mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@22523 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2965 lines
		
	
	
		
			104 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2965 lines
		
	
	
		
			104 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- ModuloScheduling.cpp - ModuloScheduling  ----------------*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  This ModuloScheduling pass is based on the Swing Modulo Scheduling
 | 
						|
//  algorithm.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "ModuloSched"
 | 
						|
 | 
						|
#include "ModuloScheduling.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Target/TargetSchedInfo.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/GraphWriter.h"
 | 
						|
#include "llvm/ADT/SCCIterator.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Support/Timer.h"
 | 
						|
#include <cmath>
 | 
						|
#include <algorithm>
 | 
						|
#include <fstream>
 | 
						|
#include <sstream>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
#include "../MachineCodeForInstruction.h"
 | 
						|
#include "../SparcV9TmpInstr.h"
 | 
						|
#include "../SparcV9Internals.h"
 | 
						|
#include "../SparcV9RegisterInfo.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
/// Create ModuloSchedulingPass
 | 
						|
///
 | 
						|
FunctionPass *llvm::createModuloSchedulingPass(TargetMachine & targ) {
 | 
						|
  DEBUG(std::cerr << "Created ModuloSchedulingPass\n");
 | 
						|
  return new ModuloSchedulingPass(targ);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//Graph Traits for printing out the dependence graph
 | 
						|
template<typename GraphType>
 | 
						|
static void WriteGraphToFile(std::ostream &O, const std::string &GraphName,
 | 
						|
                             const GraphType >) {
 | 
						|
  std::string Filename = GraphName + ".dot";
 | 
						|
  O << "Writing '" << Filename << "'...";
 | 
						|
  std::ofstream F(Filename.c_str());
 | 
						|
 | 
						|
  if (F.good())
 | 
						|
    WriteGraph(F, GT);
 | 
						|
  else
 | 
						|
    O << "  error opening file for writing!";
 | 
						|
  O << "\n";
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
#if 1
 | 
						|
#define TIME_REGION(VARNAME, DESC) \
 | 
						|
   NamedRegionTimer VARNAME(DESC)
 | 
						|
#else
 | 
						|
#define TIME_REGION(VARNAME, DESC)
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
//Graph Traits for printing out the dependence graph
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
  //Loop statistics
 | 
						|
  Statistic<> ValidLoops("modulosched-validLoops", "Number of candidate loops modulo-scheduled");
 | 
						|
  Statistic<> JumboBB("modulosched-jumboBB", "Basic Blocks with more then 100 instructions");
 | 
						|
  Statistic<> LoopsWithCalls("modulosched-loopCalls", "Loops with calls");
 | 
						|
  Statistic<> LoopsWithCondMov("modulosched-loopCondMov", "Loops with conditional moves");
 | 
						|
  Statistic<> InvalidLoops("modulosched-invalidLoops", "Loops with unknown trip counts or loop invariant trip counts");
 | 
						|
  Statistic<> SingleBBLoops("modulosched-singeBBLoops", "Number of single basic block loops");
 | 
						|
 | 
						|
  //Scheduling Statistics
 | 
						|
  Statistic<> MSLoops("modulosched-schedLoops", "Number of loops successfully modulo-scheduled");
 | 
						|
  Statistic<> NoSched("modulosched-noSched", "No schedule");
 | 
						|
  Statistic<> SameStage("modulosched-sameStage", "Max stage is 0");
 | 
						|
  Statistic<> ResourceConstraint("modulosched-resourceConstraint", "Loops constrained by resources");
 | 
						|
  Statistic<> RecurrenceConstraint("modulosched-recurrenceConstraint", "Loops constrained by recurrences");
 | 
						|
