mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	instructions when truncate, sext, or zext were created. Fix that. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217926 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			3386 lines
		
	
	
		
			124 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3386 lines
		
	
	
		
			124 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass munges the code in the input function to better prepare it for
 | 
						|
// SelectionDAG-based code generation. This works around limitations in it's
 | 
						|
// basic-block-at-a-time approach. It should eventually be removed.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/IR/CallSite.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/InlineAsm.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/IR/ValueHandle.h"
 | 
						|
#include "llvm/IR/ValueMap.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Target/TargetLowering.h"
 | 
						|
#include "llvm/Target/TargetSubtargetInfo.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/BuildLibCalls.h"
 | 
						|
#include "llvm/Transforms/Utils/BypassSlowDivision.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::PatternMatch;
 | 
						|
 | 
						|
#define DEBUG_TYPE "codegenprepare"
 | 
						|
 | 
						|
STATISTIC(NumBlocksElim, "Number of blocks eliminated");
 | 
						|
STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
 | 
						|
STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
 | 
						|
STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
 | 
						|
                      "sunken Cmps");
 | 
						|
STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
 | 
						|
                       "of sunken Casts");
 | 
						|
STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
 | 
						|
                          "computations were sunk");
 | 
						|
STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
 | 
						|
STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
 | 
						|
STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
 | 
						|
STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
 | 
						|
STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
 | 
						|
STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches");
 | 
						|
 | 
						|
static cl::opt<bool> DisableBranchOpts(
 | 
						|
  "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
 | 
						|
  cl::desc("Disable branch optimizations in CodeGenPrepare"));
 | 
						|
 | 
						|
static cl::opt<bool> DisableSelectToBranch(
 | 
						|
  "disable-cgp-select2branch", cl::Hidden, cl::init(false),
 | 
						|
  cl::desc("Disable select to branch conversion."));
 | 
						|
 | 
						|
static cl::opt<bool> AddrSinkUsingGEPs(
 | 
						|
  "addr-sink-using-gep", cl::Hidden, cl::init(false),
 | 
						|
  cl::desc("Address sinking in CGP using GEPs."));
 | 
						|
 | 
						|
static cl::opt<bool> EnableAndCmpSinking(
 | 
						|
   "enable-andcmp-sinking", cl::Hidden, cl::init(true),
 | 
						|
   cl::desc("Enable sinkinig and/cmp into branches."));
 | 
						|
 | 
						|
namespace {
 | 
						|
typedef SmallPtrSet<Instruction *, 16> SetOfInstrs;
 | 
						|
typedef DenseMap<Instruction *, Type *> InstrToOrigTy;
 | 
						|
 | 
						|
  class CodeGenPrepare : public FunctionPass {
 | 
						|
    /// TLI - Keep a pointer of a TargetLowering to consult for determining
 | 
						|
    /// transformation profitability.
 | 
						|
    const TargetMachine *TM;
 | 
						|
    const TargetLowering *TLI;
 | 
						|
    const TargetLibraryInfo *TLInfo;
 | 
						|
    DominatorTree *DT;
 | 
						|
 | 
						|
    /// CurInstIterator - As we scan instructions optimizing them, this is the
 | 
						|
    /// next instruction to optimize.  Xforms that can invalidate this should
 | 
						|
    /// update it.
 | 
						|
    BasicBlock::iterator CurInstIterator;
 | 
						|
 | 
						|
    /// Keeps track of non-local addresses that have been sunk into a block.
 | 
						|
    /// This allows us to avoid inserting duplicate code for blocks with
 | 
						|
    /// multiple load/stores of the same address.
 | 
						|
    ValueMap<Value*, Value*> SunkAddrs;
 | 
						|
 | 
						|
    /// Keeps track of all truncates inserted for the current function.
 | 
						|
    SetOfInstrs InsertedTruncsSet;
 | 
						|
    /// Keeps track of the type of the related instruction before their
 | 
						|
    /// promotion for the current function.
 | 
						|
    InstrToOrigTy PromotedInsts;
 | 
						|
 | 
						|
    /// ModifiedDT - If CFG is modified in anyway, dominator tree may need to
 | 
						|
    /// be updated.
 | 
						|
    bool ModifiedDT;
 | 
						|
 | 
						|
    /// OptSize - True if optimizing for size.
 | 
						|
    bool OptSize;
 | 
						|
 | 
						|
  public:
 | 
						|
    static char ID; // Pass identification, replacement for typeid
 | 
						|
    explicit CodeGenPrepare(const TargetMachine *TM = nullptr)
 | 
						|
      : FunctionPass(ID), TM(TM), TLI(nullptr) {
 | 
						|
        initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
 | 
						|
      }
 | 
						|
    bool runOnFunction(Function &F) override;
 | 
						|
 | 
						|
    const char *getPassName() const override { return "CodeGen Prepare"; }
 | 
						|
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
      AU.addPreserved<DominatorTreeWrapperPass>();
 | 
						|
      AU.addRequired<TargetLibraryInfo>();
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    bool EliminateFallThrough(Function &F);
 | 
						|
    bool EliminateMostlyEmptyBlocks(Function &F);
 | 
						|
    bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
 | 
						|
    void EliminateMostlyEmptyBlock(BasicBlock *BB);
 | 
						|
    bool OptimizeBlock(BasicBlock &BB);
 | 
						|
    bool OptimizeInst(Instruction *I);
 | 
						|
    bool OptimizeMemoryInst(Instruction *I, Value *Addr, Type *AccessTy);
 | 
						|
    bool OptimizeInlineAsmInst(CallInst *CS);
 | 
						|
    bool OptimizeCallInst(CallInst *CI);
 | 
						|
    bool MoveExtToFormExtLoad(Instruction *I);
 | 
						|
    bool OptimizeExtUses(Instruction *I);
 | 
						|
    bool OptimizeSelectInst(SelectInst *SI);
 | 
						|
    bool OptimizeShuffleVectorInst(ShuffleVectorInst *SI);
 | 
						|
    bool DupRetToEnableTailCallOpts(BasicBlock *BB);
 | 
						|
    bool PlaceDbgValues(Function &F);
 | 
						|
    bool sinkAndCmp(Function &F);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
char CodeGenPrepare::ID = 0;
 | 
						|
INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare",
 | 
						|
                   "Optimize for code generation", false, false)
 | 
						|
 | 
						|
FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) {
 | 
						|
  return new CodeGenPrepare(TM);
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenPrepare::runOnFunction(Function &F) {
 | 
						|
  if (skipOptnoneFunction(F))
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool EverMadeChange = false;
 | 
						|
  // Clear per function information.
 | 
						|
  InsertedTruncsSet.clear();
 | 
						|
  PromotedInsts.clear();
 | 
						|
 | 
						|
  ModifiedDT = false;
 | 
						|
  if (TM)
 | 
						|
    TLI = TM->getSubtargetImpl()->getTargetLowering();
 | 
						|
  TLInfo = &getAnalysis<TargetLibraryInfo>();
 | 
						|
  DominatorTreeWrapperPass *DTWP =
 | 
						|
      getAnalysisIfAvailable<DominatorTreeWrapperPass>();
 | 
						|
  DT = DTWP ? &DTWP->getDomTree() : nullptr;
 | 
						|
  OptSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
 | 
						|
                                           Attribute::OptimizeForSize);
 | 
						|
 | 
						|
  /// This optimization identifies DIV instructions that can be
 | 
						|
  /// profitably bypassed and carried out with a shorter, faster divide.
 | 
						|
  if (!OptSize && TLI && TLI->isSlowDivBypassed()) {
 | 
						|
    const DenseMap<unsigned int, unsigned int> &BypassWidths =
 | 
						|
       TLI->getBypassSlowDivWidths();
 | 
						|
    for (Function::iterator I = F.begin(); I != F.end(); I++)
 | 
						|
      EverMadeChange |= bypassSlowDivision(F, I, BypassWidths);
 | 
						|
  }
 | 
						|
 | 
						|
  // Eliminate blocks that contain only PHI nodes and an
 | 
						|
  // unconditional branch.
 | 
						|
  EverMadeChange |= EliminateMostlyEmptyBlocks(F);
 | 
						|
 | 
						|
  // llvm.dbg.value is far away from the value then iSel may not be able
 | 
						|
  // handle it properly. iSel will drop llvm.dbg.value if it can not
 | 
						|
  // find a node corresponding to the value.
 | 
						|
  EverMadeChange |= PlaceDbgValues(F);
 | 
						|
 | 
						|
  // If there is a mask, compare against zero, and branch that can be combined
 | 
						|
  // into a single target instruction, push the mask and compare into branch
 | 
						|
  // users. Do this before OptimizeBlock -> OptimizeInst ->
 | 
						|
  // OptimizeCmpExpression, which perturbs the pattern being searched for.
 | 
						|
  if (!DisableBranchOpts)
 | 
						|
    EverMadeChange |= sinkAndCmp(F);
 | 
						|
 | 
						|
  bool MadeChange = true;
 | 
						|
  while (MadeChange) {
 | 
						|
    MadeChange = false;
 | 
						|
    for (Function::iterator I = F.begin(); I != F.end(); ) {
 | 
						|
      BasicBlock *BB = I++;
 | 
						|
      MadeChange |= OptimizeBlock(*BB);
 | 
						|
    }
 | 
						|
    EverMadeChange |= MadeChange;
 | 
						|
  }
 | 
						|
 | 
						|
  SunkAddrs.clear();
 | 
						|
 | 
						|
  if (!DisableBranchOpts) {
 | 
						|
    MadeChange = false;
 | 
						|
    SmallPtrSet<BasicBlock*, 8> WorkList;
 | 
						|
    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
 | 
						|
      SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
 | 
						|
      MadeChange |= ConstantFoldTerminator(BB, true);
 | 
						|
      if (!MadeChange) continue;
 | 
						|
 | 
						|
      for (SmallVectorImpl<BasicBlock*>::iterator
 | 
						|
             II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
 | 
						|
        if (pred_begin(*II) == pred_end(*II))
 | 
						|
          WorkList.insert(*II);
 | 
						|
    }
 | 
						|
 | 
						|
    // Delete the dead blocks and any of their dead successors.
 | 
						|
    MadeChange |= !WorkList.empty();
 | 
						|
    while (!WorkList.empty()) {
 | 
						|
      BasicBlock *BB = *WorkList.begin();
 | 
						|
      WorkList.erase(BB);
 | 
						|
      SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
 | 
						|
 | 
						|
      DeleteDeadBlock(BB);
 | 
						|
 | 
						|
      for (SmallVectorImpl<BasicBlock*>::iterator
 | 
						|
             II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
 | 
						|
        if (pred_begin(*II) == pred_end(*II))
 | 
						|
          WorkList.insert(*II);
 | 
						|
    }
 | 
						|
 | 
						|
    // Merge pairs of basic blocks with unconditional branches, connected by
 | 
						|
    // a single edge.
 | 
						|
    if (EverMadeChange || MadeChange)
 | 
						|
      MadeChange |= EliminateFallThrough(F);
 | 
						|
 | 
						|
    if (MadeChange)
 | 
						|
      ModifiedDT = true;
 | 
						|
    EverMadeChange |= MadeChange;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ModifiedDT && DT)
 | 
						|
    DT->recalculate(F);
 | 
						|
 | 
						|
  return EverMadeChange;
 | 
						|
}
 | 
						|
 | 
						|
/// EliminateFallThrough - Merge basic blocks which are connected
 | 
						|
/// by a single edge, where one of the basic blocks has a single successor
 | 
						|
/// pointing to the other basic block, which has a single predecessor.
 | 
						|
bool CodeGenPrepare::EliminateFallThrough(Function &F) {
 | 
						|
  bool Changed = false;
 | 
						|
  // Scan all of the blocks in the function, except for the entry block.
 | 
						|
  for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
 | 
						|
    BasicBlock *BB = I++;
 | 
						|
    // If the destination block has a single pred, then this is a trivial
 | 
						|
    // edge, just collapse it.
 | 
						|
    BasicBlock *SinglePred = BB->getSinglePredecessor();
 | 
						|
 | 
						|
    // Don't merge if BB's address is taken.
 | 
						|
    if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
 | 
						|
 | 
						|
    BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
 | 
						|
    if (Term && !Term->isConditional()) {
 | 
						|
      Changed = true;
 | 
						|
      DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n");
 | 
						|
      // Remember if SinglePred was the entry block of the function.
 | 
						|
      // If so, we will need to move BB back to the entry position.
 | 
						|
      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
 | 
						|
      MergeBasicBlockIntoOnlyPred(BB, this);
 | 
						|
 | 
						|
      if (isEntry && BB != &BB->getParent()->getEntryBlock())
 | 
						|
        BB->moveBefore(&BB->getParent()->getEntryBlock());
 | 
						|
 | 
						|
      // We have erased a block. Update the iterator.
 | 
						|
      I = BB;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes,
 | 
						|
/// debug info directives, and an unconditional branch.  Passes before isel
 | 
						|
/// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for
 | 
						|
/// isel.  Start by eliminating these blocks so we can split them the way we
 | 
						|
/// want them.
 | 
						|
bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
 | 
						|
  bool MadeChange = false;
 | 
						|
  // Note that this intentionally skips the entry block.
 | 
						|
  for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
 | 
						|
    BasicBlock *BB = I++;
 | 
						|
 | 
						|
    // If this block doesn't end with an uncond branch, ignore it.
 | 
						|
    BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
 | 
						|
    if (!BI || !BI->isUnconditional())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If the instruction before the branch (skipping debug info) isn't a phi
 | 
						|
    // node, then other stuff is happening here.
 | 
						|
    BasicBlock::iterator BBI = BI;
 | 
						|
    if (BBI != BB->begin()) {
 | 
						|
      --BBI;
 | 
						|
      while (isa<DbgInfoIntrinsic>(BBI)) {
 | 
						|
        if (BBI == BB->begin())
 | 
						|
          break;
 | 
						|
        --BBI;
 | 
						|
      }
 | 
						|
      if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
 | 
						|
        continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Do not break infinite loops.
 | 
						|
    BasicBlock *DestBB = BI->getSuccessor(0);
 | 
						|
    if (DestBB == BB)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (!CanMergeBlocks(BB, DestBB))
 | 
						|
      continue;
 | 
						|
 | 
						|
    EliminateMostlyEmptyBlock(BB);
 | 
						|
    MadeChange = true;
 | 
						|
  }
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
/// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
 | 
						|
/// single uncond branch between them, and BB contains no other non-phi
 | 
						|
/// instructions.
 | 
						|
bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
 | 
						|
                                    const BasicBlock *DestBB) const {
 | 
						|
  // We only want to eliminate blocks whose phi nodes are used by phi nodes in
 | 
						|
  // the successor.  If there are more complex condition (e.g. preheaders),
 | 
						|
  // don't mess around with them.
 | 
						|
  BasicBlock::const_iterator BBI = BB->begin();
 | 
						|
  while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
 | 
						|
    for (const User *U : PN->users()) {
 | 
						|
      const Instruction *UI = cast<Instruction>(U);
 | 
						|
      if (UI->getParent() != DestBB || !isa<PHINode>(UI))
 | 
						|
        return false;
 | 
						|
      // If User is inside DestBB block and it is a PHINode then check
 | 
						|
      // incoming value. If incoming value is not from BB then this is
 | 
						|
      // a complex condition (e.g. preheaders) we want to avoid here.
 | 
						|
      if (UI->getParent() == DestBB) {
 | 
						|
        if (const PHINode *UPN = dyn_cast<PHINode>(UI))
 | 
						|
          for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
 | 
						|
            Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
 | 
						|
            if (Insn && Insn->getParent() == BB &&
 | 
						|
                Insn->getParent() != UPN->getIncomingBlock(I))
 | 
						|
              return false;
 | 
						|
          }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If BB and DestBB contain any common predecessors, then the phi nodes in BB
 | 
						|
  // and DestBB may have conflicting incoming values for the block.  If so, we
 | 
						|
  // can't merge the block.
 | 
						|
  const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
 | 
						|
  if (!DestBBPN) return true;  // no conflict.
 | 
						|
 | 
						|
  // Collect the preds of BB.
 | 
						|
  SmallPtrSet<const BasicBlock*, 16> BBPreds;
 | 
						|
  if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
 | 
						|
    // It is faster to get preds from a PHI than with pred_iterator.
 | 
						|
    for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
 | 
						|
      BBPreds.insert(BBPN->getIncomingBlock(i));
 | 
						|
  } else {
 | 
						|
    BBPreds.insert(pred_begin(BB), pred_end(BB));
 | 
						|
  }
 | 
						|
 | 
						|
  // Walk the preds of DestBB.
 | 
						|
  for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
    BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
 | 
						|
    if (BBPreds.count(Pred)) {   // Common predecessor?
 | 
						|
      BBI = DestBB->begin();
 | 
						|
      while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
 | 
						|
        const Value *V1 = PN->getIncomingValueForBlock(Pred);
 | 
						|
        const Value *V2 = PN->getIncomingValueForBlock(BB);
 | 
						|
 | 
						|
        // If V2 is a phi node in BB, look up what the mapped value will be.
 | 
						|
        if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
 | 
						|
          if (V2PN->getParent() == BB)
 | 
						|
            V2 = V2PN->getIncomingValueForBlock(Pred);
 | 
						|
 | 
						|
        // If there is a conflict, bail out.
 | 
						|
        if (V1 != V2) return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
 | 
						|
/// an unconditional branch in it.
 | 
						|
void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
 | 
						|
  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
 | 
						|
  BasicBlock *DestBB = BI->getSuccessor(0);
 | 
						|
 | 
						|
  DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
 | 
						|
 | 
						|
  // If the destination block has a single pred, then this is a trivial edge,
 | 
						|
  // just collapse it.
 | 
						|
  if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
 | 
						|
    if (SinglePred != DestBB) {
 | 
						|
      // Remember if SinglePred was the entry block of the function.  If so, we
 | 
						|
      // will need to move BB back to the entry position.
 | 
						|
      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
 | 
						|
      MergeBasicBlockIntoOnlyPred(DestBB, this);
 | 
						|
 | 
						|
      if (isEntry && BB != &BB->getParent()->getEntryBlock())
 | 
						|
        BB->moveBefore(&BB->getParent()->getEntryBlock());
 | 
						|
 | 
						|
      DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
 | 
						|
  // to handle the new incoming edges it is about to have.
