
|   for(unsigned j=0; j < FinalNodeOrder.size(); ++j) {
 | |
|     for(MSchedGraphNode::succ_iterator P = FinalNodeOrder[j]->succ_begin(), 
 | |
| 	  E = FinalNodeOrder[j]->succ_end(); P != E; ++P) {
 | |
| 
 | |
|       //Check if we are supposed to ignore this edge or not
 | |
|       if(ignoreEdge(FinalNodeOrder[j],*P))
 | |
| 	continue;
 | |
| 
 | |
|       if(find(CurrentSet.begin(), 
 | |
| 		     CurrentSet.end(), *P) != CurrentSet.end())
 | |
| 	if(find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end())
 | |
| 	  IntersectResult.push_back(*P);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void dumpIntersection(std::vector<MSchedGraphNode*> &IntersectCurrent) {
 | |
|   std::cerr << "Intersection (";
 | |
|   for(std::vector<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(), E = IntersectCurrent.end(); I != E; ++I)
 | |
|     std::cerr << **I << ", ";
 | |
|   std::cerr << ")\n";
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| void ModuloSchedulingPass::orderNodes() {
 | |
|   
 | |
|   int BOTTOM_UP = 0;
 | |
|   int TOP_DOWN = 1;
 | |
| 
 | |
|   //Set default order
 | |
|   int order = BOTTOM_UP;
 | |
| 
 | |
| 
 | |
|   //Loop over all the sets and place them in the final node order
 | |
|   for(std::vector<std::vector<MSchedGraphNode*> >::iterator CurrentSet = partialOrder.begin(), E= partialOrder.end(); CurrentSet != E; ++CurrentSet) {
 | |
| 
 | |
|     DEBUG(std::cerr << "Processing set in S\n");
 | |
|     dumpIntersection(*CurrentSet);
 | |
|     //Result of intersection
 | |
|     std::vector<MSchedGraphNode*> IntersectCurrent;
 | |
| 
 | |
|     predIntersect(*CurrentSet, IntersectCurrent);
 | |
| 
 | |
|     //If the intersection of predecessor and current set is not empty
 | |
|     //sort nodes bottom up
 | |
|     if(IntersectCurrent.size() != 0) {
 | |
|       DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is NOT empty\n");
 | |
|       order = BOTTOM_UP;
 | |
|     }
 | |
|     //If empty, use successors
 | |
|     else {
 | |
|       DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is empty\n");
 | |
| 
 | |
|       succIntersect(*CurrentSet, IntersectCurrent);
 | |
| 
 | |
|       //sort top-down
 | |
|       if(IntersectCurrent.size() != 0) {
 | |
| 	 DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is NOT empty\n");
 | |
| 	order = TOP_DOWN;
 | |
|       }
 | |
|       else {
 | |
| 	DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is empty\n");
 | |
| 	//Find node with max ASAP in current Set
 | |
| 	MSchedGraphNode *node;
 | |
| 	int maxASAP = 0;
 | |
| 	DEBUG(std::cerr << "Using current set of size " << CurrentSet->size() << "to find max ASAP\n");
 | |
| 	for(unsigned j=0; j < CurrentSet->size(); ++j) {
 | |
| 	  //Get node attributes
 | |
| 	  MSNodeAttributes nodeAttr= nodeToAttributesMap.find((*CurrentSet)[j])->second;
 | |