   Statistic<> FinalIISum("modulosched-finalIISum", "Sum of all final II");
 | 
						|
  Statistic<> IISum("modulosched-IISum", "Sum of all theoretical II");
 | 
						|
 | 
						|
  template<>
 | 
						|
  struct DOTGraphTraits<MSchedGraph*> : public DefaultDOTGraphTraits {
 | 
						|
    static std::string getGraphName(MSchedGraph *F) {
 | 
						|
      return "Dependence Graph";
 | 
						|
    }
 | 
						|
 | 
						|
    static std::string getNodeLabel(MSchedGraphNode *Node, MSchedGraph *Graph) {
 | 
						|
      if (Node->getInst()) {
 | 
						|
        std::stringstream ss;
 | 
						|
        ss << *(Node->getInst());
 | 
						|
        return ss.str(); //((MachineInstr*)Node->getInst());
 | 
						|
      }
 | 
						|
      else
 | 
						|
        return "No Inst";
 | 
						|
    }
 | 
						|
    static std::string getEdgeSourceLabel(MSchedGraphNode *Node,
 | 
						|
                                          MSchedGraphNode::succ_iterator I) {
 | 
						|
      //Label each edge with the type of dependence
 | 
						|
      std::string edgelabel = "";
 | 
						|
      switch (I.getEdge().getDepOrderType()) {
 | 
						|
 | 
						|
      case MSchedGraphEdge::TrueDep:
 | 
						|
        edgelabel = "True";
 | 
						|
        break;
 | 
						|
 | 
						|
      case MSchedGraphEdge::AntiDep:
 | 
						|
        edgelabel =  "Anti";
 | 
						|
        break;
 | 
						|
 | 
						|
      case MSchedGraphEdge::OutputDep:
 | 
						|
        edgelabel = "Output";
 | 
						|
        break;
 | 
						|
 | 
						|
      default:
 | 
						|
        edgelabel = "Unknown";
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      //FIXME
 | 
						|
      int iteDiff = I.getEdge().getIteDiff();
 | 
						|
      std::string intStr = "(IteDiff: ";
 | 
						|
      intStr += itostr(iteDiff);
 | 
						|
 | 
						|
      intStr += ")";
 | 
						|
      edgelabel += intStr;
 | 
						|
 | 
						|
      return edgelabel;
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#include <unistd.h>
 | 
						|
 | 
						|
/// ModuloScheduling::runOnFunction - main transformation entry point
 | 
						|
/// The Swing Modulo Schedule algorithm has three basic steps:
 | 
						|
/// 1) Computation and Analysis of the dependence graph
 | 
						|
/// 2) Ordering of the nodes
 | 
						|
/// 3) Scheduling
 | 
						|
///
 | 
						|
bool ModuloSchedulingPass::runOnFunction(Function &F) {
 | 
						|
  alarm(100);
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  int numMS = 0;
 | 
						|
 | 
						|
  DEBUG(std::cerr << "Creating ModuloSchedGraph for each valid BasicBlock in " + F.getName() + "\n");
 | 
						|
 | 
						|
  //Get MachineFunction
 | 
						|
  MachineFunction &MF = MachineFunction::get(&F);
 | 
						|
 | 
						|
  DependenceAnalyzer &DA = getAnalysis<DependenceAnalyzer>();
 | 
						|
 | 
						|
 | 
						|
  //Worklist
 | 
						|
  std::vector<MachineBasicBlock*> Worklist;
 | 
						|
 | 
						|
  //Iterate over BasicBlocks and put them into our worklist if they are valid
 | 
						|
  for (MachineFunction::iterator BI = MF.begin(); BI != MF.end(); ++BI)
 | 
						|
    if(MachineBBisValid(BI)) {
 | 
						|
      if(BI->size() < 100) {
 | 
						|
        Worklist.push_back(&*BI);
 | 
						|
        ++ValidLoops;
 | 
						|
      }
 | 
						|
      else
 | 
						|
        ++JumboBB;
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
  defaultInst = 0;
 | 
						|
 | 
						|
  DEBUG(if(Worklist.size() == 0) std::cerr << "No single basic block loops in function to ModuloSchedule\n");
 | 
						|
 | 
						|
  //Iterate over the worklist and perform scheduling
 | 
						|
  for(std::vector<MachineBasicBlock*>::iterator BI = Worklist.begin(),
 | 
						|
        BE = Worklist.end(); BI != BE; ++BI) {
