mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136212 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			797 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			797 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2007, Google Inc.
 | |
| // All rights reserved.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without
 | |
| // modification, are permitted provided that the following conditions are
 | |
| // met:
 | |
| //
 | |
| //     * Redistributions of source code must retain the above copyright
 | |
| // notice, this list of conditions and the following disclaimer.
 | |
| //     * Redistributions in binary form must reproduce the above
 | |
| // copyright notice, this list of conditions and the following disclaimer
 | |
| // in the documentation and/or other materials provided with the
 | |
| // distribution.
 | |
| //     * Neither the name of Google Inc. nor the names of its
 | |
| // contributors may be used to endorse or promote products derived from
 | |
| // this software without specific prior written permission.
 | |
| //
 | |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| //
 | |
| // Author: wan@google.com (Zhanyong Wan)
 | |
| 
 | |
| // Google Test - The Google C++ Testing Framework
 | |
| //
 | |
| // This file implements a universal value printer that can print a
 | |
| // value of any type T:
 | |
| //
 | |
| //   void ::testing::internal::UniversalPrinter<T>::Print(value, ostream_ptr);
 | |
| //
 | |
| // A user can teach this function how to print a class type T by
 | |
| // defining either operator<<() or PrintTo() in the namespace that
 | |
| // defines T.  More specifically, the FIRST defined function in the
 | |
| // following list will be used (assuming T is defined in namespace
 | |
| // foo):
 | |
| //
 | |
| //   1. foo::PrintTo(const T&, ostream*)
 | |
| //   2. operator<<(ostream&, const T&) defined in either foo or the
 | |
| //      global namespace.
 | |
| //
 | |
| // If none of the above is defined, it will print the debug string of
 | |
| // the value if it is a protocol buffer, or print the raw bytes in the
 | |
| // value otherwise.
 | |
| //
 | |
| // To aid debugging: when T is a reference type, the address of the
 | |
| // value is also printed; when T is a (const) char pointer, both the
 | |
| // pointer value and the NUL-terminated string it points to are
 | |
| // printed.
 | |
| //
 | |
| // We also provide some convenient wrappers:
 | |
| //
 | |
| //   // Prints a value to a string.  For a (const or not) char
 | |
| //   // pointer, the NUL-terminated string (but not the pointer) is
 | |
| //   // printed.
 | |
| //   std::string ::testing::PrintToString(const T& value);
 | |
| //
 | |
| //   // Prints a value tersely: for a reference type, the referenced
 | |
| //   // value (but not the address) is printed; for a (const or not) char
 | |
| //   // pointer, the NUL-terminated string (but not the pointer) is
 | |
| //   // printed.
 | |
| //   void ::testing::internal::UniversalTersePrint(const T& value, ostream*);
 | |
| //
 | |
| //   // Prints value using the type inferred by the compiler.  The difference
 | |
| //   // from UniversalTersePrint() is that this function prints both the
 | |
| //   // pointer and the NUL-terminated string for a (const or not) char pointer.
 | |
| //   void ::testing::internal::UniversalPrint(const T& value, ostream*);
 | |
| //
 | |
| //   // Prints the fields of a tuple tersely to a string vector, one
 | |
| //   // element for each field. Tuple support must be enabled in
 | |
| //   // gtest-port.h.
 | |
| //   std::vector<string> UniversalTersePrintTupleFieldsToStrings(
 | |
| //       const Tuple& value);
 | |
| //
 | |
| // Known limitation:
 | |
| //
 | |
| // The print primitives print the elements of an STL-style container
 | |
| // using the compiler-inferred type of *iter where iter is a
 | |
| // const_iterator of the container.  When const_iterator is an input
 | |
| // iterator but not a forward iterator, this inferred type may not
 | |
| // match value_type, and the print output may be incorrect.  In
 | |
| // practice, this is rarely a problem as for most containers
 | |
| // const_iterator is a forward iterator.  We'll fix this if there's an
 | |
| // actual need for it.  Note that this fix cannot rely on value_type
 | |
| // being defined as many user-defined container types don't have
 | |
| // value_type.
 | |
| 
 | |
| #ifndef GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_
 | |
| #define GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_
 | |
| 
 | |
| #include <ostream>  // NOLINT
 | |
| #include <sstream>
 | |
| #include <string>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| #include "gtest/internal/gtest-port.h"
 | |
| #include "gtest/internal/gtest-internal.h"
 | |
| 
 | |
| namespace testing {
 | |
| 
 | |
| // Definitions in the 'internal' and 'internal2' name spaces are
 | |
| // subject to change without notice.  DO NOT USE THEM IN USER CODE!
 | |
| namespace internal2 {
 | |
| 
 | |
| // Prints the given number of bytes in the given object to the given
 | |
| // ostream.
