mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	- Note, this is a gigantic hack, with the sole purpose of unblocking further work on the assembler (its also possible to test the mathcer more completely now). - Despite being a hack, its actually good enough to work over all of 403.gcc (although some encodings are probably incorrect). This is a testament to the beauty of X86's MachineInstr, no doubt! ;) git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80234 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1111 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1111 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file contains the pass that transforms the X86 machine instructions into
 | 
						|
// relocatable machine code.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "x86-emitter"
 | 
						|
#include "X86InstrInfo.h"
 | 
						|
#include "X86JITInfo.h"
 | 
						|
#include "X86Subtarget.h"
 | 
						|
#include "X86TargetMachine.h"
 | 
						|
#include "X86Relocations.h"
 | 
						|
#include "X86.h"
 | 
						|
#include "llvm/PassManager.h"
 | 
						|
#include "llvm/CodeGen/MachineCodeEmitter.h"
 | 
						|
#include "llvm/CodeGen/JITCodeEmitter.h"
 | 
						|
#include "llvm/CodeGen/ObjectCodeEmitter.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineModuleInfo.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/MC/MCCodeEmitter.h"
 | 
						|
#include "llvm/MC/MCInst.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumEmitted, "Number of machine instructions emitted");
 | 
						|
 | 
						|
namespace {
 | 
						|
  template<class CodeEmitter>
 | 
						|
  class VISIBILITY_HIDDEN Emitter : public MachineFunctionPass {
 | 
						|
    const X86InstrInfo  *II;
 | 
						|
    const TargetData    *TD;
 | 
						|
    X86TargetMachine    &TM;
 | 
						|
    CodeEmitter         &MCE;
 | 
						|
    intptr_t PICBaseOffset;
 | 
						|
    bool Is64BitMode;
 | 
						|
    bool IsPIC;
 | 
						|
  public:
 | 
						|
    static char ID;
 | 
						|
    explicit Emitter(X86TargetMachine &tm, CodeEmitter &mce)
 | 
						|
      : MachineFunctionPass(&ID), II(0), TD(0), TM(tm), 
 | 
						|
      MCE(mce), PICBaseOffset(0), Is64BitMode(false),
 | 
						|
      IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
 | 
						|
    Emitter(X86TargetMachine &tm, CodeEmitter &mce,
 | 
						|
            const X86InstrInfo &ii, const TargetData &td, bool is64)
 | 
						|
      : MachineFunctionPass(&ID), II(&ii), TD(&td), TM(tm), 
 | 
						|
      MCE(mce), PICBaseOffset(0), Is64BitMode(is64),
 | 
						|
      IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
 | 
						|
 | 
						|
    bool runOnMachineFunction(MachineFunction &MF);
 | 
						|
 | 
						|
    virtual const char *getPassName() const {
 | 
						|
      return "X86 Machine Code Emitter";
 | 
						|
    }
 | 
						|
 | 
						|
    void emitInstruction(const MachineInstr &MI,
 | 
						|
                         const TargetInstrDesc *Desc);
 | 
						|
    
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.setPreservesAll();
 | 
						|
      AU.addRequired<MachineModuleInfo>();
 | 
						|
      MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    void emitPCRelativeBlockAddress(MachineBasicBlock *MBB);
 | 
						|
    void emitGlobalAddress(GlobalValue *GV, unsigned Reloc,
 | 
						|
                           intptr_t Disp = 0, intptr_t PCAdj = 0,
 | 
						|
                           bool NeedStub = false, bool Indirect = false);
 | 
						|
    void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
 | 
						|
    void emitConstPoolAddress(unsigned CPI, unsigned Reloc, intptr_t Disp = 0,
 | 
						|
                              intptr_t PCAdj = 0);
 | 
						|
    void emitJumpTableAddress(unsigned JTI, unsigned Reloc,
 | 
						|
                              intptr_t PCAdj = 0);
 | 
						|
 | 
						|
    void emitDisplacementField(const MachineOperand *RelocOp, int DispVal,
 | 
						|
                               intptr_t Adj = 0, bool IsPCRel = true);
 | 
						|
 | 
						|
    void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField);
 | 
						|
    void emitRegModRMByte(unsigned RegOpcodeField);
 | 
						|
    void emitSIBByte(unsigned SS, unsigned Index, unsigned Base);
 | 
						|
    void emitConstant(uint64_t Val, unsigned Size);
 | 
						|
 | 
						|
    void emitMemModRMByte(const MachineInstr &MI,
 | 
						|
                          unsigned Op, unsigned RegOpcodeField,
 | 
						|
                          intptr_t PCAdj = 0);
 | 
						|
 | 
						|
    unsigned getX86RegNum(unsigned RegNo) const;
 | 
						|
  };
 | 
						|
 | 
						|
template<class CodeEmitter>
 | 
						|
  char Emitter<CodeEmitter>::ID = 0;
 | 
						|
} // end anonymous namespace.
 | 
						|
 | 
						|
/// createX86CodeEmitterPass - Return a pass that emits the collected X86 code
 | 
						|
/// to the specified templated MachineCodeEmitter object.
 | 
						|
 | 
						|
FunctionPass *llvm::createX86CodeEmitterPass(X86TargetMachine &TM,
 | 
						|
                                             MachineCodeEmitter &MCE) {
 | 
						|
  return new Emitter<MachineCodeEmitter>(TM, MCE);
 | 
						|
}
 | 
						|
FunctionPass *llvm::createX86JITCodeEmitterPass(X86TargetMachine &TM,
 | 
						|
                                                JITCodeEmitter &JCE) {
 | 
						|
  return new Emitter<JITCodeEmitter>(TM, JCE);
 | 
						|
}
 | 
						|
FunctionPass *llvm::createX86ObjectCodeEmitterPass(X86TargetMachine &TM,
 | 
						|
                                                   ObjectCodeEmitter &OCE) {
 | 
						|
  return new Emitter<ObjectCodeEmitter>(TM, OCE);
 | 
						|
}
 | 
						|
 | 
						|
template<class CodeEmitter>
 | 
						|
bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
 
 | 
						|
  MCE.setModuleInfo(&getAnalysis<MachineModuleInfo>());
 | 
						|
  
 | 
						|
  II = TM.getInstrInfo();
 | 
						|
  TD = TM.getTargetData();
 | 
						|
  Is64BitMode = TM.getSubtarget<X86Subtarget>().is64Bit();
 | 
						|
  IsPIC = TM.getRelocationModel() == Reloc::PIC_;
 | 
						|
  
 | 
						|
  do {
 | 
						|
    DEBUG(errs() << "JITTing function '" 
 | 
						|
          << MF.getFunction()->getName() << "'\n");
 | 
						|
    MCE.startFunction(MF);
 | 
						|
    for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); 
 | 
						|
         MBB != E; ++MBB) {
 | 
						|
      MCE.StartMachineBasicBlock(MBB);
 | 
						|
      for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
 | 
						|
           I != E; ++I) {
 | 
						|
        const TargetInstrDesc &Desc = I->getDesc();
 | 
						|
        emitInstruction(*I, &Desc);
 | 
						|
        // MOVPC32r is basically a call plus a pop instruction.