| 	  //assert(nodeAttr != nodeToAttributesMap.end() && "Node not in attributes map!");
 | |
| 	  DEBUG(std::cerr << "CurrentSet index " << j << "has ASAP: " << nodeAttr.ASAP << "\n");
 | |
| 	  if(maxASAP < nodeAttr.ASAP) {
 | |
| 	    maxASAP = nodeAttr.ASAP;
 | |
| 	    node = (*CurrentSet)[j];
 | |
| 	  }
 | |
| 	}
 | |
| 	assert(node != 0 && "In node ordering node should not be null");
 | |
| 	IntersectCurrent.push_back(node);
 | |
| 	order = BOTTOM_UP;
 | |
|       }
 | |
|     }
 | |
|       
 | |
|     //Repeat until all nodes are put into the final order from current set
 | |
|     while(IntersectCurrent.size() > 0) {
 | |
| 
 | |
|       if(order == TOP_DOWN) {
 | |
| 	DEBUG(std::cerr << "Order is TOP DOWN\n");
 | |
| 
 | |
| 	while(IntersectCurrent.size() > 0) {
 | |
| 	  DEBUG(std::cerr << "Intersection is not empty, so find heighest height\n");
 | |
| 	  
 | |
| 	  int MOB = 0;
 | |
| 	  int height = 0;
 | |
| 	  MSchedGraphNode *highestHeightNode = IntersectCurrent[0];
 | |
| 	  	  
 | |
| 	  //Find node in intersection with highest heigh and lowest MOB
 | |
| 	  for(std::vector<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(), 
 | |
| 		E = IntersectCurrent.end(); I != E; ++I) {
 | |
| 	    
 | |
| 	    //Get current nodes properties
 | |
| 	    MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*I)->second;
 | |
| 
 | |
| 	    if(height < nodeAttr.height) {
 | |
| 	      highestHeightNode = *I;
 | |
| 	      height = nodeAttr.height;
 | |
| 	      MOB = nodeAttr.MOB;
 | |
| 	    }
 | |
| 	    else if(height ==  nodeAttr.height) {
 | |
| 	      if(MOB > nodeAttr.height) {
 | |
| 		highestHeightNode = *I;
 | |
| 		height =  nodeAttr.height;
 | |
| 		MOB = nodeAttr.MOB;
 | |
| 	      }
 | |
| 	    }
 | |
| 	  }
 | |
| 	  
 | |
| 	  //Append our node with greatest height to the NodeOrder
 | |
| 	  if(find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestHeightNode) == FinalNodeOrder.end()) {
 | |
| 	    DEBUG(std::cerr << "Adding node to Final Order: " << *highestHeightNode << "\n");
 | |
| 	    FinalNodeOrder.push_back(highestHeightNode);
 | |
| 	  }
 | |
| 
 | |
| 	  //Remove V from IntersectOrder
 | |
| 	  IntersectCurrent.erase(find(IntersectCurrent.begin(), 
 | |
| 				      IntersectCurrent.end(), highestHeightNode));
 | |
| 
 | |
| 
 | |
| 	  //Intersect V's successors with CurrentSet
 | |
| 	  for(MSchedGraphNode::succ_iterator P = highestHeightNode->succ_begin(),
 | |
| 		E = highestHeightNode->succ_end(); P != E; ++P) {
 | |
| 	    //if(lower_bound(CurrentSet->begin(), 
 | |
| 	    //	   CurrentSet->end(), *P) != CurrentSet->end()) {
 | |
| 	    if(find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) {  
 | |
| 	      if(ignoreEdge(highestHeightNode, *P))
 | |
| 		continue;
 | |
| 	      //If not already in Intersect, add
 | |
| 	      if(find(IntersectCurrent.begin(), IntersectCurrent.end(), *P) == IntersectCurrent.end())