 | 
						|
 | 
						|
    //Print out BB for debugging
 | 
						|
    DEBUG(std::cerr << "BB Size: " << (*BI)->size() << "\n");
 | 
						|
    DEBUG(std::cerr << "ModuloScheduling BB: \n"; (*BI)->print(std::cerr));
 | 
						|
 | 
						|
    //Print out LLVM BB
 | 
						|
    DEBUG(std::cerr << "ModuloScheduling LLVMBB: \n"; (*BI)->getBasicBlock()->print(std::cerr));
 | 
						|
 | 
						|
    //Catch the odd case where we only have TmpInstructions and no real Value*s
 | 
						|
    if(!CreateDefMap(*BI)) {
 | 
						|
      //Clear out our maps for the next basic block that is processed
 | 
						|
      nodeToAttributesMap.clear();
 | 
						|
      partialOrder.clear();
 | 
						|
      recurrenceList.clear();
 | 
						|
      FinalNodeOrder.clear();
 | 
						|
      schedule.clear();
 | 
						|
      defMap.clear();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    MSchedGraph *MSG = new MSchedGraph(*BI, target, indVarInstrs[*BI], DA, machineTollvm[*BI]);
 | 
						|
 | 
						|
    //Write Graph out to file
 | 
						|
    DEBUG(WriteGraphToFile(std::cerr, F.getName(), MSG));
 | 
						|
    DEBUG(MSG->print(std::cerr));
 | 
						|
 | 
						|
    //Calculate Resource II
 | 
						|
    int ResMII = calculateResMII(*BI);
 | 
						|
 | 
						|
    //Calculate Recurrence II
 | 
						|
    int RecMII = calculateRecMII(MSG, ResMII);
 | 
						|
 | 
						|
    DEBUG(std::cerr << "Number of reccurrences found: " << recurrenceList.size() << "\n");
 | 
						|
 | 
						|
    //Our starting initiation interval is the maximum of RecMII and ResMII
 | 
						|
    if(RecMII < ResMII)
 | 
						|
      ++RecurrenceConstraint;
 | 
						|
    else
 | 
						|
      ++ResourceConstraint;
 | 
						|
 | 
						|
    II = std::max(RecMII, ResMII);
 | 
						|
    int mII = II;
 | 
						|
 | 
						|
    //Print out II, RecMII, and ResMII
 | 
						|
    DEBUG(std::cerr << "II starts out as " << II << " ( RecMII=" << RecMII << " and ResMII=" << ResMII << ")\n");
 | 
						|
 | 
						|
    //Dump node properties if in debug mode
 | 
						|
    DEBUG(for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I =  nodeToAttributesMap.begin(),
 | 
						|
                E = nodeToAttributesMap.end(); I !=E; ++I) {
 | 
						|
            std::cerr << "Node: " << *(I->first) << " ASAP: " << I->second.ASAP << " ALAP: "
 | 
						|
                      << I->second.ALAP << " MOB: " << I->second.MOB << " Depth: " << I->second.depth
 | 
						|
                      << " Height: " << I->second.height << "\n";
 | 
						|
          });
 | 
						|
 | 
						|
    //Calculate Node Properties
 | 
						|
    calculateNodeAttributes(MSG, ResMII);
 | 
						|
 | 
						|
    //Dump node properties if in debug mode
 | 
						|
    DEBUG(for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I =  nodeToAttributesMap.begin(),
 | 
						|
                E = nodeToAttributesMap.end(); I !=E; ++I) {
 | 
						|
            std::cerr << "Node: " << *(I->first) << " ASAP: " << I->second.ASAP << " ALAP: "
 | 
						|
                      << I->second.ALAP << " MOB: " << I->second.MOB << " Depth: " << I->second.depth
 | 
						|
                      << " Height: " << I->second.height << "\n";
 | 
						|
          });
 | 
						|
 | 
						|
    //Put nodes in order to schedule them
 | 
						|
    computePartialOrder();
 | 
						|
 | 
						|
    //Dump out partial order
 | 
						|
    DEBUG(for(std::vector<std::set<MSchedGraphNode*> >::iterator I = partialOrder.begin(),
 | 
						|
                E = partialOrder.end(); I !=E; ++I) {
 | 
						|
            std::cerr << "Start set in PO\n";
 | 
						|
            for(std::set<MSchedGraphNode*>::iterator J = I->begin(), JE = I->end(); J != JE; ++J)
 | 
						|
