mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113198 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1786 lines
		
	
	
		
			62 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1786 lines
		
	
	
		
			62 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This tablegen backend emits a target specifier matcher for converting parsed
 | 
						|
// assembly operands in the MCInst structures.
 | 
						|
//
 | 
						|
// The input to the target specific matcher is a list of literal tokens and
 | 
						|
// operands. The target specific parser should generally eliminate any syntax
 | 
						|
// which is not relevant for matching; for example, comma tokens should have
 | 
						|
// already been consumed and eliminated by the parser. Most instructions will
 | 
						|
// end up with a single literal token (the instruction name) and some number of
 | 
						|
// operands.
 | 
						|
//
 | 
						|
// Some example inputs, for X86:
 | 
						|
//   'addl' (immediate ...) (register ...)
 | 
						|
//   'add' (immediate ...) (memory ...)
 | 
						|
//   'call' '*' %epc 
 | 
						|
//
 | 
						|
// The assembly matcher is responsible for converting this input into a precise
 | 
						|
// machine instruction (i.e., an instruction with a well defined encoding). This
 | 
						|
// mapping has several properties which complicate matching:
 | 
						|
//
 | 
						|
//  - It may be ambiguous; many architectures can legally encode particular
 | 
						|
//    variants of an instruction in different ways (for example, using a smaller
 | 
						|
//    encoding for small immediates). Such ambiguities should never be
 | 
						|
//    arbitrarily resolved by the assembler, the assembler is always responsible
 | 
						|
//    for choosing the "best" available instruction.
 | 
						|
//
 | 
						|
//  - It may depend on the subtarget or the assembler context. Instructions
 | 
						|
//    which are invalid for the current mode, but otherwise unambiguous (e.g.,
 | 
						|
//    an SSE instruction in a file being assembled for i486) should be accepted
 | 
						|
//    and rejected by the assembler front end. However, if the proper encoding
 | 
						|
//    for an instruction is dependent on the assembler context then the matcher
 | 
						|
//    is responsible for selecting the correct machine instruction for the
 | 
						|
//    current mode.
 | 
						|
//
 | 
						|
// The core matching algorithm attempts to exploit the regularity in most
 | 
						|
// instruction sets to quickly determine the set of possibly matching
 | 
						|
// instructions, and the simplify the generated code. Additionally, this helps
 | 
						|
// to ensure that the ambiguities are intentionally resolved by the user.
 | 
						|
//
 | 
						|
// The matching is divided into two distinct phases:
 | 
						|
//
 | 
						|
//   1. Classification: Each operand is mapped to the unique set which (a)
 | 
						|
//      contains it, and (b) is the largest such subset for which a single
 | 
						|
//      instruction could match all members.
 | 
						|
//
 | 
						|
//      For register classes, we can generate these subgroups automatically. For
 | 
						|
//      arbitrary operands, we expect the user to define the classes and their
 | 
						|
//      relations to one another (for example, 8-bit signed immediates as a
 | 
						|
//      subset of 32-bit immediates).
 | 
						|
//
 | 
						|
//      By partitioning the operands in this way, we guarantee that for any
 | 
						|
//      tuple of classes, any single instruction must match either all or none
 | 
						|
//      of the sets of operands which could classify to that tuple.
 | 
						|
//
 | 
						|
//      In addition, the subset relation amongst classes induces a partial order
 | 
						|
//      on such tuples, which we use to resolve ambiguities.
 | 
						|
//
 | 
						|
//      FIXME: What do we do if a crazy case shows up where this is the wrong
 | 
						|
//      resolution?
 | 
						|
//
 | 
						|
//   2. The input can now be treated as a tuple of classes (static tokens are
 | 
						|
//      simple singleton sets). Each such tuple should generally map to a single
 | 
						|
//      instruction (we currently ignore cases where this isn't true, whee!!!),
 | 
						|
//      which we can emit a simple matcher for.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "AsmMatcherEmitter.h"
 | 
						|
#include "CodeGenTarget.h"
 | 
						|
#include "Record.h"
 | 
						|
#include "StringMatcher.h"
 | 
						|
#include "llvm/ADT/OwningPtr.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include <list>
 | 
						|
#include <map>
 | 
						|
#include <set>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
static cl::opt<std::string>
 | 
						|
MatchPrefix("match-prefix", cl::init(""),
 | 
						|
            cl::desc("Only match instructions with the given prefix"));
 | 
						|
 | 
						|
/// FlattenVariants - Flatten an .td file assembly string by selecting the
 | 
						|
/// variant at index \arg N.
 | 
						|
static std::string FlattenVariants(const std::string &AsmString,
 | 
						|
                                   unsigned N) {
 | 
						|
  StringRef Cur = AsmString;
 | 
						|
  std::string Res = "";
 | 
						|
  
 | 
						|
  for (;;) {
 | 
						|
    // Find the start of the next variant string.
 | 
						|
    size_t VariantsStart = 0;
 | 
						|
    for (size_t e = Cur.size(); VariantsStart != e; ++VariantsStart)
 | 
						|
      if (Cur[VariantsStart] == '{' && 
 | 
						|
          (VariantsStart == 0 || (Cur[VariantsStart-1] != '$' &&
 | 
						|
                                  Cur[VariantsStart-1] != '\\')))
 | 
						|
        break;
 | 
						|
 | 
						|
    // Add the prefix to the result.
 | 
						|
    Res += Cur.slice(0, VariantsStart);
 | 
						|
    if (VariantsStart == Cur.size())
 | 
						|
      break;
 | 
						|
 | 
						|
    ++VariantsStart; // Skip the '{'.
 | 
						|
 | 
						|
    // Scan to the end of the variants string.
 | 
						|
    size_t VariantsEnd = VariantsStart;
 | 
						|
    unsigned NestedBraces = 1;
 | 
						|
    for (size_t e = Cur.size(); VariantsEnd != e; ++VariantsEnd) {
 | 
						|
      if (Cur[VariantsEnd] == '}' && Cur[VariantsEnd-1] != '\\') {
 | 
						|
        if (--NestedBraces == 0)
 | 
						|
          break;
 | 
						|
      } else if (Cur[VariantsEnd] == '{')
 | 
						|
        ++NestedBraces;
 | 
						|
    }
 | 
						|
 | 
						|
    // Select the Nth variant (or empty).
 | 
						|
    StringRef Selection = Cur.slice(VariantsStart, VariantsEnd);
 | 
						|
    for (unsigned i = 0; i != N; ++i)
 | 
						|
      Selection = Selection.split('|').second;
 | 
						|
    Res += Selection.split('|').first;
 | 
						|
 | 
						|
    assert(VariantsEnd != Cur.size() && 
 | 
						|
           "Unterminated variants in assembly string!");
 | 
						|
    Cur = Cur.substr(VariantsEnd + 1);
 | 
						|
  } 
 | 
						|
 | 
						|
  return Res;
 | 
						|
}
 | 
						|
 | 
						|
/// TokenizeAsmString - Tokenize a simplified assembly string.
 | 
						|
static void TokenizeAsmString(StringRef AsmString, 
 | 
						|
                              SmallVectorImpl<StringRef> &Tokens) {
 | 
						|
  unsigned Prev = 0;
 | 
						|
  bool InTok = true;
 | 
						|
  for (unsigned i = 0, e = AsmString.size(); i != e; ++i) {
 | 
						|
    switch (AsmString[i]) {
 | 
						|
    case '[':
 | 
						|
    case ']':
 | 
						|
    case '*':
 | 
						|
    case '!':
 | 
						|
    case ' ':
 | 
						|
    case '\t':
 | 
						|
    case ',':
 | 
						|
      if (InTok) {
 | 
						|
        Tokens.push_back(AsmString.slice(Prev, i));
 | 
						|
        InTok = false;
 | 
						|
      }
 | 
						|
      if (!isspace(AsmString[i]) && AsmString[i] != ',')
 | 
						|
        Tokens.push_back(AsmString.substr(i, 1));
 | 
						|
      Prev = i + 1;
 | 
						|
      break;
 | 
						|
      
