mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	Late optimization passes like branch folding and tail duplication can transform the machine code in a way that makes it expensive to keep the register liveness information up to date. There is a fuzzy line between register allocation and late scheduling where the liveness information degrades. The MRI::tracksLiveness() flag makes the line clear: While true, liveness information is accurate, and can be used for register scavenging. Once the flag is false, liveness information is not accurate, and can only be used as a hint. Late passes generally don't need the liveness information, but they will sometimes use the register scavenger to help update it. The scavenger enforces strict correctness, and we have to spend a lot of code to update register liveness that may never be used. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153511 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			546 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			546 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- llvm/CodeGen/MachineRegisterInfo.h ----------------------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the MachineRegisterInfo class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_CODEGEN_MACHINEREGISTERINFO_H
 | |
| #define LLVM_CODEGEN_MACHINEREGISTERINFO_H
 | |
| 
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/CodeGen/MachineInstrBundle.h"
 | |
| #include "llvm/ADT/BitVector.h"
 | |
| #include "llvm/ADT/IndexedMap.h"
 | |
| #include <vector>
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| /// MachineRegisterInfo - Keep track of information for virtual and physical
 | |
| /// registers, including vreg register classes, use/def chains for registers,
 | |
| /// etc.
 | |
| class MachineRegisterInfo {
 | |
|   const TargetRegisterInfo *const TRI;
 | |
| 
 | |
|   /// IsSSA - True when the machine function is in SSA form and virtual
 | |
|   /// registers have a single def.
 | |
|   bool IsSSA;
 | |
| 
 | |
|   /// TracksLiveness - True while register liveness is being tracked accurately.
 | |
|   /// Basic block live-in lists, kill flags, and implicit defs may not be
 | |
|   /// accurate when after this flag is cleared.
 | |
|   bool TracksLiveness;
 | |
| 
 | |
|   /// VRegInfo - Information we keep for each virtual register.
 | |
|   ///
 | |
|   /// Each element in this list contains the register class of the vreg and the
 | |
|   /// start of the use/def list for the register.
 | |
|   IndexedMap<std::pair<const TargetRegisterClass*, MachineOperand*>,
 | |
|              VirtReg2IndexFunctor> VRegInfo;
 | |
| 
 | |
|   /// RegAllocHints - This vector records register allocation hints for virtual
 | |
|   /// registers. For each virtual register, it keeps a register and hint type
 | |
|   /// pair making up the allocation hint. Hint type is target specific except
 | |
|   /// for the value 0 which means the second value of the pair is the preferred
 | |
|   /// register for allocation. For example, if the hint is <0, 1024>, it means
 | |
|   /// the allocator should prefer the physical register allocated to the virtual
 | |
|   /// register of the hint.
 | |
|   IndexedMap<std::pair<unsigned, unsigned>, VirtReg2IndexFunctor> RegAllocHints;
 | |
| 
 | |
|   /// PhysRegUseDefLists - This is an array of the head of the use/def list for
 | |
|   /// physical registers.
 | |
|   MachineOperand **PhysRegUseDefLists;
 | |
| 
 | |
|   /// UsedPhysRegs - This is a bit vector that is computed and set by the
 | |
|   /// register allocator, and must be kept up to date by passes that run after
 | |
|   /// register allocation (though most don't modify this).  This is used
 | |
|   /// so that the code generator knows which callee save registers to save and
 | |
|   /// for other target specific uses.
 | |
|   /// This vector only has bits set for registers explicitly used, not their
 | |
|   /// aliases.
 | |
|   BitVector UsedPhysRegs;
 | |
| 
 | |
|   /// UsedPhysRegMask - Additional used physregs, but including aliases.
 | |
|   BitVector UsedPhysRegMask;
 | |
| 
 | |
|   /// ReservedRegs - This is a bit vector of reserved registers.  The target
 | |
|   /// may change its mind about which registers should be reserved.  This
 | |
|   /// vector is the frozen set of reserved registers when register allocation
 | |
|   /// started.
 | |
|   BitVector ReservedRegs;
 | |
| 
 | |
|   /// AllocatableRegs - From TRI->getAllocatableSet.