 | |
| GTEST_API_ void PrintBytesInObjectTo(const unsigned char* obj_bytes,
 | |
|                                      size_t count,
 | |
|                                      ::std::ostream* os);
 | |
| 
 | |
| // For selecting which printer to use when a given type has neither <<
 | |
| // nor PrintTo().
 | |
| enum TypeKind {
 | |
|   kProtobuf,              // a protobuf type
 | |
|   kConvertibleToInteger,  // a type implicitly convertible to BiggestInt
 | |
|                           // (e.g. a named or unnamed enum type)
 | |
|   kOtherType              // anything else
 | |
| };
 | |
| 
 | |
| // TypeWithoutFormatter<T, kTypeKind>::PrintValue(value, os) is called
 | |
| // by the universal printer to print a value of type T when neither
 | |
| // operator<< nor PrintTo() is defined for T, where kTypeKind is the
 | |
| // "kind" of T as defined by enum TypeKind.
 | |
| template <typename T, TypeKind kTypeKind>
 | |
| class TypeWithoutFormatter {
 | |
|  public:
 | |
|   // This default version is called when kTypeKind is kOtherType.
 | |
|   static void PrintValue(const T& value, ::std::ostream* os) {
 | |
|     PrintBytesInObjectTo(reinterpret_cast<const unsigned char*>(&value),
 | |
|                          sizeof(value), os);
 | |
|   }
 | |
| };
 | |
| 
 | |
| // We print a protobuf using its ShortDebugString() when the string
 | |
| // doesn't exceed this many characters; otherwise we print it using
 | |
| // DebugString() for better readability.
 | |
| const size_t kProtobufOneLinerMaxLength = 50;
 | |
| 
 | |
| template <typename T>
 | |
| class TypeWithoutFormatter<T, kProtobuf> {
 | |
|  public:
 | |
|   static void PrintValue(const T& value, ::std::ostream* os) {
 | |
|     const ::testing::internal::string short_str = value.ShortDebugString();
 | |
|     const ::testing::internal::string pretty_str =
 | |
|         short_str.length() <= kProtobufOneLinerMaxLength ?
 | |
|         short_str : ("\n" + value.DebugString());
 | |
|     *os << ("<" + pretty_str + ">");
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| class TypeWithoutFormatter<T, kConvertibleToInteger> {
 | |
|  public:
 | |
|   // Since T has no << operator or PrintTo() but can be implicitly
 | |
|   // converted to BiggestInt, we print it as a BiggestInt.
 | |
|   //
 | |
|   // Most likely T is an enum type (either named or unnamed), in which
 | |
|   // case printing it as an integer is the desired behavior.  In case
 | |
|   // T is not an enum, printing it as an integer is the best we can do
 | |
|   // given that it has no user-defined printer.
 | |
|   static void PrintValue(const T& value, ::std::ostream* os) {
 | |
|     const internal::BiggestInt kBigInt = value;
 | |
|     *os << kBigInt;
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Prints the given value to the given ostream.  If the value is a
 | |
| // protocol message, its debug string is printed; if it's an enum or
 | |
| // of a type implicitly convertible to BiggestInt, it's printed as an
 | |
| // integer; otherwise the bytes in the value are printed.  This is
 | |
| // what UniversalPrinter<T>::Print() does when it knows nothing about
 | |
| // type T and T has neither << operator nor PrintTo().
 | |
| //
 | |
| // A user can override this behavior for a class type Foo by defining
 | |
| // a << operator in the namespace where Foo is defined.
 | |
| //
 | |
| // We put this operator in namespace 'internal2' instead of 'internal'
 | |
| // to simplify the implementation, as much code in 'internal' needs to
 | |
| // use << in STL, which would conflict with our own << were it defined
 | |
| // in 'internal'.
 | |
| //
 | |
| // Note that this operator<< takes a generic std::basic_ostream<Char,
 | |
| // CharTraits> type instead of the more restricted std::ostream.  If
 | |
| // we define it to take an std::ostream instead, we'll get an
 | |
| // "ambiguous overloads" compiler error when trying to print a type
 | |
| // Foo that supports streaming to std::basic_ostream<Char,
 | |
| // CharTraits>, as the compiler cannot tell whether
 | |
| // operator<<(std::ostream&, const T&) or
 | |
| // operator<<(std::basic_stream<Char, CharTraits>, const Foo&) is more
 | |
| // specific.
 | |
| template <typename Char, typename CharTraits, typename T>
 | |
| ::std::basic_ostream<Char, CharTraits>& operator<<(
 | |
|     ::std::basic_ostream<Char, CharTraits>& os, const T& x) {
 | |
|   TypeWithoutFormatter<T,
 | |
|       (internal::IsAProtocolMessage<T>::value ? kProtobuf :
 | |
|        internal::ImplicitlyConvertible<const T&, internal::BiggestInt>::value ?