 | 
						|
  PHINode *PN;
 | 
						|
  for (BasicBlock::iterator BBI = DestBB->begin();
 | 
						|
       (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
 | 
						|
    // Remove the incoming value for BB, and remember it.
 | 
						|
    Value *InVal = PN->removeIncomingValue(BB, false);
 | 
						|
 | 
						|
    // Two options: either the InVal is a phi node defined in BB or it is some
 | 
						|
    // value that dominates BB.
 | 
						|
    PHINode *InValPhi = dyn_cast<PHINode>(InVal);
 | 
						|
    if (InValPhi && InValPhi->getParent() == BB) {
 | 
						|
      // Add all of the input values of the input PHI as inputs of this phi.
 | 
						|
      for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
 | 
						|
        PN->addIncoming(InValPhi->getIncomingValue(i),
 | 
						|
                        InValPhi->getIncomingBlock(i));
 | 
						|
    } else {
 | 
						|
      // Otherwise, add one instance of the dominating value for each edge that
 | 
						|
      // we will be adding.
 | 
						|
      if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
 | 
						|
        for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
 | 
						|
          PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
 | 
						|
      } else {
 | 
						|
        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
 | 
						|
          PN->addIncoming(InVal, *PI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // The PHIs are now updated, change everything that refers to BB to use
 | 
						|
  // DestBB and remove BB.
 | 
						|
  BB->replaceAllUsesWith(DestBB);
 | 
						|
  if (DT && !ModifiedDT) {
 | 
						|
    BasicBlock *BBIDom  = DT->getNode(BB)->getIDom()->getBlock();
 | 
						|
    BasicBlock *DestBBIDom = DT->getNode(DestBB)->getIDom()->getBlock();
 | 
						|
    BasicBlock *NewIDom = DT->findNearestCommonDominator(BBIDom, DestBBIDom);
 | 
						|
    DT->changeImmediateDominator(DestBB, NewIDom);
 | 
						|
    DT->eraseNode(BB);
 | 
						|
  }
 | 
						|
  BB->eraseFromParent();
 | 
						|
  ++NumBlocksElim;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
 | 
						|
}
 | 
						|
 | 
						|
/// SinkCast - Sink the specified cast instruction into its user blocks
 | 
						|
static bool SinkCast(CastInst *CI) {
 | 
						|
  BasicBlock *DefBB = CI->getParent();
 | 
						|
 | 
						|
  /// InsertedCasts - Only insert a cast in each block once.
 | 
						|
  DenseMap<BasicBlock*, CastInst*> InsertedCasts;
 | 
						|
 | 
						|
  bool MadeChange = false;
 | 
						|
  for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
 | 
						|
       UI != E; ) {
 | 
						|
    Use &TheUse = UI.getUse();
 | 
						|
    Instruction *User = cast<Instruction>(*UI);
 | 
						|
 | 
						|
    // Figure out which BB this cast is used in.  For PHI's this is the
 | 
						|
    // appropriate predecessor block.
 | 
						|
    BasicBlock *UserBB = User->getParent();
 | 
						|
    if (PHINode *PN = dyn_cast<PHINode>(User)) {
 | 
						|
      UserBB = PN->getIncomingBlock(TheUse);
 | 
						|
    }
 | 
						|
 | 
						|
    // Preincrement use iterator so we don't invalidate it.
 | 
						|
    ++UI;
 | 
						|
 | 
						|
    // If this user is in the same block as the cast, don't change the cast.
 | 
						|
    if (UserBB == DefBB) continue;
 | 
						|
 | 
						|
    // If we have already inserted a cast into this block, use it.
 | 
						|
    CastInst *&InsertedCast = InsertedCasts[UserBB];
 | 
						|
 | 
						|
    if (!InsertedCast) {
 | 
						|
      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
 | 
						|
      InsertedCast =
 | 
						|
        CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
 | 
						|
                         InsertPt);
 | 
						|
      MadeChange = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Replace a use of the cast with a use of the new cast.
 | 
						|
    TheUse = InsertedCast;
 | 
						|
    ++NumCastUses;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we removed all uses, nuke the cast.
 | 
						|
  if (CI->use_empty()) {
 | 
						|
    CI->eraseFromParent();
 | 
						|
    MadeChange = true;
 | 
						|
  }
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
/// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
 | 
						|
/// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC),
 | 
						|
/// sink it into user blocks to reduce the number of virtual
 | 
						|
/// registers that must be created and coalesced.
 | 
						|
///
 | 
						|
/// Return true if any changes are made.
 | 
						|
///
 | 
						|
static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
 | 
						|
  // If this is a noop copy,
 | 
						|
  EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
 | 
						|
  EVT DstVT = TLI.getValueType(CI->getType());
 | 
						|
 | 
						|
  // This is an fp<->int conversion?
 | 
						|
  if (SrcVT.isInteger() != DstVT.isInteger())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If this is an extension, it will be a zero or sign extension, which
 | 
						|
  // isn't a noop.
 | 
						|
  if (SrcVT.bitsLT(DstVT)) return false;
 | 
						|
 | 
						|
  // If these values will be promoted, find out what they will be promoted
 | 
						|
  // to.  This helps us consider truncates on PPC as noop copies when they
 | 
						|
  // are.
 | 
						|
  if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
 | 
						|
      TargetLowering::TypePromoteInteger)
 | 
						|
    SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
 | 
						|
  if (TLI.getTypeAction(CI->getContext(), DstVT) ==
 | 
						|
      TargetLowering::TypePromoteInteger)
 | 
						|
    DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
 | 
						|
 | 
						|
  // If, after promotion, these are the same types, this is a noop copy.
 | 
						|
  if (SrcVT != DstVT)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return SinkCast(CI);
 | 
						|
}
 | 
						|
 | 
						|
/// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce
 | 
						|
/// the number of virtual registers that must be created and coalesced.  This is
 | 
						|
/// a clear win except on targets with multiple condition code registers
 | 
						|
///  (PowerPC), where it might lose; some adjustment may be wanted there.
 | 
						|
///
 | 
						|
/// Return true if any changes are made.
 | 
						|
static bool OptimizeCmpExpression(CmpInst *CI) {
 | 
						|
  BasicBlock *DefBB = CI->getParent();
 | 
						|
 | 
						|
  /// InsertedCmp - Only insert a cmp in each block once.
 | 
						|
  DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
 | 
						|
 | 
						|
  bool MadeChange = false;
 | 
						|
  for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
 | 
						|
       UI != E; ) {
 | 
						|
    Use &TheUse = UI.getUse();
 | 
						|
    Instruction *User = cast<Instruction>(*UI);
 | 
						|
 | 
						|
    // Preincrement use iterator so we don't invalidate it.
 | 
						|
    ++UI;
 | 
						|
 | 
						|
    // Don't bother for PHI nodes.
 | 
						|
    if (isa<PHINode>(User))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Figure out which BB this cmp is used in.
 | 
						|
    BasicBlock *UserBB = User->getParent();
 | 
						|
 | 
						|
    // If this user is in the same block as the cmp, don't change the cmp.
 | 
						|
    if (UserBB == DefBB) continue;
 | 
						|
 | 
						|
    // If we have already inserted a cmp into this block, use it.
 | 
						|
    CmpInst *&InsertedCmp = InsertedCmps[UserBB];
 | 
						|
 | 
						|
    if (!InsertedCmp) {
 | 
						|
      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
 | 
						|
      InsertedCmp =
 | 
						|
        CmpInst::Create(CI->getOpcode(),
 | 
						|
                        CI->getPredicate(),  CI->getOperand(0),
 | 
						|
                        CI->getOperand(1), "", InsertPt);
 | 
						|
      MadeChange = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Replace a use of the cmp with a use of the new cmp.
 | 
						|
    TheUse = InsertedCmp;
 | 
						|
    ++NumCmpUses;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we removed all uses, nuke the cmp.
 | 
						|
  if (CI->use_empty())
 | 
						|
    CI->eraseFromParent();
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
/// isExtractBitsCandidateUse - Check if the candidates could
 | 
						|
/// be combined with shift instruction, which includes:
 | 
						|
/// 1. Truncate instruction
 | 
						|
/// 2. And instruction and the imm is a mask of the low bits:
 | 
						|
/// imm & (imm+1) == 0
 | 
						|
static bool isExtractBitsCandidateUse(Instruction *User) {
 | 
						|
  if (!isa<TruncInst>(User)) {
 | 
						|
    if (User->getOpcode() != Instruction::And ||
 | 
						|
        !isa<ConstantInt>(User->getOperand(1)))
 | 
						|
      return false;
 | 
						|
 | 
						|
    const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
 | 
						|
 | 
						|
    if ((Cimm & (Cimm + 1)).getBoolValue())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// SinkShiftAndTruncate - sink both shift and truncate instruction
 | 
						|
/// to the use of truncate's BB.
 | 
						|
static bool
 | 
						|
SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
 | 
						|
                     DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
 | 
						|
                     const TargetLowering &TLI) {
 | 
						|
  BasicBlock *UserBB = User->getParent();
 | 
						|
  DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
 | 
						|
  TruncInst *TruncI = dyn_cast<TruncInst>(User);
 | 
						|
  bool MadeChange = false;
 | 
						|
 | 
						|
  for (Value::user_iterator TruncUI = TruncI->user_begin(),
 | 
						|
                            TruncE = TruncI->user_end();
 | 
						|
       TruncUI != TruncE;) {
 | 
						|
 | 
						|
    Use &TruncTheUse = TruncUI.getUse();
 | 
						|
    Instruction *TruncUser = cast<Instruction>(*TruncUI);
 | 
						|
    // Preincrement use iterator so we don't invalidate it.
 | 
						|
 | 
						|
    ++TruncUI;
 | 
						|
 | 
						|
    int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
 | 
						|
    if (!ISDOpcode)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If the use is actually a legal node, there will not be an
 | 
						|
    // implicit truncate.
 | 
						|
    // FIXME: always querying the result type is just an
 | 
						|
    // approximation; some nodes' legality is determined by the
 | 
						|
    // operand or other means. There's no good way to find out though.
 | 
						|
    if (TLI.isOperationLegalOrCustom(ISDOpcode,
 | 
						|
                                     EVT::getEVT(TruncUser->getType(), true)))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Don't bother for PHI nodes.
 | 
						|
    if (isa<PHINode>(TruncUser))
 | 
						|
      continue;
 | 
						|
 | 
						|
    BasicBlock *TruncUserBB = TruncUser->getParent();
 | 
						|
 | 
						|
    if (UserBB == TruncUserBB)
 | 
						|
      continue;
 | 
						|
 | 
						|
    BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
 | 
						|
    CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
 | 
						|
 | 
						|
    if (!InsertedShift && !InsertedTrunc) {
 | 
						|
      BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
 | 
						|
      // Sink the shift
 | 
						|
      if (ShiftI->getOpcode() == Instruction::AShr)
 | 
						|
        InsertedShift =
 | 
						|
            BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt);
 | 
						|
      else
 | 
						|
        InsertedShift =
 | 
						|
            BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt);
 | 
						|
 | 
						|
      // Sink the trunc
 | 
						|
      BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
 | 
						|
      TruncInsertPt++;
 | 
						|
 | 
						|
      InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
 | 
						|
                                       TruncI->getType(), "", TruncInsertPt);
 | 
						|
 | 
						|
      MadeChange = true;
 | 
						|
 | 
						|
      TruncTheUse = InsertedTrunc;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
/// OptimizeExtractBits - sink the shift *right* instruction into user blocks if
 | 
						|
/// the uses could potentially be combined with this shift instruction and
 | 
						|
/// generate BitExtract instruction. It will only be applied if the architecture
 | 
						|
/// supports BitExtract instruction. Here is an example:
 | 
						|
/// BB1:
 | 
						|
///   %x.extract.shift = lshr i64 %arg1, 32
 | 
						|
/// BB2:
 | 
						|
///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
 | 
						|
/// ==>
 | 
						|
///
 | 
						|
/// BB2:
 | 
						|
///   %x.extract.shift.1 = lshr i64 %arg1, 32
 | 
						|
///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
 | 
						|
///
 | 
						|
/// CodeGen will recoginze the pattern in BB2 and generate BitExtract
 | 
						|
/// instruction.
 | 
						|
/// Return true if any changes are made.
 | 
						|
static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
 | 
						|
                                const TargetLowering &TLI) {
 | 
						|
  BasicBlock *DefBB = ShiftI->getParent();
 | 
						|
 | 
						|
  /// Only insert instructions in each block once.
 | 
						|
  DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
 | 
						|
 | 
						|
  bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(ShiftI->getType()));
 | 
						|
 | 
						|
  bool MadeChange = false;
 | 
						|
  for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
 | 
						|
       UI != E;) {
 | 
						|
    Use &TheUse = UI.getUse();
 | 
						|
    Instruction *User = cast<Instruction>(*UI);
 | 
						|
    // Preincrement use iterator so we don't invalidate it.
 | 
						|
    ++UI;
 | 
						|
 | 
						|
    // Don't bother for PHI nodes.
 | 
						|
    if (isa<PHINode>(User))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (!isExtractBitsCandidateUse(User))
 | 
						|
      continue;
 | 
						|
 | 
						|
    BasicBlock *UserBB = User->getParent();
 | 
						|
 | 
						|
    if (UserBB == DefBB) {
 | 
						|
      // If the shift and truncate instruction are in the same BB. The use of
 | 
						|
      // the truncate(TruncUse) may still introduce another truncate if not
 | 
						|
      // legal. In this case, we would like to sink both shift and truncate
 | 
						|
      // instruction to the BB of TruncUse.
 | 
						|
      // for example:
 | 
						|
      // BB1:
 | 
						|
      // i64 shift.result = lshr i64 opnd, imm
 | 
						|
      // trunc.result = trunc shift.result to i16
 | 
						|
      //
 | 
						|
      // BB2:
 | 
						|
      //   ----> We will have an implicit truncate here if the architecture does
 | 
						|
      //   not have i16 compare.
 | 
						|
      // cmp i16 trunc.result, opnd2
 | 
						|
      //
 | 
						|
      if (isa<TruncInst>(User) && shiftIsLegal
 | 
						|
          // If the type of the truncate is legal, no trucate will be
 | 
						|
          // introduced in other basic blocks.
 | 
						|
          && (!TLI.isTypeLegal(TLI.getValueType(User->getType()))))
 | 
						|
        MadeChange =
 | 
						|
            SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI);
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // If we have already inserted a shift into this block, use it.
 | 
						|
    BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
 | 
						|
 | 
						|
    if (!InsertedShift) {
 | 
						|
      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
 | 
						|
 | 
						|
      if (ShiftI->getOpcode() == Instruction::AShr)
 | 
						|
        InsertedShift =
 | 
						|
            BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt);
 | 
						|
      else
 | 
						|
        InsertedShift =
 | 
						|
            BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt);
 | 
						|
 | 
						|
      MadeChange = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Replace a use of the shift with a use of the new shift.
 | 
						|
    TheUse = InsertedShift;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we removed all uses, nuke the shift.
 | 
						|
  if (ShiftI->use_empty())
 | 
						|
    ShiftI->eraseFromParent();
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
class CodeGenPrepareFortifiedLibCalls : public SimplifyFortifiedLibCalls {
 | 
						|
protected:
 | 
						|
  void replaceCall(Value *With) override {
 | 
						|
    CI->replaceAllUsesWith(With);
 | 
						|
    CI->eraseFromParent();
 | 
						|
  }
 | 
						|
  bool isFoldable(unsigned SizeCIOp, unsigned, bool) const override {
 | 
						|
      if (ConstantInt *SizeCI =
 | 
						|
                             dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp)))
 | 
						|
        return SizeCI->isAllOnesValue();
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) {
 | 
						|
  BasicBlock *BB = CI->getParent();
 | 
						|
 | 
						|
  // Lower inline assembly if we can.
 | 
						|
  // If we found an inline asm expession, and if the target knows how to
 | 
						|
  // lower it to normal LLVM code, do so now.
 | 
						|
  if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
 | 
						|
    if (TLI->ExpandInlineAsm(CI)) {
 | 
						|
      // Avoid invalidating the iterator.
 | 
						|
      CurInstIterator = BB->begin();
 | 
						|
      // Avoid processing instructions out of order, which could cause
 | 
						|
      // reuse before a value is defined.
 | 
						|
      SunkAddrs.clear();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    // Sink address computing for memory operands into the block.
 | 
						|
    if (OptimizeInlineAsmInst(CI))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Lower all uses of llvm.objectsize.*
 | 
						|
  IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
 | 
						|
  if (II && II->getIntrinsicID() == Intrinsic::objectsize) {
 | 
						|
    bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1);
 | 
						|
    Type *ReturnTy = CI->getType();
 | 
						|
    Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
 | 
						|
 | 
						|
    // Substituting this can cause recursive simplifications, which can
 | 
						|
    // invalidate our iterator.  Use a WeakVH to hold onto it in case this
 | 
						|
    // happens.
 | 
						|
    WeakVH IterHandle(CurInstIterator);
 | 
						|
 | 
						|
    replaceAndRecursivelySimplify(CI, RetVal,
 | 
						|
                                  TLI ? TLI->getDataLayout() : nullptr,
 | 
						|
                                  TLInfo, ModifiedDT ? nullptr : DT);
 | 
						|
 | 
						|
    // If the iterator instruction was recursively deleted, start over at the
 | 
						|
    // start of the block.
 | 
						|
    if (IterHandle != CurInstIterator) {
 | 
						|
      CurInstIterator = BB->begin();
 | 
						|
      SunkAddrs.clear();
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (II && TLI) {
 | 
						|
    SmallVector<Value*, 2> PtrOps;
 | 
						|
    Type *AccessTy;
 | 
						|
    if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy))
 | 
						|
      while (!PtrOps.empty())
 | 
						|
        if (OptimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy))
 | 
						|
          return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // From here on out we're working with named functions.
 | 
						|
  if (!CI->getCalledFunction()) return false;
 | 
						|
 | 
						|
  // We'll need DataLayout from here on out.
 | 
						|
  const DataLayout *TD = TLI ? TLI->getDataLayout() : nullptr;
 | 
						|
  if (!TD) return false;
 | 
						|
 | 
						|
  // Lower all default uses of _chk calls.  This is very similar
 | 
						|
  // to what InstCombineCalls does, but here we are only lowering calls
 | 
						|
  // that have the default "don't know" as the objectsize.  Anything else
 | 
						|
  // should be left alone.