 | 
						|
        if (Desc.getOpcode() == X86::MOVPC32r)
 | 
						|
          emitInstruction(*I, &II->get(X86::POP32r));
 | 
						|
        NumEmitted++;  // Keep track of the # of mi's emitted
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } while (MCE.finishFunction(MF));
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// emitPCRelativeBlockAddress - This method keeps track of the information
 | 
						|
/// necessary to resolve the address of this block later and emits a dummy
 | 
						|
/// value.
 | 
						|
///
 | 
						|
template<class CodeEmitter>
 | 
						|
void Emitter<CodeEmitter>::emitPCRelativeBlockAddress(MachineBasicBlock *MBB) {
 | 
						|
  // Remember where this reference was and where it is to so we can
 | 
						|
  // deal with it later.
 | 
						|
  MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
 | 
						|
                                             X86::reloc_pcrel_word, MBB));
 | 
						|
  MCE.emitWordLE(0);
 | 
						|
}
 | 
						|
 | 
						|
/// emitGlobalAddress - Emit the specified address to the code stream assuming
 | 
						|
/// this is part of a "take the address of a global" instruction.
 | 
						|
///
 | 
						|
template<class CodeEmitter>
 | 
						|
void Emitter<CodeEmitter>::emitGlobalAddress(GlobalValue *GV, unsigned Reloc,
 | 
						|
                                intptr_t Disp /* = 0 */,
 | 
						|
                                intptr_t PCAdj /* = 0 */,
 | 
						|
                                bool NeedStub /* = false */,
 | 
						|
                                bool Indirect /* = false */) {
 | 
						|
  intptr_t RelocCST = Disp;
 | 
						|
  if (Reloc == X86::reloc_picrel_word)
 | 
						|
    RelocCST = PICBaseOffset;
 | 
						|
  else if (Reloc == X86::reloc_pcrel_word)
 | 
						|
    RelocCST = PCAdj;
 | 
						|
  MachineRelocation MR = Indirect
 | 
						|
    ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
 | 
						|
                                           GV, RelocCST, NeedStub)
 | 
						|
    : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
 | 
						|
                               GV, RelocCST, NeedStub);
 | 
						|
  MCE.addRelocation(MR);
 | 
						|
  // The relocated value will be added to the displacement
 | 
						|
  if (Reloc == X86::reloc_absolute_dword)
 | 
						|
    MCE.emitDWordLE(Disp);
 | 
						|
  else
 | 
						|
    MCE.emitWordLE((int32_t)Disp);
 | 
						|
}
 | 
						|
 | 
						|
/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
 | 
						|
/// be emitted to the current location in the function, and allow it to be PC
 | 
						|
/// relative.
 | 
						|
template<class CodeEmitter>
 | 
						|
void Emitter<CodeEmitter>::emitExternalSymbolAddress(const char *ES,
 | 
						|
                                                     unsigned Reloc) {
 | 
						|
  intptr_t RelocCST = (Reloc == X86::reloc_picrel_word) ? PICBaseOffset : 0;
 | 
						|
  MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
 | 
						|
                                                 Reloc, ES, RelocCST));
 | 
						|
  if (Reloc == X86::reloc_absolute_dword)
 | 
						|
    MCE.emitDWordLE(0);
 | 
						|
  else
 | 
						|
    MCE.emitWordLE(0);
 | 
						|
}
 | 
						|
 | 
						|
/// emitConstPoolAddress - Arrange for the address of an constant pool
 | 
						|
/// to be emitted to the current location in the function, and allow it to be PC
 | 
						|
/// relative.
 | 
						|
template<class CodeEmitter>
 | 
						|
void Emitter<CodeEmitter>::emitConstPoolAddress(unsigned CPI, unsigned Reloc,
 | 
						|
                                   intptr_t Disp /* = 0 */,
 | 
						|
                                   intptr_t PCAdj /* = 0 */) {
 | 
						|
  intptr_t RelocCST = 0;
 | 
						|
  if (Reloc == X86::reloc_picrel_word)
 | 
						|
    RelocCST = PICBaseOffset;
 | 
						|
  else if (Reloc == X86::reloc_pcrel_word)
 | 
						|
    RelocCST = PCAdj;
 | 
						|
  MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
 | 
						|
                                                    Reloc, CPI, RelocCST));
 | 
						|
  // The relocated value will be added to the displacement
 | 
						|
  if (Reloc == X86::reloc_absolute_dword)
 | 
						|
    MCE.emitDWordLE(Disp);
 | 
						|
  else
 | 
						|
    MCE.emitWordLE((int32_t)Disp);
 | 
						|
}
 | 
						|
 | 
						|
/// emitJumpTableAddress - Arrange for the address of a jump table to
 | 
						|
/// be emitted to the current location in the function, and allow it to be PC
 | 
						|
/// relative.
 | 
						|
template<class CodeEmitter>
 | 
						|
void Emitter<CodeEmitter>::emitJumpTableAddress(unsigned JTI, unsigned Reloc,
 | 
						|
                                   intptr_t PCAdj /* = 0 */) {
 | 
						|
  intptr_t RelocCST = 0;
 | 
						|
  if (Reloc == X86::reloc_picrel_word)
 | 
						|
    RelocCST = PICBaseOffset;
 | 
						|
  else if (Reloc == X86::reloc_pcrel_word)
 | 
						|
    RelocCST = PCAdj;
 | 
						|
  MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
 | 
						|
                                                    Reloc, JTI, RelocCST));
 | 
						|
  // The relocated value will be added to the displacement
 | 
						|
  if (Reloc == X86::reloc_absolute_dword)
 | 
						|
    MCE.emitDWordLE(0);
 | 
						|
  else
 | 
						|
    MCE.emitWordLE(0);
 | 
						|
}
 | 
						|
 | 
						|
template<class CodeEmitter>
 | 
						|
unsigned Emitter<CodeEmitter>::getX86RegNum(unsigned RegNo) const {
 | 
						|
  return II->getRegisterInfo().getX86RegNum(RegNo);
 | 
						|
}
 | 
						|
 | 
						|
inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
 | 
						|
                                      unsigned RM) {
 | 
						|
  assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
 | 
						|
  return RM | (RegOpcode << 3) | (Mod << 6);
 | 
						|
}
 | 
						|
 | 
						|
template<class CodeEmitter>
 | 
						|
void Emitter<CodeEmitter>::emitRegModRMByte(unsigned ModRMReg,
 | 
						|
                                            unsigned RegOpcodeFld){
 | 
						|
  MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)));
 | 
						|
}
 | 
						|
 | 
						|
template<class CodeEmitter>
 | 
						|
void Emitter<CodeEmitter>::emitRegModRMByte(unsigned RegOpcodeFld) {
 | 
						|
  MCE.emitByte(ModRMByte(3, RegOpcodeFld, 0));
 | 
						|
}
 | 
						|
 | 
						|
template<class CodeEmitter>
 | 
						|
void Emitter<CodeEmitter>::emitSIBByte(unsigned SS, 
 | 
						|
                                       unsigned Index,
 | 
						|
                                       unsigned Base) {
 | 
						|
  // SIB byte is in the same format as the ModRMByte...