 | |
|        kConvertibleToInteger : kOtherType)>::PrintValue(x, &os);
 | |
|   return os;
 | |
| }
 | |
| 
 | |
| }  // namespace internal2
 | |
| }  // namespace testing
 | |
| 
 | |
| // This namespace MUST NOT BE NESTED IN ::testing, or the name look-up
 | |
| // magic needed for implementing UniversalPrinter won't work.
 | |
| namespace testing_internal {
 | |
| 
 | |
| // Used to print a value that is not an STL-style container when the
 | |
| // user doesn't define PrintTo() for it.
 | |
| template <typename T>
 | |
| void DefaultPrintNonContainerTo(const T& value, ::std::ostream* os) {
 | |
|   // With the following statement, during unqualified name lookup,
 | |
|   // testing::internal2::operator<< appears as if it was declared in
 | |
|   // the nearest enclosing namespace that contains both
 | |
|   // ::testing_internal and ::testing::internal2, i.e. the global
 | |
|   // namespace.  For more details, refer to the C++ Standard section
 | |
|   // 7.3.4-1 [namespace.udir].  This allows us to fall back onto
 | |
|   // testing::internal2::operator<< in case T doesn't come with a <<
 | |
|   // operator.
 | |
|   //
 | |
|   // We cannot write 'using ::testing::internal2::operator<<;', which
 | |
|   // gcc 3.3 fails to compile due to a compiler bug.
 | |
|   using namespace ::testing::internal2;  // NOLINT
 | |
| 
 | |
|   // Assuming T is defined in namespace foo, in the next statement,
 | |
|   // the compiler will consider all of:
 | |
|   //
 | |
|   //   1. foo::operator<< (thanks to Koenig look-up),
 | |
|   //   2. ::operator<< (as the current namespace is enclosed in ::),
 | |
|   //   3. testing::internal2::operator<< (thanks to the using statement above).
 | |
|   //
 | |
|   // The operator<< whose type matches T best will be picked.
 | |
|   //
 | |
|   // We deliberately allow #2 to be a candidate, as sometimes it's
 | |
|   // impossible to define #1 (e.g. when foo is ::std, defining
 | |
|   // anything in it is undefined behavior unless you are a compiler
 | |
|   // vendor.).
 | |
|   *os << value;
 | |
| }
 | |
| 
 | |
| }  // namespace testing_internal
 | |
| 
 | |
| namespace testing {
 | |
| namespace internal {
 | |
| 
 | |
| // UniversalPrinter<T>::Print(value, ostream_ptr) prints the given
 | |
| // value to the given ostream.  The caller must ensure that
 | |
| // 'ostream_ptr' is not NULL, or the behavior is undefined.
 | |
| //
 | |
| // We define UniversalPrinter as a class template (as opposed to a
 | |
| // function template), as we need to partially specialize it for
 | |
| // reference types, which cannot be done with function templates.
 | |
| template <typename T>
 | |
| class UniversalPrinter;
 | |
| 
 | |
| template <typename T>
 | |
| void UniversalPrint(const T& value, ::std::ostream* os);
 | |
| 
 | |
| // Used to print an STL-style container when the user doesn't define
 | |
| // a PrintTo() for it.
 | |
| template <typename C>
 | |
| void DefaultPrintTo(IsContainer /* dummy */,
 | |
|                     false_type /* is not a pointer */,
 | |
|                     const C& container, ::std::ostream* os) {
 | |
|   const size_t kMaxCount = 32;  // The maximum number of elements to print.
 | |
|   *os << '{';
 | |
|   size_t count = 0;
 | |
|   for (typename C::const_iterator it = container.begin();
 | |
|        it != container.end(); ++it, ++count) {
 | |
|     if (count > 0) {
 | |
|       *os << ',';
 | |
|       if (count == kMaxCount) {  // Enough has been printed.
 | |
|         *os << " ...";
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     *os << ' ';
 | |
|     // We cannot call PrintTo(*it, os) here as PrintTo() doesn't
 | |
|     // handle *it being a native array.
 | |
|     internal::UniversalPrint(*it, os);
 | |
|   }
 | |
| 
 | |
|   if (count > 0) {
 | |
|     *os << ' ';
 | |
|   }
 | |
|   *os << '}';
 | |
| }
 | |
| 
 | |
| // Used to print a pointer that is neither a char pointer nor a member
 | |
| // pointer, when the user doesn't define PrintTo() for it.  (A member
 | |
| // variable pointer or member function pointer doesn't really point to
 | |
| // a location in the address space.  Their representation is
 | |
| // implementation-defined.  Therefore they will be printed as raw
 | |
| // bytes.)
 | |
| template <typename T>
 | |
| void DefaultPrintTo(IsNotContainer /* dummy */,
 | |
|                     true_type /* is a pointer */,
 | |
|                     T* p, ::std::ostream* os) {
 | |
|   if (p == NULL) {
 | |
|     *os << "NULL";
 | |
|   } else {
 | |
|     // C++ doesn't allow casting from a function pointer to any object
 | |
|     // pointer.