 | |
| 		IntersectCurrent.push_back(*P);
 | |
| 	    }
 | |
| 	  }
 | |
|      	} //End while loop over Intersect Size
 | |
| 
 | |
| 	//Change direction
 | |
| 	order = BOTTOM_UP;
 | |
| 
 | |
| 	//Reset Intersect to reflect changes in OrderNodes
 | |
| 	IntersectCurrent.clear();
 | |
| 	predIntersect(*CurrentSet, IntersectCurrent);
 | |
| 	
 | |
|       } //End If TOP_DOWN
 | |
| 	
 | |
| 	//Begin if BOTTOM_UP
 | |
|       else {
 | |
| 	DEBUG(std::cerr << "Order is BOTTOM UP\n");
 | |
| 	while(IntersectCurrent.size() > 0) {
 | |
| 	  DEBUG(std::cerr << "Intersection of size " << IntersectCurrent.size() << ", finding highest depth\n");
 | |
| 
 | |
| 	  //dump intersection
 | |
| 	  DEBUG(dumpIntersection(IntersectCurrent));
 | |
| 	  //Get node with highest depth, if a tie, use one with lowest
 | |
| 	  //MOB
 | |
| 	  int MOB = 0;
 | |
| 	  int depth = 0;
 | |
| 	  MSchedGraphNode *highestDepthNode = IntersectCurrent[0];
 | |
| 	  
 | |
| 	  for(std::vector<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(), 
 | |
| 		E = IntersectCurrent.end(); I != E; ++I) {
 | |
| 	    //Find node attribute in graph
 | |
| 	    MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*I)->second;
 | |
| 	    
 | |
| 	    if(depth < nodeAttr.depth) {
 | |
| 	      highestDepthNode = *I;
 | |
| 	      depth = nodeAttr.depth;
 | |
| 	      MOB = nodeAttr.MOB;
 | |
| 	    }
 | |
| 	    else if(depth == nodeAttr.depth) {
 | |
| 	      if(MOB > nodeAttr.MOB) {
 | |
| 		highestDepthNode = *I;
 | |
| 		depth = nodeAttr.depth;
 | |
| 		MOB = nodeAttr.MOB;
 | |
| 	      }
 | |
| 	    }
 | |
| 	  }
 | |
| 	  
 | |
| 	  
 | |
| 
 | |
| 	  //Append highest depth node to the NodeOrder
 | |
| 	   if(find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestDepthNode) == FinalNodeOrder.end()) {
 | |
| 	     DEBUG(std::cerr << "Adding node to Final Order: " << *highestDepthNode << "\n");
 | |
| 	     FinalNodeOrder.push_back(highestDepthNode);
 | |
| 	   }
 | |
| 	  //Remove heightestDepthNode from IntersectOrder
 | |
| 	  IntersectCurrent.erase(find(IntersectCurrent.begin(), 
 | |
| 				      IntersectCurrent.end(),highestDepthNode));
 | |
| 	  
 | |
| 
 | |
| 	  //Intersect heightDepthNode's pred with CurrentSet
 | |
| 	  for(MSchedGraphNode::pred_iterator P = highestDepthNode->pred_begin(), 
 | |
| 		E = highestDepthNode->pred_end(); P != E; ++P) {
 | |
| 	    //if(lower_bound(CurrentSet->begin(), 
 | |
| 	    //	   CurrentSet->end(), *P) != CurrentSet->end()) {
 | |
| 	    if(find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) {
 | |
| 	    
 | |
| 	      if(ignoreEdge(*P, highestDepthNode))
 | |
| 		continue;
 | |
| 	    
 | |
| 	    //If not already in Intersect, add
 | |
| 	    if(find(IntersectCurrent.begin(), 
 | |
| 		      IntersectCurrent.end(), *P) == IntersectCurrent.end())
 | |
| 		IntersectCurrent.push_back(*P);
 | |
| 	    }
 | |