 | 
						|
  MCE.emitByte(ModRMByte(SS, Index, Base));
 | 
						|
}
 | 
						|
 | 
						|
template<class CodeEmitter>
 | 
						|
void Emitter<CodeEmitter>::emitConstant(uint64_t Val, unsigned Size) {
 | 
						|
  // Output the constant in little endian byte order...
 | 
						|
  for (unsigned i = 0; i != Size; ++i) {
 | 
						|
    MCE.emitByte(Val & 255);
 | 
						|
    Val >>= 8;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// isDisp8 - Return true if this signed displacement fits in a 8-bit 
 | 
						|
/// sign-extended field. 
 | 
						|
static bool isDisp8(int Value) {
 | 
						|
  return Value == (signed char)Value;
 | 
						|
}
 | 
						|
 | 
						|
static bool gvNeedsNonLazyPtr(const MachineOperand &GVOp,
 | 
						|
                              const TargetMachine &TM) {
 | 
						|
  // For Darwin-64, simulate the linktime GOT by using the same non-lazy-pointer
 | 
						|
  // mechanism as 32-bit mode.
 | 
						|
  if (TM.getSubtarget<X86Subtarget>().is64Bit() && 
 | 
						|
      !TM.getSubtarget<X86Subtarget>().isTargetDarwin())
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // Return true if this is a reference to a stub containing the address of the
 | 
						|
  // global, not the global itself.
 | 
						|
  return isGlobalStubReference(GVOp.getTargetFlags());
 | 
						|
}
 | 
						|
 | 
						|
template<class CodeEmitter>
 | 
						|
void Emitter<CodeEmitter>::emitDisplacementField(const MachineOperand *RelocOp,
 | 
						|
                                                 int DispVal,
 | 
						|
                                                 intptr_t Adj /* = 0 */,
 | 
						|
                                                 bool IsPCRel /* = true */) {
 | 
						|
  // If this is a simple integer displacement that doesn't require a relocation,
 | 
						|
  // emit it now.
 | 
						|
  if (!RelocOp) {
 | 
						|
    emitConstant(DispVal, 4);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, this is something that requires a relocation.  Emit it as such
 | 
						|
  // now.
 | 
						|
  if (RelocOp->isGlobal()) {
 | 
						|
    // In 64-bit static small code model, we could potentially emit absolute.
 | 
						|
    // But it's probably not beneficial. If the MCE supports using RIP directly
 | 
						|
    // do it, otherwise fallback to absolute (this is determined by IsPCRel). 
 | 
						|
    //  89 05 00 00 00 00     mov    %eax,0(%rip)  # PC-relative
 | 
						|
    //  89 04 25 00 00 00 00  mov    %eax,0x0      # Absolute
 | 
						|
    unsigned rt = Is64BitMode ?
 | 
						|
      (IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext)
 | 
						|
      : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
 | 
						|
    bool NeedStub = isa<Function>(RelocOp->getGlobal());
 | 
						|
    bool Indirect = gvNeedsNonLazyPtr(*RelocOp, TM);
 | 
						|
    emitGlobalAddress(RelocOp->getGlobal(), rt, RelocOp->getOffset(),
 | 
						|
                      Adj, NeedStub, Indirect);
 | 
						|
  } else if (RelocOp->isCPI()) {
 | 
						|
    unsigned rt = Is64BitMode ?
 | 
						|
      (IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext)
 | 
						|
      : (IsPCRel ? X86::reloc_picrel_word : X86::reloc_absolute_word);
 | 
						|
    emitConstPoolAddress(RelocOp->getIndex(), rt,
 | 
						|
                         RelocOp->getOffset(), Adj);
 | 
						|
  } else if (RelocOp->isJTI()) {
 | 
						|
    unsigned rt = Is64BitMode ?
 | 
						|
      (IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext)
 | 
						|
      : (IsPCRel ? X86::reloc_picrel_word : X86::reloc_absolute_word);
 | 
						|
    emitJumpTableAddress(RelocOp->getIndex(), rt, Adj);
 | 
						|
  } else {
 | 
						|
    llvm_unreachable("Unknown value to relocate!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template<class CodeEmitter>
 | 
						|
void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI,
 | 
						|
                                            unsigned Op,unsigned RegOpcodeField,
 | 
						|
                                            intptr_t PCAdj) {
 | 
						|
  const MachineOperand &Op3 = MI.getOperand(Op+3);
 | 
						|
  int DispVal = 0;
 | 
						|
  const MachineOperand *DispForReloc = 0;
 | 
						|
  
 | 
						|
  // Figure out what sort of displacement we have to handle here.
 | 
						|
  if (Op3.isGlobal()) {
 | 
						|
    DispForReloc = &Op3;
 | 
						|
  } else if (Op3.isCPI()) {
 | 
						|
    if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
 | 
						|
      DispForReloc = &Op3;
 | 
						|
    } else {
 | 
						|
      DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex());
 | 
						|
      DispVal += Op3.getOffset();
 | 
						|
    }
 | 
						|
  } else if (Op3.isJTI()) {
 | 
						|
    if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
 | 
						|
      DispForReloc = &Op3;
 | 
						|
    } else {
 | 
						|
      DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex());
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    DispVal = Op3.getImm();
 | 
						|
  }
 | 
						|
 | 
						|
  const MachineOperand &Base     = MI.getOperand(Op);
 | 
						|
  const MachineOperand &Scale    = MI.getOperand(Op+1);
 | 
						|
  const MachineOperand &IndexReg = MI.getOperand(Op+2);
 | 
						|
 | 
						|
  unsigned BaseReg = Base.getReg();
 | 
						|
 | 
						|
  // Indicate that the displacement will use an pcrel or absolute reference
 | 
						|
  // by default. MCEs able to resolve addresses on-the-fly use pcrel by default
 | 
						|
  // while others, unless explicit asked to use RIP, use absolute references.
 | 
						|
  bool IsPCRel = MCE.earlyResolveAddresses() ? true : false;
 | 
						|
 | 
						|
  // Is a SIB byte needed?
 | 
						|
  // If no BaseReg, issue a RIP relative instruction only if the MCE can 
 | 
						|
  // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
 | 
						|
  // 2-7) and absolute references.
 | 
						|
  if ((!Is64BitMode || DispForReloc || BaseReg != 0) &&
 | 
						|
      IndexReg.getReg() == 0 && 
 | 
						|
      ((BaseReg == 0 && MCE.earlyResolveAddresses()) || BaseReg == X86::RIP || 
 | 
						|
       (BaseReg != 0 && getX86RegNum(BaseReg) != N86::ESP))) {
 | 
						|
    if (BaseReg == 0 || BaseReg == X86::RIP) {  // Just a displacement?