 | 
						|
    case '\\':
 | 
						|
      if (InTok) {
 | 
						|
        Tokens.push_back(AsmString.slice(Prev, i));
 | 
						|
        InTok = false;
 | 
						|
      }
 | 
						|
      ++i;
 | 
						|
      assert(i != AsmString.size() && "Invalid quoted character");
 | 
						|
      Tokens.push_back(AsmString.substr(i, 1));
 | 
						|
      Prev = i + 1;
 | 
						|
      break;
 | 
						|
 | 
						|
    case '$': {
 | 
						|
      // If this isn't "${", treat like a normal token.
 | 
						|
      if (i + 1 == AsmString.size() || AsmString[i + 1] != '{') {
 | 
						|
        if (InTok) {
 | 
						|
          Tokens.push_back(AsmString.slice(Prev, i));
 | 
						|
          InTok = false;
 | 
						|
        }
 | 
						|
        Prev = i;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      if (InTok) {
 | 
						|
        Tokens.push_back(AsmString.slice(Prev, i));
 | 
						|
        InTok = false;
 | 
						|
      }
 | 
						|
 | 
						|
      StringRef::iterator End =
 | 
						|
        std::find(AsmString.begin() + i, AsmString.end(), '}');
 | 
						|
      assert(End != AsmString.end() && "Missing brace in operand reference!");
 | 
						|
      size_t EndPos = End - AsmString.begin();
 | 
						|
      Tokens.push_back(AsmString.slice(i, EndPos+1));
 | 
						|
      Prev = EndPos + 1;
 | 
						|
      i = EndPos;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case '.':
 | 
						|
      if (InTok) {
 | 
						|
        Tokens.push_back(AsmString.slice(Prev, i));
 | 
						|
      }
 | 
						|
      Prev = i;
 | 
						|
      InTok = true;
 | 
						|
      break;
 | 
						|
 | 
						|
    default:
 | 
						|
      InTok = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (InTok && Prev != AsmString.size())
 | 
						|
    Tokens.push_back(AsmString.substr(Prev));
 | 
						|
}
 | 
						|
 | 
						|
static bool IsAssemblerInstruction(StringRef Name,
 | 
						|
                                   const CodeGenInstruction &CGI, 
 | 
						|
                                   const SmallVectorImpl<StringRef> &Tokens) {
 | 
						|
  // Ignore "codegen only" instructions.
 | 
						|
  if (CGI.TheDef->getValueAsBit("isCodeGenOnly"))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Ignore pseudo ops.
 | 
						|
  //
 | 
						|
  // FIXME: This is a hack; can we convert these instructions to set the
 | 
						|
  // "codegen only" bit instead?
 | 
						|
  if (const RecordVal *Form = CGI.TheDef->getValue("Form"))
 | 
						|
    if (Form->getValue()->getAsString() == "Pseudo")
 | 
						|
      return false;
 | 
						|
 | 
						|
  // Ignore "Int_*" and "*_Int" instructions, which are internal aliases.
 | 
						|
  //
 | 
						|
  // FIXME: This is a total hack.
 | 
						|
  if (StringRef(Name).startswith("Int_") || StringRef(Name).endswith("_Int"))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Ignore instructions with no .s string.
 | 
						|
  //
 | 
						|
  // FIXME: What are these?
 | 
						|
  if (CGI.AsmString.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // FIXME: Hack; ignore any instructions with a newline in them.
 | 
						|
  if (std::find(CGI.AsmString.begin(), 
 | 
						|
                CGI.AsmString.end(), '\n') != CGI.AsmString.end())
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // Ignore instructions with attributes, these are always fake instructions for
 | 
						|
  // simplifying codegen.
 | 
						|
  //
 | 
						|
  // FIXME: Is this true?
 | 
						|
  //
 | 
						|
  // Also, check for instructions which reference the operand multiple times;
 | 
						|
  // this implies a constraint we would not honor.
 | 
						|
  std::set<std::string> OperandNames;
 | 
						|
  for (unsigned i = 1, e = Tokens.size(); i < e; ++i) {
 | 
						|
    if (Tokens[i][0] == '$' && 
 | 
						|
        std::find(Tokens[i].begin(), 
 | 
						|
                  Tokens[i].end(), ':') != Tokens[i].end()) {
 | 
						|
      DEBUG({
 | 
						|
          errs() << "warning: '" << Name << "': "
 | 
						|
                 << "ignoring instruction; operand with attribute '" 
 | 
						|
                 << Tokens[i] << "'\n";
 | 
						|
        });
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Tokens[i][0] == '$' && !OperandNames.insert(Tokens[i]).second) {
 | 
						|
      DEBUG({
 | 
						|
          errs() << "warning: '" << Name << "': "
 | 
						|
                 << "ignoring instruction with tied operand '"
 | 
						|
                 << Tokens[i].str() << "'\n";
 | 
						|
        });
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
struct SubtargetFeatureInfo;
 | 
						|
 | 
						|
/// ClassInfo - Helper class for storing the information about a particular
 | 
						|
/// class of operands which can be matched.
 | 
						|
struct ClassInfo {
 | 
						|
  enum ClassInfoKind {
 | 
						|
    /// Invalid kind, for use as a sentinel value.
 | 
						|
    Invalid = 0,
 | 
						|
 | 
						|
    /// The class for a particular token.
 | 
						|
    Token,
 | 
						|
 | 
						|
    /// The (first) register class, subsequent register classes are
 | 
						|
    /// RegisterClass0+1, and so on.
 | 
						|
    RegisterClass0,
 | 
						|
 | 
						|
    /// The (first) user defined class, subsequent user defined classes are
 | 
						|
    /// UserClass0+1, and so on.
 | 
						|
    UserClass0 = 1<<16
 | 
						|
  };
 | 
						|
 | 
						|
  /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
 | 
						|
  /// N) for the Nth user defined class.
 | 
						|
  unsigned Kind;
 | 
						|
 | 
						|
  /// SuperClasses - The super classes of this class. Note that for simplicities
 | 
						|
  /// sake user operands only record their immediate super class, while register
 | 
						|
  /// operands include all superclasses.
 | 
						|
  std::vector<ClassInfo*> SuperClasses;
 | 
						|
 | 
						|
  /// Name - The full class name, suitable for use in an enum.
 | 
						|
  std::string Name;
 | 
						|
 | 
						|
  /// ClassName - The unadorned generic name for this class (e.g., Token).
 | 
						|
  std::string ClassName;
 | 
						|
 | 
						|
  /// ValueName - The name of the value this class represents; for a token this
 | 
						|
  /// is the literal token string, for an operand it is the TableGen class (or
 | 
						|
  /// empty if this is a derived class).
 | 
						|
  std::string ValueName;
 | 
						|
 | 
						|
  /// PredicateMethod - The name of the operand method to test whether the
 | 
						|
  /// operand matches this class; this is not valid for Token or register kinds.
 | 
						|
  std::string PredicateMethod;
 | 
						|
 | 
						|
  /// RenderMethod - The name of the operand method to add this operand to an
 | 
						|
  /// MCInst; this is not valid for Token or register kinds.
 | 
						|
  std::string RenderMethod;
 | 
						|
 | 
						|
  /// For register classes, the records for all the registers in this class.
 | 
						|
  std::set<Record*> Registers;
 | 
						|
 | 
						|
public:
 | 
						|
  /// isRegisterClass() - Check if this is a register class.
 | 
						|
  bool isRegisterClass() const {
 | 
						|
    return Kind >= RegisterClass0 && Kind < UserClass0;
 | 
						|
  }
 | 
						|
 | 
						|
  /// isUserClass() - Check if this is a user defined class.
 | 
						|
  bool isUserClass() const {
 | 
						|
    return Kind >= UserClass0;
 | 
						|
  }
 | 
						|
 | 
						|
  /// isRelatedTo - Check whether this class is "related" to \arg RHS. Classes
 | 
						|
  /// are related if they are in the same class hierarchy.
 | 
						|
  bool isRelatedTo(const ClassInfo &RHS) const {
 | 
						|
    // Tokens are only related to tokens.
 | 
						|
    if (Kind == Token || RHS.Kind == Token)
 | 
						|
      return Kind == Token && RHS.Kind == Token;
 | 
						|
 | 
						|
    // Registers classes are only related to registers classes, and only if
 | 
						|
    // their intersection is non-empty.
 | 
						|
    if (isRegisterClass() || RHS.isRegisterClass()) {
 | 
						|
      if (!isRegisterClass() || !RHS.isRegisterClass())
 | 
						|
        return false;
 | 
						|
 | 
						|
      std::set<Record*> Tmp;
 | 
						|
      std::insert_iterator< std::set<Record*> > II(Tmp, Tmp.begin());
 | 
						|
      std::set_intersection(Registers.begin(), Registers.end(), 
 | 
						|
                            RHS.Registers.begin(), RHS.Registers.end(),
 | 
						|
                            II);
 | 
						|
 | 
						|
      return !Tmp.empty();
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise we have two users operands; they are related if they are in the
 | 
						|
    // same class hierarchy.
 | 
						|
    //
 | 
						|
    // FIXME: This is an oversimplification, they should only be related if they
 | 
						|
    // intersect, however we don't have that information.
 | 
						|
    assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
 | 
						|
    const ClassInfo *Root = this;
 | 
						|
    while (!Root->SuperClasses.empty())
 | 
						|
      Root = Root->SuperClasses.front();
 | 
						|
 | 
						|
    const ClassInfo *RHSRoot = &RHS;
 | 
						|
    while (!RHSRoot->SuperClasses.empty())
 | 
						|
      RHSRoot = RHSRoot->SuperClasses.front();
 | 
						|
    
 | 
						|
    return Root == RHSRoot;
 | 
						|
  }
 | 
						|
 | 
						|
  /// isSubsetOf - Test whether this class is a subset of \arg RHS; 
 | 
						|
  bool isSubsetOf(const ClassInfo &RHS) const {
 | 
						|
    // This is a subset of RHS if it is the same class...
 | 
						|
    if (this == &RHS)
 | 
						|
      return true;
 | 
						|
 | 
						|
    // ... or if any of its super classes are a subset of RHS.
 | 
						|
    for (std::vector<ClassInfo*>::const_iterator it = SuperClasses.begin(),
 | 
						|
           ie = SuperClasses.end(); it != ie; ++it)
 | 
						|
      if ((*it)->isSubsetOf(RHS))
 | 
						|
        return true;
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  /// operator< - Compare two classes.
 | 
						|
  bool operator<(const ClassInfo &RHS) const {
 | 
						|
    if (this == &RHS)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Unrelated classes can be ordered by kind.
 | 
						|
    if (!isRelatedTo(RHS))
 | 
						|
      return Kind < RHS.Kind;
 | 
						|
 | 
						|
    switch (Kind) {
 | 
						|
    case Invalid:
 | 
						|
      assert(0 && "Invalid kind!");
 | 
						|
    case Token:
 | 
						|
      // Tokens are comparable by value.
 | 
						|
      //
 | 
						|
      // FIXME: Compare by enum value.
 | 
						|
      return ValueName < RHS.ValueName;
 | 
						|
 | 
						|
    default:
 | 
						|
      // This class preceeds the RHS if it is a proper subset of the RHS.
 | 
						|
      if (isSubsetOf(RHS))
 | 
						|
        return true;
 | 
						|
      if (RHS.isSubsetOf(*this))
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Otherwise, order by name to ensure we have a total ordering.
 | 
						|
      return ValueName < RHS.ValueName;
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// InstructionInfo - Helper class for storing the necessary information for an
 | 
						|
/// instruction which is capable of being matched.
 | 
						|
struct InstructionInfo {
 | 
						|
  struct Operand {
 | 
						|
    /// The unique class instance this operand should match.
 | 
						|
    ClassInfo *Class;
 | 
						|
 | 
						|
    /// The original operand this corresponds to, if any.
 | 
						|
    const CodeGenInstruction::OperandInfo *OperandInfo;
 | 
						|
  };
 | 
						|
 | 
						|
  /// InstrName - The target name for this instruction.
 | 
						|
  std::string InstrName;
 | 
						|
 | 
						|
  /// Instr - The instruction this matches.
 | 
						|
  const CodeGenInstruction *Instr;
 | 
						|
 | 
						|
  /// AsmString - The assembly string for this instruction (with variants
 | 
						|
  /// removed).
 | 
						|
  std::string AsmString;
 | 
						|
 | 
						|
  /// Tokens - The tokenized assembly pattern that this instruction matches.
 | 
						|
  SmallVector<StringRef, 4> Tokens;
 | 
						|
 | 
						|
  /// Operands - The operands that this instruction matches.
 | 
						|
  SmallVector<Operand, 4> Operands;
 | 
						|
 | 
						|
  /// Predicates - The required subtarget features to match this instruction.
 | 
						|
  SmallVector<SubtargetFeatureInfo*, 4> RequiredFeatures;
 | 
						|
 | 
						|
  /// ConversionFnKind - The enum value which is passed to the generated
 | 
						|
  /// ConvertToMCInst to convert parsed operands into an MCInst for this
 | 
						|
  /// function.
 | 
						|
  std::string ConversionFnKind;
 | 
						|
 | 
						|
  /// operator< - Compare two instructions.
 | 
						|
  bool operator<(const InstructionInfo &RHS) const {
 | 
						|
    // The primary comparator is the instruction mnemonic.
 | 
						|
    if (Tokens[0] != RHS.Tokens[0])
 | 
						|
      return Tokens[0] < RHS.Tokens[0];
 | 
						|
    