 | |
|     //
 | |
|     // IsTrue() silences warnings: "Condition is always true",
 | |
|     // "unreachable code".
 | |
|     if (IsTrue(ImplicitlyConvertible<T*, const void*>::value)) {
 | |
|       // T is not a function type.  We just call << to print p,
 | |
|       // relying on ADL to pick up user-defined << for their pointer
 | |
|       // types, if any.
 | |
|       *os << p;
 | |
|     } else {
 | |
|       // T is a function type, so '*os << p' doesn't do what we want
 | |
|       // (it just prints p as bool).  We want to print p as a const
 | |
|       // void*.  However, we cannot cast it to const void* directly,
 | |
|       // even using reinterpret_cast, as earlier versions of gcc
 | |
|       // (e.g. 3.4.5) cannot compile the cast when p is a function
 | |
|       // pointer.  Casting to UInt64 first solves the problem.
 | |
|       *os << reinterpret_cast<const void*>(
 | |
|           reinterpret_cast<internal::UInt64>(p));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Used to print a non-container, non-pointer value when the user
 | |
| // doesn't define PrintTo() for it.
 | |
| template <typename T>
 | |
| void DefaultPrintTo(IsNotContainer /* dummy */,
 | |
|                     false_type /* is not a pointer */,
 | |
|                     const T& value, ::std::ostream* os) {
 | |
|   ::testing_internal::DefaultPrintNonContainerTo(value, os);
 | |
| }
 | |
| 
 | |
| // Prints the given value using the << operator if it has one;
 | |
| // otherwise prints the bytes in it.  This is what
 | |
| // UniversalPrinter<T>::Print() does when PrintTo() is not specialized
 | |
| // or overloaded for type T.
 | |
| //
 | |
| // A user can override this behavior for a class type Foo by defining
 | |
| // an overload of PrintTo() in the namespace where Foo is defined.  We
 | |
| // give the user this option as sometimes defining a << operator for
 | |
| // Foo is not desirable (e.g. the coding style may prevent doing it,
 | |
| // or there is already a << operator but it doesn't do what the user
 | |
| // wants).
 | |
| template <typename T>
 | |
| void PrintTo(const T& value, ::std::ostream* os) {
 | |
|   // DefaultPrintTo() is overloaded.  The type of its first two
 | |
|   // arguments determine which version will be picked.  If T is an
 | |
|   // STL-style container, the version for container will be called; if
 | |
|   // T is a pointer, the pointer version will be called; otherwise the
 | |
|   // generic version will be called.
 | |
|   //
 | |
|   // Note that we check for container types here, prior to we check
 | |
|   // for protocol message types in our operator<<.  The rationale is:
 | |
|   //
 | |
|   // For protocol messages, we want to give people a chance to
 | |
|   // override Google Mock's format by defining a PrintTo() or
 | |
|   // operator<<.  For STL containers, other formats can be
 | |
|   // incompatible with Google Mock's format for the container
 | |
|   // elements; therefore we check for container types here to ensure
 | |
|   // that our format is used.
 | |
|   //
 | |
|   // The second argument of DefaultPrintTo() is needed to bypass a bug
 | |
|   // in Symbian's C++ compiler that prevents it from picking the right
 | |
|   // overload between:
 | |
|   //
 | |
|   //   PrintTo(const T& x, ...);
 | |
|   //   PrintTo(T* x, ...);
 | |
|   DefaultPrintTo(IsContainerTest<T>(0), is_pointer<T>(), value, os);
 | |
| }
 | |
| 
 | |
| // The following list of PrintTo() overloads tells
 | |
| // UniversalPrinter<T>::Print() how to print standard types (built-in
 | |
| // types, strings, plain arrays, and pointers).
 | |
| 
 | |
| // Overloads for various char types.
 | |
| GTEST_API_ void PrintTo(unsigned char c, ::std::ostream* os);
 | |
| GTEST_API_ void PrintTo(signed char c, ::std::ostream* os);
 | |
| inline void PrintTo(char c, ::std::ostream* os) {
 | |
|   // When printing a plain char, we always treat it as unsigned.  This
 | |
|   // way, the output won't be affected by whether the compiler thinks
 | |
|   // char is signed or not.
 | |
|   PrintTo(static_cast<unsigned char>(c), os);
 | |
| }
 | |
| 
 | |
| // Overloads for other simple built-in types.
 | |
| inline void PrintTo(bool x, ::std::ostream* os) {
 | |
|   *os << (x ? "true" : "false");
 | |
| }
 | |
| 
 | |
| // Overload for wchar_t type.
 | |
| // Prints a wchar_t as a symbol if it is printable or as its internal
 | |
| // code otherwise and also as its decimal code (except for L'\0').