| 	  }
 | |
| 	  
 | |
| 	} //End while loop over Intersect Size
 | |
| 	
 | |
| 	  //Change order
 | |
| 	order = TOP_DOWN;
 | |
| 	
 | |
| 	//Reset IntersectCurrent to reflect changes in OrderNodes
 | |
| 	IntersectCurrent.clear();
 | |
| 	succIntersect(*CurrentSet, IntersectCurrent);
 | |
| 	} //End if BOTTOM_DOWN
 | |
| 	
 | |
|     }
 | |
|     //End Wrapping while loop
 | |
|       
 | |
|   }//End for over all sets of nodes
 | |
|    
 | |
|   //Return final Order
 | |
|   //return FinalNodeOrder;
 | |
| }
 | |
| 
 | |
| void ModuloSchedulingPass::computeSchedule() {
 | |
| 
 | |
|   bool success = false;
 | |
|   
 | |
|   while(!success) {
 | |
| 
 | |
|     //Loop over the final node order and process each node
 | |
|     for(std::vector<MSchedGraphNode*>::iterator I = FinalNodeOrder.begin(), 
 | |
| 	  E = FinalNodeOrder.end(); I != E; ++I) {
 | |
|       
 | |
|       //CalculateEarly and Late start
 | |
|       int EarlyStart = -1;
 | |
|       int LateStart = 99999; //Set to something higher then we would ever expect (FIXME)
 | |
|       bool hasSucc = false;
 | |
|       bool hasPred = false;
 | |
|       
 | |
|       if(!(*I)->isBranch()) {
 | |
| 	//Loop over nodes in the schedule and determine if they are predecessors
 | |
| 	//or successors of the node we are trying to schedule
 | |
| 	for(MSSchedule::schedule_iterator nodesByCycle = schedule.begin(), nodesByCycleEnd = schedule.end(); 
 | |
| 	    nodesByCycle != nodesByCycleEnd; ++nodesByCycle) {
 | |
| 	  
 | |
| 	  //For this cycle, get the vector of nodes schedule and loop over it
 | |
| 	  for(std::vector<MSchedGraphNode*>::iterator schedNode = nodesByCycle->second.begin(), SNE = nodesByCycle->second.end(); schedNode != SNE; ++schedNode) {
 | |
| 	    
 | |
| 	    if((*I)->isPredecessor(*schedNode)) {
 | |
| 	      if(!ignoreEdge(*schedNode, *I)) {
 | |
| 		int diff = (*I)->getInEdge(*schedNode).getIteDiff();
 | |
| 		int ES_Temp = nodesByCycle->first + (*schedNode)->getLatency() - diff * II;
 | |
| 	DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n");
 | |
| 		DEBUG(std::cerr << "Temp EarlyStart: " << ES_Temp << " Prev EarlyStart: " << EarlyStart << "\n");
 | |
| 		EarlyStart = std::max(EarlyStart, ES_Temp);
 | |
| 		hasPred = true;
 | |
| 	      }
 | |
| 	    }
 | |
| 	    if((*I)->isSuccessor(*schedNode)) {
 | |
| 	      if(!ignoreEdge(*I,*schedNode)) {
 | |
| 		int diff = (*schedNode)->getInEdge(*I).getIteDiff();
 | |
| 		int LS_Temp = nodesByCycle->first - (*I)->getLatency() + diff * II;
 | |
| 		DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n");
 | |
| 		DEBUG(std::cerr << "Temp LateStart: " << LS_Temp << " Prev LateStart: " << LateStart << "\n");
 | |
| 		LateStart = std::min(LateStart, LS_Temp);
 | |
| 		hasSucc = true;
 | |
| 	      }
 | |
| 	    }
 | |
| 	  }
 | |
| 	}
 | |
|       }
 | |
|       else {
 | |
| 	//WARNING: HACK! FIXME!!!!