 | 
						|
  CodeGenPrepareFortifiedLibCalls Simplifier;
 | 
						|
  return Simplifier.fold(CI, TD, TLInfo);
 | 
						|
}
 | 
						|
 | 
						|
/// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return
 | 
						|
/// instructions to the predecessor to enable tail call optimizations. The
 | 
						|
/// case it is currently looking for is:
 | 
						|
/// @code
 | 
						|
/// bb0:
 | 
						|
///   %tmp0 = tail call i32 @f0()
 | 
						|
///   br label %return
 | 
						|
/// bb1:
 | 
						|
///   %tmp1 = tail call i32 @f1()
 | 
						|
///   br label %return
 | 
						|
/// bb2:
 | 
						|
///   %tmp2 = tail call i32 @f2()
 | 
						|
///   br label %return
 | 
						|
/// return:
 | 
						|
///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
 | 
						|
///   ret i32 %retval
 | 
						|
/// @endcode
 | 
						|
///
 | 
						|
/// =>
 | 
						|
///
 | 
						|
/// @code
 | 
						|
/// bb0:
 | 
						|
///   %tmp0 = tail call i32 @f0()
 | 
						|
///   ret i32 %tmp0
 | 
						|
/// bb1:
 | 
						|
///   %tmp1 = tail call i32 @f1()
 | 
						|
///   ret i32 %tmp1
 | 
						|
/// bb2:
 | 
						|
///   %tmp2 = tail call i32 @f2()
 | 
						|
///   ret i32 %tmp2
 | 
						|
/// @endcode
 | 
						|
bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) {
 | 
						|
  if (!TLI)
 | 
						|
    return false;
 | 
						|
 | 
						|
  ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
 | 
						|
  if (!RI)
 | 
						|
    return false;
 | 
						|
 | 
						|
  PHINode *PN = nullptr;
 | 
						|
  BitCastInst *BCI = nullptr;
 | 
						|
  Value *V = RI->getReturnValue();
 | 
						|
  if (V) {
 | 
						|
    BCI = dyn_cast<BitCastInst>(V);
 | 
						|
    if (BCI)
 | 
						|
      V = BCI->getOperand(0);
 | 
						|
 | 
						|
    PN = dyn_cast<PHINode>(V);
 | 
						|
    if (!PN)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (PN && PN->getParent() != BB)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // It's not safe to eliminate the sign / zero extension of the return value.
 | 
						|
  // See llvm::isInTailCallPosition().
 | 
						|
  const Function *F = BB->getParent();
 | 
						|
  AttributeSet CallerAttrs = F->getAttributes();
 | 
						|
  if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
 | 
						|
      CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Make sure there are no instructions between the PHI and return, or that the
 | 
						|
  // return is the first instruction in the block.
 | 
						|
  if (PN) {
 | 
						|
    BasicBlock::iterator BI = BB->begin();
 | 
						|
    do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
 | 
						|
    if (&*BI == BCI)
 | 
						|
      // Also skip over the bitcast.
 | 
						|
      ++BI;
 | 
						|
    if (&*BI != RI)
 | 
						|
      return false;
 | 
						|
  } else {
 | 
						|
    BasicBlock::iterator BI = BB->begin();
 | 
						|
    while (isa<DbgInfoIntrinsic>(BI)) ++BI;
 | 
						|
    if (&*BI != RI)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
 | 
						|
  /// call.
 | 
						|
  SmallVector<CallInst*, 4> TailCalls;
 | 
						|
  if (PN) {
 | 
						|
    for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
 | 
						|
      CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
 | 
						|
      // Make sure the phi value is indeed produced by the tail call.
 | 
						|
      if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
 | 
						|
          TLI->mayBeEmittedAsTailCall(CI))
 | 
						|
        TailCalls.push_back(CI);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    SmallPtrSet<BasicBlock*, 4> VisitedBBs;
 | 
						|
    for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
 | 
						|
      if (!VisitedBBs.insert(*PI))
 | 
						|
        continue;
 | 
						|
 | 
						|
      BasicBlock::InstListType &InstList = (*PI)->getInstList();
 | 
						|
      BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
 | 
						|
      BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
 | 
						|
      do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
 | 
						|
      if (RI == RE)
 | 
						|
        continue;
 | 
						|
 | 
						|
      CallInst *CI = dyn_cast<CallInst>(&*RI);
 | 
						|
      if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI))
 | 
						|
        TailCalls.push_back(CI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
 | 
						|
    CallInst *CI = TailCalls[i];
 | 
						|
    CallSite CS(CI);
 | 
						|
 | 
						|
    // Conservatively require the attributes of the call to match those of the
 | 
						|
    // return. Ignore noalias because it doesn't affect the call sequence.
 | 
						|
    AttributeSet CalleeAttrs = CS.getAttributes();
 | 
						|
    if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
 | 
						|
          removeAttribute(Attribute::NoAlias) !=
 | 
						|
        AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
 | 
						|
          removeAttribute(Attribute::NoAlias))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Make sure the call instruction is followed by an unconditional branch to
 | 
						|
    // the return block.
 | 
						|
    BasicBlock *CallBB = CI->getParent();
 | 
						|
    BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
 | 
						|
    if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Duplicate the return into CallBB.
 | 
						|
    (void)FoldReturnIntoUncondBranch(RI, BB, CallBB);
 | 
						|
    ModifiedDT = Changed = true;
 | 
						|
    ++NumRetsDup;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we eliminated all predecessors of the block, delete the block now.
 | 
						|
  if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
 | 
						|
    BB->eraseFromParent();
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Memory Optimization
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// ExtAddrMode - This is an extended version of TargetLowering::AddrMode
 | 
						|
/// which holds actual Value*'s for register values.
 | 
						|
struct ExtAddrMode : public TargetLowering::AddrMode {
 | 
						|
  Value *BaseReg;
 | 
						|
  Value *ScaledReg;
 | 
						|
  ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {}
 | 
						|
  void print(raw_ostream &OS) const;
 | 
						|
  void dump() const;
 | 
						|
 | 
						|
  bool operator==(const ExtAddrMode& O) const {
 | 
						|
    return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) &&
 | 
						|
           (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) &&
 | 
						|
           (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
 | 
						|
  AM.print(OS);
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
void ExtAddrMode::print(raw_ostream &OS) const {
 | 
						|
  bool NeedPlus = false;
 | 
						|
  OS << "[";
 | 
						|
  if (BaseGV) {
 | 
						|
    OS << (NeedPlus ? " + " : "")
 | 
						|
       << "GV:";
 | 
						|
    BaseGV->printAsOperand(OS, /*PrintType=*/false);
 | 
						|
    NeedPlus = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (BaseOffs) {
 | 
						|
    OS << (NeedPlus ? " + " : "")
 | 
						|
       << BaseOffs;
 | 
						|
    NeedPlus = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (BaseReg) {
 | 
						|
    OS << (NeedPlus ? " + " : "")
 | 
						|
       << "Base:";
 | 
						|
    BaseReg->printAsOperand(OS, /*PrintType=*/false);
 | 
						|
    NeedPlus = true;
 | 
						|
  }
 | 
						|
  if (Scale) {
 | 
						|
    OS << (NeedPlus ? " + " : "")
 | 
						|
       << Scale << "*";
 | 
						|
    ScaledReg->printAsOperand(OS, /*PrintType=*/false);
 | 
						|
  }
 | 
						|
 | 
						|
  OS << ']';
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
void ExtAddrMode::dump() const {
 | 
						|
  print(dbgs());
 | 
						|
  dbgs() << '\n';
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/// \brief This class provides transaction based operation on the IR.
 | 
						|
/// Every change made through this class is recorded in the internal state and
 | 
						|
/// can be undone (rollback) until commit is called.
 | 
						|
class TypePromotionTransaction {
 | 
						|
 | 
						|
  /// \brief This represents the common interface of the individual transaction.
 | 
						|
  /// Each class implements the logic for doing one specific modification on
 | 
						|
  /// the IR via the TypePromotionTransaction.
 | 
						|
  class TypePromotionAction {
 | 
						|
  protected:
 | 
						|
    /// The Instruction modified.
 | 
						|
    Instruction *Inst;
 | 
						|
 | 
						|
  public:
 | 
						|
    /// \brief Constructor of the action.
 | 
						|
    /// The constructor performs the related action on the IR.
 | 
						|
    TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
 | 
						|
 | 
						|
    virtual ~TypePromotionAction() {}
 | 
						|
 | 
						|
    /// \brief Undo the modification done by this action.
 | 
						|
    /// When this method is called, the IR must be in the same state as it was
 | 
						|
    /// before this action was applied.
 | 
						|
    /// \pre Undoing the action works if and only if the IR is in the exact same
 | 
						|
    /// state as it was directly after this action was applied.
 | 
						|
    virtual void undo() = 0;
 | 
						|
 | 
						|
    /// \brief Advocate every change made by this action.
 | 
						|
    /// When the results on the IR of the action are to be kept, it is important
 | 
						|
    /// to call this function, otherwise hidden information may be kept forever.
 | 
						|
    virtual void commit() {
 | 
						|
      // Nothing to be done, this action is not doing anything.
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// \brief Utility to remember the position of an instruction.
 | 
						|
  class InsertionHandler {
 | 
						|
    /// Position of an instruction.
 | 
						|
    /// Either an instruction:
 | 
						|
    /// - Is the first in a basic block: BB is used.
 | 
						|
    /// - Has a previous instructon: PrevInst is used.
 | 
						|
    union {
 | 
						|
      Instruction *PrevInst;
 | 
						|
      BasicBlock *BB;
 | 
						|
    } Point;
 | 
						|
    /// Remember whether or not the instruction had a previous instruction.
 | 
						|
    bool HasPrevInstruction;
 | 
						|
 | 
						|
  public:
 | 
						|
    /// \brief Record the position of \p Inst.
 | 
						|
    InsertionHandler(Instruction *Inst) {
 | 
						|
      BasicBlock::iterator It = Inst;
 | 
						|
      HasPrevInstruction = (It != (Inst->getParent()->begin()));
 | 
						|
      if (HasPrevInstruction)
 | 
						|
        Point.PrevInst = --It;
 | 
						|
      else
 | 
						|
        Point.BB = Inst->getParent();
 | 
						|
    }
 | 
						|
 | 
						|
    /// \brief Insert \p Inst at the recorded position.
 | 
						|
    void insert(Instruction *Inst) {
 | 
						|
      if (HasPrevInstruction) {
 | 
						|
        if (Inst->getParent())
 | 
						|
          Inst->removeFromParent();
 | 
						|
        Inst->insertAfter(Point.PrevInst);
 | 
						|
      } else {
 | 
						|
        Instruction *Position = Point.BB->getFirstInsertionPt();
 | 
						|
        if (Inst->getParent())
 | 
						|
          Inst->moveBefore(Position);
 | 
						|
        else
 | 
						|
          Inst->insertBefore(Position);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// \brief Move an instruction before another.
 | 
						|
  class InstructionMoveBefore : public TypePromotionAction {
 | 
						|
    /// Original position of the instruction.
 | 
						|
    InsertionHandler Position;
 | 
						|
 | 
						|
  public:
 | 
						|
    /// \brief Move \p Inst before \p Before.
 | 
						|
    InstructionMoveBefore(Instruction *Inst, Instruction *Before)
 | 
						|
        : TypePromotionAction(Inst), Position(Inst) {
 | 
						|
      DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n");
 | 
						|
      Inst->moveBefore(Before);
 | 
						|
    }
 | 
						|
 | 
						|
    /// \brief Move the instruction back to its original position.
 | 
						|
    void undo() override {
 | 
						|
      DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
 | 
						|
      Position.insert(Inst);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// \brief Set the operand of an instruction with a new value.
 | 
						|
  class OperandSetter : public TypePromotionAction {
 | 
						|
    /// Original operand of the instruction.
 | 
						|
    Value *Origin;
 | 
						|
    /// Index of the modified instruction.
 | 
						|
    unsigned Idx;
 | 
						|
 | 
						|
  public:
 | 
						|
    /// \brief Set \p Idx operand of \p Inst with \p NewVal.
 | 
						|
    OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
 | 
						|
        : TypePromotionAction(Inst), Idx(Idx) {
 | 
						|
      DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
 | 
						|
                   << "for:" << *Inst << "\n"
 | 
						|
                   << "with:" << *NewVal << "\n");
 | 
						|
      Origin = Inst->getOperand(Idx);
 | 
						|
      Inst->setOperand(Idx, NewVal);
 | 
						|
    }
 | 
						|
 | 
						|
    /// \brief Restore the original value of the instruction.
 | 
						|
    void undo() override {
 | 
						|
      DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
 | 
						|
                   << "for: " << *Inst << "\n"
 | 
						|
                   << "with: " << *Origin << "\n");
 | 
						|
      Inst->setOperand(Idx, Origin);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// \brief Hide the operands of an instruction.
 | 
						|
  /// Do as if this instruction was not using any of its operands.
 | 
						|
  class OperandsHider : public TypePromotionAction {
 | 
						|
    /// The list of original operands.
 | 
						|
    SmallVector<Value *, 4> OriginalValues;
 | 
						|
 | 
						|
  public:
 | 
						|
    /// \brief Remove \p Inst from the uses of the operands of \p Inst.
 | 
						|
    OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
 | 
						|
      DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
 | 
						|
      unsigned NumOpnds = Inst->getNumOperands();
 | 
						|
      OriginalValues.reserve(NumOpnds);
 | 
						|
      for (unsigned It = 0; It < NumOpnds; ++It) {
 | 
						|
        // Save the current operand.
 | 
						|
        Value *Val = Inst->getOperand(It);
 | 
						|
        OriginalValues.push_back(Val);
 | 
						|
        // Set a dummy one.
 | 
						|
        // We could use OperandSetter here, but that would implied an overhead
 | 
						|
        // that we are not willing to pay.
 | 
						|
        Inst->setOperand(It, UndefValue::get(Val->getType()));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    /// \brief Restore the original list of uses.
 | 
						|
    void undo() override {
 | 
						|
      DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
 | 
						|
      for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
 | 
						|
        Inst->setOperand(It, OriginalValues[It]);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// \brief Build a truncate instruction.
 | 
						|
  class TruncBuilder : public TypePromotionAction {
 | 
						|
    Value *Val;
 | 
						|
  public:
 | 
						|
    /// \brief Build a truncate instruction of \p Opnd producing a \p Ty
 | 
						|
    /// result.
 | 
						|
    /// trunc Opnd to Ty.
 | 
						|
    TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
 | 
						|
      IRBuilder<> Builder(Opnd);
 | 
						|
      Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
 | 
						|
      DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
 | 
						|
    }
 | 
						|
 | 
						|
    /// \brief Get the built value.
 | 
						|
    Value *getBuiltValue() { return Val; }
 | 
						|
 | 
						|
    /// \brief Remove the built instruction.
 | 
						|
    void undo() override {
 | 
						|
      DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
 | 
						|
      if (Instruction *IVal = dyn_cast<Instruction>(Val))
 | 
						|
        IVal->eraseFromParent();
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// \brief Build a sign extension instruction.
 | 
						|
  class SExtBuilder : public TypePromotionAction {
 | 
						|
    Value *Val;
 | 
						|
  public:
 | 
						|
    /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty
 | 
						|
    /// result.
 | 
						|
    /// sext Opnd to Ty.
 | 
						|
    SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
 | 
						|
        : TypePromotionAction(InsertPt) {
 | 
						|
      IRBuilder<> Builder(InsertPt);
 | 
						|
      Val = Builder.CreateSExt(Opnd, Ty, "promoted");
 | 
						|
      DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
 | 
						|
    }
 | 
						|
 | 
						|
    /// \brief Get the built value.
 | 
						|
    Value *getBuiltValue() { return Val; }
 | 
						|
 | 
						|
    /// \brief Remove the built instruction.
 | 
						|
    void undo() override {
 | 
						|
      DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
 | 
						|
      if (Instruction *IVal = dyn_cast<Instruction>(Val))
 | 
						|
        IVal->eraseFromParent();
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// \brief Build a zero extension instruction.
 | 
						|
  class ZExtBuilder : public TypePromotionAction {
 | 
						|
    Value *Val;
 | 
						|
  public:
 | 
						|
    /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty
 | 
						|
    /// result.
 | 
						|
    /// zext Opnd to Ty.
 | 
						|
    ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
 | 
						|
        : TypePromotionAction(InsertPt) {
 | 
						|
      IRBuilder<> Builder(InsertPt);
 | 
						|
      Val = Builder.CreateZExt(Opnd, Ty, "promoted");
 | 
						|
      DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
 | 
						|
    }
 | 
						|
 | 
						|
    /// \brief Get the built value.
 | 
						|
    Value *getBuiltValue() { return Val; }
 | 
						|
 | 
						|
    /// \brief Remove the built instruction.
 | 
						|
    void undo() override {
 | 
						|
      DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
 | 
						|
      if (Instruction *IVal = dyn_cast<Instruction>(Val))
 | 
						|
        IVal->eraseFromParent();
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// \brief Mutate an instruction to another type.
 | 
						|
  class TypeMutator : public TypePromotionAction {
 | 
						|
    /// Record the original type.
 | 
						|
    Type *OrigTy;
 | 
						|
 | 
						|
  public:
 | 
						|
    /// \brief Mutate the type of \p Inst into \p NewTy.
 | 
						|
    TypeMutator(Instruction *Inst, Type *NewTy)
 | 
						|
        : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
 | 
						|
      DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
 | 
						|
                   << "\n");
 | 
						|
      Inst->mutateType(NewTy);
 | 
						|
    }
 | 
						|
 | 
						|
    /// \brief Mutate the instruction back to its original type.
 | 
						|
    void undo() override {
 | 
						|
      DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
 | 
						|
                   << "\n");
 | 
						|
      Inst->mutateType(OrigTy);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// \brief Replace the uses of an instruction by another instruction.
 | 
						|
  class UsesReplacer : public TypePromotionAction {
 | 
						|
    /// Helper structure to keep track of the replaced uses.
 | 
						|
    struct InstructionAndIdx {
 | 
						|
      /// The instruction using the instruction.