              std::cerr << "PO:" << **J << "\n";
 | 
						|
          });
 | 
						|
 | 
						|
    //Place nodes in final order
 | 
						|
    orderNodes();
 | 
						|
 | 
						|
    //Dump out order of nodes
 | 
						|
    DEBUG(for(std::vector<MSchedGraphNode*>::iterator I = FinalNodeOrder.begin(), E = FinalNodeOrder.end(); I != E; ++I) {
 | 
						|
            std::cerr << "FO:" << **I << "\n";
 | 
						|
          });
 | 
						|
 | 
						|
    //Finally schedule nodes
 | 
						|
    bool haveSched = computeSchedule(*BI, MSG);
 | 
						|
 | 
						|
    //Print out final schedule
 | 
						|
    DEBUG(schedule.print(std::cerr));
 | 
						|
 | 
						|
    //Final scheduling step is to reconstruct the loop only if we actual have
 | 
						|
    //stage > 0
 | 
						|
    if(haveSched) {
 | 
						|
      reconstructLoop(*BI);
 | 
						|
      ++MSLoops;
 | 
						|
      Changed = true;
 | 
						|
      FinalIISum += II;
 | 
						|
      IISum += mII;
 | 
						|
 | 
						|
      if(schedule.getMaxStage() == 0)
 | 
						|
        ++SameStage;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      ++NoSched;
 | 
						|
    }
 | 
						|
 | 
						|
    //Clear out our maps for the next basic block that is processed
 | 
						|
    nodeToAttributesMap.clear();
 | 
						|
    partialOrder.clear();
 | 
						|
    recurrenceList.clear();
 | 
						|
    FinalNodeOrder.clear();
 | 
						|
    schedule.clear();
 | 
						|
    defMap.clear();
 | 
						|
    //Clean up. Nuke old MachineBB and llvmBB
 | 
						|
    //BasicBlock *llvmBB = (BasicBlock*) (*BI)->getBasicBlock();
 | 
						|
    //Function *parent = (Function*) llvmBB->getParent();
 | 
						|
    //Should't std::find work??
 | 
						|
    //parent->getBasicBlockList().erase(std::find(parent->getBasicBlockList().begin(), parent->getBasicBlockList().end(), *llvmBB));
 | 
						|
    //parent->getBasicBlockList().erase(llvmBB);
 | 
						|
 | 
						|
    //delete(llvmBB);
 | 
						|
    //delete(*BI);
 | 
						|
  }
 | 
						|
 | 
						|
  alarm(0);
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool ModuloSchedulingPass::CreateDefMap(MachineBasicBlock *BI) {
 | 
						|
  defaultInst = 0;
 | 
						|
 | 
						|
  for(MachineBasicBlock::iterator I = BI->begin(), E = BI->end(); I != E; ++I) {
 | 
						|
    for(unsigned opNum = 0; opNum < I->getNumOperands(); ++opNum) {
 | 
						|
      const MachineOperand &mOp = I->getOperand(opNum);
 | 
						|
      if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) {
 | 
						|
        //assert if this is the second def we have seen
 | 
						|
        //DEBUG(std::cerr << "Putting " << *(mOp.getVRegValue()) << " into map\n");
 | 
						|
        //assert(!defMap.count(mOp.getVRegValue()) && "Def already in the map");
 | 
						|
        if(defMap.count(mOp.getVRegValue()))
 | 
						|
          return false;
 | 
						|
 | 
						|
        defMap[mOp.getVRegValue()] = &*I;
 | 
						|
      }
 | 
						|
 | 
						|
      //See if we can use this Value* as our defaultInst
 | 
						|
      if(!defaultInst && mOp.getType() == MachineOperand::MO_VirtualRegister) {
 | 
						|
        Value *V = mOp.getVRegValue();
 | 
						|
        if(!isa<TmpInstruction>(V) && !isa<Argument>(V) && !isa<Constant>(V) && !isa<PHINode>(V))
 | 
						|
          defaultInst = (Instruction*) V;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if(!defaultInst)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
 | 
						|
}
 | 
						|
/// This function checks if a Machine Basic Block is valid for modulo
 | 
						|
/// scheduling. This means that it has no control flow (if/else or
 | 
						|
/// calls) in the block.  Currently ModuloScheduling only works on
 | 
						|
/// single basic block loops.