 | |
|   mutable BitVector AllocatableRegs;
 | |
| 
 | |
|   /// LiveIns/LiveOuts - Keep track of the physical registers that are
 | |
|   /// livein/liveout of the function.  Live in values are typically arguments in
 | |
|   /// registers, live out values are typically return values in registers.
 | |
|   /// LiveIn values are allowed to have virtual registers associated with them,
 | |
|   /// stored in the second element.
 | |
|   std::vector<std::pair<unsigned, unsigned> > LiveIns;
 | |
|   std::vector<unsigned> LiveOuts;
 | |
| 
 | |
|   MachineRegisterInfo(const MachineRegisterInfo&); // DO NOT IMPLEMENT
 | |
|   void operator=(const MachineRegisterInfo&);      // DO NOT IMPLEMENT
 | |
| public:
 | |
|   explicit MachineRegisterInfo(const TargetRegisterInfo &TRI);
 | |
|   ~MachineRegisterInfo();
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Function State
 | |
|   //===--------------------------------------------------------------------===//
 | |
| 
 | |
|   // isSSA - Returns true when the machine function is in SSA form. Early
 | |
|   // passes require the machine function to be in SSA form where every virtual
 | |
|   // register has a single defining instruction.
 | |
|   //
 | |
|   // The TwoAddressInstructionPass and PHIElimination passes take the machine
 | |
|   // function out of SSA form when they introduce multiple defs per virtual
 | |
|   // register.
 | |
|   bool isSSA() const { return IsSSA; }
 | |
| 
 | |
|   // leaveSSA - Indicates that the machine function is no longer in SSA form.
 | |
|   void leaveSSA() { IsSSA = false; }
 | |
| 
 | |
|   /// tracksLiveness - Returns true when tracking register liveness accurately.
 | |
|   ///
 | |
|   /// While this flag is true, register liveness information in basic block
 | |
|   /// live-in lists and machine instruction operands is accurate. This means it
 | |
|   /// can be used to change the code in ways that affect the values in
 | |
|   /// registers, for example by the register scavenger.
 | |
|   ///
 | |
|   /// When this flag is false, liveness is no longer reliable.
 | |
|   bool tracksLiveness() const { return TracksLiveness; }
 | |
| 
 | |
|   /// invalidateLiveness - Indicates that register liveness is no longer being
 | |
|   /// tracked accurately.
 | |
|   ///
 | |
|   /// This should be called by late passes that invalidate the liveness
 | |
|   /// information.
 | |
|   void invalidateLiveness() { TracksLiveness = false; }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Register Info
 | |
|   //===--------------------------------------------------------------------===//
 | |
| 
 | |
|   /// reg_begin/reg_end - Provide iteration support to walk over all definitions
 | |
|   /// and uses of a register within the MachineFunction that corresponds to this
 | |
|   /// MachineRegisterInfo object.
 | |
|   template<bool Uses, bool Defs, bool SkipDebug>
 | |
|   class defusechain_iterator;
 | |
| 
 | |
|   /// reg_iterator/reg_begin/reg_end - Walk all defs and uses of the specified
 | |
|   /// register.
 | |
|   typedef defusechain_iterator<true,true,false> reg_iterator;
 | |
|   reg_iterator reg_begin(unsigned RegNo) const {
 | |
|     return reg_iterator(getRegUseDefListHead(RegNo));
 | |
|   }
 | |
|   static reg_iterator reg_end() { return reg_iterator(0); }
 | |
| 
 | |
|   /// reg_empty - Return true if there are no instructions using or defining the
 | |
|   /// specified register (it may be live-in).
 | |
|   bool reg_empty(unsigned RegNo) const { return reg_begin(RegNo) == reg_end(); }
 | |
| 
 | |
|   /// reg_nodbg_iterator/reg_nodbg_begin/reg_nodbg_end - Walk all defs and uses
 | |
|   /// of the specified register, skipping those marked as Debug.