 | 
						|
      Instruction *Inst;
 | 
						|
      /// The index where this instruction is used for Inst.
 | 
						|
      unsigned Idx;
 | 
						|
      InstructionAndIdx(Instruction *Inst, unsigned Idx)
 | 
						|
          : Inst(Inst), Idx(Idx) {}
 | 
						|
    };
 | 
						|
 | 
						|
    /// Keep track of the original uses (pair Instruction, Index).
 | 
						|
    SmallVector<InstructionAndIdx, 4> OriginalUses;
 | 
						|
    typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator;
 | 
						|
 | 
						|
  public:
 | 
						|
    /// \brief Replace all the use of \p Inst by \p New.
 | 
						|
    UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
 | 
						|
      DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
 | 
						|
                   << "\n");
 | 
						|
      // Record the original uses.
 | 
						|
      for (Use &U : Inst->uses()) {
 | 
						|
        Instruction *UserI = cast<Instruction>(U.getUser());
 | 
						|
        OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
 | 
						|
      }
 | 
						|
      // Now, we can replace the uses.
 | 
						|
      Inst->replaceAllUsesWith(New);
 | 
						|
    }
 | 
						|
 | 
						|
    /// \brief Reassign the original uses of Inst to Inst.
 | 
						|
    void undo() override {
 | 
						|
      DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
 | 
						|
      for (use_iterator UseIt = OriginalUses.begin(),
 | 
						|
                        EndIt = OriginalUses.end();
 | 
						|
           UseIt != EndIt; ++UseIt) {
 | 
						|
        UseIt->Inst->setOperand(UseIt->Idx, Inst);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// \brief Remove an instruction from the IR.
 | 
						|
  class InstructionRemover : public TypePromotionAction {
 | 
						|
    /// Original position of the instruction.
 | 
						|
    InsertionHandler Inserter;
 | 
						|
    /// Helper structure to hide all the link to the instruction. In other
 | 
						|
    /// words, this helps to do as if the instruction was removed.
 | 
						|
    OperandsHider Hider;
 | 
						|
    /// Keep track of the uses replaced, if any.
 | 
						|
    UsesReplacer *Replacer;
 | 
						|
 | 
						|
  public:
 | 
						|
    /// \brief Remove all reference of \p Inst and optinally replace all its
 | 
						|
    /// uses with New.
 | 
						|
    /// \pre If !Inst->use_empty(), then New != nullptr
 | 
						|
    InstructionRemover(Instruction *Inst, Value *New = nullptr)
 | 
						|
        : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
 | 
						|
          Replacer(nullptr) {
 | 
						|
      if (New)
 | 
						|
        Replacer = new UsesReplacer(Inst, New);
 | 
						|
      DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
 | 
						|
      Inst->removeFromParent();
 | 
						|
    }
 | 
						|
 | 
						|
    ~InstructionRemover() { delete Replacer; }
 | 
						|
 | 
						|
    /// \brief Really remove the instruction.
 | 
						|
    void commit() override { delete Inst; }
 | 
						|
 | 
						|
    /// \brief Resurrect the instruction and reassign it to the proper uses if
 | 
						|
    /// new value was provided when build this action.
 | 
						|
    void undo() override {
 | 
						|
      DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
 | 
						|
      Inserter.insert(Inst);
 | 
						|
      if (Replacer)
 | 
						|
        Replacer->undo();
 | 
						|
      Hider.undo();
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
public:
 | 
						|
  /// Restoration point.
 | 
						|
  /// The restoration point is a pointer to an action instead of an iterator
 | 
						|
  /// because the iterator may be invalidated but not the pointer.
 | 
						|
  typedef const TypePromotionAction *ConstRestorationPt;
 | 
						|
  /// Advocate every changes made in that transaction.
 | 
						|
  void commit();
 | 
						|
  /// Undo all the changes made after the given point.
 | 
						|
  void rollback(ConstRestorationPt Point);
 | 
						|
  /// Get the current restoration point.
 | 
						|
  ConstRestorationPt getRestorationPoint() const;
 | 
						|
 | 
						|
  /// \name API for IR modification with state keeping to support rollback.
 | 
						|
  /// @{
 | 
						|
  /// Same as Instruction::setOperand.
 | 
						|
  void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
 | 
						|
  /// Same as Instruction::eraseFromParent.
 | 
						|
  void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
 | 
						|
  /// Same as Value::replaceAllUsesWith.
 | 
						|
  void replaceAllUsesWith(Instruction *Inst, Value *New);
 | 
						|
  /// Same as Value::mutateType.
 | 
						|
  void mutateType(Instruction *Inst, Type *NewTy);
 | 
						|
  /// Same as IRBuilder::createTrunc.
 | 
						|
  Value *createTrunc(Instruction *Opnd, Type *Ty);
 | 
						|
  /// Same as IRBuilder::createSExt.
 | 
						|
  Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
 | 
						|
  /// Same as IRBuilder::createZExt.
 | 
						|
  Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
 | 
						|
  /// Same as Instruction::moveBefore.
 | 
						|
  void moveBefore(Instruction *Inst, Instruction *Before);
 | 
						|
  /// @}
 | 
						|
 | 
						|
private:
 | 
						|
  /// The ordered list of actions made so far.
 | 
						|
  SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
 | 
						|
  typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt;
 | 
						|
};
 | 
						|
 | 
						|
void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
 | 
						|
                                          Value *NewVal) {
 | 
						|
  Actions.push_back(
 | 
						|
      make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal));
 | 
						|
}
 | 
						|
 | 
						|
void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
 | 
						|
                                                Value *NewVal) {
 | 
						|
  Actions.push_back(
 | 
						|
      make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal));
 | 
						|
}
 | 
						|
 | 
						|
void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
 | 
						|
                                                  Value *New) {
 | 
						|
  Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
 | 
						|
}
 | 
						|
 | 
						|
void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
 | 
						|
  Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
 | 
						|
}
 | 
						|
 | 
						|
Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
 | 
						|
                                             Type *Ty) {
 | 
						|
  std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
 | 
						|
  Value *Val = Ptr->getBuiltValue();
 | 
						|
  Actions.push_back(std::move(Ptr));
 | 
						|
  return Val;
 | 
						|
}
 | 
						|
 | 
						|
Value *TypePromotionTransaction::createSExt(Instruction *Inst,
 | 
						|
                                            Value *Opnd, Type *Ty) {
 | 
						|
  std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
 | 
						|
  Value *Val = Ptr->getBuiltValue();
 | 
						|
  Actions.push_back(std::move(Ptr));
 | 
						|
  return Val;
 | 
						|
}
 | 
						|
 | 
						|
Value *TypePromotionTransaction::createZExt(Instruction *Inst,
 | 
						|
                                            Value *Opnd, Type *Ty) {
 | 
						|
  std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
 | 
						|
  Value *Val = Ptr->getBuiltValue();
 | 
						|
  Actions.push_back(std::move(Ptr));
 | 
						|
  return Val;
 | 
						|
}
 | 
						|
 | 
						|
void TypePromotionTransaction::moveBefore(Instruction *Inst,
 | 
						|
                                          Instruction *Before) {
 | 
						|
  Actions.push_back(
 | 
						|
      make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before));
 | 
						|
}
 | 
						|
 | 
						|
TypePromotionTransaction::ConstRestorationPt
 | 
						|
TypePromotionTransaction::getRestorationPoint() const {
 | 
						|
  return !Actions.empty() ? Actions.back().get() : nullptr;
 | 
						|
}
 | 
						|
 | 
						|
void TypePromotionTransaction::commit() {
 | 
						|
  for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
 | 
						|
       ++It)
 | 
						|
    (*It)->commit();
 | 
						|
  Actions.clear();
 | 
						|
}
 | 
						|
 | 
						|
void TypePromotionTransaction::rollback(
 | 
						|
    TypePromotionTransaction::ConstRestorationPt Point) {
 | 
						|
  while (!Actions.empty() && Point != Actions.back().get()) {
 | 
						|
    std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
 | 
						|
    Curr->undo();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief A helper class for matching addressing modes.
 | 
						|
///
 | 
						|
/// This encapsulates the logic for matching the target-legal addressing modes.
 | 
						|
class AddressingModeMatcher {
 | 
						|
  SmallVectorImpl<Instruction*> &AddrModeInsts;
 | 
						|
  const TargetLowering &TLI;
 | 
						|
 | 
						|
  /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
 | 
						|
  /// the memory instruction that we're computing this address for.
 | 
						|
  Type *AccessTy;
 | 
						|
  Instruction *MemoryInst;
 | 
						|
 | 
						|
  /// AddrMode - This is the addressing mode that we're building up.  This is
 | 
						|
  /// part of the return value of this addressing mode matching stuff.
 | 
						|
  ExtAddrMode &AddrMode;
 | 
						|
 | 
						|
  /// The truncate instruction inserted by other CodeGenPrepare optimizations.
 | 
						|
  const SetOfInstrs &InsertedTruncs;
 | 
						|
  /// A map from the instructions to their type before promotion.
 | 
						|
  InstrToOrigTy &PromotedInsts;
 | 
						|
  /// The ongoing transaction where every action should be registered.
 | 
						|
  TypePromotionTransaction &TPT;
 | 
						|
 | 
						|
  /// IgnoreProfitability - This is set to true when we should not do
 | 
						|
  /// profitability checks.  When true, IsProfitableToFoldIntoAddressingMode
 | 
						|
  /// always returns true.
 | 
						|
  bool IgnoreProfitability;
 | 
						|
 | 
						|
  AddressingModeMatcher(SmallVectorImpl<Instruction*> &AMI,
 | 
						|
                        const TargetLowering &T, Type *AT,
 | 
						|
                        Instruction *MI, ExtAddrMode &AM,
 | 
						|
                        const SetOfInstrs &InsertedTruncs,
 | 
						|
                        InstrToOrigTy &PromotedInsts,
 | 
						|
                        TypePromotionTransaction &TPT)
 | 
						|
      : AddrModeInsts(AMI), TLI(T), AccessTy(AT), MemoryInst(MI), AddrMode(AM),
 | 
						|
        InsertedTruncs(InsertedTruncs), PromotedInsts(PromotedInsts), TPT(TPT) {
 | 
						|
    IgnoreProfitability = false;
 | 
						|
  }
 | 
						|
public:
 | 
						|
 | 
						|
  /// Match - Find the maximal addressing mode that a load/store of V can fold,
 | 
						|
  /// give an access type of AccessTy.  This returns a list of involved
 | 
						|
  /// instructions in AddrModeInsts.
 | 
						|
  /// \p InsertedTruncs The truncate instruction inserted by other
 | 
						|
  /// CodeGenPrepare
 | 
						|
  /// optimizations.
 | 
						|
  /// \p PromotedInsts maps the instructions to their type before promotion.
 | 
						|
  /// \p The ongoing transaction where every action should be registered.
 | 
						|
  static ExtAddrMode Match(Value *V, Type *AccessTy,
 | 
						|
                           Instruction *MemoryInst,
 | 
						|
                           SmallVectorImpl<Instruction*> &AddrModeInsts,
 | 
						|
                           const TargetLowering &TLI,
 | 
						|
                           const SetOfInstrs &InsertedTruncs,
 | 
						|
                           InstrToOrigTy &PromotedInsts,
 | 
						|
                           TypePromotionTransaction &TPT) {
 | 
						|
    ExtAddrMode Result;
 | 
						|
 | 
						|
    bool Success = AddressingModeMatcher(AddrModeInsts, TLI, AccessTy,
 | 
						|
                                         MemoryInst, Result, InsertedTruncs,
 | 
						|
                                         PromotedInsts, TPT).MatchAddr(V, 0);
 | 
						|
    (void)Success; assert(Success && "Couldn't select *anything*?");
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
private:
 | 
						|
  bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
 | 
						|
  bool MatchAddr(Value *V, unsigned Depth);
 | 
						|
  bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth,
 | 
						|
                          bool *MovedAway = nullptr);
 | 
						|
  bool IsProfitableToFoldIntoAddressingMode(Instruction *I,
 | 
						|
                                            ExtAddrMode &AMBefore,
 | 
						|
                                            ExtAddrMode &AMAfter);
 | 
						|
  bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
 | 
						|
  bool IsPromotionProfitable(unsigned MatchedSize, unsigned SizeWithPromotion,
 | 
						|
                             Value *PromotedOperand) const;
 | 
						|
};
 | 
						|
 | 
						|
/// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode.
 | 
						|
/// Return true and update AddrMode if this addr mode is legal for the target,
 | 
						|
/// false if not.
 | 
						|
bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale,
 | 
						|
                                             unsigned Depth) {
 | 
						|
  // If Scale is 1, then this is the same as adding ScaleReg to the addressing
 | 
						|
  // mode.  Just process that directly.
 | 
						|
  if (Scale == 1)
 | 
						|
    return MatchAddr(ScaleReg, Depth);
 | 
						|
 | 
						|
  // If the scale is 0, it takes nothing to add this.
 | 
						|
  if (Scale == 0)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If we already have a scale of this value, we can add to it, otherwise, we
 | 
						|
  // need an available scale field.
 | 
						|
  if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
 | 
						|
    return false;
 | 
						|
 | 
						|
  ExtAddrMode TestAddrMode = AddrMode;
 | 
						|
 | 
						|
  // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
 | 
						|
  // [A+B + A*7] -> [B+A*8].
 | 
						|
  TestAddrMode.Scale += Scale;
 | 
						|
  TestAddrMode.ScaledReg = ScaleReg;
 | 
						|
 | 
						|
  // If the new address isn't legal, bail out.
 | 
						|
  if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // It was legal, so commit it.
 | 
						|
  AddrMode = TestAddrMode;
 | 
						|
 | 
						|
  // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
 | 
						|
  // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
 | 
						|
  // X*Scale + C*Scale to addr mode.
 | 
						|
  ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
 | 
						|
  if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
 | 
						|
      match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
 | 
						|
    TestAddrMode.ScaledReg = AddLHS;
 | 
						|
    TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
 | 
						|
 | 
						|
    // If this addressing mode is legal, commit it and remember that we folded
 | 
						|
    // this instruction.
 | 
						|
    if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) {
 | 
						|
      AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
 | 
						|
      AddrMode = TestAddrMode;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, not (x+c)*scale, just return what we have.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// MightBeFoldableInst - This is a little filter, which returns true if an
 | 
						|
/// addressing computation involving I might be folded into a load/store
 | 
						|
/// accessing it.  This doesn't need to be perfect, but needs to accept at least
 | 
						|
/// the set of instructions that MatchOperationAddr can.
 | 
						|
static bool MightBeFoldableInst(Instruction *I) {
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  case Instruction::BitCast:
 | 
						|
  case Instruction::AddrSpaceCast:
 | 
						|
    // Don't touch identity bitcasts.
 | 
						|
    if (I->getType() == I->getOperand(0)->getType())
 | 
						|
      return false;
 | 
						|
    return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
 | 
						|
  case Instruction::PtrToInt:
 | 
						|
    // PtrToInt is always a noop, as we know that the int type is pointer sized.
 | 
						|
    return true;
 | 
						|
  case Instruction::IntToPtr:
 | 
						|
    // We know the input is intptr_t, so this is foldable.
 | 
						|
    return true;
 | 
						|
  case Instruction::Add:
 | 
						|
    return true;
 | 
						|
  case Instruction::Mul:
 | 
						|
  case Instruction::Shl:
 | 
						|
    // Can only handle X*C and X << C.
 | 
						|
    return isa<ConstantInt>(I->getOperand(1));
 | 
						|
  case Instruction::GetElementPtr:
 | 
						|
    return true;
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Hepler class to perform type promotion.
 | 
						|
class TypePromotionHelper {
 | 
						|
  /// \brief Utility function to check whether or not a sign extension of
 | 
						|
  /// \p Inst with \p ConsideredSExtType can be moved through \p Inst by either
 | 
						|
  /// using the operands of \p Inst or promoting \p Inst.
 | 
						|
  /// In other words, check if:
 | 
						|
  /// sext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredSExtType.
 | 
						|
  /// #1 Promotion applies:
 | 
						|
  /// ConsideredSExtType Inst (sext opnd1 to ConsideredSExtType, ...).
 | 
						|
  /// #2 Operand reuses:
 | 
						|
  /// sext opnd1 to ConsideredSExtType.
 | 
						|
  /// \p PromotedInsts maps the instructions to their type before promotion.
 | 
						|
  static bool canGetThrough(const Instruction *Inst, Type *ConsideredSExtType,
 | 
						|
                            const InstrToOrigTy &PromotedInsts);
 | 
						|
 | 
						|
  /// \brief Utility function to determine if \p OpIdx should be promoted when
 | 
						|
  /// promoting \p Inst.
 | 
						|
  static bool shouldSExtOperand(const Instruction *Inst, int OpIdx) {
 | 
						|
    if (isa<SelectInst>(Inst) && OpIdx == 0)
 | 
						|
      return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Utility function to promote the operand of \p SExt when this
 | 
						|
  /// operand is a promotable trunc or sext or zext.
 | 
						|
  /// \p PromotedInsts maps the instructions to their type before promotion.
 | 
						|
  /// \p CreatedInsts[out] contains how many non-free instructions have been
 | 
						|
  /// created to promote the operand of SExt.
 | 
						|
  /// Should never be called directly.
 | 
						|
  /// \return The promoted value which is used instead of SExt.
 | 
						|
  static Value *promoteOperandForTruncAndAnyExt(Instruction *SExt,
 | 
						|
                                                TypePromotionTransaction &TPT,
 | 
						|
                                                InstrToOrigTy &PromotedInsts,
 | 
						|
                                                unsigned &CreatedInsts);
 | 
						|
 | 
						|
  /// \brief Utility function to promote the operand of \p SExt when this
 | 
						|
  /// operand is promotable and is not a supported trunc or sext.
 | 
						|
  /// \p PromotedInsts maps the instructions to their type before promotion.
 | 
						|
  /// \p CreatedInsts[out] contains how many non-free instructions have been
 | 
						|
  /// created to promote the operand of SExt.
 | 
						|
  /// Should never be called directly.
 | 
						|
  /// \return The promoted value which is used instead of SExt.