 | |
| 	EarlyStart = II-1;
 | |
| 	LateStart = II-1;
 | |
| 	hasPred = 1;
 | |
| 	hasSucc = 1;
 | |
|       }
 | |
|  
 | |
|       
 | |
|       DEBUG(std::cerr << "Has Successors: " << hasSucc << ", Has Pred: " << hasPred << "\n");
 | |
|       DEBUG(std::cerr << "EarlyStart: " << EarlyStart << ", LateStart: " << LateStart << "\n");
 | |
| 
 | |
|       //Check if the node has no pred or successors and set Early Start to its ASAP
 | |
|       if(!hasSucc && !hasPred)
 | |
| 	EarlyStart = nodeToAttributesMap.find(*I)->second.ASAP;
 | |
|       
 | |
|       //Now, try to schedule this node depending upon its pred and successor in the schedule
 | |
|       //already
 | |
|       if(!hasSucc && hasPred)
 | |
| 	success = scheduleNode(*I, EarlyStart, (EarlyStart + II -1));
 | |
|       else if(!hasPred && hasSucc)
 | |
| 	success = scheduleNode(*I, LateStart, (LateStart - II +1));
 | |
|       else if(hasPred && hasSucc)
 | |
| 	success = scheduleNode(*I, EarlyStart, std::min(LateStart, (EarlyStart + II -1)));
 | |
|       else
 | |
| 	success = scheduleNode(*I, EarlyStart, EarlyStart + II - 1);
 | |
|       
 | |
|       if(!success) {
 | |
| 	++II; 
 | |
| 	schedule.clear();
 | |
| 	break;
 | |
|       }
 | |
|      
 | |
|     }
 | |
| 
 | |
|     DEBUG(std::cerr << "Constructing Kernel\n");
 | |
|     success = schedule.constructKernel(II);
 | |
|     if(!success) {
 | |
|       ++II;
 | |
|       schedule.clear();
 | |
|     }
 | |
|   } 
 | |
| }
 | |
| 
 | |
| 
 | |
| bool ModuloSchedulingPass::scheduleNode(MSchedGraphNode *node, 
 | |
| 				      int start, int end) {
 | |
|   bool success = false;
 | |
| 
 | |
|   DEBUG(std::cerr << *node << " (Start Cycle: " << start << ", End Cycle: " << end << ")\n");
 | |
| 
 | |
|   //Make sure start and end are not negative
 | |
|   if(start < 0)
 | |
|     start = 0;
 | |
|   if(end < 0)
 | |
|     end = 0;
 | |
| 
 | |
|   bool forward = true;
 | |
|   if(start > end)
 | |
|     forward = false;
 | |
| 
 | |
|   bool increaseSC = true;
 | |
|   int cycle = start ;
 | |
| 
 | |
| 
 | |
|   while(increaseSC) {
 | |
|     
 | |
|     increaseSC = false;
 | |
| 
 | |
|     increaseSC = schedule.insert(node, cycle);
 | |
|     
 | |
|     if(!increaseSC) 
 | |
|       return true;
 | |
| 
 | |
|     //Increment cycle to try again
 | |
|     if(forward) {
 | |
|       ++cycle;
 | |
|       DEBUG(std::cerr << "Increase cycle: " << cycle << "\n");
 | |
|       if(cycle > end)
 | |
| 	return false;
 | |
|     }
 | |
|     else {
 | |
|       --cycle;
 | |
|       DEBUG(std::cerr << "Decrease cycle: " << cycle << "\n");
 | |
|       if(cycle < end)
 | |
| 	return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return success;
 | |
| }
 | |
| 
 | |
| /*void ModuloSchedulingPass::saveValue(const MachineInstr *inst, std::set<const Value*> &valuestoSave, std::vector<Value*> *valuesForNode) {
 | |
|   int numFound = 0;
 | |
|   Instruction *tmp;
 | |
| 
 | |
|   //For each value* in this inst that is a def, we want to save a copy
 | |
|   //Target info
 | |
|   const TargetInstrInfo & mii = target.getInstrInfo();
 | |
|   for(unsigned i=0; i < inst->getNumOperands(); ++i) {
 | |
|     //get machine operand
 | |
|     const MachineOperand &mOp = inst->getOperand(i);
 | |
|     if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) {
 | |
|       //Save copy in tmpInstruction
 | |
|       numFound++;
 | |
|       tmp = TmpInstruction(mii.getMachineCodeFor(mOp.getVRegValue()),
 | |
|                  mOp.getVRegValue());
 | |
|       valuesForNode->push_back(tmp);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(numFound == 1 && "We should have only found one def to this virtual register!"); 
 | |
| }*/
 | |
| 
 | |
| void ModuloSchedulingPass::writePrologues(std::vector<MachineBasicBlock *> &prologues, const MachineBasicBlock *origBB, std::vector<BasicBlock*> &llvm_prologues) {
 | |
|   
 | |
|   std::map<int, std::set<const MachineInstr*> > inKernel;