 | 
						|
    if (Operands.size() != RHS.Operands.size())
 | 
						|
      return Operands.size() < RHS.Operands.size();
 | 
						|
 | 
						|
    // Compare lexicographically by operand. The matcher validates that other
 | 
						|
    // orderings wouldn't be ambiguous using \see CouldMatchAmiguouslyWith().
 | 
						|
    for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
 | 
						|
      if (*Operands[i].Class < *RHS.Operands[i].Class)
 | 
						|
        return true;
 | 
						|
      if (*RHS.Operands[i].Class < *Operands[i].Class)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  /// CouldMatchAmiguouslyWith - Check whether this instruction could
 | 
						|
  /// ambiguously match the same set of operands as \arg RHS (without being a
 | 
						|
  /// strictly superior match).
 | 
						|
  bool CouldMatchAmiguouslyWith(const InstructionInfo &RHS) {
 | 
						|
    // The number of operands is unambiguous.
 | 
						|
    if (Operands.size() != RHS.Operands.size())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Otherwise, make sure the ordering of the two instructions is unambiguous
 | 
						|
    // by checking that either (a) a token or operand kind discriminates them,
 | 
						|
    // or (b) the ordering among equivalent kinds is consistent.
 | 
						|
 | 
						|
    // Tokens and operand kinds are unambiguous (assuming a correct target
 | 
						|
    // specific parser).
 | 
						|
    for (unsigned i = 0, e = Operands.size(); i != e; ++i)
 | 
						|
      if (Operands[i].Class->Kind != RHS.Operands[i].Class->Kind ||
 | 
						|
          Operands[i].Class->Kind == ClassInfo::Token)
 | 
						|
        if (*Operands[i].Class < *RHS.Operands[i].Class ||
 | 
						|
            *RHS.Operands[i].Class < *Operands[i].Class)
 | 
						|
          return false;
 | 
						|
    
 | 
						|
    // Otherwise, this operand could commute if all operands are equivalent, or
 | 
						|
    // there is a pair of operands that compare less than and a pair that
 | 
						|
    // compare greater than.
 | 
						|
    bool HasLT = false, HasGT = false;
 | 
						|
    for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
 | 
						|
      if (*Operands[i].Class < *RHS.Operands[i].Class)
 | 
						|
        HasLT = true;
 | 
						|
      if (*RHS.Operands[i].Class < *Operands[i].Class)
 | 
						|
        HasGT = true;
 | 
						|
    }
 | 
						|
 | 
						|
    return !(HasLT ^ HasGT);
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  void dump();
 | 
						|
};
 | 
						|
 | 
						|
/// SubtargetFeatureInfo - Helper class for storing information on a subtarget
 | 
						|
/// feature which participates in instruction matching.
 | 
						|
struct SubtargetFeatureInfo {
 | 
						|
  /// \brief The predicate record for this feature.
 | 
						|
  Record *TheDef;
 | 
						|
 | 
						|
  /// \brief An unique index assigned to represent this feature.
 | 
						|
  unsigned Index;
 | 
						|
 | 
						|
  /// \brief The name of the enumerated constant identifying this feature.
 | 
						|
  std::string EnumName;
 | 
						|
};
 | 
						|
 | 
						|
class AsmMatcherInfo {
 | 
						|
public:
 | 
						|
  /// The tablegen AsmParser record.
 | 
						|
  Record *AsmParser;
 | 
						|
 | 
						|
  /// The AsmParser "CommentDelimiter" value.
 | 
						|
  std::string CommentDelimiter;
 | 
						|
 | 
						|
  /// The AsmParser "RegisterPrefix" value.
 | 
						|
  std::string RegisterPrefix;
 | 
						|
 | 
						|
  /// The classes which are needed for matching.
 | 
						|
  std::vector<ClassInfo*> Classes;
 | 
						|
  
 | 
						|
  /// The information on the instruction to match.
 | 
						|
  std::vector<InstructionInfo*> Instructions;
 | 
						|
 | 
						|
  /// Map of Register records to their class information.
 | 
						|
  std::map<Record*, ClassInfo*> RegisterClasses;
 | 
						|
 | 
						|
  /// Map of Predicate records to their subtarget information.
 | 
						|
  std::map<Record*, SubtargetFeatureInfo*> SubtargetFeatures;
 | 
						|
 | 
						|
private:
 | 
						|
  /// Map of token to class information which has already been constructed.
 | 
						|
  std::map<std::string, ClassInfo*> TokenClasses;
 | 
						|
 | 
						|
  /// Map of RegisterClass records to their class information.
 | 
						|
  std::map<Record*, ClassInfo*> RegisterClassClasses;
 | 
						|
 | 
						|
  /// Map of AsmOperandClass records to their class information.
 | 
						|
  std::map<Record*, ClassInfo*> AsmOperandClasses;
 | 
						|
 | 
						|
private:
 | 
						|
  /// getTokenClass - Lookup or create the class for the given token.
 | 
						|
  ClassInfo *getTokenClass(StringRef Token);
 | 
						|
 | 
						|
  /// getOperandClass - Lookup or create the class for the given operand.
 | 
						|
  ClassInfo *getOperandClass(StringRef Token,
 | 
						|
                             const CodeGenInstruction::OperandInfo &OI);
 | 
						|
 | 
						|
  /// getSubtargetFeature - Lookup or create the subtarget feature info for the
 | 
						|
  /// given operand.
 | 
						|
  SubtargetFeatureInfo *getSubtargetFeature(Record *Def) {
 | 
						|
    assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
 | 
						|
 | 
						|
    SubtargetFeatureInfo *&Entry = SubtargetFeatures[Def];
 | 
						|
    if (!Entry) {
 | 
						|
      Entry = new SubtargetFeatureInfo;
 | 
						|
      Entry->TheDef = Def;
 | 
						|
      Entry->Index = SubtargetFeatures.size() - 1;
 | 
						|
      Entry->EnumName = "Feature_" + Def->getName();
 | 
						|
      assert(Entry->Index < 32 && "Too many subtarget features!");
 | 
						|
    }
 | 
						|
 | 
						|
    return Entry;
 | 
						|
  }
 | 
						|
 | 
						|
  /// BuildRegisterClasses - Build the ClassInfo* instances for register
 | 
						|
  /// classes.
 | 
						|
  void BuildRegisterClasses(CodeGenTarget &Target, 
 | 
						|
                            std::set<std::string> &SingletonRegisterNames);
 | 
						|
 | 
						|
  /// BuildOperandClasses - Build the ClassInfo* instances for user defined
 | 
						|
  /// operand classes.
 | 
						|
  void BuildOperandClasses(CodeGenTarget &Target);
 | 
						|
 | 
						|
public:
 | 
						|
  AsmMatcherInfo(Record *_AsmParser);
 | 
						|
 | 
						|
  /// BuildInfo - Construct the various tables used during matching.
 | 
						|
  void BuildInfo(CodeGenTarget &Target);
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void InstructionInfo::dump() {
 | 
						|
  errs() << InstrName << " -- " << "flattened:\"" << AsmString << '\"'
 | 
						|
         << ", tokens:[";
 | 
						|
  for (unsigned i = 0, e = Tokens.size(); i != e; ++i) {
 | 
						|
    errs() << Tokens[i];
 | 
						|
    if (i + 1 != e)
 | 
						|
      errs() << ", ";
 | 
						|
  }
 | 
						|
  errs() << "]\n";
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
 | 
						|
    Operand &Op = Operands[i];
 | 
						|
    errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
 | 
						|
    if (Op.Class->Kind == ClassInfo::Token) {
 | 
						|
      errs() << '\"' << Tokens[i] << "\"\n";
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!Op.OperandInfo) {
 | 
						|
      errs() << "(singleton register)\n";
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    const CodeGenInstruction::OperandInfo &OI = *Op.OperandInfo;
 | 
						|
    errs() << OI.Name << " " << OI.Rec->getName()
 | 
						|
           << " (" << OI.MIOperandNo << ", " << OI.MINumOperands << ")\n";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static std::string getEnumNameForToken(StringRef Str) {
 | 
						|
  std::string Res;
 | 
						|
  
 | 
						|
  for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
 | 
						|
    switch (*it) {
 | 
						|
    case '*': Res += "_STAR_"; break;
 | 
						|
    case '%': Res += "_PCT_"; break;
 | 
						|
    case ':': Res += "_COLON_"; break;
 | 
						|
 | 
						|
    default:
 | 
						|
      if (isalnum(*it))  {
 | 
						|
        Res += *it;
 | 
						|
      } else {
 | 
						|
        Res += "_" + utostr((unsigned) *it) + "_";
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Res;
 | 
						|
}
 | 
						|
 | 
						|
/// getRegisterRecord - Get the register record for \arg name, or 0.
 | 
						|
static Record *getRegisterRecord(CodeGenTarget &Target, StringRef Name) {
 | 
						|
  for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) {
 | 
						|
    const CodeGenRegister &Reg = Target.getRegisters()[i];
 | 
						|
    if (Name == Reg.TheDef->getValueAsString("AsmName"))
 | 
						|
      return Reg.TheDef;
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
 | 
						|
  ClassInfo *&Entry = TokenClasses[Token];
 | 
						|
  
 | 
						|
  if (!Entry) {
 | 
						|
    Entry = new ClassInfo();
 | 
						|
    Entry->Kind = ClassInfo::Token;
 | 
						|
    Entry->ClassName = "Token";
 | 
						|
    Entry->Name = "MCK_" + getEnumNameForToken(Token);
 | 
						|
    Entry->ValueName = Token;
 | 
						|
    Entry->PredicateMethod = "<invalid>";
 | 
						|
    Entry->RenderMethod = "<invalid>";
 | 
						|
    Classes.push_back(Entry);
 | 
						|
  }
 | 
						|
 | 
						|
  return Entry;
 | 
						|
}
 | 
						|
 | 
						|
ClassInfo *
 | 
						|
AsmMatcherInfo::getOperandClass(StringRef Token,
 | 
						|
                                const CodeGenInstruction::OperandInfo &OI) {
 | 
						|
  if (OI.Rec->isSubClassOf("RegisterClass")) {
 | 
						|
    ClassInfo *CI = RegisterClassClasses[OI.Rec];
 | 
						|
 | 
						|
    if (!CI) {
 | 
						|
      PrintError(OI.Rec->getLoc(), "register class has no class info!");
 | 
						|
      throw std::string("ERROR: Missing register class!");
 | 
						|
    }
 | 
						|
 | 
						|
    return CI;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(OI.Rec->isSubClassOf("Operand") && "Unexpected operand!");
 | 
						|
  Record *MatchClass = OI.Rec->getValueAsDef("ParserMatchClass");
 | 
						|
  ClassInfo *CI = AsmOperandClasses[MatchClass];
 | 
						|
 | 
						|
  if (!CI) {
 | 
						|
    PrintError(OI.Rec->getLoc(), "operand has no match class!");
 | 
						|
    throw std::string("ERROR: Missing match class!");
 | 
						|
  }
 | 
						|
 | 
						|
  return CI;
 | 
						|
}
 | 
						|
 | 
						|
void AsmMatcherInfo::BuildRegisterClasses(CodeGenTarget &Target,
 | 
						|
                                          std::set<std::string>
 | 
						|
                                            &SingletonRegisterNames) {
 | 
						|
  std::vector<CodeGenRegisterClass> RegisterClasses;
 | 
						|
  std::vector<CodeGenRegister> Registers;
 | 
						|
 | 
						|
  RegisterClasses = Target.getRegisterClasses();
 | 
						|
  Registers = Target.getRegisters();
 | 
						|
 | 
						|
  // The register sets used for matching.
 | 
						|
  std::set< std::set<Record*> > RegisterSets;
 | 
						|
 | 
						|
  // Gather the defined sets.  
 | 
						|
  for (std::vector<CodeGenRegisterClass>::iterator it = RegisterClasses.begin(),
 | 
						|
         ie = RegisterClasses.end(); it != ie; ++it)
 | 
						|
    RegisterSets.insert(std::set<Record*>(it->Elements.begin(),
 | 
						|
                                          it->Elements.end()));
 | 
						|
 | 
						|
  // Add any required singleton sets.
 | 
						|
  for (std::set<std::string>::iterator it = SingletonRegisterNames.begin(),
 | 
						|
         ie = SingletonRegisterNames.end(); it != ie; ++it)
 | 
						|
    if (Record *Rec = getRegisterRecord(Target, *it))
 | 
						|
      RegisterSets.insert(std::set<Record*>(&Rec, &Rec + 1));
 | 
						|
         