 | |
|   typedef defusechain_iterator<true,true,true> reg_nodbg_iterator;
 | |
|   reg_nodbg_iterator reg_nodbg_begin(unsigned RegNo) const {
 | |
|     return reg_nodbg_iterator(getRegUseDefListHead(RegNo));
 | |
|   }
 | |
|   static reg_nodbg_iterator reg_nodbg_end() { return reg_nodbg_iterator(0); }
 | |
| 
 | |
|   /// reg_nodbg_empty - Return true if the only instructions using or defining
 | |
|   /// Reg are Debug instructions.
 | |
|   bool reg_nodbg_empty(unsigned RegNo) const {
 | |
|     return reg_nodbg_begin(RegNo) == reg_nodbg_end();
 | |
|   }
 | |
| 
 | |
|   /// def_iterator/def_begin/def_end - Walk all defs of the specified register.
 | |
|   typedef defusechain_iterator<false,true,false> def_iterator;
 | |
|   def_iterator def_begin(unsigned RegNo) const {
 | |
|     return def_iterator(getRegUseDefListHead(RegNo));
 | |
|   }
 | |
|   static def_iterator def_end() { return def_iterator(0); }
 | |
| 
 | |
|   /// def_empty - Return true if there are no instructions defining the
 | |
|   /// specified register (it may be live-in).
 | |
|   bool def_empty(unsigned RegNo) const { return def_begin(RegNo) == def_end(); }
 | |
| 
 | |
|   /// use_iterator/use_begin/use_end - Walk all uses of the specified register.
 | |
|   typedef defusechain_iterator<true,false,false> use_iterator;
 | |
|   use_iterator use_begin(unsigned RegNo) const {
 | |
|     return use_iterator(getRegUseDefListHead(RegNo));
 | |
|   }
 | |
|   static use_iterator use_end() { return use_iterator(0); }
 | |
| 
 | |
|   /// use_empty - Return true if there are no instructions using the specified
 | |
|   /// register.
 | |
|   bool use_empty(unsigned RegNo) const { return use_begin(RegNo) == use_end(); }
 | |
| 
 | |
|   /// hasOneUse - Return true if there is exactly one instruction using the
 | |
|   /// specified register.
 | |
|   bool hasOneUse(unsigned RegNo) const;
 | |
| 
 | |
|   /// use_nodbg_iterator/use_nodbg_begin/use_nodbg_end - Walk all uses of the
 | |
|   /// specified register, skipping those marked as Debug.
 | |
|   typedef defusechain_iterator<true,false,true> use_nodbg_iterator;
 | |
|   use_nodbg_iterator use_nodbg_begin(unsigned RegNo) const {
 | |
|     return use_nodbg_iterator(getRegUseDefListHead(RegNo));
 | |
|   }
 | |
|   static use_nodbg_iterator use_nodbg_end() { return use_nodbg_iterator(0); }
 | |
| 
 | |
|   /// use_nodbg_empty - Return true if there are no non-Debug instructions
 | |
|   /// using the specified register.
 | |
|   bool use_nodbg_empty(unsigned RegNo) const {
 | |
|     return use_nodbg_begin(RegNo) == use_nodbg_end();
 | |
|   }
 | |
| 
 | |
|   /// hasOneNonDBGUse - Return true if there is exactly one non-Debug
 | |
|   /// instruction using the specified register.
 | |
|   bool hasOneNonDBGUse(unsigned RegNo) const;
 | |
| 
 | |
|   /// replaceRegWith - Replace all instances of FromReg with ToReg in the
 | |
|   /// machine function.  This is like llvm-level X->replaceAllUsesWith(Y),
 | |
|   /// except that it also changes any definitions of the register as well.
 | |
|   ///
 | |
|   /// Note that it is usually necessary to first constrain ToReg's register
 | |
|   /// class to match the FromReg constraints using:
 | |
|   ///
 | |
|   ///   constrainRegClass(ToReg, getRegClass(FromReg))
 | |
|   ///
 | |
|   /// That function will return NULL if the virtual registers have incompatible
 | |
|   /// constraints.