 | 
						|
      // Emit special case [disp32] encoding
 | 
						|
      MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
 | 
						|
      emitDisplacementField(DispForReloc, DispVal, PCAdj, true);
 | 
						|
    } else {
 | 
						|
      unsigned BaseRegNo = getX86RegNum(BaseReg);
 | 
						|
      if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
 | 
						|
        // Emit simple indirect register encoding... [EAX] f.e.
 | 
						|
        MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo));
 | 
						|
      } else if (!DispForReloc && isDisp8(DispVal)) {
 | 
						|
        // Emit the disp8 encoding... [REG+disp8]
 | 
						|
        MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo));
 | 
						|
        emitConstant(DispVal, 1);
 | 
						|
      } else {
 | 
						|
        // Emit the most general non-SIB encoding: [REG+disp32]
 | 
						|
        MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo));
 | 
						|
        emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  } else {  // We need a SIB byte, so start by outputting the ModR/M byte first
 | 
						|
    assert(IndexReg.getReg() != X86::ESP &&
 | 
						|
           IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
 | 
						|
 | 
						|
    bool ForceDisp32 = false;
 | 
						|
    bool ForceDisp8  = false;
 | 
						|
    if (BaseReg == 0) {
 | 
						|
      // If there is no base register, we emit the special case SIB byte with
 | 
						|
      // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
 | 
						|
      MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
 | 
						|
      ForceDisp32 = true;
 | 
						|
    } else if (DispForReloc) {
 | 
						|
      // Emit the normal disp32 encoding.
 | 
						|
      MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
 | 
						|
      ForceDisp32 = true;
 | 
						|
    } else if (DispVal == 0 && getX86RegNum(BaseReg) != N86::EBP) {
 | 
						|
      // Emit no displacement ModR/M byte
 | 
						|
      MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
 | 
						|
    } else if (isDisp8(DispVal)) {
 | 
						|
      // Emit the disp8 encoding...
 | 
						|
      MCE.emitByte(ModRMByte(1, RegOpcodeField, 4));
 | 
						|
      ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
 | 
						|
    } else {
 | 
						|
      // Emit the normal disp32 encoding...
 | 
						|
      MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
 | 
						|
    }
 | 
						|
 | 
						|
    // Calculate what the SS field value should be...
 | 
						|
    static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
 | 
						|
    unsigned SS = SSTable[Scale.getImm()];
 | 
						|
 | 
						|
    if (BaseReg == 0) {
 | 
						|
      // Handle the SIB byte for the case where there is no base, see Intel 
 | 
						|
      // Manual 2A, table 2-7. The displacement has already been output.
 | 
						|
      unsigned IndexRegNo;
 | 
						|
      if (IndexReg.getReg())
 | 
						|
        IndexRegNo = getX86RegNum(IndexReg.getReg());
 | 
						|
      else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
 | 
						|
        IndexRegNo = 4;
 | 
						|
      emitSIBByte(SS, IndexRegNo, 5);
 | 
						|
    } else {
 | 
						|
      unsigned BaseRegNo = getX86RegNum(BaseReg);
 | 
						|
      unsigned IndexRegNo;
 | 
						|
      if (IndexReg.getReg())
 | 
						|
        IndexRegNo = getX86RegNum(IndexReg.getReg());
 | 
						|
      else
 | 
						|
        IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
 | 
						|
      emitSIBByte(SS, IndexRegNo, BaseRegNo);
 | 
						|
    }
 | 
						|
 | 
						|
    // Do we need to output a displacement?
 | 
						|
    if (ForceDisp8) {
 | 
						|
      emitConstant(DispVal, 1);
 | 
						|
    } else if (DispVal != 0 || ForceDisp32) {
 | 
						|
      emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template<class CodeEmitter>
 | 
						|
void Emitter<CodeEmitter>::emitInstruction(const MachineInstr &MI,
 | 
						|
                                           const TargetInstrDesc *Desc) {
 | 
						|
  DEBUG(errs() << MI);
 | 
						|
 | 
						|
  MCE.processDebugLoc(MI.getDebugLoc());
 | 
						|
 | 
						|
  unsigned Opcode = Desc->Opcode;
 | 
						|
 | 
						|
  // Emit the lock opcode prefix as needed.
 | 
						|
  if (Desc->TSFlags & X86II::LOCK)
 | 
						|
    MCE.emitByte(0xF0);
 | 
						|
 | 
						|
  // Emit segment override opcode prefix as needed.
 | 
						|
  switch (Desc->TSFlags & X86II::SegOvrMask) {
 | 
						|
  case X86II::FS:
 | 
						|
    MCE.emitByte(0x64);
 | 
						|
    break;
 | 
						|
  case X86II::GS:
 | 
						|
    MCE.emitByte(0x65);
 | 
						|
    break;
 | 
						|
  default: llvm_unreachable("Invalid segment!");
 | 
						|
  case 0: break;  // No segment override!
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit the repeat opcode prefix as needed.
 | 
						|
  if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP)
 | 
						|
    MCE.emitByte(0xF3);
 | 
						|
 | 
						|
  // Emit the operand size opcode prefix as needed.
 | 
						|
  if (Desc->TSFlags & X86II::OpSize)
 | 
						|
    MCE.emitByte(0x66);
 | 
						|
 | 
						|
  // Emit the address size opcode prefix as needed.
 | 
						|
  if (Desc->TSFlags & X86II::AdSize)
 | 
						|
    MCE.emitByte(0x67);
 | 
						|
 | 
						|
  bool Need0FPrefix = false;
 | 
						|
  switch (Desc->TSFlags & X86II::Op0Mask) {
 | 
						|
  case X86II::TB:  // Two-byte opcode prefix
 | 
						|
  case X86II::T8:  // 0F 38
 | 
						|
  case X86II::TA:  // 0F 3A
 | 
						|
    Need0FPrefix = true;
 | 
						|
    break;
 | 
						|
  case X86II::TF: // F2 0F 38
 | 
						|
    MCE.emitByte(0xF2);
 | 
						|
    Need0FPrefix = true;
 | 
						|
    break;
 | 
						|
  case X86II::REP: break; // already handled.
 | 
						|
  case X86II::XS:   // F3 0F
 | 
						|
    MCE.emitByte(0xF3);
 | 
						|
    Need0FPrefix = true;
 | 
						|
    break;
 | 
						|
  case X86II::XD:   // F2 0F
 | 
						|
    MCE.emitByte(0xF2);
 | 
						|
    Need0FPrefix = true;
 | 
						|
    break;
 | 
						|
  case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
 | 
						|
  case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
 | 
						|
    MCE.emitByte(0xD8+
 | 
						|
                 (((Desc->TSFlags & X86II::Op0Mask)-X86II::D8)
 | 
						|
                                   >> X86II::Op0Shift));
 | 
						|
    break; // Two-byte opcode prefix
 | 
						|
  default: llvm_unreachable("Invalid prefix!");
 | 
						|
  case 0: break;  // No prefix!