 | 
						|
  static Value *promoteOperandForOther(Instruction *SExt,
 | 
						|
                                       TypePromotionTransaction &TPT,
 | 
						|
                                       InstrToOrigTy &PromotedInsts,
 | 
						|
                                       unsigned &CreatedInsts);
 | 
						|
 | 
						|
public:
 | 
						|
  /// Type for the utility function that promotes the operand of SExt.
 | 
						|
  typedef Value *(*Action)(Instruction *SExt, TypePromotionTransaction &TPT,
 | 
						|
                           InstrToOrigTy &PromotedInsts,
 | 
						|
                           unsigned &CreatedInsts);
 | 
						|
  /// \brief Given a sign extend instruction \p SExt, return the approriate
 | 
						|
  /// action to promote the operand of \p SExt instead of using SExt.
 | 
						|
  /// \return NULL if no promotable action is possible with the current
 | 
						|
  /// sign extension.
 | 
						|
  /// \p InsertedTruncs keeps track of all the truncate instructions inserted by
 | 
						|
  /// the others CodeGenPrepare optimizations. This information is important
 | 
						|
  /// because we do not want to promote these instructions as CodeGenPrepare
 | 
						|
  /// will reinsert them later. Thus creating an infinite loop: create/remove.
 | 
						|
  /// \p PromotedInsts maps the instructions to their type before promotion.
 | 
						|
  static Action getAction(Instruction *SExt, const SetOfInstrs &InsertedTruncs,
 | 
						|
                          const TargetLowering &TLI,
 | 
						|
                          const InstrToOrigTy &PromotedInsts);
 | 
						|
};
 | 
						|
 | 
						|
bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
 | 
						|
                                        Type *ConsideredSExtType,
 | 
						|
                                        const InstrToOrigTy &PromotedInsts) {
 | 
						|
  // We can always get through sext or zext.
 | 
						|
  if (isa<SExtInst>(Inst) || isa<ZExtInst>(Inst))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // We can get through binary operator, if it is legal. In other words, the
 | 
						|
  // binary operator must have a nuw or nsw flag.
 | 
						|
  const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
 | 
						|
  if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
 | 
						|
      (BinOp->hasNoUnsignedWrap() || BinOp->hasNoSignedWrap()))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Check if we can do the following simplification.
 | 
						|
  // sext(trunc(sext)) --> sext
 | 
						|
  if (!isa<TruncInst>(Inst))
 | 
						|
    return false;
 | 
						|
 | 
						|
  Value *OpndVal = Inst->getOperand(0);
 | 
						|
  // Check if we can use this operand in the sext.
 | 
						|
  // If the type is larger than the result type of the sign extension,
 | 
						|
  // we cannot.
 | 
						|
  if (OpndVal->getType()->getIntegerBitWidth() >
 | 
						|
      ConsideredSExtType->getIntegerBitWidth())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the operand of the truncate is not an instruction, we will not have
 | 
						|
  // any information on the dropped bits.
 | 
						|
  // (Actually we could for constant but it is not worth the extra logic).
 | 
						|
  Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
 | 
						|
  if (!Opnd)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check if the source of the type is narrow enough.
 | 
						|
  // I.e., check that trunc just drops sign extended bits.
 | 
						|
  // #1 get the type of the operand.
 | 
						|
  const Type *OpndType;
 | 
						|
  InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
 | 
						|
  if (It != PromotedInsts.end())
 | 
						|
    OpndType = It->second;
 | 
						|
  else if (isa<SExtInst>(Opnd))
 | 
						|
    OpndType = cast<Instruction>(Opnd)->getOperand(0)->getType();
 | 
						|
  else
 | 
						|
    return false;
 | 
						|
 | 
						|
  // #2 check that the truncate just drop sign extended bits.
 | 
						|
  if (Inst->getType()->getIntegerBitWidth() >= OpndType->getIntegerBitWidth())
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
TypePromotionHelper::Action TypePromotionHelper::getAction(
 | 
						|
    Instruction *SExt, const SetOfInstrs &InsertedTruncs,
 | 
						|
    const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
 | 
						|
  Instruction *SExtOpnd = dyn_cast<Instruction>(SExt->getOperand(0));
 | 
						|
  Type *SExtTy = SExt->getType();
 | 
						|
  // If the operand of the sign extension is not an instruction, we cannot
 | 
						|
  // get through.
 | 
						|
  // If it, check we can get through.
 | 
						|
  if (!SExtOpnd || !canGetThrough(SExtOpnd, SExtTy, PromotedInsts))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Do not promote if the operand has been added by codegenprepare.
 | 
						|
  // Otherwise, it means we are undoing an optimization that is likely to be
 | 
						|
  // redone, thus causing potential infinite loop.
 | 
						|
  if (isa<TruncInst>(SExtOpnd) && InsertedTruncs.count(SExtOpnd))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // SExt or Trunc instructions.
 | 
						|
  // Return the related handler.
 | 
						|
  if (isa<SExtInst>(SExtOpnd) || isa<TruncInst>(SExtOpnd) ||
 | 
						|
      isa<ZExtInst>(SExtOpnd))
 | 
						|
    return promoteOperandForTruncAndAnyExt;
 | 
						|
 | 
						|
  // Regular instruction.
 | 
						|
  // Abort early if we will have to insert non-free instructions.
 | 
						|
  if (!SExtOpnd->hasOneUse() &&
 | 
						|
      !TLI.isTruncateFree(SExtTy, SExtOpnd->getType()))
 | 
						|
    return nullptr;
 | 
						|
  return promoteOperandForOther;
 | 
						|
}
 | 
						|
 | 
						|
Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
 | 
						|
    llvm::Instruction *SExt, TypePromotionTransaction &TPT,
 | 
						|
    InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts) {
 | 
						|
  // By construction, the operand of SExt is an instruction. Otherwise we cannot
 | 
						|
  // get through it and this method should not be called.
 | 
						|
  Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
 | 
						|
  Value *ExtVal = SExt;
 | 
						|
  if (isa<ZExtInst>(SExtOpnd)) {
 | 
						|
    // Replace sext(zext(opnd))
 | 
						|
    // => zext(opnd).
 | 
						|
    Value *ZExt =
 | 
						|
        TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
 | 
						|
    TPT.replaceAllUsesWith(SExt, ZExt);
 | 
						|
    TPT.eraseInstruction(SExt);
 | 
						|
    ExtVal = ZExt;
 | 
						|
  } else {
 | 
						|
    // Replace sext(trunc(opnd)) or sext(sext(opnd))
 | 
						|
    // => sext(opnd).
 | 
						|
    TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
 | 
						|
  }
 | 
						|
  CreatedInsts = 0;
 | 
						|
 | 
						|
  // Remove dead code.
 | 
						|
  if (SExtOpnd->use_empty())
 | 
						|
    TPT.eraseInstruction(SExtOpnd);
 | 
						|
 | 
						|
  // Check if the extension is still needed.
 | 
						|
  Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
 | 
						|
  if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType())
 | 
						|
    return ExtVal;
 | 
						|
 | 
						|
  // At this point we have: ext ty opnd to ty.
 | 
						|
  // Reassign the uses of ExtInst to the opnd and remove ExtInst.
 | 
						|
  Value *NextVal = ExtInst->getOperand(0);
 | 
						|
  TPT.eraseInstruction(ExtInst, NextVal);
 | 
						|
  return NextVal;
 | 
						|
}
 | 
						|
 | 
						|
Value *
 | 
						|
TypePromotionHelper::promoteOperandForOther(Instruction *SExt,
 | 
						|
                                            TypePromotionTransaction &TPT,
 | 
						|
                                            InstrToOrigTy &PromotedInsts,
 | 
						|
                                            unsigned &CreatedInsts) {
 | 
						|
  // By construction, the operand of SExt is an instruction. Otherwise we cannot
 | 
						|
  // get through it and this method should not be called.
 | 
						|
  Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
 | 
						|
  CreatedInsts = 0;
 | 
						|
  if (!SExtOpnd->hasOneUse()) {
 | 
						|
    // SExtOpnd will be promoted.
 | 
						|
    // All its uses, but SExt, will need to use a truncated value of the
 | 
						|
    // promoted version.
 | 
						|
    // Create the truncate now.
 | 
						|
    Value *Trunc = TPT.createTrunc(SExt, SExtOpnd->getType());
 | 
						|
    if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
 | 
						|
      ITrunc->removeFromParent();
 | 
						|
      // Insert it just after the definition.
 | 
						|
      ITrunc->insertAfter(SExtOpnd);
 | 
						|
    }
 | 
						|
 | 
						|
    TPT.replaceAllUsesWith(SExtOpnd, Trunc);
 | 
						|
    // Restore the operand of SExt (which has been replace by the previous call
 | 
						|
    // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
 | 
						|
    TPT.setOperand(SExt, 0, SExtOpnd);
 | 
						|
  }
 | 
						|
 | 
						|
  // Get through the Instruction:
 | 
						|
  // 1. Update its type.
 | 
						|
  // 2. Replace the uses of SExt by Inst.
 | 
						|
  // 3. Sign extend each operand that needs to be sign extended.
 | 
						|
 | 
						|
  // Remember the original type of the instruction before promotion.
 | 
						|
  // This is useful to know that the high bits are sign extended bits.
 | 
						|
  PromotedInsts.insert(
 | 
						|
      std::pair<Instruction *, Type *>(SExtOpnd, SExtOpnd->getType()));
 | 
						|
  // Step #1.
 | 
						|
  TPT.mutateType(SExtOpnd, SExt->getType());
 | 
						|
  // Step #2.
 | 
						|
  TPT.replaceAllUsesWith(SExt, SExtOpnd);
 | 
						|
  // Step #3.
 | 
						|
  Instruction *SExtForOpnd = SExt;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Propagate SExt to operands\n");
 | 
						|
  for (int OpIdx = 0, EndOpIdx = SExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
 | 
						|
       ++OpIdx) {
 | 
						|
    DEBUG(dbgs() << "Operand:\n" << *(SExtOpnd->getOperand(OpIdx)) << '\n');
 | 
						|
    if (SExtOpnd->getOperand(OpIdx)->getType() == SExt->getType() ||
 | 
						|
        !shouldSExtOperand(SExtOpnd, OpIdx)) {
 | 
						|
      DEBUG(dbgs() << "No need to propagate\n");
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // Check if we can statically sign extend the operand.
 | 
						|
    Value *Opnd = SExtOpnd->getOperand(OpIdx);
 | 
						|
    if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
 | 
						|
      DEBUG(dbgs() << "Statically sign extend\n");
 | 
						|
      TPT.setOperand(
 | 
						|
          SExtOpnd, OpIdx,
 | 
						|
          ConstantInt::getSigned(SExt->getType(), Cst->getSExtValue()));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // UndefValue are typed, so we have to statically sign extend them.
 | 
						|
    if (isa<UndefValue>(Opnd)) {
 | 
						|
      DEBUG(dbgs() << "Statically sign extend\n");
 | 
						|
      TPT.setOperand(SExtOpnd, OpIdx, UndefValue::get(SExt->getType()));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise we have to explicity sign extend the operand.
 | 
						|
    // Check if SExt was reused to sign extend an operand.
 | 
						|
    if (!SExtForOpnd) {
 | 
						|
      // If yes, create a new one.
 | 
						|
      DEBUG(dbgs() << "More operands to sext\n");
 | 
						|
      SExtForOpnd =
 | 
						|
        cast<Instruction>(TPT.createSExt(SExt, Opnd, SExt->getType()));
 | 
						|
      ++CreatedInsts;
 | 
						|
    }
 | 
						|
 | 
						|
    TPT.setOperand(SExtForOpnd, 0, Opnd);
 | 
						|
 | 
						|
    // Move the sign extension before the insertion point.
 | 
						|
    TPT.moveBefore(SExtForOpnd, SExtOpnd);
 | 
						|
    TPT.setOperand(SExtOpnd, OpIdx, SExtForOpnd);
 | 
						|
    // If more sext are required, new instructions will have to be created.
 | 
						|
    SExtForOpnd = nullptr;
 | 
						|
  }
 | 
						|
  if (SExtForOpnd == SExt) {
 | 
						|
    DEBUG(dbgs() << "Sign extension is useless now\n");
 | 
						|
    TPT.eraseInstruction(SExt);
 | 
						|
  }
 | 
						|
  return SExtOpnd;
 | 
						|
}
 | 
						|
 | 
						|
/// IsPromotionProfitable - Check whether or not promoting an instruction
 | 
						|
/// to a wider type was profitable.
 | 
						|
/// \p MatchedSize gives the number of instructions that have been matched
 | 
						|
/// in the addressing mode after the promotion was applied.
 | 
						|
/// \p SizeWithPromotion gives the number of created instructions for
 | 
						|
/// the promotion plus the number of instructions that have been
 | 
						|
/// matched in the addressing mode before the promotion.
 | 
						|
/// \p PromotedOperand is the value that has been promoted.
 | 
						|
/// \return True if the promotion is profitable, false otherwise.
 | 
						|
bool
 | 
						|
AddressingModeMatcher::IsPromotionProfitable(unsigned MatchedSize,
 | 
						|
                                             unsigned SizeWithPromotion,
 | 
						|
                                             Value *PromotedOperand) const {
 | 
						|
  // We folded less instructions than what we created to promote the operand.
 | 
						|
  // This is not profitable.
 | 
						|
  if (MatchedSize < SizeWithPromotion)
 | 
						|
    return false;
 | 
						|
  if (MatchedSize > SizeWithPromotion)
 | 
						|
    return true;
 | 
						|
  // The promotion is neutral but it may help folding the sign extension in
 | 
						|
  // loads for instance.
 | 
						|
  // Check that we did not create an illegal instruction.
 | 
						|
  Instruction *PromotedInst = dyn_cast<Instruction>(PromotedOperand);
 | 
						|
  if (!PromotedInst)
 | 
						|
    return false;
 | 
						|
  int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
 | 
						|
  // If the ISDOpcode is undefined, it was undefined before the promotion.
 | 
						|
  if (!ISDOpcode)
 | 
						|
    return true;
 | 
						|
  // Otherwise, check if the promoted instruction is legal or not.
 | 
						|
  return TLI.isOperationLegalOrCustom(ISDOpcode,
 | 
						|
                                      EVT::getEVT(PromotedInst->getType()));
 | 
						|
}
 | 
						|
 | 
						|
/// MatchOperationAddr - Given an instruction or constant expr, see if we can
 | 
						|
/// fold the operation into the addressing mode.  If so, update the addressing
 | 
						|
/// mode and return true, otherwise return false without modifying AddrMode.
 | 
						|
/// If \p MovedAway is not NULL, it contains the information of whether or
 | 
						|
/// not AddrInst has to be folded into the addressing mode on success.
 | 
						|
/// If \p MovedAway == true, \p AddrInst will not be part of the addressing
 | 
						|
/// because it has been moved away.
 | 
						|
/// Thus AddrInst must not be added in the matched instructions.
 | 
						|
/// This state can happen when AddrInst is a sext, since it may be moved away.
 | 
						|
/// Therefore, AddrInst may not be valid when MovedAway is true and it must
 | 
						|
/// not be referenced anymore.
 | 
						|
bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode,
 | 
						|
                                               unsigned Depth,
 | 
						|
                                               bool *MovedAway) {
 | 
						|
  // Avoid exponential behavior on extremely deep expression trees.
 | 
						|
  if (Depth >= 5) return false;
 | 
						|
 | 
						|
  // By default, all matched instructions stay in place.
 | 
						|
  if (MovedAway)
 | 
						|
    *MovedAway = false;
 | 
						|
 | 
						|
  switch (Opcode) {
 | 
						|
  case Instruction::PtrToInt:
 | 
						|
    // PtrToInt is always a noop, as we know that the int type is pointer sized.
 | 
						|
    return MatchAddr(AddrInst->getOperand(0), Depth);
 | 
						|
  case Instruction::IntToPtr:
 | 
						|
    // This inttoptr is a no-op if the integer type is pointer sized.
 | 
						|
    if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
 | 
						|
        TLI.getPointerTy(AddrInst->getType()->getPointerAddressSpace()))
 | 
						|
      return MatchAddr(AddrInst->getOperand(0), Depth);
 | 
						|
    return false;
 | 
						|
  case Instruction::BitCast:
 | 
						|
  case Instruction::AddrSpaceCast:
 | 
						|
    // BitCast is always a noop, and we can handle it as long as it is
 | 
						|
    // int->int or pointer->pointer (we don't want int<->fp or something).
 | 
						|
    if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
 | 
						|
         AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
 | 
						|
        // Don't touch identity bitcasts.  These were probably put here by LSR,
 | 
						|
        // and we don't want to mess around with them.  Assume it knows what it
 | 
						|
        // is doing.
 | 
						|
        AddrInst->getOperand(0)->getType() != AddrInst->getType())
 | 
						|
      return MatchAddr(AddrInst->getOperand(0), Depth);
 | 
						|
    return false;
 | 
						|
  case Instruction::Add: {
 | 
						|
    // Check to see if we can merge in the RHS then the LHS.  If so, we win.
 | 
						|
    ExtAddrMode BackupAddrMode = AddrMode;
 | 
						|
    unsigned OldSize = AddrModeInsts.size();
 | 
						|
    // Start a transaction at this point.
 | 
						|
    // The LHS may match but not the RHS.
 | 
						|
    // Therefore, we need a higher level restoration point to undo partially
 | 
						|
    // matched operation.
 | 
						|
    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
 | 
						|
        TPT.getRestorationPoint();
 | 
						|
 | 
						|
    if (MatchAddr(AddrInst->getOperand(1), Depth+1) &&
 | 
						|
        MatchAddr(AddrInst->getOperand(0), Depth+1))
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Restore the old addr mode info.
 | 
						|
    AddrMode = BackupAddrMode;
 | 
						|
    AddrModeInsts.resize(OldSize);
 | 
						|
    TPT.rollback(LastKnownGood);
 | 
						|
 | 
						|
    // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
 | 
						|
    if (MatchAddr(AddrInst->getOperand(0), Depth+1) &&
 | 
						|
        MatchAddr(AddrInst->getOperand(1), Depth+1))
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Otherwise we definitely can't merge the ADD in.
 | 
						|
    AddrMode = BackupAddrMode;
 | 
						|
    AddrModeInsts.resize(OldSize);
 | 
						|
    TPT.rollback(LastKnownGood);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  //case Instruction::Or:
 | 
						|
  // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
 | 
						|
  //break;
 | 
						|
  case Instruction::Mul:
 | 
						|
  case Instruction::Shl: {
 | 
						|
    // Can only handle X*C and X << C.