 | 
						|
bool ModuloSchedulingPass::MachineBBisValid(const MachineBasicBlock *BI) {
 | 
						|
 | 
						|
  bool isLoop = false;
 | 
						|
 | 
						|
  //Check first if its a valid loop
 | 
						|
  for(succ_const_iterator I = succ_begin(BI->getBasicBlock()),
 | 
						|
        E = succ_end(BI->getBasicBlock()); I != E; ++I) {
 | 
						|
    if (*I == BI->getBasicBlock())    // has single block loop
 | 
						|
      isLoop = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if(!isLoop)
 | 
						|
    return false;
 | 
						|
 | 
						|
  //Check that we have a conditional branch (avoiding MS infinite loops)
 | 
						|
  if(BranchInst *b = dyn_cast<BranchInst>(((BasicBlock*) BI->getBasicBlock())->getTerminator()))
 | 
						|
    if(b->isUnconditional())
 | 
						|
      return false;
 | 
						|
 | 
						|
  //Check size of our basic block.. make sure we have more then just the terminator in it
 | 
						|
  if(BI->getBasicBlock()->size() == 1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  //Increase number of single basic block loops for stats
 | 
						|
  ++SingleBBLoops;
 | 
						|
 | 
						|
  //Get Target machine instruction info
 | 
						|
  const TargetInstrInfo *TMI = target.getInstrInfo();
 | 
						|
 | 
						|
  //Check each instruction and look for calls, keep map to get index later
 | 
						|
  std::map<const MachineInstr*, unsigned> indexMap;
 | 
						|
 | 
						|
  unsigned count = 0;
 | 
						|
  for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) {
 | 
						|
    //Get opcode to check instruction type
 | 
						|
    MachineOpCode OC = I->getOpcode();
 | 
						|
 | 
						|
    //Look for calls
 | 
						|
    if(TMI->isCall(OC)) {
 | 
						|
      ++LoopsWithCalls;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    //Look for conditional move
 | 
						|
    if(OC == V9::MOVRZr || OC == V9::MOVRZi || OC == V9::MOVRLEZr || OC == V9::MOVRLEZi
 | 
						|
       || OC == V9::MOVRLZr || OC == V9::MOVRLZi || OC == V9::MOVRNZr || OC == V9::MOVRNZi
 | 
						|
       || OC == V9::MOVRGZr || OC == V9::MOVRGZi || OC == V9::MOVRGEZr
 | 
						|
       || OC == V9::MOVRGEZi || OC == V9::MOVLEr || OC == V9::MOVLEi || OC == V9::MOVLEUr
 | 
						|
       || OC == V9::MOVLEUi || OC == V9::MOVFLEr || OC == V9::MOVFLEi
 | 
						|
       || OC == V9::MOVNEr || OC == V9::MOVNEi || OC == V9::MOVNEGr || OC == V9::MOVNEGi
 | 
						|
       || OC == V9::MOVFNEr || OC == V9::MOVFNEi || OC == V9::MOVGr || OC == V9::MOVGi) {
 | 
						|
      ++LoopsWithCondMov;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    indexMap[I] = count;
 | 
						|
 | 
						|
    if(TMI->isNop(OC))
 | 
						|
      continue;
 | 
						|
 | 
						|
    ++count;
 | 
						|
  }
 | 
						|
 | 
						|
  //Apply a simple pattern match to make sure this loop can be modulo scheduled
 | 
						|
  //This means only loops with a branch associated to the iteration count
 | 
						|
 | 
						|
  //Get the branch
 | 
						|
  BranchInst *b = dyn_cast<BranchInst>(((BasicBlock*) BI->getBasicBlock())->getTerminator());
 | 
						|
 | 
						|
  //Get the condition for the branch (we already checked if it was conditional)
 | 
						|
  Value *cond = b->getCondition();
 | 
						|
 | 
						|
  DEBUG(std::cerr << "Condition: " << *cond << "\n");
 | 
						|
 | 
						|