 | |
|   void replaceRegWith(unsigned FromReg, unsigned ToReg);
 | |
| 
 | |
|   /// getRegUseDefListHead - Return the head pointer for the register use/def
 | |
|   /// list for the specified virtual or physical register.
 | |
|   MachineOperand *&getRegUseDefListHead(unsigned RegNo) {
 | |
|     if (TargetRegisterInfo::isVirtualRegister(RegNo))
 | |
|       return VRegInfo[RegNo].second;
 | |
|     return PhysRegUseDefLists[RegNo];
 | |
|   }
 | |
| 
 | |
|   MachineOperand *getRegUseDefListHead(unsigned RegNo) const {
 | |
|     if (TargetRegisterInfo::isVirtualRegister(RegNo))
 | |
|       return VRegInfo[RegNo].second;
 | |
|     return PhysRegUseDefLists[RegNo];
 | |
|   }
 | |
| 
 | |
|   /// getVRegDef - Return the machine instr that defines the specified virtual
 | |
|   /// register or null if none is found.  This assumes that the code is in SSA
 | |
|   /// form, so there should only be one definition.
 | |
|   MachineInstr *getVRegDef(unsigned Reg) const;
 | |
| 
 | |
|   /// clearKillFlags - Iterate over all the uses of the given register and
 | |
|   /// clear the kill flag from the MachineOperand. This function is used by
 | |
|   /// optimization passes which extend register lifetimes and need only
 | |
|   /// preserve conservative kill flag information.
 | |
|   void clearKillFlags(unsigned Reg) const;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   void dumpUses(unsigned RegNo) const;
 | |
| #endif
 | |
| 
 | |
|   /// isConstantPhysReg - Returns true if PhysReg is unallocatable and constant
 | |
|   /// throughout the function.  It is safe to move instructions that read such
 | |
|   /// a physreg.
 | |
|   bool isConstantPhysReg(unsigned PhysReg, const MachineFunction &MF) const;
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Virtual Register Info
 | |
|   //===--------------------------------------------------------------------===//
 | |
| 
 | |
|   /// getRegClass - Return the register class of the specified virtual register.
 | |
|   ///
 | |
|   const TargetRegisterClass *getRegClass(unsigned Reg) const {
 | |
|     return VRegInfo[Reg].first;
 | |
|   }
 | |
| 
 | |
|   /// setRegClass - Set the register class of the specified virtual register.
 | |
|   ///
 | |
|   void setRegClass(unsigned Reg, const TargetRegisterClass *RC);
 | |
| 
 | |
|   /// constrainRegClass - Constrain the register class of the specified virtual
 | |
|   /// register to be a common subclass of RC and the current register class,
 | |
|   /// but only if the new class has at least MinNumRegs registers.  Return the
 | |
|   /// new register class, or NULL if no such class exists.
 | |
|   /// This should only be used when the constraint is known to be trivial, like
 | |
|   /// GR32 -> GR32_NOSP. Beware of increasing register pressure.
 | |
|   ///
 | |
|   const TargetRegisterClass *constrainRegClass(unsigned Reg,
 | |
|                                                const TargetRegisterClass *RC,
 | |
|                                                unsigned MinNumRegs = 0);
 | |
| 
 | |
|   /// recomputeRegClass - Try to find a legal super-class of Reg's register
 | |
|   /// class that still satisfies the constraints from the instructions using
 | |
|   /// Reg.  Returns true if Reg was upgraded.
 | |
|   ///
 | |
|   /// This method can be used after constraints have been removed from a
 | |
|   /// virtual register, for example after removing instructions or splitting
 | |
|   /// the live range.
 | |
|   ///
 | |
|   bool recomputeRegClass(unsigned Reg, const TargetMachine&);
 | |
| 
 | |
|   /// createVirtualRegister - Create and return a new virtual register in the
 | |
|   /// function with the specified register class.
 | |
|   ///
 | |
|   unsigned createVirtualRegister(const TargetRegisterClass *RegClass);
 | |
| 
 | |
|   /// getNumVirtRegs - Return the number of virtual registers created.