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle REX prefix.
 | 
						|
  if (Is64BitMode) {
 | 
						|
    if (unsigned REX = X86InstrInfo::determineREX(MI))
 | 
						|
      MCE.emitByte(0x40 | REX);
 | 
						|
  }
 | 
						|
 | 
						|
  // 0x0F escape code must be emitted just before the opcode.
 | 
						|
  if (Need0FPrefix)
 | 
						|
    MCE.emitByte(0x0F);
 | 
						|
 | 
						|
  switch (Desc->TSFlags & X86II::Op0Mask) {
 | 
						|
  case X86II::TF:    // F2 0F 38
 | 
						|
  case X86II::T8:    // 0F 38
 | 
						|
    MCE.emitByte(0x38);
 | 
						|
    break;
 | 
						|
  case X86II::TA:    // 0F 3A
 | 
						|
    MCE.emitByte(0x3A);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a two-address instruction, skip one of the register operands.
 | 
						|
  unsigned NumOps = Desc->getNumOperands();
 | 
						|
  unsigned CurOp = 0;
 | 
						|
  if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
 | 
						|
    ++CurOp;
 | 
						|
  else if (NumOps > 2 && Desc->getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
 | 
						|
    // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
 | 
						|
    --NumOps;
 | 
						|
 | 
						|
  unsigned char BaseOpcode = II->getBaseOpcodeFor(Desc);
 | 
						|
  switch (Desc->TSFlags & X86II::FormMask) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!");
 | 
						|
  case X86II::Pseudo:
 | 
						|
    // Remember the current PC offset, this is the PIC relocation
 | 
						|
    // base address.
 | 
						|
    switch (Opcode) {
 | 
						|
    default: 
 | 
						|
      llvm_unreachable("psuedo instructions should be removed before code"
 | 
						|
                       " emission");
 | 
						|
      break;
 | 
						|
    case TargetInstrInfo::INLINEASM:
 | 
						|
      // We allow inline assembler nodes with empty bodies - they can
 | 
						|
      // implicitly define registers, which is ok for JIT.
 | 
						|
      assert(MI.getOperand(0).getSymbolName()[0] == 0 && 
 | 
						|
             "JIT does not support inline asm!");
 | 
						|
      break;
 | 
						|
    case TargetInstrInfo::DBG_LABEL:
 | 
						|
    case TargetInstrInfo::EH_LABEL:
 | 
						|
      MCE.emitLabel(MI.getOperand(0).getImm());
 | 
						|
      break;
 | 
						|
    case TargetInstrInfo::IMPLICIT_DEF:
 | 
						|
    case X86::DWARF_LOC:
 | 
						|
    case X86::FP_REG_KILL:
 | 
						|
      break;
 | 
						|
    case X86::MOVPC32r: {
 | 
						|
      // This emits the "call" portion of this pseudo instruction.
 | 
						|
      MCE.emitByte(BaseOpcode);
 | 
						|
      emitConstant(0, X86InstrInfo::sizeOfImm(Desc));
 | 
						|
      // Remember PIC base.
 | 
						|
      PICBaseOffset = (intptr_t) MCE.getCurrentPCOffset();
 | 
						|
      X86JITInfo *JTI = TM.getJITInfo();
 | 
						|
      JTI->setPICBase(MCE.getCurrentPCValue());
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    }
 | 
						|
    CurOp = NumOps;
 | 
						|
    break;
 | 
						|
  case X86II::RawFrm: {
 | 
						|
    MCE.emitByte(BaseOpcode);
 | 
						|
 | 
						|
    if (CurOp == NumOps)
 | 
						|
      break;
 | 
						|
      
 | 
						|
    const MachineOperand &MO = MI.getOperand(CurOp++);
 | 
						|
 | 
						|
    DEBUG(errs() << "RawFrm CurOp " << CurOp << "\n");
 | 
						|
    DEBUG(errs() << "isMBB " << MO.isMBB() << "\n");
 | 
						|
    DEBUG(errs() << "isGlobal " << MO.isGlobal() << "\n");
 | 
						|
    DEBUG(errs() << "isSymbol " << MO.isSymbol() << "\n");
 | 
						|
    DEBUG(errs() << "isImm " << MO.isImm() << "\n");
 | 
						|
 | 
						|
    if (MO.isMBB()) {
 | 
						|
      emitPCRelativeBlockAddress(MO.getMBB());
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (MO.isGlobal()) {
 | 
						|
      // Assume undefined functions may be outside the Small codespace.
 | 
						|
      bool NeedStub = 
 | 
						|
        (Is64BitMode && 
 | 
						|
            (TM.getCodeModel() == CodeModel::Large ||
 | 
						|
             TM.getSubtarget<X86Subtarget>().isTargetDarwin())) ||
 | 
						|
        Opcode == X86::TAILJMPd;
 | 
						|
      emitGlobalAddress(MO.getGlobal(), X86::reloc_pcrel_word,
 | 
						|
                        MO.getOffset(), 0, NeedStub);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (MO.isSymbol()) {
 | 
						|
      emitExternalSymbolAddress(MO.getSymbolName(), X86::reloc_pcrel_word);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    assert(MO.isImm() && "Unknown RawFrm operand!");
 | 
						|
    if (Opcode == X86::CALLpcrel32 || Opcode == X86::CALL64pcrel32) {
 | 
						|
      // Fix up immediate operand for pc relative calls.
 | 
						|
      intptr_t Imm = (intptr_t)MO.getImm();
 | 
						|
      Imm = Imm - MCE.getCurrentPCValue() - 4;
 | 
						|
      emitConstant(Imm, X86InstrInfo::sizeOfImm(Desc));
 | 
						|
    } else
 | 
						|
      emitConstant(MO.getImm(), X86InstrInfo::sizeOfImm(Desc));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
      
 | 
						|
  case X86II::AddRegFrm: {
 | 
						|
    MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg()));
 | 
						|
    
 | 
						|
    if (CurOp == NumOps)
 | 
						|
      break;
 | 
						|
      
 | 
						|
    const MachineOperand &MO1 = MI.getOperand(CurOp++);
 | 
						|
    unsigned Size = X86InstrInfo::sizeOfImm(Desc);
 | 
						|
    if (MO1.isImm()) {
 | 
						|
      emitConstant(MO1.getImm(), Size);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
 | 
						|
      : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
 | 
						|
    if (Opcode == X86::MOV64ri64i32)
 | 
						|
      rt = X86::reloc_absolute_word;  // FIXME: add X86II flag?
 | 
						|
    // This should not occur on Darwin for relocatable objects.
 | 
						|
    if (Opcode == X86::MOV64ri)
 | 
						|
      rt = X86::reloc_absolute_dword;  // FIXME: add X86II flag?