 | |
| // The L'\0' char is printed as "L'\\0'". The decimal code is printed
 | |
| // as signed integer when wchar_t is implemented by the compiler
 | |
| // as a signed type and is printed as an unsigned integer when wchar_t
 | |
| // is implemented as an unsigned type.
 | |
| GTEST_API_ void PrintTo(wchar_t wc, ::std::ostream* os);
 | |
| 
 | |
| // Overloads for C strings.
 | |
| GTEST_API_ void PrintTo(const char* s, ::std::ostream* os);
 | |
| inline void PrintTo(char* s, ::std::ostream* os) {
 | |
|   PrintTo(ImplicitCast_<const char*>(s), os);
 | |
| }
 | |
| 
 | |
| // signed/unsigned char is often used for representing binary data, so
 | |
| // we print pointers to it as void* to be safe.
 | |
| inline void PrintTo(const signed char* s, ::std::ostream* os) {
 | |
|   PrintTo(ImplicitCast_<const void*>(s), os);
 | |
| }
 | |
| inline void PrintTo(signed char* s, ::std::ostream* os) {
 | |
|   PrintTo(ImplicitCast_<const void*>(s), os);
 | |
| }
 | |
| inline void PrintTo(const unsigned char* s, ::std::ostream* os) {
 | |
|   PrintTo(ImplicitCast_<const void*>(s), os);
 | |
| }
 | |
| inline void PrintTo(unsigned char* s, ::std::ostream* os) {
 | |
|   PrintTo(ImplicitCast_<const void*>(s), os);
 | |
| }
 | |
| 
 | |
| // MSVC can be configured to define wchar_t as a typedef of unsigned
 | |
| // short.  It defines _NATIVE_WCHAR_T_DEFINED when wchar_t is a native
 | |
| // type.  When wchar_t is a typedef, defining an overload for const
 | |
| // wchar_t* would cause unsigned short* be printed as a wide string,
 | |
| // possibly causing invalid memory accesses.
 | |
| #if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED)
 | |
| // Overloads for wide C strings
 | |
| GTEST_API_ void PrintTo(const wchar_t* s, ::std::ostream* os);
 | |
| inline void PrintTo(wchar_t* s, ::std::ostream* os) {
 | |
|   PrintTo(ImplicitCast_<const wchar_t*>(s), os);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| // Overload for C arrays.  Multi-dimensional arrays are printed
 | |
| // properly.
 | |
| 
 | |
| // Prints the given number of elements in an array, without printing
 | |
| // the curly braces.
 | |
| template <typename T>
 | |
| void PrintRawArrayTo(const T a[], size_t count, ::std::ostream* os) {
 | |
|   UniversalPrint(a[0], os);
 | |
|   for (size_t i = 1; i != count; i++) {
 | |
|     *os << ", ";
 | |
|     UniversalPrint(a[i], os);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Overloads for ::string and ::std::string.
 | |
| #if GTEST_HAS_GLOBAL_STRING
 | |
| GTEST_API_ void PrintStringTo(const ::string&s, ::std::ostream* os);
 | |
| inline void PrintTo(const ::string& s, ::std::ostream* os) {
 | |
|   PrintStringTo(s, os);
 | |
| }
 | |
| #endif  // GTEST_HAS_GLOBAL_STRING
 | |
| 
 | |
| GTEST_API_ void PrintStringTo(const ::std::string&s, ::std::ostream* os);
 | |
| inline void PrintTo(const ::std::string& s, ::std::ostream* os) {
 | |
|   PrintStringTo(s, os);
 | |
| }
 | |
| 
 | |
| // Overloads for ::wstring and ::std::wstring.
 | |
| #if GTEST_HAS_GLOBAL_WSTRING
 | |
| GTEST_API_ void PrintWideStringTo(const ::wstring&s, ::std::ostream* os);
 | |
| inline void PrintTo(const ::wstring& s, ::std::ostream* os) {
 | |
|   PrintWideStringTo(s, os);
 | |
| }
 | |
| #endif  // GTEST_HAS_GLOBAL_WSTRING
 | |
| 
 | |
| #if GTEST_HAS_STD_WSTRING
 | |
| GTEST_API_ void PrintWideStringTo(const ::std::wstring&s, ::std::ostream* os);
 | |
| inline void PrintTo(const ::std::wstring& s, ::std::ostream* os) {
 | |
|   PrintWideStringTo(s, os);
 | |
| }
 | |
| #endif  // GTEST_HAS_STD_WSTRING
 | |
| 
 | |
| #if GTEST_HAS_TR1_TUPLE
 | |
| // Overload for ::std::tr1::tuple.  Needed for printing function arguments,
 | |
| // which are packed as tuples.
 | |
| 
 | |
| // Helper function for printing a tuple.  T must be instantiated with
 | |
| // a tuple type.