 | |
|   ///
 | |
|   unsigned getNumVirtRegs() const { return VRegInfo.size(); }
 | |
| 
 | |
|   /// clearVirtRegs - Remove all virtual registers (after physreg assignment).
 | |
|   void clearVirtRegs();
 | |
| 
 | |
|   /// setRegAllocationHint - Specify a register allocation hint for the
 | |
|   /// specified virtual register.
 | |
|   void setRegAllocationHint(unsigned Reg, unsigned Type, unsigned PrefReg) {
 | |
|     RegAllocHints[Reg].first  = Type;
 | |
|     RegAllocHints[Reg].second = PrefReg;
 | |
|   }
 | |
| 
 | |
|   /// getRegAllocationHint - Return the register allocation hint for the
 | |
|   /// specified virtual register.
 | |
|   std::pair<unsigned, unsigned>
 | |
|   getRegAllocationHint(unsigned Reg) const {
 | |
|     return RegAllocHints[Reg];
 | |
|   }
 | |
| 
 | |
|   /// getSimpleHint - Return the preferred register allocation hint, or 0 if a
 | |
|   /// standard simple hint (Type == 0) is not set.
 | |
|   unsigned getSimpleHint(unsigned Reg) const {
 | |
|     std::pair<unsigned, unsigned> Hint = getRegAllocationHint(Reg);
 | |
|     return Hint.first ? 0 : Hint.second;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Physical Register Use Info
 | |
|   //===--------------------------------------------------------------------===//
 | |
| 
 | |
|   /// isPhysRegUsed - Return true if the specified register is used in this
 | |
|   /// function.  This only works after register allocation.
 | |
|   bool isPhysRegUsed(unsigned Reg) const {
 | |
|     return UsedPhysRegs.test(Reg) || UsedPhysRegMask.test(Reg);
 | |
|   }
 | |
| 
 | |
|   /// isPhysRegOrOverlapUsed - Return true if Reg or any overlapping register
 | |
|   /// is used in this function.
 | |
|   bool isPhysRegOrOverlapUsed(unsigned Reg) const {
 | |
|     if (UsedPhysRegMask.test(Reg))
 | |
|       return true;
 | |
|     for (const uint16_t *AI = TRI->getOverlaps(Reg); *AI; ++AI)
 | |
|       if (UsedPhysRegs.test(*AI))
 | |
|         return true;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// setPhysRegUsed - Mark the specified register used in this function.
 | |
|   /// This should only be called during and after register allocation.
 | |
|   void setPhysRegUsed(unsigned Reg) { UsedPhysRegs.set(Reg); }
 | |
| 
 | |
|   /// addPhysRegsUsed - Mark the specified registers used in this function.
 | |
|   /// This should only be called during and after register allocation.
 | |
|   void addPhysRegsUsed(const BitVector &Regs) { UsedPhysRegs |= Regs; }
 | |
| 
 | |
|   /// addPhysRegsUsedFromRegMask - Mark any registers not in RegMask as used.
 | |
|   /// This corresponds to the bit mask attached to register mask operands.
 | |
|   void addPhysRegsUsedFromRegMask(const uint32_t *RegMask) {
 | |
|     UsedPhysRegMask.setBitsNotInMask(RegMask);
 | |
|   }
 | |
| 
 | |
|   /// setPhysRegUnused - Mark the specified register unused in this function.
 | |
|   /// This should only be called during and after register allocation.
 | |
|   void setPhysRegUnused(unsigned Reg) {
 | |
|     UsedPhysRegs.reset(Reg);
 | |
|     UsedPhysRegMask.reset(Reg);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Reserved Register Info
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   //
 | |
|   // The set of reserved registers must be invariant during register
 | |
|   // allocation.  For example, the target cannot suddenly decide it needs a
 | |
|   // frame pointer when the register allocator has already used the frame
 | |
|   // pointer register for something else.
 | |
|   //
 | |
|   // These methods can be used by target hooks like hasFP() to avoid changing
 | |
|   // the reserved register set during register allocation.
 | |
| 
 | |
|   /// freezeReservedRegs - Called by the register allocator to freeze the set
 | |
|   /// of reserved registers before allocation begins.