 | 
						|
    ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
 | 
						|
    if (!RHS)
 | 
						|
      return false;
 | 
						|
    int64_t Scale = RHS->getSExtValue();
 | 
						|
    if (Opcode == Instruction::Shl)
 | 
						|
      Scale = 1LL << Scale;
 | 
						|
 | 
						|
    return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth);
 | 
						|
  }
 | 
						|
  case Instruction::GetElementPtr: {
 | 
						|
    // Scan the GEP.  We check it if it contains constant offsets and at most
 | 
						|
    // one variable offset.
 | 
						|
    int VariableOperand = -1;
 | 
						|
    unsigned VariableScale = 0;
 | 
						|
 | 
						|
    int64_t ConstantOffset = 0;
 | 
						|
    const DataLayout *TD = TLI.getDataLayout();
 | 
						|
    gep_type_iterator GTI = gep_type_begin(AddrInst);
 | 
						|
    for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
 | 
						|
      if (StructType *STy = dyn_cast<StructType>(*GTI)) {
 | 
						|
        const StructLayout *SL = TD->getStructLayout(STy);
 | 
						|
        unsigned Idx =
 | 
						|
          cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
 | 
						|
        ConstantOffset += SL->getElementOffset(Idx);
 | 
						|
      } else {
 | 
						|
        uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType());
 | 
						|
        if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
 | 
						|
          ConstantOffset += CI->getSExtValue()*TypeSize;
 | 
						|
        } else if (TypeSize) {  // Scales of zero don't do anything.
 | 
						|
          // We only allow one variable index at the moment.
 | 
						|
          if (VariableOperand != -1)
 | 
						|
            return false;
 | 
						|
 | 
						|
          // Remember the variable index.
 | 
						|
          VariableOperand = i;
 | 
						|
          VariableScale = TypeSize;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // A common case is for the GEP to only do a constant offset.  In this case,
 | 
						|
    // just add it to the disp field and check validity.
 | 
						|
    if (VariableOperand == -1) {
 | 
						|
      AddrMode.BaseOffs += ConstantOffset;
 | 
						|
      if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
 | 
						|
        // Check to see if we can fold the base pointer in too.
 | 
						|
        if (MatchAddr(AddrInst->getOperand(0), Depth+1))
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
      AddrMode.BaseOffs -= ConstantOffset;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Save the valid addressing mode in case we can't match.
 | 
						|
    ExtAddrMode BackupAddrMode = AddrMode;
 | 
						|
    unsigned OldSize = AddrModeInsts.size();
 | 
						|
 | 
						|
    // See if the scale and offset amount is valid for this target.
 | 
						|
    AddrMode.BaseOffs += ConstantOffset;
 | 
						|
 | 
						|
    // Match the base operand of the GEP.
 | 
						|
    if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) {
 | 
						|
      // If it couldn't be matched, just stuff the value in a register.
 | 
						|
      if (AddrMode.HasBaseReg) {
 | 
						|
        AddrMode = BackupAddrMode;
 | 
						|
        AddrModeInsts.resize(OldSize);
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      AddrMode.HasBaseReg = true;
 | 
						|
      AddrMode.BaseReg = AddrInst->getOperand(0);
 | 
						|
    }
 | 
						|
 | 
						|
    // Match the remaining variable portion of the GEP.
 | 
						|
    if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
 | 
						|
                          Depth)) {
 | 
						|
      // If it couldn't be matched, try stuffing the base into a register
 | 
						|
      // instead of matching it, and retrying the match of the scale.
 | 
						|
      AddrMode = BackupAddrMode;
 | 
						|
      AddrModeInsts.resize(OldSize);
 | 
						|
      if (AddrMode.HasBaseReg)
 | 
						|
        return false;
 | 
						|
      AddrMode.HasBaseReg = true;
 | 
						|
      AddrMode.BaseReg = AddrInst->getOperand(0);
 | 
						|
      AddrMode.BaseOffs += ConstantOffset;
 | 
						|
      if (!MatchScaledValue(AddrInst->getOperand(VariableOperand),
 | 
						|
                            VariableScale, Depth)) {
 | 
						|
        // If even that didn't work, bail.
 | 
						|
        AddrMode = BackupAddrMode;
 | 
						|
        AddrModeInsts.resize(OldSize);
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case Instruction::SExt: {
 | 
						|
    Instruction *SExt = dyn_cast<Instruction>(AddrInst);
 | 
						|
    if (!SExt)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Try to move this sext out of the way of the addressing mode.
 | 
						|
    // Ask for a method for doing so.
 | 
						|
    TypePromotionHelper::Action TPH = TypePromotionHelper::getAction(
 | 
						|
        SExt, InsertedTruncs, TLI, PromotedInsts);
 | 
						|
    if (!TPH)
 | 
						|
      return false;
 | 
						|
 | 
						|
    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
 | 
						|
        TPT.getRestorationPoint();
 | 
						|
    unsigned CreatedInsts = 0;
 | 
						|
    Value *PromotedOperand = TPH(SExt, TPT, PromotedInsts, CreatedInsts);
 | 
						|
    // SExt has been moved away.
 | 
						|
    // Thus either it will be rematched later in the recursive calls or it is
 | 
						|
    // gone. Anyway, we must not fold it into the addressing mode at this point.
 | 
						|
    // E.g.,
 | 
						|
    // op = add opnd, 1
 | 
						|
    // idx = sext op
 | 
						|
    // addr = gep base, idx
 | 
						|
    // is now:
 | 
						|
    // promotedOpnd = sext opnd           <- no match here
 | 
						|
    // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
 | 
						|
    // addr = gep base, op                <- match
 | 
						|
    if (MovedAway)
 | 
						|
      *MovedAway = true;
 | 
						|
 | 
						|
    assert(PromotedOperand &&
 | 
						|
           "TypePromotionHelper should have filtered out those cases");
 | 
						|
 | 
						|
    ExtAddrMode BackupAddrMode = AddrMode;
 | 
						|
    unsigned OldSize = AddrModeInsts.size();
 | 
						|
 | 
						|
    if (!MatchAddr(PromotedOperand, Depth) ||
 | 
						|
        !IsPromotionProfitable(AddrModeInsts.size(), OldSize + CreatedInsts,
 | 
						|
                               PromotedOperand)) {
 | 
						|
      AddrMode = BackupAddrMode;
 | 
						|
      AddrModeInsts.resize(OldSize);
 | 
						|
      DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
 | 
						|
      TPT.rollback(LastKnownGood);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// MatchAddr - If we can, try to add the value of 'Addr' into the current
 | 
						|
/// addressing mode.  If Addr can't be added to AddrMode this returns false and
 | 
						|
/// leaves AddrMode unmodified.  This assumes that Addr is either a pointer type
 | 
						|
/// or intptr_t for the target.
 | 
						|
///
 | 
						|
bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) {
 | 
						|
  // Start a transaction at this point that we will rollback if the matching
 | 
						|
  // fails.
 | 
						|
  TypePromotionTransaction::ConstRestorationPt LastKnownGood =
 | 
						|
      TPT.getRestorationPoint();
 | 
						|
  if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
 | 
						|
    // Fold in immediates if legal for the target.
 | 
						|
    AddrMode.BaseOffs += CI->getSExtValue();
 | 
						|
    if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
 | 
						|
      return true;
 | 
						|
    AddrMode.BaseOffs -= CI->getSExtValue();
 | 
						|
  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
 | 
						|
    // If this is a global variable, try to fold it into the addressing mode.
 | 
						|
    if (!AddrMode.BaseGV) {
 | 
						|
      AddrMode.BaseGV = GV;
 | 
						|
      if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
 | 
						|
        return true;
 | 
						|
      AddrMode.BaseGV = nullptr;
 | 
						|
    }
 | 
						|
  } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
 | 
						|
    ExtAddrMode BackupAddrMode = AddrMode;
 | 
						|
    unsigned OldSize = AddrModeInsts.size();
 | 
						|
 | 
						|
    // Check to see if it is possible to fold this operation.
 | 
						|
    bool MovedAway = false;
 | 
						|
    if (MatchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
 | 
						|
      // This instruction may have been move away. If so, there is nothing
 | 
						|
      // to check here.
 | 
						|
      if (MovedAway)
 | 
						|
        return true;
 | 
						|
      // Okay, it's possible to fold this.  Check to see if it is actually
 | 
						|
      // *profitable* to do so.  We use a simple cost model to avoid increasing
 | 
						|
      // register pressure too much.
 | 
						|
      if (I->hasOneUse() ||
 | 
						|
          IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
 | 
						|
        AddrModeInsts.push_back(I);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      // It isn't profitable to do this, roll back.
 | 
						|
      //cerr << "NOT FOLDING: " << *I;
 | 
						|
      AddrMode = BackupAddrMode;
 | 
						|
      AddrModeInsts.resize(OldSize);
 | 
						|
      TPT.rollback(LastKnownGood);
 | 
						|
    }
 | 
						|
  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
 | 
						|
    if (MatchOperationAddr(CE, CE->getOpcode(), Depth))
 | 
						|
      return true;
 | 
						|
    TPT.rollback(LastKnownGood);
 | 
						|
  } else if (isa<ConstantPointerNull>(Addr)) {
 | 
						|
    // Null pointer gets folded without affecting the addressing mode.
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Worse case, the target should support [reg] addressing modes. :)
 | 
						|
  if (!AddrMode.HasBaseReg) {
 | 
						|
    AddrMode.HasBaseReg = true;
 | 
						|
    AddrMode.BaseReg = Addr;
 | 
						|
    // Still check for legality in case the target supports [imm] but not [i+r].
 | 
						|
    if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
 | 
						|
      return true;
 | 
						|
    AddrMode.HasBaseReg = false;
 | 
						|
    AddrMode.BaseReg = nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the base register is already taken, see if we can do [r+r].
 | 
						|
  if (AddrMode.Scale == 0) {
 | 
						|
    AddrMode.Scale = 1;
 | 
						|
    AddrMode.ScaledReg = Addr;
 | 
						|
    if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
 | 
						|
      return true;
 | 
						|
    AddrMode.Scale = 0;
 | 
						|
    AddrMode.ScaledReg = nullptr;
 | 
						|
  }
 | 
						|
  // Couldn't match.
 | 
						|
  TPT.rollback(LastKnownGood);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified
 | 
						|
/// inline asm call are due to memory operands.  If so, return true, otherwise
 | 
						|
/// return false.
 | 
						|
static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
 | 
						|
                                    const TargetLowering &TLI) {
 | 
						|
  TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(ImmutableCallSite(CI));
 | 
						|
  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
 | 
						|
    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
 | 
						|
 | 
						|
    // Compute the constraint code and ConstraintType to use.
 | 
						|
    TLI.ComputeConstraintToUse(OpInfo, SDValue());
 | 
						|
 | 
						|
    // If this asm operand is our Value*, and if it isn't an indirect memory
 | 
						|
    // operand, we can't fold it!
 | 
						|
    if (OpInfo.CallOperandVal == OpVal &&
 | 
						|
        (OpInfo.ConstraintType != TargetLowering::C_Memory ||
 | 
						|
         !OpInfo.isIndirect))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// FindAllMemoryUses - Recursively walk all the uses of I until we find a
 | 
						|
/// memory use.  If we find an obviously non-foldable instruction, return true.
 | 
						|
/// Add the ultimately found memory instructions to MemoryUses.
 | 
						|
static bool FindAllMemoryUses(Instruction *I,
 | 
						|
                SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses,
 | 
						|
                              SmallPtrSetImpl<Instruction*> &ConsideredInsts,
 | 
						|
                              const TargetLowering &TLI) {
 | 
						|
  // If we already considered this instruction, we're done.
 | 
						|
  if (!ConsideredInsts.insert(I))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If this is an obviously unfoldable instruction, bail out.
 | 
						|
  if (!MightBeFoldableInst(I))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Loop over all the uses, recursively processing them.
 | 
						|
  for (Use &U : I->uses()) {
 | 
						|
    Instruction *UserI = cast<Instruction>(U.getUser());
 | 
						|
 | 
						|
    if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
 | 
						|
      MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
 | 
						|
      unsigned opNo = U.getOperandNo();
 | 
						|
      if (opNo == 0) return true; // Storing addr, not into addr.
 | 
						|
      MemoryUses.push_back(std::make_pair(SI, opNo));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
 | 
						|
      InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
 | 
						|
      if (!IA) return true;
 | 
						|
 | 
						|
      // If this is a memory operand, we're cool, otherwise bail out.
 | 
						|
      if (!IsOperandAMemoryOperand(CI, IA, I, TLI))
 | 
						|
        return true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at
 | 
						|
/// the use site that we're folding it into.  If so, there is no cost to
 | 
						|
/// include it in the addressing mode.  KnownLive1 and KnownLive2 are two values
 | 
						|
/// that we know are live at the instruction already.
 | 
						|
bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
 | 
						|
                                                   Value *KnownLive2) {
 | 
						|
  // If Val is either of the known-live values, we know it is live!
 | 
						|
  if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // All values other than instructions and arguments (e.g. constants) are live.
 | 
						|
  if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
 | 
						|
 | 
						|
  // If Val is a constant sized alloca in the entry block, it is live, this is
 | 
						|
  // true because it is just a reference to the stack/frame pointer, which is
 | 
						|
  // live for the whole function.
 | 
						|
  if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
 | 
						|
    if (AI->isStaticAlloca())
 | 
						|
      return true;
 | 
						|
 | 
						|
  // Check to see if this value is already used in the memory instruction's
 | 
						|
  // block.  If so, it's already live into the block at the very least, so we
 | 
						|
  // can reasonably fold it.
 | 
						|
  return Val->isUsedInBasicBlock(MemoryInst->getParent());
 | 
						|
}
 | 
						|
 | 
						|
/// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing
 | 
						|
/// mode of the machine to fold the specified instruction into a load or store
 | 
						|
/// that ultimately uses it.  However, the specified instruction has multiple
 | 
						|
/// uses.  Given this, it may actually increase register pressure to fold it
 | 
						|
/// into the load.  For example, consider this code:
 | 
						|
///
 | 
						|
///     X = ...
 | 
						|
///     Y = X+1
 | 
						|
///     use(Y)   -> nonload/store
 | 
						|
///     Z = Y+1
 | 
						|
///     load Z
 | 
						|
///
 | 
						|
/// In this case, Y has multiple uses, and can be folded into the load of Z
 | 
						|
/// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
 | 
						|
/// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
 | 
						|
/// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
 | 
						|
/// number of computations either.
 | 
						|
///
 | 
						|
/// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
 | 
						|
/// X was live across 'load Z' for other reasons, we actually *would* want to
 | 
						|
/// fold the addressing mode in the Z case.  This would make Y die earlier.
 | 
						|
bool AddressingModeMatcher::
 | 
						|
IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
 | 
						|
                                     ExtAddrMode &AMAfter) {
 | 
						|
  if (IgnoreProfitability) return true;
 | 
						|
 | 
						|
  // AMBefore is the addressing mode before this instruction was folded into it,
 | 
						|
  // and AMAfter is the addressing mode after the instruction was folded.  Get
 | 
						|
  // the set of registers referenced by AMAfter and subtract out those
 | 
						|
  // referenced by AMBefore: this is the set of values which folding in this
 | 
						|
  // address extends the lifetime of.
 | 
						|
  //
 | 
						|
  // Note that there are only two potential values being referenced here,
 | 
						|
  // BaseReg and ScaleReg (global addresses are always available, as are any
 | 
						|
  // folded immediates).
 | 
						|
  Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
 | 
						|
 | 
						|
  // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
 | 
						|
  // lifetime wasn't extended by adding this instruction.
 | 
						|
  if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
 | 
						|
    BaseReg = nullptr;
 | 
						|
  if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
 | 
						|
    ScaledReg = nullptr;
 | 
						|
 | 
						|
  // If folding this instruction (and it's subexprs) didn't extend any live
 | 
						|
  // ranges, we're ok with it.
 | 
						|
  if (!BaseReg && !ScaledReg)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If all uses of this instruction are ultimately load/store/inlineasm's,
 | 
						|
  // check to see if their addressing modes will include this instruction.  If
 | 
						|
  // so, we can fold it into all uses, so it doesn't matter if it has multiple
 | 
						|
  // uses.
 | 
						|
  SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
 | 
						|
  SmallPtrSet<Instruction*, 16> ConsideredInsts;
 | 
						|
  if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI))
 | 
						|
    return false;  // Has a non-memory, non-foldable use!
 | 
						|
 | 
						|
  // Now that we know that all uses of this instruction are part of a chain of
 | 
						|
  // computation involving only operations that could theoretically be folded
 | 
						|
  // into a memory use, loop over each of these uses and see if they could
 | 
						|
  // *actually* fold the instruction.
 | 
						|
  SmallVector<Instruction*, 32> MatchedAddrModeInsts;
 | 
						|
  for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
 | 
						|
    Instruction *User = MemoryUses[i].first;
 | 
						|
    unsigned OpNo = MemoryUses[i].second;
 | 
						|
 | 
						|
    // Get the access type of this use.  If the use isn't a pointer, we don't
 | 
						|
    // know what it accesses.
 | 
						|
    Value *Address = User->getOperand(OpNo);
 | 
						|
    if (!Address->getType()->isPointerTy())
 | 
						|
      return false;
 | 
						|
    Type *AddressAccessTy = Address->getType()->getPointerElementType();
 | 
						|
 | 
						|
    // Do a match against the root of this address, ignoring profitability. This
 | 
						|
    // will tell us if the addressing mode for the memory operation will
 | 
						|
    // *actually* cover the shared instruction.
 | 
						|
    ExtAddrMode Result;
 | 
						|
    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
 | 
						|
        TPT.getRestorationPoint();
 | 
						|
    AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy,
 | 
						|
                                  MemoryInst, Result, InsertedTruncs,
 | 
						|
                                  PromotedInsts, TPT);
 | 
						|
    Matcher.IgnoreProfitability = true;
 | 
						|
    bool Success = Matcher.MatchAddr(Address, 0);
 | 
						|
    (void)Success; assert(Success && "Couldn't select *anything*?");
 | 
						|
 | 
						|
    // The match was to check the profitability, the changes made are not
 | 
						|
    // part of the original matcher. Therefore, they should be dropped
 | 
						|
    // otherwise the original matcher will not present the right state.