 | 
						|
  // Introduce derived sets where necessary (when a register does not determine
 | 
						|
  // a unique register set class), and build the mapping of registers to the set
 | 
						|
  // they should classify to.
 | 
						|
  std::map<Record*, std::set<Record*> > RegisterMap;
 | 
						|
  for (std::vector<CodeGenRegister>::iterator it = Registers.begin(),
 | 
						|
         ie = Registers.end(); it != ie; ++it) {
 | 
						|
    CodeGenRegister &CGR = *it;
 | 
						|
    // Compute the intersection of all sets containing this register.
 | 
						|
    std::set<Record*> ContainingSet;
 | 
						|
    
 | 
						|
    for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
 | 
						|
           ie = RegisterSets.end(); it != ie; ++it) {
 | 
						|
      if (!it->count(CGR.TheDef))
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (ContainingSet.empty()) {
 | 
						|
        ContainingSet = *it;
 | 
						|
      } else {
 | 
						|
        std::set<Record*> Tmp;
 | 
						|
        std::swap(Tmp, ContainingSet);
 | 
						|
        std::insert_iterator< std::set<Record*> > II(ContainingSet,
 | 
						|
                                                     ContainingSet.begin());
 | 
						|
        std::set_intersection(Tmp.begin(), Tmp.end(), it->begin(), it->end(),
 | 
						|
                              II);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!ContainingSet.empty()) {
 | 
						|
      RegisterSets.insert(ContainingSet);
 | 
						|
      RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Construct the register classes.
 | 
						|
  std::map<std::set<Record*>, ClassInfo*> RegisterSetClasses;
 | 
						|
  unsigned Index = 0;
 | 
						|
  for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
 | 
						|
         ie = RegisterSets.end(); it != ie; ++it, ++Index) {
 | 
						|
    ClassInfo *CI = new ClassInfo();
 | 
						|
    CI->Kind = ClassInfo::RegisterClass0 + Index;
 | 
						|
    CI->ClassName = "Reg" + utostr(Index);
 | 
						|
    CI->Name = "MCK_Reg" + utostr(Index);
 | 
						|
    CI->ValueName = "";
 | 
						|
    CI->PredicateMethod = ""; // unused
 | 
						|
    CI->RenderMethod = "addRegOperands";
 | 
						|
    CI->Registers = *it;
 | 
						|
    Classes.push_back(CI);
 | 
						|
    RegisterSetClasses.insert(std::make_pair(*it, CI));
 | 
						|
  }
 | 
						|
 | 
						|
  // Find the superclasses; we could compute only the subgroup lattice edges,
 | 
						|
  // but there isn't really a point.
 | 
						|
  for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
 | 
						|
         ie = RegisterSets.end(); it != ie; ++it) {
 | 
						|
    ClassInfo *CI = RegisterSetClasses[*it];
 | 
						|
    for (std::set< std::set<Record*> >::iterator it2 = RegisterSets.begin(),
 | 
						|
           ie2 = RegisterSets.end(); it2 != ie2; ++it2)
 | 
						|
      if (*it != *it2 && 
 | 
						|
          std::includes(it2->begin(), it2->end(), it->begin(), it->end()))
 | 
						|
        CI->SuperClasses.push_back(RegisterSetClasses[*it2]);
 | 
						|
  }
 | 
						|
 | 
						|
  // Name the register classes which correspond to a user defined RegisterClass.
 | 
						|
  for (std::vector<CodeGenRegisterClass>::iterator it = RegisterClasses.begin(),
 | 
						|
         ie = RegisterClasses.end(); it != ie; ++it) {
 | 
						|
    ClassInfo *CI = RegisterSetClasses[std::set<Record*>(it->Elements.begin(),
 | 
						|
                                                         it->Elements.end())];
 | 
						|
    if (CI->ValueName.empty()) {
 | 
						|
      CI->ClassName = it->getName();
 | 
						|
      CI->Name = "MCK_" + it->getName();
 | 
						|
      CI->ValueName = it->getName();
 | 
						|
    } else
 | 
						|
      CI->ValueName = CI->ValueName + "," + it->getName();
 | 
						|
 | 
						|
    RegisterClassClasses.insert(std::make_pair(it->TheDef, CI));
 | 
						|
  }
 | 
						|
 | 
						|
  // Populate the map for individual registers.
 | 
						|
  for (std::map<Record*, std::set<Record*> >::iterator it = RegisterMap.begin(),
 | 
						|
         ie = RegisterMap.end(); it != ie; ++it)
 | 
						|
    this->RegisterClasses[it->first] = RegisterSetClasses[it->second];
 | 
						|
 | 
						|
  // Name the register classes which correspond to singleton registers.
 | 
						|
  for (std::set<std::string>::iterator it = SingletonRegisterNames.begin(),
 | 
						|
         ie = SingletonRegisterNames.end(); it != ie; ++it) {
 | 
						|
    if (Record *Rec = getRegisterRecord(Target, *it)) {
 | 
						|
      ClassInfo *CI = this->RegisterClasses[Rec];
 | 
						|
      assert(CI && "Missing singleton register class info!");
 | 
						|
 | 
						|
      if (CI->ValueName.empty()) {
 | 
						|
        CI->ClassName = Rec->getName();
 | 
						|
        CI->Name = "MCK_" + Rec->getName();
 | 
						|
        CI->ValueName = Rec->getName();
 | 
						|
      } else
 | 
						|
        CI->ValueName = CI->ValueName + "," + Rec->getName();
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void AsmMatcherInfo::BuildOperandClasses(CodeGenTarget &Target) {
 | 
						|
  std::vector<Record*> AsmOperands;
 | 
						|
  AsmOperands = Records.getAllDerivedDefinitions("AsmOperandClass");
 | 
						|
 | 
						|
  // Pre-populate AsmOperandClasses map.
 | 
						|
  for (std::vector<Record*>::iterator it = AsmOperands.begin(), 
 | 
						|
         ie = AsmOperands.end(); it != ie; ++it)
 | 
						|
    AsmOperandClasses[*it] = new ClassInfo();
 | 
						|
 | 
						|
  unsigned Index = 0;
 | 
						|
  for (std::vector<Record*>::iterator it = AsmOperands.begin(), 
 | 
						|
         ie = AsmOperands.end(); it != ie; ++it, ++Index) {
 | 
						|
    ClassInfo *CI = AsmOperandClasses[*it];
 | 
						|
    CI->Kind = ClassInfo::UserClass0 + Index;
 | 
						|
 | 
						|
    ListInit *Supers = (*it)->getValueAsListInit("SuperClasses");
 | 
						|
    for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) {
 | 
						|
      DefInit *DI = dynamic_cast<DefInit*>(Supers->getElement(i));
 | 
						|
      if (!DI) {
 | 
						|
        PrintError((*it)->getLoc(), "Invalid super class reference!");
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      ClassInfo *SC = AsmOperandClasses[DI->getDef()];
 | 
						|
      if (!SC)
 | 
						|
        PrintError((*it)->getLoc(), "Invalid super class reference!");
 | 
						|
      else
 | 
						|
        CI->SuperClasses.push_back(SC);
 | 
						|
    }
 | 
						|
    CI->ClassName = (*it)->getValueAsString("Name");
 | 
						|
    CI->Name = "MCK_" + CI->ClassName;
 | 
						|
    CI->ValueName = (*it)->getName();
 | 
						|
 | 
						|
    // Get or construct the predicate method name.
 | 
						|
    Init *PMName = (*it)->getValueInit("PredicateMethod");
 | 
						|
    if (StringInit *SI = dynamic_cast<StringInit*>(PMName)) {
 | 
						|
      CI->PredicateMethod = SI->getValue();
 | 
						|
    } else {
 | 
						|
      assert(dynamic_cast<UnsetInit*>(PMName) && 
 | 
						|
             "Unexpected PredicateMethod field!");
 | 
						|
      CI->PredicateMethod = "is" + CI->ClassName;
 | 
						|
    }
 | 
						|
 | 
						|
    // Get or construct the render method name.
 | 
						|
    Init *RMName = (*it)->getValueInit("RenderMethod");
 | 
						|
    if (StringInit *SI = dynamic_cast<StringInit*>(RMName)) {
 | 
						|
      CI->RenderMethod = SI->getValue();
 | 
						|
    } else {
 | 
						|
      assert(dynamic_cast<UnsetInit*>(RMName) &&
 | 
						|
             "Unexpected RenderMethod field!");
 | 
						|
      CI->RenderMethod = "add" + CI->ClassName + "Operands";
 | 
						|
    }
 | 
						|
 | 
						|
    AsmOperandClasses[*it] = CI;
 | 
						|
    Classes.push_back(CI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
AsmMatcherInfo::AsmMatcherInfo(Record *_AsmParser) 
 | 
						|
  : AsmParser(_AsmParser),
 | 
						|
    CommentDelimiter(AsmParser->getValueAsString("CommentDelimiter")),
 | 
						|
    RegisterPrefix(AsmParser->getValueAsString("RegisterPrefix"))
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
void AsmMatcherInfo::BuildInfo(CodeGenTarget &Target) {
 | 
						|
  // Parse the instructions; we need to do this first so that we can gather the
 | 
						|
  // singleton register classes.
 | 
						|
  std::set<std::string> SingletonRegisterNames;
 | 
						|
  
 | 
						|
  const std::vector<const CodeGenInstruction*> &InstrList =
 | 
						|
    Target.getInstructionsByEnumValue();
 | 
						|
  
 | 
						|
  for (unsigned i = 0, e = InstrList.size(); i != e; ++i) {
 | 
						|
    const CodeGenInstruction &CGI = *InstrList[i];
 | 
						|
 | 
						|
    if (!StringRef(CGI.TheDef->getName()).startswith(MatchPrefix))
 | 
						|
      continue;
 | 
						|
 | 
						|
    OwningPtr<InstructionInfo> II(new InstructionInfo());
 | 
						|
    
