mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@115792 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			286 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			286 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities --*- C++ ------*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines several CodeGen-specific LLVM IR analysis utilties.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/Analysis.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| /// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
 | |
| /// of insertvalue or extractvalue indices that identify a member, return
 | |
| /// the linearized index of the start of the member.
 | |
| ///
 | |
| unsigned llvm::ComputeLinearIndex(const Type *Ty,
 | |
|                                   const unsigned *Indices,
 | |
|                                   const unsigned *IndicesEnd,
 | |
|                                   unsigned CurIndex) {
 | |
|   // Base case: We're done.
 | |
|   if (Indices && Indices == IndicesEnd)
 | |
|     return CurIndex;
 | |
| 
 | |
|   // Given a struct type, recursively traverse the elements.
 | |
|   if (const StructType *STy = dyn_cast<StructType>(Ty)) {
 | |
|     for (StructType::element_iterator EB = STy->element_begin(),
 | |
|                                       EI = EB,
 | |
|                                       EE = STy->element_end();
 | |
|         EI != EE; ++EI) {
 | |
|       if (Indices && *Indices == unsigned(EI - EB))
 | |
|         return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex);
 | |
|       CurIndex = ComputeLinearIndex(*EI, 0, 0, CurIndex);
 | |
|     }
 | |
|     return CurIndex;
 | |
|   }
 | |
|   // Given an array type, recursively traverse the elements.
 | |
|   else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
 | |
|     const Type *EltTy = ATy->getElementType();
 | |
|     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
 | |
|       if (Indices && *Indices == i)
 | |
|         return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
 | |
|       CurIndex = ComputeLinearIndex(EltTy, 0, 0, CurIndex);
 | |
|     }
 | |
|     return CurIndex;
 | |
|   }
 | |
|   // We haven't found the type we're looking for, so keep searching.
 | |
|   return CurIndex + 1;
 | |
| }
 | |
| 
 | |
| /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
 | |
| /// EVTs that represent all the individual underlying
 | |
| /// non-aggregate types that comprise it.
 | |
| ///
 | |
| /// If Offsets is non-null, it points to a vector to be filled in
 | |
| /// with the in-memory offsets of each of the individual values.
 | |
| ///
 | |
| void llvm::ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
 | |
|                            SmallVectorImpl<EVT> &ValueVTs,
 | |
|                            SmallVectorImpl<uint64_t> *Offsets,
 | |
|                            uint64_t StartingOffset) {
 | |
|   // Given a struct type, recursively traverse the elements.
 | |
|   if (const StructType *STy = dyn_cast<StructType>(Ty)) {
 | |
|     const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
 | |
|     for (StructType::element_iterator EB = STy->element_begin(),
 | |
|                                       EI = EB,
 | |
|                                       EE = STy->element_end();
 | |
|          EI != EE; ++EI)
 | |
|       ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
 | |
|                       StartingOffset + SL->getElementOffset(EI - EB));
 | |
|     return;
 | |
|   }
 | |
|   // Given an array type, recursively traverse the elements.
 | |
|   if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
 | |
|     const Type *EltTy = ATy->getElementType();
 | |
|     uint64_t EltSize = TLI.getTargetData()->getTypeAllocSize(EltTy);
 | |
|     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
 | |
|       ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
 | |
|                       StartingOffset + i * EltSize);
 | |
|     return;
 | |
|   }
 | |
|   // Interpret void as zero return values.
 | |
|   if (Ty->isVoidTy())
 | |
|     return;
 | |
|   // Base case: we can get an EVT for this LLVM IR type.
 | |
|   ValueVTs.push_back(TLI.getValueType(Ty));
 | |
|   if (Offsets)
 | |
|     Offsets->push_back(StartingOffset);
 | |
| }
 | |
| 
 | |
| /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
 | |
| GlobalVariable *llvm::ExtractTypeInfo(Value *V) {
 | |
|   V = V->stripPointerCasts();
 | |
|   GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
 | |
| 
 | |
|   if (GV && GV->getName() == "llvm.eh.catch.all.value") {
 | |
|     assert(GV->hasInitializer() &&
 | |
|            "The EH catch-all value must have an initializer");
 | |
|     Value *Init = GV->getInitializer();
 | |
|     GV = dyn_cast<GlobalVariable>(Init);
 | |
|     if (!GV) V = cast<ConstantPointerNull>(Init);
 | |
|   }
 | |
| 
 | |
|   assert((GV || isa<ConstantPointerNull>(V)) &&
 | |
|          "TypeInfo must be a global variable or NULL");
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
 | |
| /// processed uses a memory 'm' constraint.
 | |
| bool
 | |
| llvm::hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos,
 | |
|                                 const TargetLowering &TLI) {
 | |
|   for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
 | |
|     InlineAsm::ConstraintInfo &CI = CInfos[i];
 | |
|     for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
 | |
|       TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
 | |
|       if (CType == TargetLowering::C_Memory)
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     // Indirect operand accesses access memory.
 | |
|     if (CI.isIndirect)
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getFCmpCondCode - Return the ISD condition code corresponding to
 | |
| /// the given LLVM IR floating-point condition code.  This includes
 | |
| /// consideration of global floating-point math flags.