 | |
|   void freezeReservedRegs(const MachineFunction&);
 | |
| 
 | |
|   /// reservedRegsFrozen - Returns true after freezeReservedRegs() was called
 | |
|   /// to ensure the set of reserved registers stays constant.
 | |
|   bool reservedRegsFrozen() const {
 | |
|     return !ReservedRegs.empty();
 | |
|   }
 | |
| 
 | |
|   /// canReserveReg - Returns true if PhysReg can be used as a reserved
 | |
|   /// register.  Any register can be reserved before freezeReservedRegs() is
 | |
|   /// called.
 | |
|   bool canReserveReg(unsigned PhysReg) const {
 | |
|     return !reservedRegsFrozen() || ReservedRegs.test(PhysReg);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // LiveIn/LiveOut Management
 | |
|   //===--------------------------------------------------------------------===//
 | |
| 
 | |
|   /// addLiveIn/Out - Add the specified register as a live in/out.  Note that it
 | |
|   /// is an error to add the same register to the same set more than once.
 | |
|   void addLiveIn(unsigned Reg, unsigned vreg = 0) {
 | |
|     LiveIns.push_back(std::make_pair(Reg, vreg));
 | |
|   }
 | |
|   void addLiveOut(unsigned Reg) { LiveOuts.push_back(Reg); }
 | |
| 
 | |
|   // Iteration support for live in/out sets.  These sets are kept in sorted
 | |
|   // order by their register number.
 | |
|   typedef std::vector<std::pair<unsigned,unsigned> >::const_iterator
 | |
|   livein_iterator;
 | |
|   typedef std::vector<unsigned>::const_iterator liveout_iterator;
 | |
|   livein_iterator livein_begin() const { return LiveIns.begin(); }
 | |
|   livein_iterator livein_end()   const { return LiveIns.end(); }
 | |
|   bool            livein_empty() const { return LiveIns.empty(); }
 | |
|   liveout_iterator liveout_begin() const { return LiveOuts.begin(); }
 | |
|   liveout_iterator liveout_end()   const { return LiveOuts.end(); }
 | |
|   bool             liveout_empty() const { return LiveOuts.empty(); }
 | |
| 
 | |
|   bool isLiveIn(unsigned Reg) const;
 | |
|   bool isLiveOut(unsigned Reg) const;
 | |
| 
 | |
|   /// getLiveInPhysReg - If VReg is a live-in virtual register, return the
 | |
|   /// corresponding live-in physical register.
 | |
|   unsigned getLiveInPhysReg(unsigned VReg) const;
 | |
| 
 | |
|   /// getLiveInVirtReg - If PReg is a live-in physical register, return the
 | |
|   /// corresponding live-in physical register.
 | |
|   unsigned getLiveInVirtReg(unsigned PReg) const;
 | |
| 
 | |
|   /// EmitLiveInCopies - Emit copies to initialize livein virtual registers
 | |
|   /// into the given entry block.
 | |
|   void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
 | |
|                         const TargetRegisterInfo &TRI,
 | |
|                         const TargetInstrInfo &TII);
 | |
| 
 | |
| private:
 | |
|   void HandleVRegListReallocation();
 | |
| 
 | |
| public:
 | |
|   /// defusechain_iterator - This class provides iterator support for machine
 | |
|   /// operands in the function that use or define a specific register.  If
 | |
|   /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it
 | |
|   /// returns defs.  If neither are true then you are silly and it always
 | |
|   /// returns end().  If SkipDebug is true it skips uses marked Debug
 | |
|   /// when incrementing.
 | |
|   template<bool ReturnUses, bool ReturnDefs, bool SkipDebug>
 | |
|   class defusechain_iterator
 | |
|     : public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> {
 | |
|     MachineOperand *Op;
 | |
|     explicit defusechain_iterator(MachineOperand *op) : Op(op) {
 | |
|       // If the first node isn't one we're interested in, advance to one that
 | |
|       // we are interested in.