 | 
						|
    II->InstrName = CGI.TheDef->getName();
 | 
						|
    II->Instr = &CGI;
 | 
						|
    II->AsmString = FlattenVariants(CGI.AsmString, 0);
 | 
						|
 | 
						|
    // Remove comments from the asm string.
 | 
						|
    if (!CommentDelimiter.empty()) {
 | 
						|
      size_t Idx = StringRef(II->AsmString).find(CommentDelimiter);
 | 
						|
      if (Idx != StringRef::npos)
 | 
						|
        II->AsmString = II->AsmString.substr(0, Idx);
 | 
						|
    }
 | 
						|
 | 
						|
    TokenizeAsmString(II->AsmString, II->Tokens);
 | 
						|
 | 
						|
    // Ignore instructions which shouldn't be matched.
 | 
						|
    if (!IsAssemblerInstruction(CGI.TheDef->getName(), CGI, II->Tokens))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Collect singleton registers, if used.
 | 
						|
    if (!RegisterPrefix.empty()) {
 | 
						|
      for (unsigned i = 0, e = II->Tokens.size(); i != e; ++i) {
 | 
						|
        if (II->Tokens[i].startswith(RegisterPrefix)) {
 | 
						|
          StringRef RegName = II->Tokens[i].substr(RegisterPrefix.size());
 | 
						|
          Record *Rec = getRegisterRecord(Target, RegName);
 | 
						|
          
 | 
						|
          if (!Rec) {
 | 
						|
            std::string Err = "unable to find register for '" + RegName.str() + 
 | 
						|
              "' (which matches register prefix)";
 | 
						|
            throw TGError(CGI.TheDef->getLoc(), Err);
 | 
						|
          }
 | 
						|
 | 
						|
          SingletonRegisterNames.insert(RegName);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Compute the require features.
 | 
						|
    ListInit *Predicates = CGI.TheDef->getValueAsListInit("Predicates");
 | 
						|
    for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
 | 
						|
      if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) {
 | 
						|
        // Ignore OptForSize and OptForSpeed, they aren't really requirements,
 | 
						|
        // rather they are hints to isel.
 | 
						|
        //
 | 
						|
        // FIXME: Find better way to model this.
 | 
						|
        if (Pred->getDef()->getName() == "OptForSize" ||
 | 
						|
            Pred->getDef()->getName() == "OptForSpeed")
 | 
						|
          continue;
 | 
						|
 | 
						|
        // FIXME: Total hack; for now, we just limit ourselves to In32BitMode
 | 
						|
        // and In64BitMode, because we aren't going to have the right feature
 | 
						|
        // masks for SSE and friends. We need to decide what we are going to do
 | 
						|
        // about CPU subtypes to implement this the right way.
 | 
						|
        if (Pred->getDef()->getName() != "In32BitMode" &&
 | 
						|
            Pred->getDef()->getName() != "In64BitMode")
 | 
						|
          continue;
 | 
						|
 | 
						|
        II->RequiredFeatures.push_back(getSubtargetFeature(Pred->getDef()));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    Instructions.push_back(II.take());
 | 
						|
  }
 | 
						|
 | 
						|
  // Build info for the register classes.
 | 
						|
  BuildRegisterClasses(Target, SingletonRegisterNames);
 | 
						|
 | 
						|
  // Build info for the user defined assembly operand classes.
 | 
						|
  BuildOperandClasses(Target);
 | 
						|
 | 
						|
  // Build the instruction information.
 | 
						|
  for (std::vector<InstructionInfo*>::iterator it = Instructions.begin(),
 | 
						|
         ie = Instructions.end(); it != ie; ++it) {
 | 
						|
    InstructionInfo *II = *it;
 | 
						|
    
 | 
						|
    // The first token of the instruction is the mnemonic, which must be a
 | 
						|
    // simple string.
 | 
						|
    assert(!II->Tokens.empty() && "Instruction has no tokens?");
 | 
						|
    StringRef Mnemonic = II->Tokens[0];
 | 
						|
    assert(Mnemonic[0] != '$' &&
 | 
						|
           (RegisterPrefix.empty() || !Mnemonic.startswith(RegisterPrefix)));
 | 
						|
    
 | 
						|
    // Parse the tokens after the mnemonic.
 | 
						|
    for (unsigned i = 1, e = II->Tokens.size(); i != e; ++i) {
 | 
						|
      StringRef Token = II->Tokens[i];
 | 
						|
 | 
						|
      // Check for singleton registers.
 | 
						|
      if (!RegisterPrefix.empty() && Token.startswith(RegisterPrefix)) {
 | 
						|
        StringRef RegName = II->Tokens[i].substr(RegisterPrefix.size());
 | 
						|
        InstructionInfo::Operand Op;
 | 
						|
        Op.Class = RegisterClasses[getRegisterRecord(Target, RegName)];
 | 
						|
        Op.OperandInfo = 0;
 | 
						|
        assert(Op.Class && Op.Class->Registers.size() == 1 &&
 | 
						|
               "Unexpected class for singleton register");
 | 
						|
        II->Operands.push_back(Op);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Check for simple tokens.
 | 
						|
      if (Token[0] != '$') {
 | 
						|
        InstructionInfo::Operand Op;
 | 
						|
        Op.Class = getTokenClass(Token);
 | 
						|
        Op.OperandInfo = 0;
 | 
						|
        II->Operands.push_back(Op);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Otherwise this is an operand reference.
 | 
						|
      StringRef OperandName;
 | 
						|
      if (Token[1] == '{')
 | 
						|
        OperandName = Token.substr(2, Token.size() - 3);
 | 
						|
      else
 | 
						|
        OperandName = Token.substr(1);
 | 
						|
 | 
						|
      // Map this token to an operand. FIXME: Move elsewhere.
 | 
						|
      unsigned Idx;
 | 
						|
      try {
 | 
						|
        Idx = II->Instr->getOperandNamed(OperandName);
 | 
						|
      } catch(...) {
 | 
						|
        throw std::string("error: unable to find operand: '" + 
 | 
						|
                          OperandName.str() + "'");
 | 
						|
      }
 | 
						|
 | 
						|
      // FIXME: This is annoying, the named operand may be tied (e.g.,
 | 
						|
      // XCHG8rm). What we want is the untied operand, which we now have to
 | 
						|
      // grovel for. Only worry about this for single entry operands, we have to
 | 
						|
      // clean this up anyway.
 | 
						|
      const CodeGenInstruction::OperandInfo *OI = &II->Instr->OperandList[Idx];
 | 
						|
      if (OI->Constraints[0].isTied()) {
 | 
						|
        unsigned TiedOp = OI->Constraints[0].getTiedOperand();
 | 
						|
 | 
						|
        // The tied operand index is an MIOperand index, find the operand that
 | 
						|
        // contains it.
 | 
						|
        for (unsigned i = 0, e = II->Instr->OperandList.size(); i != e; ++i) {
 | 
						|
          if (II->Instr->OperandList[i].MIOperandNo == TiedOp) {
 | 
						|
            OI = &II->Instr->OperandList[i];
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        assert(OI && "Unable to find tied operand target!");
 | 
						|
      }
 | 
						|
 | 
						|
      InstructionInfo::Operand Op;
 | 
						|
      Op.Class = getOperandClass(Token, *OI);
 | 
						|
      Op.OperandInfo = OI;
 | 
						|
      II->Operands.push_back(Op);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Reorder classes so that classes preceed super classes.
 | 
						|
  std::sort(Classes.begin(), Classes.end(), less_ptr<ClassInfo>());
 | 
						|
}
 | 
						|
 | 
						|
static std::pair<unsigned, unsigned> *
 | 
						|
GetTiedOperandAtIndex(SmallVectorImpl<std::pair<unsigned, unsigned> > &List,
 | 
						|
                      unsigned Index) {
 | 
						|
  for (unsigned i = 0, e = List.size(); i != e; ++i)
 | 
						|
    if (Index == List[i].first)
 | 
						|
      return &List[i];
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void EmitConvertToMCInst(CodeGenTarget &Target,
 | 
						|
                                std::vector<InstructionInfo*> &Infos,
 | 
						|
                                raw_ostream &OS) {
 | 
						|
  // Write the convert function to a separate stream, so we can drop it after
 | 
						|
  // the enum.
 | 
						|
  std::string ConvertFnBody;
 | 
						|
  raw_string_ostream CvtOS(ConvertFnBody);
 | 
						|
 | 
						|
  // Function we have already generated.
 | 
						|
  std::set<std::string> GeneratedFns;
 | 
						|
 | 
						|
  // Start the unified conversion function.
 | 
						|
 | 
						|
  CvtOS << "static void ConvertToMCInst(ConversionKind Kind, MCInst &Inst, "
 | 
						|
        << "unsigned Opcode,\n"
 | 
						|
        << "                      const SmallVectorImpl<MCParsedAsmOperand*"
 | 
						|
        << "> &Operands) {\n";
 | 
						|
  CvtOS << "  Inst.setOpcode(Opcode);\n";
 | 
						|
  CvtOS << "  switch (Kind) {\n";
 | 
						|
  CvtOS << "  default:\n";
 | 
						|
 | 
						|
  // Start the enum, which we will generate inline.
 | 
						|
 | 
						|
  OS << "// Unified function for converting operants to MCInst instances.\n\n";
 | 
						|
  OS << "enum ConversionKind {\n";
 | 
						|
  
 | 
						|
  // TargetOperandClass - This is the target's operand class, like X86Operand.
 | 
						|
  std::string TargetOperandClass = Target.getName() + "Operand";
 | 
						|
  
 | 
						|
  for (std::vector<InstructionInfo*>::const_iterator it = Infos.begin(),
 | 
						|
         ie = Infos.end(); it != ie; ++it) {
 | 
						|
    InstructionInfo &II = **it;
 | 
						|
 | 
						|
    // Order the (class) operands by the order to convert them into an MCInst.
 | 
						|
    SmallVector<std::pair<unsigned, unsigned>, 4> MIOperandList;
 | 
						|
    for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) {
 | 
						|
      InstructionInfo::Operand &Op = II.Operands[i];
 | 
						|
      if (Op.OperandInfo)
 | 
						|
        MIOperandList.push_back(std::make_pair(Op.OperandInfo->MIOperandNo, i));
 | 
						|
    }
 | 
						|
 | 
						|
    // Find any tied operands.
 | 
						|
    SmallVector<std::pair<unsigned, unsigned>, 4> TiedOperands;
 | 
						|
    for (unsigned i = 0, e = II.Instr->OperandList.size(); i != e; ++i) {
 | 
						|
      const CodeGenInstruction::OperandInfo &OpInfo = II.Instr->OperandList[i];
 | 
						|
      for (unsigned j = 0, e = OpInfo.Constraints.size(); j != e; ++j) {
 | 
						|
        const CodeGenInstruction::ConstraintInfo &CI = OpInfo.Constraints[j];
 | 
						|
        if (CI.isTied())
 | 
						|
          TiedOperands.push_back(std::make_pair(OpInfo.MIOperandNo + j,
 | 
						|
                                                CI.getTiedOperand()));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    std::sort(MIOperandList.begin(), MIOperandList.end());
 | 
						|
 | 
						|
    // Compute the total number of operands.
 | 
						|
    unsigned NumMIOperands = 0;
 | 
						|
    for (unsigned i = 0, e = II.Instr->OperandList.size(); i != e; ++i) {
 | 
						|
      const CodeGenInstruction::OperandInfo &OI = II.Instr->OperandList[i];
 | 
						|
      NumMIOperands = std::max(NumMIOperands, 
 | 
						|
                               OI.MIOperandNo + OI.MINumOperands);
 | 
						|
    }
 | 
						|
 | 
						|
    // Build the conversion function signature.
 | 
						|
    std::string Signature = "Convert";
 | 
						|
    unsigned CurIndex = 0;
 | 
						|
    for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) {
 | 
						|
      InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second];
 | 
						|
      assert(CurIndex <= Op.OperandInfo->MIOperandNo &&
 | 
						|
             "Duplicate match for instruction operand!");
 | 
						|
      