 | 
						|
    if (MO1.isGlobal()) {
 | 
						|
      bool NeedStub = isa<Function>(MO1.getGlobal());
 | 
						|
      bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
 | 
						|
      emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
 | 
						|
                        NeedStub, Indirect);
 | 
						|
    } else if (MO1.isSymbol())
 | 
						|
      emitExternalSymbolAddress(MO1.getSymbolName(), rt);
 | 
						|
    else if (MO1.isCPI())
 | 
						|
      emitConstPoolAddress(MO1.getIndex(), rt);
 | 
						|
    else if (MO1.isJTI())
 | 
						|
      emitJumpTableAddress(MO1.getIndex(), rt);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case X86II::MRMDestReg: {
 | 
						|
    MCE.emitByte(BaseOpcode);
 | 
						|
    emitRegModRMByte(MI.getOperand(CurOp).getReg(),
 | 
						|
                     getX86RegNum(MI.getOperand(CurOp+1).getReg()));
 | 
						|
    CurOp += 2;
 | 
						|
    if (CurOp != NumOps)
 | 
						|
      emitConstant(MI.getOperand(CurOp++).getImm(),
 | 
						|
                   X86InstrInfo::sizeOfImm(Desc));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case X86II::MRMDestMem: {
 | 
						|
    MCE.emitByte(BaseOpcode);
 | 
						|
    emitMemModRMByte(MI, CurOp,
 | 
						|
                     getX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)
 | 
						|
                                  .getReg()));
 | 
						|
    CurOp +=  X86AddrNumOperands + 1;
 | 
						|
    if (CurOp != NumOps)
 | 
						|
      emitConstant(MI.getOperand(CurOp++).getImm(),
 | 
						|
                   X86InstrInfo::sizeOfImm(Desc));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case X86II::MRMSrcReg:
 | 
						|
    MCE.emitByte(BaseOpcode);
 | 
						|
    emitRegModRMByte(MI.getOperand(CurOp+1).getReg(),
 | 
						|
                     getX86RegNum(MI.getOperand(CurOp).getReg()));
 | 
						|
    CurOp += 2;
 | 
						|
    if (CurOp != NumOps)
 | 
						|
      emitConstant(MI.getOperand(CurOp++).getImm(),
 | 
						|
                   X86InstrInfo::sizeOfImm(Desc));
 | 
						|
    break;
 | 
						|
 | 
						|
  case X86II::MRMSrcMem: {
 | 
						|
    // FIXME: Maybe lea should have its own form?
 | 
						|
    int AddrOperands;
 | 
						|
    if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
 | 
						|
        Opcode == X86::LEA16r || Opcode == X86::LEA32r)
 | 
						|
      AddrOperands = X86AddrNumOperands - 1; // No segment register
 | 
						|
    else
 | 
						|
      AddrOperands = X86AddrNumOperands;
 | 
						|
 | 
						|
    intptr_t PCAdj = (CurOp + AddrOperands + 1 != NumOps) ?
 | 
						|
      X86InstrInfo::sizeOfImm(Desc) : 0;
 | 
						|
 | 
						|
    MCE.emitByte(BaseOpcode);
 | 
						|
    emitMemModRMByte(MI, CurOp+1, getX86RegNum(MI.getOperand(CurOp).getReg()),
 | 
						|
                     PCAdj);
 | 
						|
    CurOp += AddrOperands + 1;
 | 
						|
    if (CurOp != NumOps)
 | 
						|
      emitConstant(MI.getOperand(CurOp++).getImm(),
 | 
						|
                   X86InstrInfo::sizeOfImm(Desc));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case X86II::MRM0r: case X86II::MRM1r:
 | 
						|
  case X86II::MRM2r: case X86II::MRM3r:
 | 
						|
  case X86II::MRM4r: case X86II::MRM5r:
 | 
						|
  case X86II::MRM6r: case X86II::MRM7r: {
 | 
						|
    MCE.emitByte(BaseOpcode);
 | 
						|
 | 
						|
    // Special handling of lfence, mfence, monitor, and mwait.
 | 
						|
    if (Desc->getOpcode() == X86::LFENCE ||
 | 
						|
        Desc->getOpcode() == X86::MFENCE ||
 | 
						|
        Desc->getOpcode() == X86::MONITOR ||
 | 
						|
        Desc->getOpcode() == X86::MWAIT) {
 | 
						|
      emitRegModRMByte((Desc->TSFlags & X86II::FormMask)-X86II::MRM0r);
 | 
						|
 | 
						|
      switch (Desc->getOpcode()) {
 | 
						|
      default: break;
 | 
						|
      case X86::MONITOR:
 | 
						|
        MCE.emitByte(0xC8);
 | 
						|
        break;
 | 
						|
      case X86::MWAIT:
 | 
						|
        MCE.emitByte(0xC9);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      emitRegModRMByte(MI.getOperand(CurOp++).getReg(),
 | 
						|
                       (Desc->TSFlags & X86II::FormMask)-X86II::MRM0r);
 | 
						|
    }
 | 
						|
 | 
						|
    if (CurOp == NumOps)
 | 
						|
      break;
 | 
						|
    
 | 
						|
    const MachineOperand &MO1 = MI.getOperand(CurOp++);
 | 
						|
    unsigned Size = X86InstrInfo::sizeOfImm(Desc);
 | 
						|
    if (MO1.isImm()) {
 | 
						|
      emitConstant(MO1.getImm(), Size);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
 | 
						|
      : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
 | 
						|
    if (Opcode == X86::MOV64ri32)
 | 
						|
      rt = X86::reloc_absolute_word_sext;  // FIXME: add X86II flag?
 | 
						|
    if (MO1.isGlobal()) {
 | 
						|
      bool NeedStub = isa<Function>(MO1.getGlobal());
 | 
						|
      bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
 | 
						|
      emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
 | 
						|
                        NeedStub, Indirect);
 | 
						|
    } else if (MO1.isSymbol())
 | 
						|
      emitExternalSymbolAddress(MO1.getSymbolName(), rt);
 | 
						|
    else if (MO1.isCPI())
 | 
						|
      emitConstPoolAddress(MO1.getIndex(), rt);
 | 
						|
    else if (MO1.isJTI())
 | 
						|
      emitJumpTableAddress(MO1.getIndex(), rt);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case X86II::MRM0m: case X86II::MRM1m:
 | 
						|
  case X86II::MRM2m: case X86II::MRM3m:
 | 
						|
  case X86II::MRM4m: case X86II::MRM5m:
 | 
						|
  case X86II::MRM6m: case X86II::MRM7m: {
 | 
						|
    intptr_t PCAdj = (CurOp + X86AddrNumOperands != NumOps) ?
 | 
						|
      (MI.getOperand(CurOp+X86AddrNumOperands).isImm() ? 
 | 
						|
          X86InstrInfo::sizeOfImm(Desc) : 4) : 0;
 | 
						|
 | 
						|
    MCE.emitByte(BaseOpcode);
 | 
						|
    emitMemModRMByte(MI, CurOp, (Desc->TSFlags & X86II::FormMask)-X86II::MRM0m,
 | 
						|
                     PCAdj);
 | 
						|
    CurOp += X86AddrNumOperands;
 | 
						|
 | 
						|
    if (CurOp == NumOps)
 | 
						|
      break;
 | 
						|
    
 | 
						|
    const MachineOperand &MO = MI.getOperand(CurOp++);
 | 
						|
    unsigned Size = X86InstrInfo::sizeOfImm(Desc);
 | 
						|
    if (MO.isImm()) {
 | 
						|
      emitConstant(MO.getImm(), Size);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
 | 
						|
      : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
 | 
						|
    if (Opcode == X86::MOV64mi32)
 | 
						|
      rt = X86::reloc_absolute_word_sext;  // FIXME: add X86II flag?