  //List of instructions associated with induction variable
 | 
						|
  std::set<Instruction*> indVar;
 | 
						|
  std::vector<Instruction*> stack;
 | 
						|
 | 
						|
  BasicBlock *BB = (BasicBlock*) BI->getBasicBlock();
 | 
						|
 | 
						|
  //Add branch
 | 
						|
  indVar.insert(b);
 | 
						|
 | 
						|
  if(Instruction *I = dyn_cast<Instruction>(cond))
 | 
						|
    if(I->getParent() == BB) {
 | 
						|
      if (!assocIndVar(I, indVar, stack, BB)) {
 | 
						|
        ++InvalidLoops;
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      ++InvalidLoops;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  else {
 | 
						|
    ++InvalidLoops;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  //The indVar set must be >= 3 instructions for this loop to match (FIX ME!)
 | 
						|
  if(indVar.size() < 3 )
 | 
						|
    return false;
 | 
						|
 | 
						|
  //Dump out instructions associate with indvar for debug reasons
 | 
						|
  DEBUG(for(std::set<Instruction*>::iterator N = indVar.begin(), NE = indVar.end(); N != NE; ++N) {
 | 
						|
          std::cerr << **N << "\n";
 | 
						|
        });
 | 
						|
 | 
						|
  //Create map of machine instr to llvm instr
 | 
						|
  std::map<MachineInstr*, Instruction*> mllvm;
 | 
						|
  for(BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
 | 
						|
    MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(I);
 | 
						|
    for (unsigned j = 0; j < tempMvec.size(); j++) {
 | 
						|
      mllvm[tempMvec[j]] = I;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  //Convert list of LLVM Instructions to list of Machine instructions
 | 
						|
  std::map<const MachineInstr*, unsigned> mIndVar;
 | 
						|
  for(std::set<Instruction*>::iterator N = indVar.begin(), NE = indVar.end(); N != NE; ++N) {
 | 
						|
 | 
						|
    //If we have a load, we can't handle this loop because there is no way to preserve dependences
 | 
						|
    //between loads and stores
 | 
						|
    if(isa<LoadInst>(*N))
 | 
						|
      return false;
 | 
						|
 | 
						|
    MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(*N);
 | 
						|
    for (unsigned j = 0; j < tempMvec.size(); j++) {
 | 
						|
      MachineOpCode OC = (tempMvec[j])->getOpcode();
 | 
						|
      if(TMI->isNop(OC))
 | 
						|
        continue;
 | 
						|
      if(!indexMap.count(tempMvec[j]))
 | 
						|
        continue;
 | 
						|
      mIndVar[(MachineInstr*) tempMvec[j]] = indexMap[(MachineInstr*) tempMvec[j]];
 | 
						|
      DEBUG(std::cerr << *(tempMvec[j]) << " at index " << indexMap[(MachineInstr*) tempMvec[j]] << "\n");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
   //Must have some guts to the loop body (more then 1 instr, dont count nops in size)
 | 
						|
  if(mIndVar.size() >= (BI->size()-3))
 | 
						|
    return false;
 | 
						|
 | 
						|
  //Put into a map for future access
 | 
						|
  indVarInstrs[BI] = mIndVar;
 | 
						|
  machineTollvm[BI] = mllvm;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ModuloSchedulingPass::assocIndVar(Instruction *I, std::set<Instruction*> &indVar,
 | 
						|
                                       std::vector<Instruction*> &stack, BasicBlock *BB) {
 | 
						|
 | 
						|
  stack.push_back(I);
 | 
						|
 | 
						|
  //If this is a phi node, check if its the canonical indvar
 | 
						|