 | |
| template <typename T>
 | |
| void PrintTupleTo(const T& t, ::std::ostream* os);
 | |
| 
 | |
| // Overloaded PrintTo() for tuples of various arities.  We support
 | |
| // tuples of up-to 10 fields.  The following implementation works
 | |
| // regardless of whether tr1::tuple is implemented using the
 | |
| // non-standard variadic template feature or not.
 | |
| 
 | |
| inline void PrintTo(const ::std::tr1::tuple<>& t, ::std::ostream* os) {
 | |
|   PrintTupleTo(t, os);
 | |
| }
 | |
| 
 | |
| template <typename T1>
 | |
| void PrintTo(const ::std::tr1::tuple<T1>& t, ::std::ostream* os) {
 | |
|   PrintTupleTo(t, os);
 | |
| }
 | |
| 
 | |
| template <typename T1, typename T2>
 | |
| void PrintTo(const ::std::tr1::tuple<T1, T2>& t, ::std::ostream* os) {
 | |
|   PrintTupleTo(t, os);
 | |
| }
 | |
| 
 | |
| template <typename T1, typename T2, typename T3>
 | |
| void PrintTo(const ::std::tr1::tuple<T1, T2, T3>& t, ::std::ostream* os) {
 | |
|   PrintTupleTo(t, os);
 | |
| }
 | |
| 
 | |
| template <typename T1, typename T2, typename T3, typename T4>
 | |
| void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4>& t, ::std::ostream* os) {
 | |
|   PrintTupleTo(t, os);
 | |
| }
 | |
| 
 | |
| template <typename T1, typename T2, typename T3, typename T4, typename T5>
 | |
| void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5>& t,
 | |
|              ::std::ostream* os) {
 | |
|   PrintTupleTo(t, os);
 | |
| }
 | |
| 
 | |
| template <typename T1, typename T2, typename T3, typename T4, typename T5,
 | |
|           typename T6>
 | |
| void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6>& t,
 | |
|              ::std::ostream* os) {
 | |
|   PrintTupleTo(t, os);
 | |
| }
 | |
| 
 | |
| template <typename T1, typename T2, typename T3, typename T4, typename T5,
 | |
|           typename T6, typename T7>
 | |
| void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7>& t,
 | |
|              ::std::ostream* os) {
 | |
|   PrintTupleTo(t, os);
 | |
| }
 | |
| 
 | |
| template <typename T1, typename T2, typename T3, typename T4, typename T5,
 | |
|           typename T6, typename T7, typename T8>
 | |
| void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8>& t,
 | |
|              ::std::ostream* os) {
 | |
|   PrintTupleTo(t, os);
 | |
| }
 | |
| 
 | |
| template <typename T1, typename T2, typename T3, typename T4, typename T5,
 | |
|           typename T6, typename T7, typename T8, typename T9>
 | |
| void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9>& t,
 | |
|              ::std::ostream* os) {
 | |
|   PrintTupleTo(t, os);
 | |
| }
 | |
| 
 | |
| template <typename T1, typename T2, typename T3, typename T4, typename T5,
 | |
|           typename T6, typename T7, typename T8, typename T9, typename T10>
 | |
| void PrintTo(
 | |
|     const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>& t,
 | |
|     ::std::ostream* os) {
 | |
|   PrintTupleTo(t, os);
 | |
| }
 | |
| #endif  // GTEST_HAS_TR1_TUPLE
 | |
| 
 | |
| // Overload for std::pair.
 | |
| template <typename T1, typename T2>
 | |
| void PrintTo(const ::std::pair<T1, T2>& value, ::std::ostream* os) {
 | |
|   *os << '(';
 | |
|   // We cannot use UniversalPrint(value.first, os) here, as T1 may be
 | |
|   // a reference type.  The same for printing value.second.
 | |
|   UniversalPrinter<T1>::Print(value.first, os);
 | |
|   *os << ", ";
 | |
|   UniversalPrinter<T2>::Print(value.second, os);
 | |
|   *os << ')';
 | |
| }
 | |
| 
 | |
| // Implements printing a non-reference type T by letting the compiler
 | |
| // pick the right overload of PrintTo() for T.
 | |
| template <typename T>
 | |
| class UniversalPrinter {
 | |
|  public:
 | |
|   // MSVC warns about adding const to a function type, so we want to
 | |
|   // disable the warning.
 | |
| #ifdef _MSC_VER
 | |
| # pragma warning(push)          // Saves the current warning state.
 | |
| # pragma warning(disable:4180)  // Temporarily disables warning 4180.
 | |
| #endif  // _MSC_VER
 | |
| 
 | |
|   // Note: we deliberately don't call this PrintTo(), as that name
 | |
|   // conflicts with ::testing::internal::PrintTo in the body of the
 | |
|   // function.
