mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@10725 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			185 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			185 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- PiNodeInsertion.cpp - Insert Pi nodes into a program ---------------===//
 | 
						|
// 
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
// 
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// PiNodeInsertion - This pass inserts single entry Phi nodes into basic blocks
 | 
						|
// that are preceded by a conditional branch, where the branch gives
 | 
						|
// information about the operands of the condition.  For example, this C code:
 | 
						|
//   if (x == 0) { ... = x + 4;
 | 
						|
// becomes:
 | 
						|
//   if (x == 0) {
 | 
						|
//     x2 = phi(x);    // Node that can hold data flow information about X
 | 
						|
//     ... = x2 + 4;
 | 
						|
//
 | 
						|
// Since the direction of the condition branch gives information about X itself
 | 
						|
// (whether or not it is zero), some passes (like value numbering or ABCD) can
 | 
						|
// use the inserted Phi/Pi nodes as a place to attach information, in this case
 | 
						|
// saying that X has a value of 0 in this scope.  The power of this analysis
 | 
						|
// information is that "in the scope" translates to "for all uses of x2".
 | 
						|
//
 | 
						|
// This special form of Phi node is referred to as a Pi node, following the
 | 
						|
// terminology defined in the "Array Bounds Checks on Demand" paper.
 | 
						|
//
 | 
						|
// As a really trivial example of what the Pi nodes are good for, this pass
 | 
						|
// replaces values compared for equality with direct constants with the constant
 | 
						|
// itself in the branch it's equal to the constant.  In the case above, it would
 | 
						|
// change the body to be "... = 0 + 4;"  Real value numbering can do much more.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/iTerminators.h"
 | 
						|
#include "llvm/iOperators.h"
 | 
						|
#include "llvm/iPHINode.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "Support/Statistic.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
  Statistic<> NumInserted("pinodes", "Number of Pi nodes inserted");
 | 
						|
 | 
						|
  struct PiNodeInserter : public FunctionPass {
 | 
						|
    virtual bool runOnFunction(Function &F);
 | 
						|
    
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.setPreservesCFG();
 | 
						|
      AU.addRequired<DominatorSet>();
 | 
						|
    }
 | 
						|
 | 
						|
    // insertPiNodeFor - Insert a Pi node for V in the successors of BB if our
 | 
						|
    // conditions hold.  If Rep is not null, fill in a value of 'Rep' instead of
 | 
						|
    // creating a new Pi node itself because we know that the value is a simple
 | 
						|
    // constant.
 | 
						|
    //
 | 
						|
    bool insertPiNodeFor(Value *V, BasicBlock *BB, Value *Rep = 0);
 | 
						|
  };
 | 
						|
 | 
						|
  RegisterOpt<PiNodeInserter> X("pinodes", "Pi Node Insertion");
 | 
						|
}
 | 
						|
 | 
						|
Pass *llvm::createPiNodeInsertionPass() { return new PiNodeInserter(); }
 | 
						|
 | 
						|
 | 
						|
bool PiNodeInserter::runOnFunction(Function &F) {
 | 
						|
  bool Changed = false;
 | 
						|
  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
 | 
						|
    TerminatorInst *TI = I->getTerminator();
 | 
						|
    