 | |
|       if (op) {
 | |
|         if ((!ReturnUses && op->isUse()) ||
 | |
|             (!ReturnDefs && op->isDef()) ||
 | |
|             (SkipDebug && op->isDebug()))
 | |
|           ++*this;
 | |
|       }
 | |
|     }
 | |
|     friend class MachineRegisterInfo;
 | |
|   public:
 | |
|     typedef std::iterator<std::forward_iterator_tag,
 | |
|                           MachineInstr, ptrdiff_t>::reference reference;
 | |
|     typedef std::iterator<std::forward_iterator_tag,
 | |
|                           MachineInstr, ptrdiff_t>::pointer pointer;
 | |
| 
 | |
|     defusechain_iterator(const defusechain_iterator &I) : Op(I.Op) {}
 | |
|     defusechain_iterator() : Op(0) {}
 | |
| 
 | |
|     bool operator==(const defusechain_iterator &x) const {
 | |
|       return Op == x.Op;
 | |
|     }
 | |
|     bool operator!=(const defusechain_iterator &x) const {
 | |
|       return !operator==(x);
 | |
|     }
 | |
| 
 | |
|     /// atEnd - return true if this iterator is equal to reg_end() on the value.
 | |
|     bool atEnd() const { return Op == 0; }
 | |
| 
 | |
|     // Iterator traversal: forward iteration only
 | |
|     defusechain_iterator &operator++() {          // Preincrement
 | |
|       assert(Op && "Cannot increment end iterator!");
 | |
|       Op = Op->getNextOperandForReg();
 | |
| 
 | |
|       // If this is an operand we don't care about, skip it.
 | |
|       while (Op && ((!ReturnUses && Op->isUse()) ||
 | |
|                     (!ReturnDefs && Op->isDef()) ||
 | |
|                     (SkipDebug && Op->isDebug())))
 | |
|         Op = Op->getNextOperandForReg();
 | |
| 
 | |
|       return *this;
 | |
|     }
 | |
|     defusechain_iterator operator++(int) {        // Postincrement
 | |
|       defusechain_iterator tmp = *this; ++*this; return tmp;
 | |
|     }
 | |
| 
 | |
|     /// skipInstruction - move forward until reaching a different instruction.
 | |
|     /// Return the skipped instruction that is no longer pointed to, or NULL if
 | |
|     /// already pointing to end().
 | |
|     MachineInstr *skipInstruction() {
 | |
|       if (!Op) return 0;
 | |
|       MachineInstr *MI = Op->getParent();
 | |
|       do ++*this;
 | |
|       while (Op && Op->getParent() == MI);
 | |
|       return MI;
 | |
|     }
 | |
| 
 | |
|     MachineInstr *skipBundle() {
 | |
|       if (!Op) return 0;
 | |
|       MachineInstr *MI = getBundleStart(Op->getParent());
 | |
|       do ++*this;
 | |
|       while (Op && getBundleStart(Op->getParent()) == MI);
 | |
|       return MI;
 | |
|     }
 | |
| 
 | |
|     MachineOperand &getOperand() const {
 | |
|       assert(Op && "Cannot dereference end iterator!");
 | |
|       return *Op;
 | |
|     }
 | |
| 
 | |
|     /// getOperandNo - Return the operand # of this MachineOperand in its
 | |
|     /// MachineInstr.
 | |
|     unsigned getOperandNo() const {
 | |
|       assert(Op && "Cannot dereference end iterator!");
 | |
|       return Op - &Op->getParent()->getOperand(0);
 | |
|     }
 | |
| 
 | |
|     // Retrieve a reference to the current operand.
 | |
|     MachineInstr &operator*() const {
 | |
|       assert(Op && "Cannot dereference end iterator!");
 | |
|       return *Op->getParent();
 | |
|     }
 | |
| 
 | |
|     MachineInstr *operator->() const {
 | |
|       assert(Op && "Cannot dereference end iterator!");
 | |
|       return Op->getParent();
 | |
|     }
 | |
|   };
 | |
| 
 | |
| };
 | |
| 
 | |
| } // End llvm namespace
 | |
| 
 | |
| #endif
 |