 | |
|   static void Print(const T& value, ::std::ostream* os) {
 | |
|     // By default, ::testing::internal::PrintTo() is used for printing
 | |
|     // the value.
 | |
|     //
 | |
|     // Thanks to Koenig look-up, if T is a class and has its own
 | |
|     // PrintTo() function defined in its namespace, that function will
 | |
|     // be visible here.  Since it is more specific than the generic ones
 | |
|     // in ::testing::internal, it will be picked by the compiler in the
 | |
|     // following statement - exactly what we want.
 | |
|     PrintTo(value, os);
 | |
|   }
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| # pragma warning(pop)           // Restores the warning state.
 | |
| #endif  // _MSC_VER
 | |
| };
 | |
| 
 | |
| // UniversalPrintArray(begin, len, os) prints an array of 'len'
 | |
| // elements, starting at address 'begin'.
 | |
| template <typename T>
 | |
| void UniversalPrintArray(const T* begin, size_t len, ::std::ostream* os) {
 | |
|   if (len == 0) {
 | |
|     *os << "{}";
 | |
|   } else {
 | |
|     *os << "{ ";
 | |
|     const size_t kThreshold = 18;
 | |
|     const size_t kChunkSize = 8;
 | |
|     // If the array has more than kThreshold elements, we'll have to
 | |
|     // omit some details by printing only the first and the last
 | |
|     // kChunkSize elements.
 | |
|     // TODO(wan@google.com): let the user control the threshold using a flag.
 | |
|     if (len <= kThreshold) {
 | |
|       PrintRawArrayTo(begin, len, os);
 | |
|     } else {
 | |
|       PrintRawArrayTo(begin, kChunkSize, os);
 | |
|       *os << ", ..., ";
 | |
|       PrintRawArrayTo(begin + len - kChunkSize, kChunkSize, os);
 | |
|     }
 | |
|     *os << " }";
 | |
|   }
 | |
| }
 | |
| // This overload prints a (const) char array compactly.
 | |
| GTEST_API_ void UniversalPrintArray(const char* begin,
 | |
|                                     size_t len,
 | |
|                                     ::std::ostream* os);
 | |
| 
 | |
| // Implements printing an array type T[N].
 | |
| template <typename T, size_t N>
 | |
| class UniversalPrinter<T[N]> {
 | |
|  public:
 | |
|   // Prints the given array, omitting some elements when there are too
 | |
|   // many.
 | |
|   static void Print(const T (&a)[N], ::std::ostream* os) {
 | |
|     UniversalPrintArray(a, N, os);
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Implements printing a reference type T&.
 | |
| template <typename T>
 | |
| class UniversalPrinter<T&> {
 | |
|  public:
 | |
|   // MSVC warns about adding const to a function type, so we want to
 | |
|   // disable the warning.
 | |
| #ifdef _MSC_VER
 | |
| # pragma warning(push)          // Saves the current warning state.
 | |
| # pragma warning(disable:4180)  // Temporarily disables warning 4180.
 | |
| #endif  // _MSC_VER
 | |
| 
 | |
|   static void Print(const T& value, ::std::ostream* os) {
 | |
|     // Prints the address of the value.  We use reinterpret_cast here
 | |
|     // as static_cast doesn't compile when T is a function type.
 | |
|     *os << "@" << reinterpret_cast<const void*>(&value) << " ";
 | |
| 
 | |
|     // Then prints the value itself.
 | |
|     UniversalPrint(value, os);
 | |
|   }
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| # pragma warning(pop)           // Restores the warning state.
 | |
| #endif  // _MSC_VER
 | |
| };
 | |
| 
 | |
| // Prints a value tersely: for a reference type, the referenced value
 | |
| // (but not the address) is printed; for a (const) char pointer, the
 | |
| // NUL-terminated string (but not the pointer) is printed.
 | |
| template <typename T>
 | |
| void UniversalTersePrint(const T& value, ::std::ostream* os) {
 | |
|   UniversalPrint(value, os);
 | |
| }
 | |
| inline void UniversalTersePrint(const char* str, ::std::ostream* os) {
 | |
|   if (str == NULL) {
 | |
|     *os << "NULL";
 | |
|   } else {
 | |
|     UniversalPrint(string(str), os);
 | |
|   }
 | |
| }
 | |
| inline void UniversalTersePrint(char* str, ::std::ostream* os) {
 | |
|   UniversalTersePrint(static_cast<const char*>(str), os);
 | |
| }
 | |
| 
 | |
| // Prints a value using the type inferred by the compiler.  The
 | |
| // difference between this and UniversalTersePrint() is that for a
 | |
| // (const) char pointer, this prints both the pointer and the
 | |
| // NUL-terminated string.