 | 
						|
    // FIXME: Insert PI nodes for switch statements too
 | 
						|
 | 
						|
    // Look for conditional branch instructions... that branch on a setcc test
 | 
						|
    if (BranchInst *BI = dyn_cast<BranchInst>(TI))
 | 
						|
      if (BI->isConditional())
 | 
						|
        // TODO: we could in theory support logical operations here too...
 | 
						|
        if (SetCondInst *SCI = dyn_cast<SetCondInst>(BI->getCondition())) {
 | 
						|
          // Calculate replacement values if this is an obvious constant == or
 | 
						|
          // != comparison...
 | 
						|
          Value *TrueRep = 0, *FalseRep = 0;
 | 
						|
 | 
						|
          // Make sure the the constant is the second operand if there is one...
 | 
						|
          // This fits with our canonicalization patterns used elsewhere in the
 | 
						|
          // compiler, without depending on instcombine running before us.
 | 
						|
          //
 | 
						|
          if (isa<Constant>(SCI->getOperand(0)) &&
 | 
						|
              !isa<Constant>(SCI->getOperand(1))) {
 | 
						|
            SCI->swapOperands();
 | 
						|
            Changed = true;
 | 
						|
          }
 | 
						|
 | 
						|
          if (isa<Constant>(SCI->getOperand(1))) {
 | 
						|
            if (SCI->getOpcode() == Instruction::SetEQ)
 | 
						|
              TrueRep = SCI->getOperand(1);
 | 
						|
            else if (SCI->getOpcode() == Instruction::SetNE)
 | 
						|
              FalseRep = SCI->getOperand(1);
 | 
						|
          }
 | 
						|
 | 
						|
          BasicBlock *TB = BI->getSuccessor(0);  // True block
 | 
						|
          BasicBlock *FB = BI->getSuccessor(1);  // False block
 | 
						|
 | 
						|
          // Insert the Pi nodes for the first operand to the comparison...
 | 
						|
          Changed |= insertPiNodeFor(SCI->getOperand(0), TB, TrueRep);
 | 
						|
          Changed |= insertPiNodeFor(SCI->getOperand(0), FB, FalseRep);
 | 
						|
 | 
						|
          // Insert the Pi nodes for the second operand to the comparison...
 | 
						|
          Changed |= insertPiNodeFor(SCI->getOperand(1), TB);
 | 
						|
          Changed |= insertPiNodeFor(SCI->getOperand(1), FB);
 | 
						|
        }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// alreadyHasPiNodeFor - Return true if there is already a Pi node in BB for V.
 | 
						|
static bool alreadyHasPiNodeFor(Value *V, BasicBlock *BB) {
 | 
						|
  for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I)
 | 
						|
    if (PHINode *PN = dyn_cast<PHINode>(*I))
 | 
						|
      if (PN->getParent() == BB)
 | 
						|
        return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// insertPiNodeFor - Insert a Pi node for V in the successors of BB if our
 | 
						|
// conditions hold.  If Rep is not null, fill in a value of 'Rep' instead of
 | 
						|
// creating a new Pi node itself because we know that the value is a simple
 | 
						|
// constant.
 | 
						|
//
 | 
						|
bool PiNodeInserter::insertPiNodeFor(Value *V, BasicBlock *Succ, Value *Rep) {
 | 
						|
  // Do not insert Pi nodes for constants!
 | 
						|
  if (isa<Constant>(V)) return false;
 | 
						|
 | 
						|
  // Check to make sure that there is not already a PI node inserted...
 | 
						|
  if (alreadyHasPiNodeFor(V, Succ) && Rep == 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Insert Pi nodes only into successors that the conditional branch dominates.
 | 
						|
  // In this simple case, we know that BB dominates a successor as long there
 | 
						|
  // are no other incoming edges to the successor.
 | 
						|
  //
 | 
						|
 | 
						|
  // Check to make sure that the successor only has a single predecessor...
 | 
						|
  pred_iterator PI = pred_begin(Succ);
 | 
						|
  BasicBlock *Pred = *PI;
 | 
						|
  if (++PI != pred_end(Succ)) return false;   // Multiple predecessor?  Bail...
 | 
						|
 | 
						|
  // It seems to be safe to insert the Pi node.  Do so now...
 | 
						|
    
 | 
						|
  // Create the Pi node...
 | 
						|
  Value *Pi = Rep;
 | 
						|
  if (Rep == 0)      // Insert the Pi node in the successor basic block...
 | 
						|
    Pi = new PHINode(V->getType(), V->getName() + ".pi", Succ->begin());
 | 
						|
    
 | 
						|
  // Loop over all of the uses of V, replacing ones that the Pi node
 | 
						|
  // dominates with references to the Pi node itself.
 | 
						|
  //
 | 
						|
  DominatorSet &DS = getAnalysis<DominatorSet>();
 | 
						|
  for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; )
 | 
						|
    if (Instruction *U = dyn_cast<Instruction>(*I++))
 | 
						|
      if (U->getParent()->getParent() == Succ->getParent() &&
 | 
						|
          DS.dominates(Succ, U->getParent())) {
 | 
						|
        // This instruction is dominated by the Pi node, replace reference to V
 | 
						|
        // with a reference to the Pi node.
 | 
						|
        //
 | 
						|
        U->replaceUsesOfWith(V, Pi);
 | 
						|
      }
 | 
						|
    
 | 
						|
  // Set up the incoming value for the Pi node... do this after uses have been
 | 
						|
  // replaced, because we don't want the Pi node to refer to itself.
 | 
						|
  //
 | 
						|
  if (Rep == 0)
 | 
						|
    cast<PHINode>(Pi)->addIncoming(V, Pred);
 | 
						|
 
 | 
						|
 | 
						|
  ++NumInserted;
 | 
						|
  return true;
 | 
						|
}
 |