 | |
|   int maxStageCount = 0;
 | |
| 
 | |
|   for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
 | |
|     maxStageCount = std::max(maxStageCount, I->second);
 | |
|     
 | |
|     //Ignore the branch, we will handle this separately
 | |
|     if(I->first->isBranch())
 | |
|       continue;
 | |
| 
 | |
|     //Put int the map so we know what instructions in each stage are in the kernel
 | |
|     if(I->second > 0) {
 | |
|       DEBUG(std::cerr << "Inserting instruction " << *(I->first->getInst()) << " into map at stage " << I->second << "\n");
 | |
|       inKernel[I->second].insert(I->first->getInst());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //Now write the prologues
 | |
|   for(int i = 1; i <= maxStageCount; ++i) {
 | |
|     BasicBlock *llvmBB = new BasicBlock();
 | |
|     MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB);
 | |
|   
 | |
|     //Loop over original machine basic block. If we see an instruction from this
 | |
|     //stage that is NOT in the kernel, then it needs to be added into the prologue
 | |
|     //We go in order to preserve dependencies
 | |
|     for(MachineBasicBlock::const_iterator MI = origBB->begin(), ME = origBB->end(); ME != MI; ++MI) {
 | |
|       if(inKernel[i].count(&*MI)) {
 | |
| 	inKernel[i].erase(&*MI);
 | |
|         if(inKernel[i].size() <= 0)
 | |
|           break;
 | |
|         else
 | |
|           continue;
 | |
|       }
 | |
|       else {
 | |
| 	DEBUG(std::cerr << "Writing instruction to prologue\n");
 | |
|         machineBB->push_back(MI->clone());
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     (((MachineBasicBlock*)origBB)->getParent())->getBasicBlockList().push_back(machineBB);
 | |
|     prologues.push_back(machineBB);
 | |
|     llvm_prologues.push_back(llvmBB);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ModuloSchedulingPass::writeEpilogues(std::vector<MachineBasicBlock *> &epilogues, const MachineBasicBlock *origBB, std::vector<BasicBlock*> &llvm_epilogues) {
 | |
|   std::map<int, std::set<const MachineInstr*> > inKernel;
 | |
|   int maxStageCount = 0;
 | |
|   for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
 | |
|     maxStageCount = std::max(maxStageCount, I->second);
 | |
|     
 | |
|     //Ignore the branch, we will handle this separately
 | |
|     if(I->first->isBranch())
 | |
|       continue;
 | |
| 
 | |
|     //Put int the map so we know what instructions in each stage are in the kernel
 | |
|     if(I->second > 0) {
 | |
|       DEBUG(std::cerr << "Inserting instruction " << *(I->first->getInst()) << " into map at stage " << I->second << "\n");
 | |
|       inKernel[I->second].insert(I->first->getInst());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //Now write the epilogues
 | |
|   for(int i = 1; i <= maxStageCount; ++i) {
 | |
|     BasicBlock *llvmBB = new BasicBlock();
 | |
|     MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB);
 | |
|     
 | |
|     bool last = false;
 | |
|     for(MachineBasicBlock::const_iterator MI = origBB->begin(), ME = origBB->end(); ME != MI; ++MI) {
 | |
|       
 | |
|       if(!last) {
 | |
|         if(inKernel[i].count(&*MI)) {
 | |
|           machineBB->push_back(MI->clone());
 | |
|           inKernel[i].erase(&*MI);
 | |
|           if(inKernel[i].size() <= 0)
 | |
|             last = true;
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       else
 | |
|         machineBB->push_back(MI->clone());
 | |
|      
 | |
| 
 | |
|     }
 | |
|     (((MachineBasicBlock*)origBB)->getParent())->getBasicBlockList().push_back(machineBB);
 | |
|     epilogues.push_back(machineBB);
 | |
|     llvm_epilogues.push_back(llvmBB);
 | |
|   }
 | |
|     
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| void ModuloSchedulingPass::reconstructLoop(const MachineBasicBlock *BB) {
 | |
| 
 | |
|   //The new loop will consist of an prologue, the kernel, and one or more epilogues.