 | |
| template <typename T>
 | |
| void UniversalPrint(const T& value, ::std::ostream* os) {
 | |
|   UniversalPrinter<T>::Print(value, os);
 | |
| }
 | |
| 
 | |
| #if GTEST_HAS_TR1_TUPLE
 | |
| typedef ::std::vector<string> Strings;
 | |
| 
 | |
| // This helper template allows PrintTo() for tuples and
 | |
| // UniversalTersePrintTupleFieldsToStrings() to be defined by
 | |
| // induction on the number of tuple fields.  The idea is that
 | |
| // TuplePrefixPrinter<N>::PrintPrefixTo(t, os) prints the first N
 | |
| // fields in tuple t, and can be defined in terms of
 | |
| // TuplePrefixPrinter<N - 1>.
 | |
| 
 | |
| // The inductive case.
 | |
| template <size_t N>
 | |
| struct TuplePrefixPrinter {
 | |
|   // Prints the first N fields of a tuple.
 | |
|   template <typename Tuple>
 | |
|   static void PrintPrefixTo(const Tuple& t, ::std::ostream* os) {
 | |
|     TuplePrefixPrinter<N - 1>::PrintPrefixTo(t, os);
 | |
|     *os << ", ";
 | |
|     UniversalPrinter<typename ::std::tr1::tuple_element<N - 1, Tuple>::type>
 | |
|         ::Print(::std::tr1::get<N - 1>(t), os);
 | |
|   }
 | |
| 
 | |
|   // Tersely prints the first N fields of a tuple to a string vector,
 | |
|   // one element for each field.
 | |
|   template <typename Tuple>
 | |
|   static void TersePrintPrefixToStrings(const Tuple& t, Strings* strings) {
 | |
|     TuplePrefixPrinter<N - 1>::TersePrintPrefixToStrings(t, strings);
 | |
|     ::std::stringstream ss;
 | |
|     UniversalTersePrint(::std::tr1::get<N - 1>(t), &ss);
 | |
|     strings->push_back(ss.str());
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Base cases.
 | |
| template <>
 | |
| struct TuplePrefixPrinter<0> {
 | |
|   template <typename Tuple>
 | |
|   static void PrintPrefixTo(const Tuple&, ::std::ostream*) {}
 | |
| 
 | |
|   template <typename Tuple>
 | |
|   static void TersePrintPrefixToStrings(const Tuple&, Strings*) {}
 | |
| };
 | |
| // We have to specialize the entire TuplePrefixPrinter<> class
 | |
| // template here, even though the definition of
 | |
| // TersePrintPrefixToStrings() is the same as the generic version, as
 | |
| // Embarcadero (formerly CodeGear, formerly Borland) C++ doesn't
 | |
| // support specializing a method template of a class template.
 | |
| template <>
 | |
| struct TuplePrefixPrinter<1> {
 | |
|   template <typename Tuple>
 | |
|   static void PrintPrefixTo(const Tuple& t, ::std::ostream* os) {
 | |
|     UniversalPrinter<typename ::std::tr1::tuple_element<0, Tuple>::type>::
 | |
|         Print(::std::tr1::get<0>(t), os);
 | |
|   }
 | |
| 
 | |
|   template <typename Tuple>
 | |
|   static void TersePrintPrefixToStrings(const Tuple& t, Strings* strings) {
 | |
|     ::std::stringstream ss;
 | |
|     UniversalTersePrint(::std::tr1::get<0>(t), &ss);
 | |
|     strings->push_back(ss.str());
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Helper function for printing a tuple.  T must be instantiated with
 | |
| // a tuple type.
 | |
| template <typename T>
 | |
| void PrintTupleTo(const T& t, ::std::ostream* os) {
 | |
|   *os << "(";
 | |
|   TuplePrefixPrinter< ::std::tr1::tuple_size<T>::value>::
 | |
|       PrintPrefixTo(t, os);
 | |
|   *os << ")";
 | |
| }
 | |
| 
 | |
| // Prints the fields of a tuple tersely to a string vector, one
 | |
| // element for each field.  See the comment before
 | |
| // UniversalTersePrint() for how we define "tersely".
 | |
| template <typename Tuple>
 | |
| Strings UniversalTersePrintTupleFieldsToStrings(const Tuple& value) {
 | |
|   Strings result;
 | |
|   TuplePrefixPrinter< ::std::tr1::tuple_size<Tuple>::value>::
 | |
|       TersePrintPrefixToStrings(value, &result);
 | |
|   return result;
 | |
| }
 | |
| #endif  // GTEST_HAS_TR1_TUPLE
 | |
| 
 | |
| }  // namespace internal
 | |
| 
 | |
| template <typename T>
 | |
| ::std::string PrintToString(const T& value) {
 | |
|   ::std::stringstream ss;
 | |
|   internal::UniversalTersePrint(value, &ss);
 | |
|   return ss.str();
 | |
| }
 | |
| 
 | |
| }  // namespace testing
 | |
| 
 | |
| #endif  // GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_
 |