  if(PHINode *PN = dyn_cast<PHINode>(I)) {
 | 
						|
    if (Instruction *Inc =
 | 
						|
        dyn_cast<Instruction>(PN->getIncomingValueForBlock(BB)))
 | 
						|
      if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN)
 | 
						|
        if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
 | 
						|
          if (CI->equalsInt(1)) {
 | 
						|
            //We have found the indvar, so add the stack, and inc instruction to the set
 | 
						|
            indVar.insert(stack.begin(), stack.end());
 | 
						|
            indVar.insert(Inc);
 | 
						|
            stack.pop_back();
 | 
						|
            return true;
 | 
						|
          }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    //Loop over each of the instructions operands, check if they are an instruction and in this BB
 | 
						|
    for(unsigned i = 0; i < I->getNumOperands(); ++i) {
 | 
						|
      if(Instruction *N =  dyn_cast<Instruction>(I->getOperand(i))) {
 | 
						|
        if(N->getParent() == BB)
 | 
						|
          if(!assocIndVar(N, indVar, stack, BB))
 | 
						|
            return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  stack.pop_back();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
//ResMII is calculated by determining the usage count for each resource
 | 
						|
//and using the maximum.
 | 
						|
//FIXME: In future there should be a way to get alternative resources
 | 
						|
//for each instruction
 | 
						|
int ModuloSchedulingPass::calculateResMII(const MachineBasicBlock *BI) {
 | 
						|
 | 
						|
  TIME_REGION(X, "calculateResMII");
 | 
						|
 | 
						|
  const TargetInstrInfo *mii = target.getInstrInfo();
 | 
						|
  const TargetSchedInfo *msi = target.getSchedInfo();
 | 
						|
 | 
						|
  int ResMII = 0;
 | 
						|
 | 
						|
  //Map to keep track of usage count of each resource
 | 
						|
  std::map<unsigned, unsigned> resourceUsageCount;
 | 
						|
 | 
						|
  for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) {
 | 
						|
 | 
						|
    //Get resource usage for this instruction
 | 
						|
    InstrRUsage rUsage = msi->getInstrRUsage(I->getOpcode());
 | 
						|
    std::vector<std::vector<resourceId_t> > resources = rUsage.resourcesByCycle;
 | 
						|
 | 
						|
    //Loop over resources in each cycle and increments their usage count
 | 
						|
    for(unsigned i=0; i < resources.size(); ++i)
 | 
						|
      for(unsigned j=0; j < resources[i].size(); ++j) {
 | 
						|
        if(!resourceUsageCount.count(resources[i][j])) {
 | 
						|
          resourceUsageCount[resources[i][j]] = 1;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
          resourceUsageCount[resources[i][j]] =  resourceUsageCount[resources[i][j]] + 1;
 | 
						|
        }
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  //Find maximum usage count
 | 
						|
 | 
						|
  //Get max number of instructions that can be issued at once. (FIXME)
 | 
						|
  int issueSlots = msi->maxNumIssueTotal;
 | 
						|
 | 
						|
  for(std::map<unsigned,unsigned>::iterator RB = resourceUsageCount.begin(), RE = resourceUsageCount.end(); RB != RE; ++RB) {
 | 
						|
 | 
						|
    //Get the total number of the resources in our cpu
 | 
						|
    int resourceNum = CPUResource::getCPUResource(RB->first)->maxNumUsers;
 | 
						|
 | 
						|