 | 
						|
      // Skip operands which weren't matched by anything, this occurs when the
 | 
						|
      // .td file encodes "implicit" operands as explicit ones.
 | 
						|
      //
 | 
						|
      // FIXME: This should be removed from the MCInst structure.
 | 
						|
      for (; CurIndex != Op.OperandInfo->MIOperandNo; ++CurIndex) {
 | 
						|
        std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
 | 
						|
                                                                   CurIndex);
 | 
						|
        if (!Tie)
 | 
						|
          Signature += "__Imp";
 | 
						|
        else
 | 
						|
          Signature += "__Tie" + utostr(Tie->second);
 | 
						|
      }
 | 
						|
 | 
						|
      Signature += "__";
 | 
						|
 | 
						|
      // Registers are always converted the same, don't duplicate the conversion
 | 
						|
      // function based on them.
 | 
						|
      //
 | 
						|
      // FIXME: We could generalize this based on the render method, if it
 | 
						|
      // mattered.
 | 
						|
      if (Op.Class->isRegisterClass())
 | 
						|
        Signature += "Reg";
 | 
						|
      else
 | 
						|
        Signature += Op.Class->ClassName;
 | 
						|
      Signature += utostr(Op.OperandInfo->MINumOperands);
 | 
						|
      Signature += "_" + utostr(MIOperandList[i].second);
 | 
						|
 | 
						|
      CurIndex += Op.OperandInfo->MINumOperands;
 | 
						|
    }
 | 
						|
 | 
						|
    // Add any trailing implicit operands.
 | 
						|
    for (; CurIndex != NumMIOperands; ++CurIndex) {
 | 
						|
      std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
 | 
						|
                                                                 CurIndex);
 | 
						|
      if (!Tie)
 | 
						|
        Signature += "__Imp";
 | 
						|
      else
 | 
						|
        Signature += "__Tie" + utostr(Tie->second);
 | 
						|
    }
 | 
						|
 | 
						|
    II.ConversionFnKind = Signature;
 | 
						|
 | 
						|
    // Check if we have already generated this signature.
 | 
						|
    if (!GeneratedFns.insert(Signature).second)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If not, emit it now.
 | 
						|
 | 
						|
    // Add to the enum list.
 | 
						|
    OS << "  " << Signature << ",\n";
 | 
						|
 | 
						|
    // And to the convert function.
 | 
						|
    CvtOS << "  case " << Signature << ":\n";
 | 
						|
    CurIndex = 0;
 | 
						|
    for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) {
 | 
						|
      InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second];
 | 
						|
 | 
						|
      // Add the implicit operands.
 | 
						|
      for (; CurIndex != Op.OperandInfo->MIOperandNo; ++CurIndex) {
 | 
						|
        // See if this is a tied operand.
 | 
						|
        std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
 | 
						|
                                                                   CurIndex);
 | 
						|
 | 
						|
        if (!Tie) {
 | 
						|
          // If not, this is some implicit operand. Just assume it is a register
 | 
						|
          // for now.
 | 
						|
          CvtOS << "    Inst.addOperand(MCOperand::CreateReg(0));\n";
 | 
						|
        } else {
 | 
						|
          // Copy the tied operand.
 | 
						|
          assert(Tie->first>Tie->second && "Tied operand preceeds its target!");
 | 
						|
          CvtOS << "    Inst.addOperand(Inst.getOperand("
 | 
						|
                << Tie->second << "));\n";
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      CvtOS << "    ((" << TargetOperandClass << "*)Operands["
 | 
						|
         << MIOperandList[i].second 
 | 
						|
         << "+1])->" << Op.Class->RenderMethod 
 | 
						|
         << "(Inst, " << Op.OperandInfo->MINumOperands << ");\n";
 | 
						|
      CurIndex += Op.OperandInfo->MINumOperands;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // And add trailing implicit operands.
 | 
						|
    for (; CurIndex != NumMIOperands; ++CurIndex) {
 | 
						|
      std::pair<unsigned, unsigned> *Tie = GetTiedOperandAtIndex(TiedOperands,
 | 
						|
                                                                 CurIndex);
 | 
						|
 | 
						|
      if (!Tie) {
 | 
						|
        // If not, this is some implicit operand. Just assume it is a register
 | 
						|
        // for now.
 | 
						|
        CvtOS << "    Inst.addOperand(MCOperand::CreateReg(0));\n";
 | 
						|
      } else {
 | 
						|
        // Copy the tied operand.
 | 
						|
        assert(Tie->first>Tie->second && "Tied operand preceeds its target!");
 | 
						|
        CvtOS << "    Inst.addOperand(Inst.getOperand("
 | 
						|
              << Tie->second << "));\n";
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    CvtOS << "    return;\n";
 | 
						|
  }
 | 
						|
 | 
						|
  // Finish the convert function.
 | 
						|
 | 
						|
  CvtOS << "  }\n";
 | 
						|
  CvtOS << "}\n\n";
 | 
						|
 | 
						|
  // Finish the enum, and drop the convert function after it.
 | 
						|
 | 
						|
  OS << "  NumConversionVariants\n";
 | 
						|
  OS << "};\n\n";
 | 
						|
  
 | 
						|
  OS << CvtOS.str();
 | 
						|
}
 | 
						|
 | 
						|
/// EmitMatchClassEnumeration - Emit the enumeration for match class kinds.
 | 
						|
static void EmitMatchClassEnumeration(CodeGenTarget &Target,
 | 
						|
                                      std::vector<ClassInfo*> &Infos,
 | 
						|
                                      raw_ostream &OS) {
 | 
						|
  OS << "namespace {\n\n";
 | 
						|
 | 
						|
  OS << "/// MatchClassKind - The kinds of classes which participate in\n"
 | 
						|
     << "/// instruction matching.\n";
 | 
						|
  OS << "enum MatchClassKind {\n";
 | 
						|
  OS << "  InvalidMatchClass = 0,\n";
 | 
						|
  for (std::vector<ClassInfo*>::iterator it = Infos.begin(), 
 | 
						|
         ie = Infos.end(); it != ie; ++it) {
 | 
						|
    ClassInfo &CI = **it;
 | 
						|
    OS << "  " << CI.Name << ", // ";
 | 
						|
    if (CI.Kind == ClassInfo::Token) {
 | 
						|
      OS << "'" << CI.ValueName << "'\n";
 | 
						|
    } else if (CI.isRegisterClass()) {
 | 
						|
      if (!CI.ValueName.empty())
 | 
						|
        OS << "register class '" << CI.ValueName << "'\n";
 | 
						|
      else
 | 
						|
        OS << "derived register class\n";
 | 
						|
    } else {
 | 
						|
      OS << "user defined class '" << CI.ValueName << "'\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
  OS << "  NumMatchClassKinds\n";
 | 
						|
  OS << "};\n\n";
 | 
						|
 | 
						|
  OS << "}\n\n";
 | 
						|
}
 | 
						|
 | 
						|
/// EmitClassifyOperand - Emit the function to classify an operand.
 | 
						|
static void EmitClassifyOperand(CodeGenTarget &Target,
 | 
						|
                                AsmMatcherInfo &Info,
 | 
						|
                                raw_ostream &OS) {
 | 
						|
  OS << "static MatchClassKind ClassifyOperand(MCParsedAsmOperand *GOp) {\n"
 | 
						|
     << "  " << Target.getName() << "Operand &Operand = *("
 | 
						|
     << Target.getName() << "Operand*)GOp;\n";
 | 
						|
 | 
						|
  // Classify tokens.
 | 
						|
  OS << "  if (Operand.isToken())\n";
 | 
						|
  OS << "    return MatchTokenString(Operand.getToken());\n\n";
 | 
						|
 | 
						|
  // Classify registers.
 | 
						|
  //
 | 
						|
  // FIXME: Don't hardcode isReg, getReg.
 | 
						|
  OS << "  if (Operand.isReg()) {\n";
 | 
						|
  OS << "    switch (Operand.getReg()) {\n";
 | 
						|
  OS << "    default: return InvalidMatchClass;\n";
 | 
						|
  for (std::map<Record*, ClassInfo*>::iterator 
 | 
						|
         it = Info.RegisterClasses.begin(), ie = Info.RegisterClasses.end();
 | 
						|
       it != ie; ++it)
 | 
						|
    OS << "    case " << Target.getName() << "::" 
 | 
						|
       << it->first->getName() << ": return " << it->second->Name << ";\n";
 | 
						|
  OS << "    }\n";
 | 
						|
  OS << "  }\n\n";
 | 
						|
 | 
						|
  // Classify user defined operands.
 | 
						|
  for (std::vector<ClassInfo*>::iterator it = Info.Classes.begin(), 
 | 
						|
         ie = Info.Classes.end(); it != ie; ++it) {
 | 
						|
    ClassInfo &CI = **it;
 | 
						|
 | 
						|
    if (!CI.isUserClass())
 | 
						|
      continue;
 | 
						|
 | 
						|
    OS << "  // '" << CI.ClassName << "' class";
 | 
						|
    if (!CI.SuperClasses.empty()) {
 | 
						|
      OS << ", subclass of ";
 | 
						|
      for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i) {
 | 
						|
        if (i) OS << ", ";
 | 
						|
        OS << "'" << CI.SuperClasses[i]->ClassName << "'";
 | 
						|
        assert(CI < *CI.SuperClasses[i] && "Invalid class relation!");
 | 
						|
      }
 | 
						|
    }
 | 
						|
    OS << "\n";
 | 
						|
 | 
						|
    OS << "  if (Operand." << CI.PredicateMethod << "()) {\n";
 | 
						|
      