 | 
						|
    if (MO.isGlobal()) {
 | 
						|
      bool NeedStub = isa<Function>(MO.getGlobal());
 | 
						|
      bool Indirect = gvNeedsNonLazyPtr(MO, TM);
 | 
						|
      emitGlobalAddress(MO.getGlobal(), rt, MO.getOffset(), 0,
 | 
						|
                        NeedStub, Indirect);
 | 
						|
    } else if (MO.isSymbol())
 | 
						|
      emitExternalSymbolAddress(MO.getSymbolName(), rt);
 | 
						|
    else if (MO.isCPI())
 | 
						|
      emitConstPoolAddress(MO.getIndex(), rt);
 | 
						|
    else if (MO.isJTI())
 | 
						|
      emitJumpTableAddress(MO.getIndex(), rt);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case X86II::MRMInitReg:
 | 
						|
    MCE.emitByte(BaseOpcode);
 | 
						|
    // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
 | 
						|
    emitRegModRMByte(MI.getOperand(CurOp).getReg(),
 | 
						|
                     getX86RegNum(MI.getOperand(CurOp).getReg()));
 | 
						|
    ++CurOp;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Desc->isVariadic() && CurOp != NumOps) {
 | 
						|
#ifndef NDEBUG
 | 
						|
    errs() << "Cannot encode all operands of: " << MI << "\n";
 | 
						|
#endif
 | 
						|
    llvm_unreachable(0);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Adapt the Emitter / CodeEmitter interfaces to MCCodeEmitter.
 | 
						|
//
 | 
						|
// FIXME: This is a total hack designed to allow work on llvm-mc to proceed
 | 
						|
// without being blocked on various cleanups needed to support a clean interface
 | 
						|
// to instruction encoding.
 | 
						|
//
 | 
						|
// Look away!
 | 
						|
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
 | 
						|
namespace {
 | 
						|
class MCSingleInstructionCodeEmitter : public MachineCodeEmitter {
 | 
						|
  uint8_t Data[256];
 | 
						|
 | 
						|
public:
 | 
						|
  MCSingleInstructionCodeEmitter() { reset(); }
 | 
						|
 | 
						|
  void reset() { 
 | 
						|
    BufferBegin = Data;
 | 
						|
    BufferEnd = array_endof(Data);
 | 
						|
    CurBufferPtr = Data;
 | 
						|
  }
 | 
						|
 | 
						|
  StringRef str() {
 | 
						|
    return StringRef(reinterpret_cast<char*>(BufferBegin),
 | 
						|
                     CurBufferPtr - BufferBegin);
 | 
						|
  }
 | 
						|
 | 
						|
  virtual void startFunction(MachineFunction &F) {}
 | 
						|
  virtual bool finishFunction(MachineFunction &F) { return false; }
 | 
						|
  virtual void emitLabel(uint64_t LabelID) {}
 | 
						|
  virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {}
 | 
						|
  virtual bool earlyResolveAddresses() const { return false; }
 | 
						|
  virtual void addRelocation(const MachineRelocation &MR) { }
 | 
						|
  virtual uintptr_t getConstantPoolEntryAddress(unsigned Index) const {
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  virtual uintptr_t getJumpTableEntryAddress(unsigned Index) const {
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const {
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  virtual uintptr_t getLabelAddress(uint64_t LabelID) const {
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  virtual void setModuleInfo(MachineModuleInfo* Info) {}
 | 
						|
};
 | 
						|
 | 
						|
class X86MCCodeEmitter : public MCCodeEmitter {
 | 
						|
  X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
 | 
						|
  void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
 | 
						|
 | 
						|
private:
 | 
						|
  X86TargetMachine &TM;
 | 
						|
  llvm::Function *DummyF;
 | 
						|
  TargetData *DummyTD;
 | 
						|
  mutable llvm::MachineFunction *DummyMF;
 | 
						|
  llvm::MachineBasicBlock *DummyMBB;
 | 
						|
  
 | 
						|
  MCSingleInstructionCodeEmitter *InstrEmitter;
 | 
						|
  Emitter<MachineCodeEmitter> *Emit;
 | 
						|
 | 
						|
public:
 | 
						|
  X86MCCodeEmitter(X86TargetMachine &_TM) : TM(_TM) {
 | 
						|
    // Verily, thou shouldst avert thine eyes.
 | 
						|
    const llvm::FunctionType *FTy =
 | 
						|
      FunctionType::get(llvm::Type::getVoidTy(getGlobalContext()), false);
 | 
						|
    DummyF = Function::Create(FTy, GlobalValue::InternalLinkage);
 | 
						|
    DummyTD = new TargetData("");
 | 
						|
    DummyMF = new MachineFunction(DummyF, TM);
 | 
						|
    DummyMBB = DummyMF->CreateMachineBasicBlock();
 | 
						|
 | 
						|
    InstrEmitter = new MCSingleInstructionCodeEmitter();
 | 
						|
    Emit = new Emitter<MachineCodeEmitter>(TM, *InstrEmitter, 
 | 
						|
                                           *TM.getInstrInfo(),
 | 
						|
                                           *DummyTD, false);
 | 
						|
  }
 | 
						|
  ~X86MCCodeEmitter() {
 | 
						|
    delete Emit;
 | 
						|
    delete InstrEmitter;
 | 
						|
    delete DummyMF;
 | 
						|
    delete DummyF;
 | 
						|
  }
 | 
						|
 | 
						|
  bool AddRegToInstr(const MCInst &MI, MachineInstr *Instr,
 | 
						|
                     unsigned Start) const {
 | 
						|
    if (Start + 1 > MI.getNumOperands())
 | 
						|
      return false;
 | 
						|
 | 
						|
    const MCOperand &Op = MI.getOperand(Start);
 | 
						|
    if (!Op.isReg()) return false;
 | 
						|
 | 
						|
    Instr->addOperand(MachineOperand::CreateReg(Op.getReg(), false));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool AddImmToInstr(const MCInst &MI, MachineInstr *Instr,
 | 
						|
                     unsigned Start) const {
 | 
						|
    if (Start + 1 > MI.getNumOperands())
 | 
						|
      return false;
 | 
						|
 | 
						|
    const MCOperand &Op = MI.getOperand(Start);
 | 
						|
    if (Op.isImm()) {
 | 
						|
      Instr->addOperand(MachineOperand::CreateImm(Op.getImm()));
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (!Op.isMCValue())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // FIXME: Relocation / fixup.