 | |
| 
 | |
|   std::vector<MachineBasicBlock*> prologues;
 | |
|   std::vector<BasicBlock*> llvm_prologues;
 | |
| 
 | |
|   //Write prologue
 | |
|   writePrologues(prologues, BB, llvm_prologues);
 | |
| 
 | |
|   //Print out prologue
 | |
|   for(std::vector<MachineBasicBlock*>::iterator I = prologues.begin(), E = prologues.end(); 
 | |
|       I != E; ++I) {
 | |
|     std::cerr << "PROLOGUE\n";
 | |
|     (*I)->print(std::cerr);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   std::vector<MachineBasicBlock*> epilogues;
 | |
|   std::vector<BasicBlock*> llvm_epilogues;
 | |
| 
 | |
|   //Write epilogues
 | |
|   writeEpilogues(epilogues, BB, llvm_epilogues);
 | |
| 
 | |
|   //Print out prologue
 | |
|   for(std::vector<MachineBasicBlock*>::iterator I = epilogues.begin(), E = epilogues.end(); 
 | |
|       I != E; ++I) {
 | |
|     std::cerr << "EPILOGUE\n";
 | |
|     (*I)->print(std::cerr);
 | |
|   }
 | |
| 
 | |
|   //create a vector of epilogues corresponding to each stage
 | |
|   /*std::vector<MachineBasicBlock*> epilogues;
 | |
| 
 | |
|     //Create kernel
 | |
|   MachineBasicBlock *kernel = new MachineBasicBlock();
 | |
| 
 | |
|   //keep track of stage count
 | |
|   int stageCount = 0;
 | |
|   
 | |
|   //Target info
 | |
|   const TargetInstrInfo & mii = target.getInstrInfo();
 | |
| 
 | |
|   //Map for creating MachinePhis
 | |
|   std::map<MSchedGraphNode *, std::vector<Value*> > nodeAndValueMap; 
 | |
|   
 | |
| 
 | |
|   //Loop through the kernel and clone instructions that need to be put into the prologue
 | |
|   for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
 | |
|     //For each pair see if the stage is greater then 0
 | |
|     //if so, then ALL instructions before this in the original loop, need to be
 | |
|     //copied into the prologue
 | |
|     MachineBasicBlock::const_iterator actualInst;
 | |
| 
 | |
| 
 | |
|     //ignore branch
 | |
|     if(I->first->isBranch())
 | |
|       continue;
 | |
| 
 | |
|     if(I->second > 0) {
 | |
| 
 | |
|       assert(I->second >= stageCount && "Visiting instruction from previous stage count.\n");
 | |
| 
 | |
|       
 | |
|       //Make a set that has all the Value*'s that we read
 | |
|       std::set<const Value*> valuesToSave;
 | |
| 
 | |
|       //For this instruction, get the Value*'s that it reads and put them into the set.