 | 
						|
    // Validate subclass relationships.
 | 
						|
    if (!CI.SuperClasses.empty()) {
 | 
						|
      for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i)
 | 
						|
        OS << "    assert(Operand." << CI.SuperClasses[i]->PredicateMethod
 | 
						|
           << "() && \"Invalid class relationship!\");\n";
 | 
						|
    }
 | 
						|
 | 
						|
    OS << "    return " << CI.Name << ";\n";
 | 
						|
    OS << "  }\n\n";
 | 
						|
  }
 | 
						|
  OS << "  return InvalidMatchClass;\n";
 | 
						|
  OS << "}\n\n";
 | 
						|
}
 | 
						|
 | 
						|
/// EmitIsSubclass - Emit the subclass predicate function.
 | 
						|
static void EmitIsSubclass(CodeGenTarget &Target,
 | 
						|
                           std::vector<ClassInfo*> &Infos,
 | 
						|
                           raw_ostream &OS) {
 | 
						|
  OS << "/// IsSubclass - Compute whether \\arg A is a subclass of \\arg B.\n";
 | 
						|
  OS << "static bool IsSubclass(MatchClassKind A, MatchClassKind B) {\n";
 | 
						|
  OS << "  if (A == B)\n";
 | 
						|
  OS << "    return true;\n\n";
 | 
						|
 | 
						|
  OS << "  switch (A) {\n";
 | 
						|
  OS << "  default:\n";
 | 
						|
  OS << "    return false;\n";
 | 
						|
  for (std::vector<ClassInfo*>::iterator it = Infos.begin(), 
 | 
						|
         ie = Infos.end(); it != ie; ++it) {
 | 
						|
    ClassInfo &A = **it;
 | 
						|
 | 
						|
    if (A.Kind != ClassInfo::Token) {
 | 
						|
      std::vector<StringRef> SuperClasses;
 | 
						|
      for (std::vector<ClassInfo*>::iterator it = Infos.begin(), 
 | 
						|
             ie = Infos.end(); it != ie; ++it) {
 | 
						|
        ClassInfo &B = **it;
 | 
						|
 | 
						|
        if (&A != &B && A.isSubsetOf(B))
 | 
						|
          SuperClasses.push_back(B.Name);
 | 
						|
      }
 | 
						|
 | 
						|
      if (SuperClasses.empty())
 | 
						|
        continue;
 | 
						|
 | 
						|
      OS << "\n  case " << A.Name << ":\n";
 | 
						|
 | 
						|
      if (SuperClasses.size() == 1) {
 | 
						|
        OS << "    return B == " << SuperClasses.back() << ";\n";
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      OS << "    switch (B) {\n";
 | 
						|
      OS << "    default: return false;\n";
 | 
						|
      for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
 | 
						|
        OS << "    case " << SuperClasses[i] << ": return true;\n";
 | 
						|
      OS << "    }\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
  OS << "  }\n";
 | 
						|
  OS << "}\n\n";
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/// EmitMatchTokenString - Emit the function to match a token string to the
 | 
						|
/// appropriate match class value.
 | 
						|
static void EmitMatchTokenString(CodeGenTarget &Target,
 | 
						|
                                 std::vector<ClassInfo*> &Infos,
 | 
						|
                                 raw_ostream &OS) {
 | 
						|
  // Construct the match list.
 | 
						|
  std::vector<StringMatcher::StringPair> Matches;
 | 
						|
  for (std::vector<ClassInfo*>::iterator it = Infos.begin(), 
 | 
						|
         ie = Infos.end(); it != ie; ++it) {
 | 
						|
    ClassInfo &CI = **it;
 | 
						|
 | 
						|
    if (CI.Kind == ClassInfo::Token)
 | 
						|
      Matches.push_back(StringMatcher::StringPair(CI.ValueName,
 | 
						|
                                                  "return " + CI.Name + ";"));
 | 
						|
  }
 | 
						|
 | 
						|
  OS << "static MatchClassKind MatchTokenString(StringRef Name) {\n";
 | 
						|
 | 
						|
  StringMatcher("Name", Matches, OS).Emit();
 | 
						|
 | 
						|
  OS << "  return InvalidMatchClass;\n";
 | 
						|
  OS << "}\n\n";
 | 
						|
}
 | 
						|
 | 
						|
/// EmitMatchRegisterName - Emit the function to match a string to the target
 | 
						|
/// specific register enum.
 | 
						|
static void EmitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
 | 
						|
                                  raw_ostream &OS) {
 | 
						|
  // Construct the match list.
 | 
						|
  std::vector<StringMatcher::StringPair> Matches;
 | 
						|
  for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) {
 | 
						|
    const CodeGenRegister &Reg = Target.getRegisters()[i];
 | 
						|
    if (Reg.TheDef->getValueAsString("AsmName").empty())
 | 
						|
      continue;
 | 
						|
 | 
						|
    Matches.push_back(StringMatcher::StringPair(
 | 
						|
                                        Reg.TheDef->getValueAsString("AsmName"),
 | 
						|
                                        "return " + utostr(i + 1) + ";"));
 | 
						|
  }
 | 
						|
  
 | 
						|
  OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
 | 
						|
 | 
						|
  StringMatcher("Name", Matches, OS).Emit();
 | 
						|
  
 | 
						|
  OS << "  return 0;\n";
 | 
						|
  OS << "}\n\n";
 | 
						|
}
 | 
						|
 | 
						|
/// EmitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag
 | 
						|
/// definitions.
 | 
						|
static void EmitSubtargetFeatureFlagEnumeration(CodeGenTarget &Target,
 | 
						|
                                                AsmMatcherInfo &Info,
 | 
						|
                                                raw_ostream &OS) {
 | 
						|
  OS << "// Flags for subtarget features that participate in "
 | 
						|
     << "instruction matching.\n";
 | 
						|
  OS << "enum SubtargetFeatureFlag {\n";
 | 
						|
  for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
 | 
						|
         it = Info.SubtargetFeatures.begin(),
 | 
						|
         ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
 | 
						|
    SubtargetFeatureInfo &SFI = *it->second;
 | 
						|
    OS << "  " << SFI.EnumName << " = (1 << " << SFI.Index << "),\n";
 | 
						|
  }
 | 
						|
  OS << "  Feature_None = 0\n";
 | 
						|
  OS << "};\n\n";
 | 
						|
}
 | 
						|
 | 
						|
/// EmitComputeAvailableFeatures - Emit the function to compute the list of
 | 
						|
/// available features given a subtarget.
 | 
						|
static void EmitComputeAvailableFeatures(CodeGenTarget &Target,
 | 
						|
                                         AsmMatcherInfo &Info,
 | 
						|
                                         raw_ostream &OS) {
 | 
						|
  std::string ClassName =
 | 
						|
    Info.AsmParser->getValueAsString("AsmParserClassName");
 | 
						|
 | 
						|
  OS << "unsigned " << Target.getName() << ClassName << "::\n"
 | 
						|
     << "ComputeAvailableFeatures(const " << Target.getName()
 | 
						|
     << "Subtarget *Subtarget) const {\n";
 | 
						|
  OS << "  unsigned Features = 0;\n";
 | 
						|
  for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
 | 
						|
         it = Info.SubtargetFeatures.begin(),
 | 
						|
         ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
 | 
						|
    SubtargetFeatureInfo &SFI = *it->second;
 | 
						|
    OS << "  if (" << SFI.TheDef->getValueAsString("CondString")
 | 
						|
       << ")\n";
 | 
						|
    OS << "    Features |= " << SFI.EnumName << ";\n";
 | 
						|
  }
 | 
						|
  OS << "  return Features;\n";
 | 
						|
  OS << "}\n\n";
 | 
						|
}
 | 
						|
 | 
						|
void AsmMatcherEmitter::run(raw_ostream &OS) {
 | 
						|
  CodeGenTarget Target;
 | 
						|
  Record *AsmParser = Target.getAsmParser();
 | 
						|
  std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
 | 
						|
 | 
						|
  // Compute the information on the instructions to match.
 | 
						|
  AsmMatcherInfo Info(AsmParser);
 | 
						|
  Info.BuildInfo(Target);
 | 
						|
 | 
						|
  // Sort the instruction table using the partial order on classes. We use
 | 
						|
  // stable_sort to ensure that ambiguous instructions are still
 | 
						|
  // deterministically ordered.
 | 
						|
  std::stable_sort(Info.Instructions.begin(), Info.Instructions.end(),
 | 
						|
                   less_ptr<InstructionInfo>());
 | 
						|
  
 | 
						|
  DEBUG_WITH_TYPE("instruction_info", {
 | 
						|
      for (std::vector<InstructionInfo*>::iterator 
 | 
						|
             it = Info.Instructions.begin(), ie = Info.Instructions.end(); 
 | 
						|
           it != ie; ++it)
 | 
						|
        (*it)->dump();
 | 
						|
    });
 | 
						|
 | 
						|
  // Check for ambiguous instructions.
 | 
						|
  DEBUG_WITH_TYPE("ambiguous_instrs", {
 | 
						|
    unsigned NumAmbiguous = 0;
 | 
						|
    for (unsigned i = 0, e = Info.Instructions.size(); i != e; ++i) {
 | 
						|
      for (unsigned j = i + 1; j != e; ++j) {
 | 
						|
        InstructionInfo &A = *Info.Instructions[i];
 | 
						|
        InstructionInfo &B = *Info.Instructions[j];
 | 
						|
      
 | 
						|
        if (A.CouldMatchAmiguouslyWith(B)) {
 | 
						|
          errs() << "warning: ambiguous instruction match:\n";
 | 
						|
          A.dump();
 | 
						|
          errs() << "\nis incomparable with:\n";
 | 
						|
          B.dump();
 | 
						|
          errs() << "\n\n";
 | 
						|
          ++NumAmbiguous;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (NumAmbiguous)
 | 
						|
      errs() << "warning: " << NumAmbiguous 
 | 
						|
             << " ambiguous instructions!\n";
 | 
						|
  });
 | 
						|
 | 
						|
  // Write the output.
 | 
						|
 | 
						|
  EmitSourceFileHeader("Assembly Matcher Source Fragment", OS);
 | 
						|
 | 
						|
  // Information for the class declaration.
 | 
						|
  OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
 | 
						|
  OS << "#undef GET_ASSEMBLER_HEADER\n";
 | 
						|
  OS << "  // This should be included into the middle of the declaration of \n";
 | 
						|
  OS << "  // your subclasses implementation of TargetAsmParser.\n";
 | 
						|
  OS << "  unsigned ComputeAvailableFeatures(const " <<
 | 
						|
           Target.getName() << "Subtarget *Subtarget) const;\n";
 | 
						|
  OS << "  enum MatchResultTy {\n";
 | 
						|
  OS << "    Match_Success, Match_MnemonicFail, Match_InvalidOperand,\n";
 | 
						|
  OS << "    Match_MissingFeature\n";
 | 
						|
  OS << "  };\n";
 | 
						|
  OS << "  MatchResultTy MatchInstructionImpl(const SmallVectorImpl<MCParsedAsmOperand*>"
 | 
						|
     << " &Operands, MCInst &Inst, unsigned &ErrorInfo);\n\n";
 | 
						|
  OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
 | 
						|
 | 
						|
  
 | 
						|
  
 | 
						|
  
 | 
						|
  OS << "\n#ifdef GET_REGISTER_MATCHER\n";
 | 
						|
  OS << "#undef GET_REGISTER_MATCHER\n\n";
 | 
						|
 | 
						|
  // Emit the subtarget feature enumeration.
 | 
						|
  EmitSubtargetFeatureFlagEnumeration(Target, Info, OS);
 | 
						|
 | 
						|
  // Emit the function to match a register name to number.
 | 
						|
  EmitMatchRegisterName(Target, AsmParser, OS);
 | 
						|
 | 
						|
  OS << "#endif // GET_REGISTER_MATCHER\n\n";
 | 
						|
  