 | |
| ///
 | |
| ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
 | |
|   ISD::CondCode FPC, FOC;
 | |
|   switch (Pred) {
 | |
|   case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
 | |
|   case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
 | |
|   case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
 | |
|   case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
 | |
|   case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
 | |
|   case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
 | |
|   case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
 | |
|   case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
 | |
|   case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
 | |
|   case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
 | |
|   case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
 | |
|   case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
 | |
|   case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
 | |
|   case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
 | |
|   case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
 | |
|   case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
 | |
|   default:
 | |
|     llvm_unreachable("Invalid FCmp predicate opcode!");
 | |
|     FOC = FPC = ISD::SETFALSE;
 | |
|     break;
 | |
|   }
 | |
|   if (NoNaNsFPMath)
 | |
|     return FOC;
 | |
|   else
 | |
|     return FPC;
 | |
| }
 | |
| 
 | |
| /// getICmpCondCode - Return the ISD condition code corresponding to
 | |
| /// the given LLVM IR integer condition code.
 | |
| ///
 | |
| ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
 | |
|   switch (Pred) {
 | |
|   case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
 | |
|   case ICmpInst::ICMP_NE:  return ISD::SETNE;
 | |
|   case ICmpInst::ICMP_SLE: return ISD::SETLE;
 | |
|   case ICmpInst::ICMP_ULE: return ISD::SETULE;
 | |
|   case ICmpInst::ICMP_SGE: return ISD::SETGE;
 | |
|   case ICmpInst::ICMP_UGE: return ISD::SETUGE;
 | |
|   case ICmpInst::ICMP_SLT: return ISD::SETLT;
 | |
|   case ICmpInst::ICMP_ULT: return ISD::SETULT;
 | |
|   case ICmpInst::ICMP_SGT: return ISD::SETGT;
 | |
|   case ICmpInst::ICMP_UGT: return ISD::SETUGT;
 | |
|   default:
 | |
|     llvm_unreachable("Invalid ICmp predicate opcode!");
 | |
|     return ISD::SETNE;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Test if the given instruction is in a position to be optimized
 | |
| /// with a tail-call. This roughly means that it's in a block with
 | |
| /// a return and there's nothing that needs to be scheduled
 | |
| /// between it and the return.
 | |
| ///
 | |
| /// This function only tests target-independent requirements.
 | |
| bool llvm::isInTailCallPosition(ImmutableCallSite CS, Attributes CalleeRetAttr,
 | |
|                                 const TargetLowering &TLI) {
 | |
|   const Instruction *I = CS.getInstruction();
 | |
|   const BasicBlock *ExitBB = I->getParent();
 | |
|   const TerminatorInst *Term = ExitBB->getTerminator();
 | |
|   const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
 | |
|   const Function *F = ExitBB->getParent();
 | |
| 
 | |
|   // The block must end in a return statement or unreachable.
 | |
|   //
 | |
|   // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
 | |
|   // an unreachable, for now. The way tailcall optimization is currently
 | |
|   // implemented means it will add an epilogue followed by a jump. That is
 | |
|   // not profitable. Also, if the callee is a special function (e.g.
 | |
|   // longjmp on x86), it can end up causing miscompilation that has not
 | |
|   // been fully understood.
 | |
|   if (!Ret &&
 | |
|       (!GuaranteedTailCallOpt || !isa<UnreachableInst>(Term))) return false;
 | |
| 
 | |
|   // If I will have a chain, make sure no other instruction that will have a
 | |
|   // chain interposes between I and the return.
 | |
|   if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
 | |
|       !I->isSafeToSpeculativelyExecute())
 | |
|     for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ;
 | |
|          --BBI) {
 | |
|       if (&*BBI == I)
 | |
|         break;
 | |
|       // Debug info intrinsics do not get in the way of tail call optimization.
 | |
|       if (isa<DbgInfoIntrinsic>(BBI))
 | |
|         continue;
 | |
|       if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
 | |
|           !BBI->isSafeToSpeculativelyExecute())
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|   // If the block ends with a void return or unreachable, it doesn't matter
 | |
|   // what the call's return type is.
 | |
|   if (!Ret || Ret->getNumOperands() == 0) return true;
 | |
| 
 | |
|   // If the return value is undef, it doesn't matter what the call's
 | |
|   // return type is.
 | |
|   if (isa<UndefValue>(Ret->getOperand(0))) return true;
 | |
| 
 | |
|   // Conservatively require the attributes of the call to match those of
 | |
|   // the return. Ignore noalias because it doesn't affect the call sequence.
 | |
|   unsigned CallerRetAttr = F->getAttributes().getRetAttributes();
 | |
|   if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias)
 | |
|     return false;
 | |
| 
 | |
|   // It's not safe to eliminate the sign / zero extension of the return value.
 | |
|   if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt))
 | |
|     return false;
 | |
| 
 | |
|   // Otherwise, make sure the unmodified return value of I is the return value.
 | |
|   for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ;
 | |
|        U = dyn_cast<Instruction>(U->getOperand(0))) {
 | |
|     if (!U)
 | |
|       return false;
 | |
|     if (!U->hasOneUse())
 | |
|       return false;
 | |
|     if (U == I)
 | |
|       break;
 | |
|     // Check for a truly no-op truncate.
 | |
|     if (isa<TruncInst>(U) &&
 | |
|         TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType()))
 | |
|       continue;
 | |
|     // Check for a truly no-op bitcast.
 | |
|     if (isa<BitCastInst>(U) &&
 | |
|         (U->getOperand(0)->getType() == U->getType() ||
 | |
|          (U->getOperand(0)->getType()->isPointerTy() &&
 | |
|           U->getType()->isPointerTy())))
 | |
|       continue;
 | |
|     // Otherwise it's not a true no-op.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 |