 | 
						|
    Instr->addOperand(MachineOperand::CreateImm(0));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool AddLMemToInstr(const MCInst &MI, MachineInstr *Instr,
 | 
						|
                     unsigned Start) const {
 | 
						|
    return (AddRegToInstr(MI, Instr, Start + 0) &&
 | 
						|
            AddImmToInstr(MI, Instr, Start + 1) &&
 | 
						|
            AddRegToInstr(MI, Instr, Start + 2) &&
 | 
						|
            AddImmToInstr(MI, Instr, Start + 3));
 | 
						|
  }
 | 
						|
 | 
						|
  bool AddMemToInstr(const MCInst &MI, MachineInstr *Instr,
 | 
						|
                     unsigned Start) const {
 | 
						|
    return (AddRegToInstr(MI, Instr, Start + 0) &&
 | 
						|
            AddImmToInstr(MI, Instr, Start + 1) &&
 | 
						|
            AddRegToInstr(MI, Instr, Start + 2) &&
 | 
						|
            AddImmToInstr(MI, Instr, Start + 3) &&
 | 
						|
            AddRegToInstr(MI, Instr, Start + 4));
 | 
						|
  }
 | 
						|
 | 
						|
  void EncodeInstruction(const MCInst &MI, raw_ostream &OS) const {
 | 
						|
    // Don't look yet!
 | 
						|
 | 
						|
    // Convert the MCInst to a MachineInstr so we can (ab)use the regular
 | 
						|
    // emitter.
 | 
						|
    const X86InstrInfo &II = *TM.getInstrInfo();
 | 
						|
    const TargetInstrDesc &Desc = II.get(MI.getOpcode());    
 | 
						|
    MachineInstr *Instr = DummyMF->CreateMachineInstr(Desc, DebugLoc());
 | 
						|
    DummyMBB->push_back(Instr);
 | 
						|
 | 
						|
    unsigned Opcode = MI.getOpcode();
 | 
						|
    unsigned NumOps = MI.getNumOperands();
 | 
						|
    unsigned CurOp = 0;
 | 
						|
    if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1) {
 | 
						|
      Instr->addOperand(MachineOperand::CreateReg(0, false));
 | 
						|
      ++CurOp;
 | 
						|
    } else if (NumOps > 2 && 
 | 
						|
             Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
 | 
						|
      // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
 | 
						|
      --NumOps;
 | 
						|
 | 
						|
    bool OK = true;
 | 
						|
    switch (Desc.TSFlags & X86II::FormMask) {
 | 
						|
    case X86II::MRMDestReg:
 | 
						|
    case X86II::MRMSrcReg:
 | 
						|
      // Matching doesn't fill this in completely, we have to choose operand 0
 | 
						|
      // for a tied register.
 | 
						|
      OK &= AddRegToInstr(MI, Instr, 0); CurOp++;
 | 
						|
      OK &= AddRegToInstr(MI, Instr, CurOp++);
 | 
						|
      if (CurOp < NumOps)
 | 
						|
        OK &= AddImmToInstr(MI, Instr, CurOp);
 | 
						|
      break;
 | 
						|
 | 
						|
    case X86II::RawFrm:
 | 
						|
      if (CurOp < NumOps) {
 | 
						|
        // Hack to make branches work.
 | 
						|
        if (!(Desc.TSFlags & X86II::ImmMask) &&
 | 
						|
            MI.getOperand(0).isMCValue() && 
 | 
						|
            MI.getOperand(0).getMCValue().getSymA() &&
 | 
						|
            !MI.getOperand(0).getMCValue().getSymB())
 | 
						|
          Instr->addOperand(MachineOperand::CreateMBB(DummyMBB));
 | 
						|
        else
 | 
						|
          OK &= AddImmToInstr(MI, Instr, CurOp);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
 | 
						|
    case X86II::AddRegFrm:
 | 
						|
      OK &= AddRegToInstr(MI, Instr, CurOp++);
 | 
						|
      if (CurOp < NumOps)
 | 
						|
        OK &= AddImmToInstr(MI, Instr, CurOp);
 | 
						|
      break;
 | 
						|
 | 
						|
    case X86II::MRM0r: case X86II::MRM1r:
 | 
						|
    case X86II::MRM2r: case X86II::MRM3r:
 | 
						|
    case X86II::MRM4r: case X86II::MRM5r:
 | 
						|
    case X86II::MRM6r: case X86II::MRM7r:
 | 
						|
      // Matching doesn't fill this in completely, we have to choose operand 0
 | 
						|
      // for a tied register.
 | 
						|
      OK &= AddRegToInstr(MI, Instr, 0); CurOp++;
 | 
						|
      if (CurOp < NumOps)
 | 
						|
        OK &= AddImmToInstr(MI, Instr, CurOp);
 | 
						|
      break;
 | 
						|
      
 | 
						|
    case X86II::MRM0m: case X86II::MRM1m:
 | 
						|
    case X86II::MRM2m: case X86II::MRM3m:
 | 
						|
    case X86II::MRM4m: case X86II::MRM5m:
 | 
						|
    case X86II::MRM6m: case X86II::MRM7m:
 | 
						|
      OK &= AddMemToInstr(MI, Instr, CurOp); CurOp += 5;
 | 
						|
      if (CurOp < NumOps)
 | 
						|
        OK &= AddImmToInstr(MI, Instr, CurOp);
 | 
						|
      break;
 | 
						|
 | 
						|
    case X86II::MRMSrcMem:
 | 
						|
      OK &= AddRegToInstr(MI, Instr, CurOp++);
 | 
						|
      if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
 | 
						|
          Opcode == X86::LEA16r || Opcode == X86::LEA32r)
 | 
						|
        OK &= AddLMemToInstr(MI, Instr, CurOp);
 | 
						|
      else
 | 
						|
        OK &= AddMemToInstr(MI, Instr, CurOp);
 | 
						|
      break;
 | 
						|
 | 
						|
    case X86II::MRMDestMem:
 | 
						|
      OK &= AddMemToInstr(MI, Instr, CurOp); CurOp += 5;
 | 
						|
      OK &= AddRegToInstr(MI, Instr, CurOp);
 | 
						|
      break;
 | 
						|
 | 
						|
    default:
 | 
						|
    case X86II::MRMInitReg:
 | 
						|
    case X86II::Pseudo:
 | 
						|
      OK = false;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!OK) {
 | 
						|
      errs() << "couldn't convert inst '";
 | 
						|
      MI.print(errs());
 | 
						|
      errs() << "' to machine instr:\n";
 | 
						|
      Instr->dump();
 | 
						|
    }
 | 
						|
 | 
						|
    InstrEmitter->reset();
 | 
						|
    if (OK)
 | 
						|
      Emit->emitInstruction(*Instr, &Desc);
 | 
						|
    OS << InstrEmitter->str();
 | 
						|
 | 
						|
    Instr->eraseFromParent();
 | 
						|
  }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
// Ok, now you can look.
 | 
						|
MCCodeEmitter *llvm::createX86MCCodeEmitter(const Target &,
 | 
						|
                                            TargetMachine &TM) {
 | 
						|
  return new X86MCCodeEmitter(static_cast<X86TargetMachine&>(TM));
 | 
						|
}
 |