 | |
|       //Assert if there is an operand of another type that we need to save
 | |
|       const MachineInstr *inst = I->first->getInst();
 | |
|       for(unsigned i=0; i < inst->getNumOperands(); ++i) {
 | |
| 	//get machine operand
 | |
| 	const MachineOperand &mOp = inst->getOperand(i);
 | |
|       
 | |
| 	if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) {
 | |
| 	  //find the value in the map
 | |
| 	  if (const Value* srcI = mOp.getVRegValue())
 | |
| 	    valuesToSave.insert(srcI);
 | |
| 	}
 | |
| 	
 | |
| 	if(mOp.getType() != MachineOperand::MO_VirtualRegister && mOp.isUse()) {
 | |
| 	  assert("Our assumption is wrong. We have another type of register that needs to be saved\n");
 | |
| 	}
 | |
|       }
 | |
| 
 | |
|       //Check if we skipped a stage count, we need to add that stuff here
 | |
|       if(I->second - stageCount > 1) {
 | |
| 	int temp = stageCount;
 | |
| 	while(I->second - temp > 1) {
 | |
| 	  for(MachineBasicBlock::const_iterator MI = BB->begin(), ME = BB->end(); ME != MI; ++MI) {
 | |
| 	    //Check that MI is not a branch before adding, we add branches separately
 | |
| 	    if(!mii.isBranch(MI->getOpcode()) && !mii.isNop(MI->getOpcode())) {
 | |
| 	      prologue->push_back(MI->clone());
 | |
| 	      saveValue(&*MI, valuesToSave);
 | |
| 	    }
 | |
| 	  }
 | |
| 	  ++temp;
 | |
| 	}
 | |
|       }
 | |
| 
 | |
|       if(I->second == stageCount)
 | |
| 	continue;
 | |
| 
 | |
|       stageCount = I->second;
 | |
|       DEBUG(std::cerr << "Found Instruction from Stage > 0\n");
 | |
|       //Loop over instructions in original basic block and clone them. Add to the prologue
 | |
|       for (MachineBasicBlock::const_iterator MI = BB->begin(), e = BB->end(); MI != e; ++MI) {
 | |
| 	if(&*MI == I->first->getInst()) {
 | |
| 	  actualInst = MI;
 | |
| 	  break;
 | |
| 	}
 | |
| 	else {
 | |
| 	  //Check that MI is not a branch before adding, we add branches separately
 | |
| 	  if(!mii.isBranch(MI->getOpcode()) && !mii.isNop(MI->getOpcode()))
 | |
| 	    prologue->push_back(MI->clone());
 | |
| 	}
 | |
|       }
 | |
|       
 | |
|       //Now add in all instructions from this one on to its corresponding epilogue
 | |
|       MachineBasicBlock *epi = new MachineBasicBlock();
 | |
|       epilogues.push_back(epi);
 | |
| 
 | |
|       for(MachineBasicBlock::const_iterator MI = actualInst, ME = BB->end(); ME != MI; ++MI) {
 | |
| 	//Check that MI is not a branch before adding, we add branches separately
 | |
| 	if(!mii.isBranch(MI->getOpcode()) && !mii.isNop(MI->getOpcode()))
 | |
| 	  epi->push_back(MI->clone());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //Create kernel
 | |
|    for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), 
 | |
| 	 E = schedule.kernel_end(); I != E; ++I) {
 | |
|      kernel->push_back(I->first->getInst()->clone());
 | |
|      
 | |
|      }
 | |
| 
 | |
|   //Debug stuff
 | |
|   ((MachineBasicBlock*)BB)->getParent()->getBasicBlockList().push_back(prologue);
 | |
|   std::cerr << "PROLOGUE:\n";
 | |
|   prologue->print(std::cerr);
 | |
| 
 | |
|   ((MachineBasicBlock*)BB)->getParent()->getBasicBlockList().push_back(kernel);
 | |
|   std::cerr << "KERNEL: \n";
 | |
|   kernel->print(std::cerr);
 | |
| 
 | |
|   for(std::vector<MachineBasicBlock*>::iterator MBB = epilogues.begin(), ME = epilogues.end();
 | |
|       MBB != ME; ++MBB) {
 | |
|     std::cerr << "EPILOGUE:\n";
 | |
|     ((MachineBasicBlock*)BB)->getParent()->getBasicBlockList().push_back(*MBB);
 | |
|     (*MBB)->print(std::cerr);
 | |
|     }*/
 | |
| 
 | |
| 
 | |
| 
 | |
| }
 | |
| 
 |