 | 
						|
    TPT.rollback(LastKnownGood);
 | 
						|
 | 
						|
    // If the match didn't cover I, then it won't be shared by it.
 | 
						|
    if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
 | 
						|
                  I) == MatchedAddrModeInsts.end())
 | 
						|
      return false;
 | 
						|
 | 
						|
    MatchedAddrModeInsts.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// IsNonLocalValue - Return true if the specified values are defined in a
 | 
						|
/// different basic block than BB.
 | 
						|
static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
    return I->getParent() != BB;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// OptimizeMemoryInst - Load and Store Instructions often have
 | 
						|
/// addressing modes that can do significant amounts of computation.  As such,
 | 
						|
/// instruction selection will try to get the load or store to do as much
 | 
						|
/// computation as possible for the program.  The problem is that isel can only
 | 
						|
/// see within a single block.  As such, we sink as much legal addressing mode
 | 
						|
/// stuff into the block as possible.
 | 
						|
///
 | 
						|
/// This method is used to optimize both load/store and inline asms with memory
 | 
						|
/// operands.
 | 
						|
bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
 | 
						|
                                        Type *AccessTy) {
 | 
						|
  Value *Repl = Addr;
 | 
						|
 | 
						|
  // Try to collapse single-value PHI nodes.  This is necessary to undo
 | 
						|
  // unprofitable PRE transformations.
 | 
						|
  SmallVector<Value*, 8> worklist;
 | 
						|
  SmallPtrSet<Value*, 16> Visited;
 | 
						|
  worklist.push_back(Addr);
 | 
						|
 | 
						|
  // Use a worklist to iteratively look through PHI nodes, and ensure that
 | 
						|
  // the addressing mode obtained from the non-PHI roots of the graph
 | 
						|
  // are equivalent.
 | 
						|
  Value *Consensus = nullptr;
 | 
						|
  unsigned NumUsesConsensus = 0;
 | 
						|
  bool IsNumUsesConsensusValid = false;
 | 
						|
  SmallVector<Instruction*, 16> AddrModeInsts;
 | 
						|
  ExtAddrMode AddrMode;
 | 
						|
  TypePromotionTransaction TPT;
 | 
						|
  TypePromotionTransaction::ConstRestorationPt LastKnownGood =
 | 
						|
      TPT.getRestorationPoint();
 | 
						|
  while (!worklist.empty()) {
 | 
						|
    Value *V = worklist.back();
 | 
						|
    worklist.pop_back();
 | 
						|
 | 
						|
    // Break use-def graph loops.
 | 
						|
    if (!Visited.insert(V)) {
 | 
						|
      Consensus = nullptr;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // For a PHI node, push all of its incoming values.
 | 
						|
    if (PHINode *P = dyn_cast<PHINode>(V)) {
 | 
						|
      for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i)
 | 
						|
        worklist.push_back(P->getIncomingValue(i));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // For non-PHIs, determine the addressing mode being computed.
 | 
						|
    SmallVector<Instruction*, 16> NewAddrModeInsts;
 | 
						|
    ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
 | 
						|
        V, AccessTy, MemoryInst, NewAddrModeInsts, *TLI, InsertedTruncsSet,
 | 
						|
        PromotedInsts, TPT);
 | 
						|
 | 
						|
    // This check is broken into two cases with very similar code to avoid using
 | 
						|
    // getNumUses() as much as possible. Some values have a lot of uses, so
 | 
						|
    // calling getNumUses() unconditionally caused a significant compile-time
 | 
						|
    // regression.
 | 
						|
    if (!Consensus) {
 | 
						|
      Consensus = V;
 | 
						|
      AddrMode = NewAddrMode;
 | 
						|
      AddrModeInsts = NewAddrModeInsts;
 | 
						|
      continue;
 | 
						|
    } else if (NewAddrMode == AddrMode) {
 | 
						|
      if (!IsNumUsesConsensusValid) {
 | 
						|
        NumUsesConsensus = Consensus->getNumUses();
 | 
						|
        IsNumUsesConsensusValid = true;
 | 
						|
      }
 | 
						|
 | 
						|
      // Ensure that the obtained addressing mode is equivalent to that obtained
 | 
						|
      // for all other roots of the PHI traversal.  Also, when choosing one
 | 
						|
      // such root as representative, select the one with the most uses in order
 | 
						|
      // to keep the cost modeling heuristics in AddressingModeMatcher
 | 
						|
      // applicable.
 | 
						|
      unsigned NumUses = V->getNumUses();
 | 
						|
      if (NumUses > NumUsesConsensus) {
 | 
						|
        Consensus = V;
 | 
						|
        NumUsesConsensus = NumUses;
 | 
						|
        AddrModeInsts = NewAddrModeInsts;
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    Consensus = nullptr;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the addressing mode couldn't be determined, or if multiple different
 | 
						|
  // ones were determined, bail out now.
 | 
						|
  if (!Consensus) {
 | 
						|
    TPT.rollback(LastKnownGood);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  TPT.commit();
 | 
						|
 | 
						|
  // Check to see if any of the instructions supersumed by this addr mode are
 | 
						|
  // non-local to I's BB.
 | 
						|
  bool AnyNonLocal = false;
 | 
						|
  for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
 | 
						|
    if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
 | 
						|
      AnyNonLocal = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If all the instructions matched are already in this BB, don't do anything.
 | 
						|
  if (!AnyNonLocal) {
 | 
						|
    DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode << "\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Insert this computation right after this user.  Since our caller is
 | 
						|
  // scanning from the top of the BB to the bottom, reuse of the expr are
 | 
						|
  // guaranteed to happen later.
 | 
						|
  IRBuilder<> Builder(MemoryInst);
 | 
						|
 | 
						|
  // Now that we determined the addressing expression we want to use and know
 | 
						|
  // that we have to sink it into this block.  Check to see if we have already
 | 
						|
  // done this for some other load/store instr in this block.  If so, reuse the
 | 
						|
  // computation.
 | 
						|
  Value *&SunkAddr = SunkAddrs[Addr];
 | 
						|
  if (SunkAddr) {
 | 
						|
    DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
 | 
						|
                 << *MemoryInst << "\n");
 | 
						|
    if (SunkAddr->getType() != Addr->getType())
 | 
						|
      SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
 | 
						|
  } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() &&
 | 
						|
               TM && TM->getSubtarget<TargetSubtargetInfo>().useAA())) {
 | 
						|
    // By default, we use the GEP-based method when AA is used later. This
 | 
						|
    // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
 | 
						|
    DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
 | 
						|
                 << *MemoryInst << "\n");
 | 
						|
    Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType());
 | 
						|
    Value *ResultPtr = nullptr, *ResultIndex = nullptr;
 | 
						|
 | 
						|
    // First, find the pointer.
 | 
						|
    if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
 | 
						|
      ResultPtr = AddrMode.BaseReg;
 | 
						|
      AddrMode.BaseReg = nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
 | 
						|
      // We can't add more than one pointer together, nor can we scale a
 | 
						|
      // pointer (both of which seem meaningless).
 | 
						|
      if (ResultPtr || AddrMode.Scale != 1)
 | 
						|
        return false;
 | 
						|
 | 
						|
      ResultPtr = AddrMode.ScaledReg;
 | 
						|
      AddrMode.Scale = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (AddrMode.BaseGV) {
 | 
						|
      if (ResultPtr)
 | 
						|
        return false;
 | 
						|
 | 
						|
      ResultPtr = AddrMode.BaseGV;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the real base value actually came from an inttoptr, then the matcher
 | 
						|
    // will look through it and provide only the integer value. In that case,
 | 
						|
    // use it here.
 | 
						|
    if (!ResultPtr && AddrMode.BaseReg) {
 | 
						|
      ResultPtr =
 | 
						|
        Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr");
 | 
						|
      AddrMode.BaseReg = nullptr;
 | 
						|
    } else if (!ResultPtr && AddrMode.Scale == 1) {
 | 
						|
      ResultPtr =
 | 
						|
        Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr");
 | 
						|
      AddrMode.Scale = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!ResultPtr &&
 | 
						|
        !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
 | 
						|
      SunkAddr = Constant::getNullValue(Addr->getType());
 | 
						|
    } else if (!ResultPtr) {
 | 
						|
      return false;
 | 
						|
    } else {
 | 
						|
      Type *I8PtrTy =
 | 
						|
        Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
 | 
						|
 | 
						|
      // Start with the base register. Do this first so that subsequent address
 | 
						|
      // matching finds it last, which will prevent it from trying to match it
 | 
						|
      // as the scaled value in case it happens to be a mul. That would be
 | 
						|
      // problematic if we've sunk a different mul for the scale, because then
 | 
						|
      // we'd end up sinking both muls.
 | 
						|
      if (AddrMode.BaseReg) {
 | 
						|
        Value *V = AddrMode.BaseReg;
 | 
						|
        if (V->getType() != IntPtrTy)
 | 
						|
          V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
 | 
						|
 | 
						|
        ResultIndex = V;
 | 
						|
      }
 | 
						|
 | 
						|
      // Add the scale value.
 | 
						|
      if (AddrMode.Scale) {
 | 
						|
        Value *V = AddrMode.ScaledReg;
 | 
						|
        if (V->getType() == IntPtrTy) {
 | 
						|
          // done.
 | 
						|
        } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
 | 
						|
                   cast<IntegerType>(V->getType())->getBitWidth()) {
 | 
						|
          V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
 | 
						|
        } else {
 | 
						|
          // It is only safe to sign extend the BaseReg if we know that the math
 | 
						|
          // required to create it did not overflow before we extend it. Since
 | 
						|
          // the original IR value was tossed in favor of a constant back when
 | 
						|
          // the AddrMode was created we need to bail out gracefully if widths
 | 
						|
          // do not match instead of extending it.
 | 
						|
          Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex);
 | 
						|
          if (I && (ResultIndex != AddrMode.BaseReg))
 | 
						|
            I->eraseFromParent();
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
 | 
						|
        if (AddrMode.Scale != 1)
 | 
						|
          V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
 | 
						|
                                "sunkaddr");
 | 
						|
        if (ResultIndex)
 | 
						|
          ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
 | 
						|
        else
 | 
						|
          ResultIndex = V;
 | 
						|
      }
 | 
						|
 | 
						|
      // Add in the Base Offset if present.
 | 
						|
      if (AddrMode.BaseOffs) {
 | 
						|
        Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
 | 
						|
        if (ResultIndex) {
 | 
						|
	  // We need to add this separately from the scale above to help with
 | 
						|
	  // SDAG consecutive load/store merging.
 | 
						|
          if (ResultPtr->getType() != I8PtrTy)
 | 
						|
            ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
 | 
						|
          ResultPtr = Builder.CreateGEP(ResultPtr, ResultIndex, "sunkaddr");
 | 
						|
        }
 | 
						|
 | 
						|
        ResultIndex = V;
 | 
						|
      }
 | 
						|
 | 
						|
      if (!ResultIndex) {
 | 
						|
        SunkAddr = ResultPtr;
 | 
						|
      } else {
 | 
						|
        if (ResultPtr->getType() != I8PtrTy)
 | 
						|
          ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
 | 
						|
        SunkAddr = Builder.CreateGEP(ResultPtr, ResultIndex, "sunkaddr");
 | 
						|
      }
 | 
						|
 | 
						|
      if (SunkAddr->getType() != Addr->getType())
 | 
						|
        SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
 | 
						|
                 << *MemoryInst << "\n");
 | 
						|
    Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType());
 | 
						|
    Value *Result = nullptr;
 | 
						|
 | 
						|
    // Start with the base register. Do this first so that subsequent address
 | 
						|
    // matching finds it last, which will prevent it from trying to match it
 | 
						|
    // as the scaled value in case it happens to be a mul. That would be
 | 
						|
    // problematic if we've sunk a different mul for the scale, because then
 | 
						|
    // we'd end up sinking both muls.
 | 
						|
    if (AddrMode.BaseReg) {
 | 
						|
      Value *V = AddrMode.BaseReg;
 | 
						|
      if (V->getType()->isPointerTy())
 | 
						|
        V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
 | 
						|
      if (V->getType() != IntPtrTy)
 | 
						|
        V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
 | 
						|
      Result = V;
 | 
						|
    }
 | 
						|
 | 
						|
    // Add the scale value.
 | 
						|
    if (AddrMode.Scale) {
 | 
						|
      Value *V = AddrMode.ScaledReg;
 | 
						|
      if (V->getType() == IntPtrTy) {
 | 
						|
        // done.
 | 
						|
      } else if (V->getType()->isPointerTy()) {
 | 
						|
        V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
 | 
						|
      } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
 | 
						|
                 cast<IntegerType>(V->getType())->getBitWidth()) {
 | 
						|
        V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
 | 
						|
      } else {
 | 
						|
        // It is only safe to sign extend the BaseReg if we know that the math
 | 
						|
        // required to create it did not overflow before we extend it. Since
 | 
						|
        // the original IR value was tossed in favor of a constant back when
 | 
						|
        // the AddrMode was created we need to bail out gracefully if widths
 | 
						|
        // do not match instead of extending it.
 | 
						|
        Instruction *I = dyn_cast_or_null<Instruction>(Result);
 | 
						|
        if (I && (Result != AddrMode.BaseReg))
 | 
						|
          I->eraseFromParent();
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      if (AddrMode.Scale != 1)
 | 
						|
        V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
 | 
						|
                              "sunkaddr");
 | 
						|
      if (Result)
 | 
						|
        Result = Builder.CreateAdd(Result, V, "sunkaddr");
 | 
						|
      else
 | 
						|
        Result = V;
 | 
						|
    }
 | 
						|
 | 
						|
    // Add in the BaseGV if present.
 | 
						|
    if (AddrMode.BaseGV) {
 | 
						|
      Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
 | 
						|
      if (Result)
 | 
						|
        Result = Builder.CreateAdd(Result, V, "sunkaddr");
 | 
						|
      else
 | 
						|
        Result = V;
 | 
						|
    }
 | 
						|
 | 
						|
    // Add in the Base Offset if present.
 | 
						|
    if (AddrMode.BaseOffs) {
 | 
						|
      Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
 | 
						|
      if (Result)
 | 
						|
        Result = Builder.CreateAdd(Result, V, "sunkaddr");
 | 
						|
      else
 | 
						|
        Result = V;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!Result)
 | 
						|
      SunkAddr = Constant::getNullValue(Addr->getType());
 | 
						|
    else
 | 
						|
      SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
 | 
						|
  }
 | 
						|
 | 
						|
  MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
 | 
						|
 | 
						|
  // If we have no uses, recursively delete the value and all dead instructions
 | 
						|
  // using it.
 | 
						|
  if (Repl->use_empty()) {
 | 
						|
    // This can cause recursive deletion, which can invalidate our iterator.
 | 
						|
    // Use a WeakVH to hold onto it in case this happens.
 | 
						|
    WeakVH IterHandle(CurInstIterator);
 | 
						|
    BasicBlock *BB = CurInstIterator->getParent();
 | 
						|
 | 
						|
    RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
 | 
						|
 | 
						|
    if (IterHandle != CurInstIterator) {
 | 
						|
      // If the iterator instruction was recursively deleted, start over at the
 | 
						|
      // start of the block.
 | 
						|
      CurInstIterator = BB->begin();
 | 
						|
      SunkAddrs.clear();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  ++NumMemoryInsts;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// OptimizeInlineAsmInst - If there are any memory operands, use
 | 
						|
/// OptimizeMemoryInst to sink their address computing into the block when
 | 
						|
/// possible / profitable.
 | 
						|
bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) {
 | 
						|
  bool MadeChange = false;
 | 
						|
 | 
						|
  TargetLowering::AsmOperandInfoVector
 | 
						|
    TargetConstraints = TLI->ParseConstraints(CS);
 | 
						|
  unsigned ArgNo = 0;
 | 
						|
  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
 | 
						|
    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
 | 
						|
 | 
						|
    // Compute the constraint code and ConstraintType to use.
 | 
						|
    TLI->ComputeConstraintToUse(OpInfo, SDValue());
 | 
						|
 | 
						|
    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
 | 
						|
        OpInfo.isIndirect) {
 | 
						|
      Value *OpVal = CS->getArgOperand(ArgNo++);
 | 
						|
      MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType());
 | 
						|
    } else if (OpInfo.Type == InlineAsm::isInput)
 | 
						|
      ArgNo++;
 | 
						|
  }
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
/// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same
 | 
						|
/// basic block as the load, unless conditions are unfavorable. This allows
 | 
						|
/// SelectionDAG to fold the extend into the load.
 | 
						|
///
 | 
						|
bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *I) {
 | 
						|
  // Look for a load being extended.
 | 
						|
  LoadInst *LI = dyn_cast<LoadInst>(I->getOperand(0));
 | 
						|
  if (!LI) return false;
 | 
						|
 | 
						|
  // If they're already in the same block, there's nothing to do.
 | 
						|
  if (LI->getParent() == I->getParent())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the load has other users and the truncate is not free, this probably
 | 
						|
  // isn't worthwhile.
 | 
						|
  if (!LI->hasOneUse() &&
 | 
						|
      TLI && (TLI->isTypeLegal(TLI->getValueType(LI->getType())) ||
 | 
						|
              !TLI->isTypeLegal(TLI->getValueType(I->getType()))) &&
 | 
						|
      !TLI->isTruncateFree(I->getType(), LI->getType()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check whether the target supports casts folded into loads.
 | 
						|
  unsigned LType;
 | 
						|
  if (isa<ZExtInst>(I))
 | 
						|
    LType = ISD::ZEXTLOAD;
 | 
						|
  else {
 | 
						|
    assert(isa<SExtInst>(I) && "Unexpected ext type!");
 | 
						|
    LType = ISD::SEXTLOAD;
 | 
						|
  }
 | 
						|
  if (TLI && !TLI->isLoadExtLegal(LType, TLI->getValueType(LI->getType())))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Move the extend into the same block as the load, so that SelectionDAG
 | 
						|
  // can fold it.
 | 
						|
  I->removeFromParent();
 | 
						|
  I->insertAfter(LI);
 | 
						|
  ++NumExtsMoved;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenPrepare::OptimizeExtUses(Instruction *I) {
 | 
						|
  BasicBlock *DefBB = I->getParent();
 | 
						|
 | 
						|
  // If the result of a {s|z}ext and its source are both live out, rewrite all
 | 
						|
  // other uses of the source with result of extension.