 | 
						|
 | 
						|
  OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
 | 
						|
  OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
 | 
						|
 | 
						|
  // Generate the unified function to convert operands into an MCInst.
 | 
						|
  EmitConvertToMCInst(Target, Info.Instructions, OS);
 | 
						|
 | 
						|
  // Emit the enumeration for classes which participate in matching.
 | 
						|
  EmitMatchClassEnumeration(Target, Info.Classes, OS);
 | 
						|
 | 
						|
  // Emit the routine to match token strings to their match class.
 | 
						|
  EmitMatchTokenString(Target, Info.Classes, OS);
 | 
						|
 | 
						|
  // Emit the routine to classify an operand.
 | 
						|
  EmitClassifyOperand(Target, Info, OS);
 | 
						|
 | 
						|
  // Emit the subclass predicate routine.
 | 
						|
  EmitIsSubclass(Target, Info.Classes, OS);
 | 
						|
 | 
						|
  // Emit the available features compute function.
 | 
						|
  EmitComputeAvailableFeatures(Target, Info, OS);
 | 
						|
 | 
						|
 | 
						|
  size_t MaxNumOperands = 0;
 | 
						|
  for (std::vector<InstructionInfo*>::const_iterator it =
 | 
						|
         Info.Instructions.begin(), ie = Info.Instructions.end();
 | 
						|
       it != ie; ++it)
 | 
						|
    MaxNumOperands = std::max(MaxNumOperands, (*it)->Operands.size());
 | 
						|
  
 | 
						|
  
 | 
						|
  // Emit the static match table; unused classes get initalized to 0 which is
 | 
						|
  // guaranteed to be InvalidMatchClass.
 | 
						|
  //
 | 
						|
  // FIXME: We can reduce the size of this table very easily. First, we change
 | 
						|
  // it so that store the kinds in separate bit-fields for each index, which
 | 
						|
  // only needs to be the max width used for classes at that index (we also need
 | 
						|
  // to reject based on this during classification). If we then make sure to
 | 
						|
  // order the match kinds appropriately (putting mnemonics last), then we
 | 
						|
  // should only end up using a few bits for each class, especially the ones
 | 
						|
  // following the mnemonic.
 | 
						|
  OS << "namespace {\n";
 | 
						|
  OS << "  struct MatchEntry {\n";
 | 
						|
  OS << "    unsigned Opcode;\n";
 | 
						|
  OS << "    const char *Mnemonic;\n";
 | 
						|
  OS << "    ConversionKind ConvertFn;\n";
 | 
						|
  OS << "    MatchClassKind Classes[" << MaxNumOperands << "];\n";
 | 
						|
  OS << "    unsigned RequiredFeatures;\n";
 | 
						|
  OS << "  };\n\n";
 | 
						|
  
 | 
						|
  OS << "// Predicate for searching for an opcode.\n";
 | 
						|
  OS << "  struct LessOpcode {\n";
 | 
						|
  OS << "    bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
 | 
						|
  OS << "      return StringRef(LHS.Mnemonic) < RHS;\n";
 | 
						|
  OS << "    }\n";
 | 
						|
  OS << "    bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
 | 
						|
  OS << "      return LHS < StringRef(RHS.Mnemonic);\n";
 | 
						|
  OS << "    }\n";
 | 
						|
  OS << "    bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
 | 
						|
  OS << "      return StringRef(LHS.Mnemonic) < StringRef(RHS.Mnemonic);\n";
 | 
						|
  OS << "    }\n";
 | 
						|
  OS << "  };\n";
 | 
						|
  
 | 
						|
  OS << "} // end anonymous namespace.\n\n";
 | 
						|
  
 | 
						|
  OS << "static const MatchEntry MatchTable["
 | 
						|
     << Info.Instructions.size() << "] = {\n";
 | 
						|
  
 | 
						|
  for (std::vector<InstructionInfo*>::const_iterator it =
 | 
						|
       Info.Instructions.begin(), ie = Info.Instructions.end();
 | 
						|
       it != ie; ++it) {
 | 
						|
    InstructionInfo &II = **it;
 | 
						|
    
 | 
						|
    OS << "  { " << Target.getName() << "::" << II.InstrName
 | 
						|
    << ", \"" << II.Tokens[0] << "\""
 | 
						|
    << ", " << II.ConversionFnKind << ", { ";
 | 
						|
    for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) {
 | 
						|
      InstructionInfo::Operand &Op = II.Operands[i];
 | 
						|
      
 | 
						|
      if (i) OS << ", ";
 | 
						|
      OS << Op.Class->Name;
 | 
						|
    }
 | 
						|
    OS << " }, ";
 | 
						|
    
 | 
						|
    // Write the required features mask.
 | 
						|
    if (!II.RequiredFeatures.empty()) {
 | 
						|
      for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
 | 
						|
        if (i) OS << "|";
 | 
						|
        OS << II.RequiredFeatures[i]->EnumName;
 | 
						|
      }
 | 
						|
    } else
 | 
						|
      OS << "0";
 | 
						|
    
 | 
						|
    OS << "},\n";
 | 
						|
  }
 | 
						|
  
 | 
						|
  OS << "};\n\n";
 | 
						|
 | 
						|
  // Finally, build the match function.
 | 
						|
  OS << Target.getName() << ClassName << "::MatchResultTy "
 | 
						|
     << Target.getName() << ClassName << "::\n"
 | 
						|
     << "MatchInstructionImpl(const SmallVectorImpl<MCParsedAsmOperand*>"
 | 
						|
     << " &Operands,\n";
 | 
						|
  OS << "                     MCInst &Inst, unsigned &ErrorInfo) {\n";
 | 
						|
 | 
						|
  // Emit code to get the available features.
 | 
						|
  OS << "  // Get the current feature set.\n";
 | 
						|
  OS << "  unsigned AvailableFeatures = getAvailableFeatures();\n\n";
 | 
						|
 | 
						|
  // Emit code to compute the class list for this operand vector.
 | 
						|
  OS << "  // Eliminate obvious mismatches.\n";
 | 
						|
  OS << "  if (Operands.size() > " << (MaxNumOperands+1) << ") {\n";
 | 
						|
  OS << "    ErrorInfo = " << (MaxNumOperands+1) << ";\n";
 | 
						|
  OS << "    return Match_InvalidOperand;\n";
 | 
						|
  OS << "  }\n\n";
 | 
						|
 | 
						|
  OS << "  // Compute the class list for this operand vector.\n";
 | 
						|
  OS << "  MatchClassKind Classes[" << MaxNumOperands << "];\n";
 | 
						|
  OS << "  for (unsigned i = 1, e = Operands.size(); i != e; ++i) {\n";
 | 
						|
  OS << "    Classes[i-1] = ClassifyOperand(Operands[i]);\n\n";
 | 
						|
 | 
						|
  OS << "    // Check for invalid operands before matching.\n";
 | 
						|
  OS << "    if (Classes[i-1] == InvalidMatchClass) {\n";
 | 
						|
  OS << "      ErrorInfo = i;\n";
 | 
						|
  OS << "      return Match_InvalidOperand;\n";
 | 
						|
  OS << "    }\n";
 | 
						|
  OS << "  }\n\n";
 | 
						|
 | 
						|
  OS << "  // Mark unused classes.\n";
 | 
						|
  OS << "  for (unsigned i = Operands.size()-1, e = " << MaxNumOperands << "; "
 | 
						|
     << "i != e; ++i)\n";
 | 
						|
  OS << "    Classes[i] = InvalidMatchClass;\n\n";
 | 
						|
 | 
						|
  OS << "  // Get the instruction mnemonic, which is the first token.\n";
 | 
						|
  OS << "  StringRef Mnemonic = ((" << Target.getName()
 | 
						|
     << "Operand*)Operands[0])->getToken();\n\n";
 | 
						|
 | 
						|
  OS << "  // Some state to try to produce better error messages.\n";
 | 
						|
  OS << "  bool HadMatchOtherThanFeatures = false;\n\n";
 | 
						|
  OS << "  // Set ErrorInfo to the operand that mismatches if it is \n";
 | 
						|
  OS << "  // wrong for all instances of the instruction.\n";
 | 
						|
  OS << "  ErrorInfo = ~0U;\n";
 | 
						|
 | 
						|
  // Emit code to search the table.
 | 
						|
  OS << "  // Search the table.\n";
 | 
						|
  OS << "  std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
 | 
						|
  OS << "    std::equal_range(MatchTable, MatchTable+"
 | 
						|
     << Info.Instructions.size() << ", Mnemonic, LessOpcode());\n\n";
 | 
						|
  
 | 
						|
  OS << "  // Return a more specific error code if no mnemonics match.\n";
 | 
						|
  OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
 | 
						|
  OS << "    return Match_MnemonicFail;\n\n";
 | 
						|
  
 | 
						|
  OS << "  for (const MatchEntry *it = MnemonicRange.first, "
 | 
						|
     << "*ie = MnemonicRange.second;\n";
 | 
						|
  OS << "       it != ie; ++it) {\n";
 | 
						|
 | 
						|
  OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
 | 
						|
  OS << "    assert(Mnemonic == it->Mnemonic);\n";
 | 
						|
  
 | 
						|
  // Emit check that the subclasses match.
 | 
						|
  OS << "    bool OperandsValid = true;\n";
 | 
						|
  OS << "    for (unsigned i = 0; i != " << MaxNumOperands << "; ++i) {\n";
 | 
						|
  OS << "      if (IsSubclass(Classes[i], it->Classes[i]))\n";
 | 
						|
  OS << "        continue;\n";
 | 
						|
  OS << "      // If this operand is broken for all of the instances of this\n";
 | 
						|
  OS << "      // mnemonic, keep track of it so we can report loc info.\n";
 | 
						|
  OS << "      if (it == MnemonicRange.first || ErrorInfo == i+1)\n";
 | 
						|
  OS << "        ErrorInfo = i+1;\n";
 | 
						|
  OS << "      else\n";
 | 
						|
  OS << "        ErrorInfo = ~0U;";
 | 
						|
  OS << "      // Otherwise, just reject this instance of the mnemonic.\n";
 | 
						|
  OS << "      OperandsValid = false;\n";
 | 
						|
  OS << "      break;\n";
 | 
						|
  OS << "    }\n\n";
 | 
						|
  
 | 
						|
  OS << "    if (!OperandsValid) continue;\n";
 | 
						|
 | 
						|
  // Emit check that the required features are available.
 | 
						|
  OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
 | 
						|
     << "!= it->RequiredFeatures) {\n";
 | 
						|
  OS << "      HadMatchOtherThanFeatures = true;\n";
 | 
						|
  OS << "      continue;\n";
 | 
						|
  OS << "    }\n";
 | 
						|
  
 | 
						|
  OS << "\n";
 | 
						|
  OS << "    ConvertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
 | 
						|
 | 
						|
  // Call the post-processing function, if used.
 | 
						|
  std::string InsnCleanupFn =
 | 
						|
    AsmParser->getValueAsString("AsmParserInstCleanup");
 | 
						|
  if (!InsnCleanupFn.empty())
 | 
						|
    OS << "    " << InsnCleanupFn << "(Inst);\n";
 | 
						|
 | 
						|
  OS << "    return Match_Success;\n";
 | 
						|
  OS << "  }\n\n";
 | 
						|
 | 
						|
  OS << "  // Okay, we had no match.  Try to return a useful error code.\n";
 | 
						|
  OS << "  if (HadMatchOtherThanFeatures) return Match_MissingFeature;\n";
 | 
						|
  OS << "  return Match_InvalidOperand;\n";
 | 
						|
  OS << "}\n\n";
 | 
						|
  
 | 
						|
  OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
 | 
						|
}
 |