 | 
						|
  Value *Src = I->getOperand(0);
 | 
						|
  if (Src->hasOneUse())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Only do this xform if truncating is free.
 | 
						|
  if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Only safe to perform the optimization if the source is also defined in
 | 
						|
  // this block.
 | 
						|
  if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool DefIsLiveOut = false;
 | 
						|
  for (User *U : I->users()) {
 | 
						|
    Instruction *UI = cast<Instruction>(U);
 | 
						|
 | 
						|
    // Figure out which BB this ext is used in.
 | 
						|
    BasicBlock *UserBB = UI->getParent();
 | 
						|
    if (UserBB == DefBB) continue;
 | 
						|
    DefIsLiveOut = true;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  if (!DefIsLiveOut)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Make sure none of the uses are PHI nodes.
 | 
						|
  for (User *U : Src->users()) {
 | 
						|
    Instruction *UI = cast<Instruction>(U);
 | 
						|
    BasicBlock *UserBB = UI->getParent();
 | 
						|
    if (UserBB == DefBB) continue;
 | 
						|
    // Be conservative. We don't want this xform to end up introducing
 | 
						|
    // reloads just before load / store instructions.
 | 
						|
    if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // InsertedTruncs - Only insert one trunc in each block once.
 | 
						|
  DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
 | 
						|
 | 
						|
  bool MadeChange = false;
 | 
						|
  for (Use &U : Src->uses()) {
 | 
						|
    Instruction *User = cast<Instruction>(U.getUser());
 | 
						|
 | 
						|
    // Figure out which BB this ext is used in.
 | 
						|
    BasicBlock *UserBB = User->getParent();
 | 
						|
    if (UserBB == DefBB) continue;
 | 
						|
 | 
						|
    // Both src and def are live in this block. Rewrite the use.
 | 
						|
    Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
 | 
						|
 | 
						|
    if (!InsertedTrunc) {
 | 
						|
      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
 | 
						|
      InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt);
 | 
						|
      InsertedTruncsSet.insert(InsertedTrunc);
 | 
						|
    }
 | 
						|
 | 
						|
    // Replace a use of the {s|z}ext source with a use of the result.
 | 
						|
    U = InsertedTrunc;
 | 
						|
    ++NumExtUses;
 | 
						|
    MadeChange = true;
 | 
						|
  }
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
/// isFormingBranchFromSelectProfitable - Returns true if a SelectInst should be
 | 
						|
/// turned into an explicit branch.
 | 
						|
static bool isFormingBranchFromSelectProfitable(SelectInst *SI) {
 | 
						|
  // FIXME: This should use the same heuristics as IfConversion to determine
 | 
						|
  // whether a select is better represented as a branch.  This requires that
 | 
						|
  // branch probability metadata is preserved for the select, which is not the
 | 
						|
  // case currently.
 | 
						|
 | 
						|
  CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
 | 
						|
 | 
						|
  // If the branch is predicted right, an out of order CPU can avoid blocking on
 | 
						|
  // the compare.  Emit cmovs on compares with a memory operand as branches to
 | 
						|
  // avoid stalls on the load from memory.  If the compare has more than one use
 | 
						|
  // there's probably another cmov or setcc around so it's not worth emitting a
 | 
						|
  // branch.
 | 
						|
  if (!Cmp)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Value *CmpOp0 = Cmp->getOperand(0);
 | 
						|
  Value *CmpOp1 = Cmp->getOperand(1);
 | 
						|
 | 
						|
  // We check that the memory operand has one use to avoid uses of the loaded
 | 
						|
  // value directly after the compare, making branches unprofitable.
 | 
						|
  return Cmp->hasOneUse() &&
 | 
						|
         ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) ||
 | 
						|
          (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse()));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// If we have a SelectInst that will likely profit from branch prediction,
 | 
						|
/// turn it into a branch.
 | 
						|
bool CodeGenPrepare::OptimizeSelectInst(SelectInst *SI) {
 | 
						|
  bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
 | 
						|
 | 
						|
  // Can we convert the 'select' to CF ?
 | 
						|
  if (DisableSelectToBranch || OptSize || !TLI || VectorCond)
 | 
						|
    return false;
 | 
						|
 | 
						|
  TargetLowering::SelectSupportKind SelectKind;
 | 
						|
  if (VectorCond)
 | 
						|
    SelectKind = TargetLowering::VectorMaskSelect;
 | 
						|
  else if (SI->getType()->isVectorTy())
 | 
						|
    SelectKind = TargetLowering::ScalarCondVectorVal;
 | 
						|
  else
 | 
						|
    SelectKind = TargetLowering::ScalarValSelect;
 | 
						|
 | 
						|
  // Do we have efficient codegen support for this kind of 'selects' ?
 | 
						|
  if (TLI->isSelectSupported(SelectKind)) {
 | 
						|
    // We have efficient codegen support for the select instruction.
 | 
						|
    // Check if it is profitable to keep this 'select'.
 | 
						|
    if (!TLI->isPredictableSelectExpensive() ||
 | 
						|
        !isFormingBranchFromSelectProfitable(SI))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  ModifiedDT = true;
 | 
						|
 | 
						|
  // First, we split the block containing the select into 2 blocks.
 | 
						|
  BasicBlock *StartBlock = SI->getParent();
 | 
						|
  BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI));
 | 
						|
  BasicBlock *NextBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
 | 
						|
 | 
						|
  // Create a new block serving as the landing pad for the branch.
 | 
						|
  BasicBlock *SmallBlock = BasicBlock::Create(SI->getContext(), "select.mid",
 | 
						|
                                             NextBlock->getParent(), NextBlock);
 | 
						|
 | 
						|
  // Move the unconditional branch from the block with the select in it into our
 | 
						|
  // landing pad block.
 | 
						|
  StartBlock->getTerminator()->eraseFromParent();
 | 
						|
  BranchInst::Create(NextBlock, SmallBlock);
 | 
						|
 | 
						|
  // Insert the real conditional branch based on the original condition.
 | 
						|
  BranchInst::Create(NextBlock, SmallBlock, SI->getCondition(), SI);
 | 
						|
 | 
						|
  // The select itself is replaced with a PHI Node.
 | 
						|
  PHINode *PN = PHINode::Create(SI->getType(), 2, "", NextBlock->begin());
 | 
						|
  PN->takeName(SI);
 | 
						|
  PN->addIncoming(SI->getTrueValue(), StartBlock);
 | 
						|
  PN->addIncoming(SI->getFalseValue(), SmallBlock);
 | 
						|
  SI->replaceAllUsesWith(PN);
 | 
						|
  SI->eraseFromParent();
 | 
						|
 | 
						|
  // Instruct OptimizeBlock to skip to the next block.
 | 
						|
  CurInstIterator = StartBlock->end();
 | 
						|
  ++NumSelectsExpanded;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
 | 
						|
  SmallVector<int, 16> Mask(SVI->getShuffleMask());
 | 
						|
  int SplatElem = -1;
 | 
						|
  for (unsigned i = 0; i < Mask.size(); ++i) {
 | 
						|
    if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
 | 
						|
      return false;
 | 
						|
    SplatElem = Mask[i];
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Some targets have expensive vector shifts if the lanes aren't all the same
 | 
						|
/// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
 | 
						|
/// it's often worth sinking a shufflevector splat down to its use so that
 | 
						|
/// codegen can spot all lanes are identical.
 | 
						|
bool CodeGenPrepare::OptimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
 | 
						|
  BasicBlock *DefBB = SVI->getParent();
 | 
						|
 | 
						|
  // Only do this xform if variable vector shifts are particularly expensive.
 | 
						|
  if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We only expect better codegen by sinking a shuffle if we can recognise a
 | 
						|
  // constant splat.
 | 
						|
  if (!isBroadcastShuffle(SVI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // InsertedShuffles - Only insert a shuffle in each block once.
 | 
						|
  DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
 | 
						|
 | 
						|
  bool MadeChange = false;
 | 
						|
  for (User *U : SVI->users()) {
 | 
						|
    Instruction *UI = cast<Instruction>(U);
 | 
						|
 | 
						|
    // Figure out which BB this ext is used in.
 | 
						|
    BasicBlock *UserBB = UI->getParent();
 | 
						|
    if (UserBB == DefBB) continue;
 | 
						|
 | 
						|
    // For now only apply this when the splat is used by a shift instruction.
 | 
						|
    if (!UI->isShift()) continue;
 | 
						|
 | 
						|
    // Everything checks out, sink the shuffle if the user's block doesn't
 | 
						|
    // already have a copy.
 | 
						|
    Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
 | 
						|
 | 
						|
    if (!InsertedShuffle) {
 | 
						|
      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
 | 
						|
      InsertedShuffle = new ShuffleVectorInst(SVI->getOperand(0),
 | 
						|
                                              SVI->getOperand(1),
 | 
						|
                                              SVI->getOperand(2), "", InsertPt);
 | 
						|
    }
 | 
						|
 | 
						|
    UI->replaceUsesOfWith(SVI, InsertedShuffle);
 | 
						|
    MadeChange = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we removed all uses, nuke the shuffle.
 | 
						|
  if (SVI->use_empty()) {
 | 
						|
    SVI->eraseFromParent();
 | 
						|
    MadeChange = true;
 | 
						|
  }
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
bool CodeGenPrepare::OptimizeInst(Instruction *I) {
 | 
						|
  if (PHINode *P = dyn_cast<PHINode>(I)) {
 | 
						|
    // It is possible for very late stage optimizations (such as SimplifyCFG)
 | 
						|
    // to introduce PHI nodes too late to be cleaned up.  If we detect such a
 | 
						|
    // trivial PHI, go ahead and zap it here.
 | 
						|
    if (Value *V = SimplifyInstruction(P, TLI ? TLI->getDataLayout() : nullptr,
 | 
						|
                                       TLInfo, DT)) {
 | 
						|
      P->replaceAllUsesWith(V);
 | 
						|
      P->eraseFromParent();
 | 
						|
      ++NumPHIsElim;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (CastInst *CI = dyn_cast<CastInst>(I)) {
 | 
						|
    // If the source of the cast is a constant, then this should have
 | 
						|
    // already been constant folded.  The only reason NOT to constant fold
 | 
						|
    // it is if something (e.g. LSR) was careful to place the constant
 | 
						|
    // evaluation in a block other than then one that uses it (e.g. to hoist
 | 
						|
    // the address of globals out of a loop).  If this is the case, we don't
 | 
						|
    // want to forward-subst the cast.
 | 
						|
    if (isa<Constant>(CI->getOperand(0)))
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (TLI && OptimizeNoopCopyExpression(CI, *TLI))
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
 | 
						|
      /// Sink a zext or sext into its user blocks if the target type doesn't
 | 
						|
      /// fit in one register
 | 
						|
      if (TLI && TLI->getTypeAction(CI->getContext(),
 | 
						|
                                    TLI->getValueType(CI->getType())) ==
 | 
						|
                     TargetLowering::TypeExpandInteger) {
 | 
						|
        return SinkCast(CI);
 | 
						|
      } else {
 | 
						|
        bool MadeChange = MoveExtToFormExtLoad(I);
 | 
						|
        return MadeChange | OptimizeExtUses(I);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (CmpInst *CI = dyn_cast<CmpInst>(I))
 | 
						|
    if (!TLI || !TLI->hasMultipleConditionRegisters())
 | 
						|
      return OptimizeCmpExpression(CI);
 | 
						|
 | 
						|
  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | 
						|
    if (TLI)
 | 
						|
      return OptimizeMemoryInst(I, I->getOperand(0), LI->getType());
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
 | 
						|
    if (TLI)
 | 
						|
      return OptimizeMemoryInst(I, SI->getOperand(1),
 | 
						|
                                SI->getOperand(0)->getType());
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
 | 
						|
 | 
						|
  if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
 | 
						|
                BinOp->getOpcode() == Instruction::LShr)) {
 | 
						|
    ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
 | 
						|
    if (TLI && CI && TLI->hasExtractBitsInsn())
 | 
						|
      return OptimizeExtractBits(BinOp, CI, *TLI);
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
 | 
						|
    if (GEPI->hasAllZeroIndices()) {
 | 
						|
      /// The GEP operand must be a pointer, so must its result -> BitCast
 | 
						|
      Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
 | 
						|
                                        GEPI->getName(), GEPI);
 | 
						|
      GEPI->replaceAllUsesWith(NC);
 | 
						|
      GEPI->eraseFromParent();
 | 
						|
      ++NumGEPsElim;
 | 
						|
      OptimizeInst(NC);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (CallInst *CI = dyn_cast<CallInst>(I))
 | 
						|
    return OptimizeCallInst(CI);
 | 
						|
 | 
						|
  if (SelectInst *SI = dyn_cast<SelectInst>(I))
 | 
						|
    return OptimizeSelectInst(SI);
 | 
						|
 | 
						|
  if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
 | 
						|
    return OptimizeShuffleVectorInst(SVI);
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// In this pass we look for GEP and cast instructions that are used
 | 
						|
// across basic blocks and rewrite them to improve basic-block-at-a-time
 | 
						|
// selection.
 | 
						|
bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
 | 
						|
  SunkAddrs.clear();
 | 
						|
  bool MadeChange = false;
 | 
						|
 | 
						|
  CurInstIterator = BB.begin();
 | 
						|
  while (CurInstIterator != BB.end())
 | 
						|
    MadeChange |= OptimizeInst(CurInstIterator++);
 | 
						|
 | 
						|
  MadeChange |= DupRetToEnableTailCallOpts(&BB);
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
// llvm.dbg.value is far away from the value then iSel may not be able
 | 
						|
// handle it properly. iSel will drop llvm.dbg.value if it can not
 | 
						|
// find a node corresponding to the value.
 | 
						|
bool CodeGenPrepare::PlaceDbgValues(Function &F) {
 | 
						|
  bool MadeChange = false;
 | 
						|
  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
 | 
						|
    Instruction *PrevNonDbgInst = nullptr;
 | 
						|
    for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE;) {
 | 
						|
      Instruction *Insn = BI; ++BI;
 | 
						|
      DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
 | 
						|
      // Leave dbg.values that refer to an alloca alone. These
 | 
						|
      // instrinsics describe the address of a variable (= the alloca)
 | 
						|
      // being taken.  They should not be moved next to the alloca
 | 
						|
      // (and to the beginning of the scope), but rather stay close to
 | 
						|
      // where said address is used.
 | 
						|
      if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
 | 
						|
        PrevNonDbgInst = Insn;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
 | 
						|
      if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
 | 
						|
        DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI);
 | 
						|
        DVI->removeFromParent();
 | 
						|
        if (isa<PHINode>(VI))
 | 
						|
          DVI->insertBefore(VI->getParent()->getFirstInsertionPt());
 | 
						|
        else
 | 
						|
          DVI->insertAfter(VI);
 | 
						|
        MadeChange = true;
 | 
						|
        ++NumDbgValueMoved;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
// If there is a sequence that branches based on comparing a single bit
 | 
						|
// against zero that can be combined into a single instruction, and the
 | 
						|
// target supports folding these into a single instruction, sink the
 | 
						|
// mask and compare into the branch uses. Do this before OptimizeBlock ->
 | 
						|
// OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being
 | 
						|
// searched for.
 | 
						|
bool CodeGenPrepare::sinkAndCmp(Function &F) {
 | 
						|
  if (!EnableAndCmpSinking)
 | 
						|
    return false;
 | 
						|
  if (!TLI || !TLI->isMaskAndBranchFoldingLegal())
 | 
						|
    return false;
 | 
						|
  bool MadeChange = false;
 | 
						|
  for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
 | 
						|
    BasicBlock *BB = I++;
 | 
						|
 | 
						|
    // Does this BB end with the following?
 | 
						|
    //   %andVal = and %val, #single-bit-set
 | 
						|
    //   %icmpVal = icmp %andResult, 0
 | 
						|
    //   br i1 %cmpVal label %dest1, label %dest2"
 | 
						|
    BranchInst *Brcc = dyn_cast<BranchInst>(BB->getTerminator());
 | 
						|
    if (!Brcc || !Brcc->isConditional())
 | 
						|
      continue;
 | 
						|
    ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0));
 | 
						|
    if (!Cmp || Cmp->getParent() != BB)
 | 
						|
      continue;
 | 
						|
    ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1));
 | 
						|
    if (!Zero || !Zero->isZero())
 | 
						|
      continue;
 | 
						|
    Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0));
 | 
						|
    if (!And || And->getOpcode() != Instruction::And || And->getParent() != BB)
 | 
						|
      continue;
 | 
						|
    ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1));
 | 
						|
    if (!Mask || !Mask->getUniqueInteger().isPowerOf2())
 | 
						|
      continue;
 | 
						|
    DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB->dump());
 | 
						|
 | 
						|
    // Push the "and; icmp" for any users that are conditional branches.
 | 
						|
    // Since there can only be one branch use per BB, we don't need to keep
 | 
						|
    // track of which BBs we insert into.
 | 
						|
    for (Value::use_iterator UI = Cmp->use_begin(), E = Cmp->use_end();
 | 
						|
         UI != E; ) {
 | 
						|
      Use &TheUse = *UI;
 | 
						|
      // Find brcc use.
 | 
						|
      BranchInst *BrccUser = dyn_cast<BranchInst>(*UI);
 | 
						|
      ++UI;
 | 
						|
      if (!BrccUser || !BrccUser->isConditional())
 | 
						|
        continue;
 | 
						|
      BasicBlock *UserBB = BrccUser->getParent();
 | 
						|
      if (UserBB == BB) continue;
 | 
						|
      DEBUG(dbgs() << "found Brcc use\n");
 | 
						|
 | 
						|
      // Sink the "and; icmp" to use.
 | 
						|
      MadeChange = true;
 | 
						|
      BinaryOperator *NewAnd =
 | 
						|
        BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "",
 | 
						|
                                  BrccUser);
 | 
						|
      CmpInst *NewCmp =
 | 
						|
        CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero,
 | 
						|
                        "", BrccUser);
 | 
						|
      TheUse = NewCmp;
 | 
						|
      ++NumAndCmpsMoved;
 | 
						|
      DEBUG(BrccUser->getParent()->dump());
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return MadeChange;
 | 
						|
}
 |