    //Get total usage count for this resources
 | 
						|
    unsigned usageCount = RB->second;
 | 
						|
 | 
						|
    //Divide the usage count by either the max number we can issue or the number of
 | 
						|
    //resources (whichever is its upper bound)
 | 
						|
    double finalUsageCount;
 | 
						|
    DEBUG(std::cerr << "Resource Num: " << RB->first << " Usage: " << usageCount << " TotalNum: " << resourceNum << "\n");
 | 
						|
 | 
						|
    if( resourceNum <= issueSlots)
 | 
						|
      finalUsageCount = ceil(1.0 * usageCount / resourceNum);
 | 
						|
    else
 | 
						|
      finalUsageCount = ceil(1.0 * usageCount / issueSlots);
 | 
						|
 | 
						|
 | 
						|
    //Only keep track of the max
 | 
						|
    ResMII = std::max( (int) finalUsageCount, ResMII);
 | 
						|
 | 
						|
  }
 | 
						|
 | 
						|
  return ResMII;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/// calculateRecMII - Calculates the value of the highest recurrence
 | 
						|
/// By value we mean the total latency
 | 
						|
int ModuloSchedulingPass::calculateRecMII(MSchedGraph *graph, int MII) {
 | 
						|
  /*std::vector<MSchedGraphNode*> vNodes;
 | 
						|
  //Loop over all nodes in the graph
 | 
						|
  for(MSchedGraph::iterator I = graph->begin(), E = graph->end(); I != E; ++I) {
 | 
						|
    findAllReccurrences(I->second, vNodes, MII);
 | 
						|
    vNodes.clear();
 | 
						|
  }*/
 | 
						|
 | 
						|
  TIME_REGION(X, "calculateRecMII");
 | 
						|
 | 
						|
  findAllCircuits(graph, MII);
 | 
						|
  int RecMII = 0;
 | 
						|
 | 
						|
 for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::iterator I = recurrenceList.begin(), E=recurrenceList.end(); I !=E; ++I) {
 | 
						|
    RecMII = std::max(RecMII, I->first);
 | 
						|
  }
 | 
						|
 | 
						|
  return MII;
 | 
						|
}
 | 
						|
 | 
						|
/// calculateNodeAttributes - The following properties are calculated for
 | 
						|
/// each node in the dependence graph: ASAP, ALAP, Depth, Height, and
 | 
						|
/// MOB.
 | 
						|
void ModuloSchedulingPass::calculateNodeAttributes(MSchedGraph *graph, int MII) {
 | 
						|
 | 
						|
  TIME_REGION(X, "calculateNodeAttributes");
 | 
						|
 | 
						|
  assert(nodeToAttributesMap.empty() && "Node attribute map was not cleared");
 | 
						|
 | 
						|
  //Loop over the nodes and add them to the map
 | 
						|
  for(MSchedGraph::iterator I = graph->begin(), E = graph->end(); I != E; ++I) {
 | 
						|
 | 
						|
    DEBUG(std::cerr << "Inserting node into attribute map: " << *I->second << "\n");
 | 
						|
 | 
						|
    //Assert if its already in the map
 | 
						|
    assert(nodeToAttributesMap.count(I->second) == 0 &&
 | 
						|
           "Node attributes are already in the map");
 | 
						|
 | 
						|
    //Put into the map with default attribute values
 | 
						|
    nodeToAttributesMap[I->second] = MSNodeAttributes();
 | 
						|
  }
 | 
						|
 | 
						|
  //Create set to deal with reccurrences
 | 
						|
  std::set<MSchedGraphNode*> visitedNodes;
 | 
						|
 | 
						|
  //Now Loop over map and calculate the node attributes
 | 
						|
  for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
 | 
						|
    calculateASAP(I->first, MII, (MSchedGraphNode*) 0);
 | 
						|
    visitedNodes.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  int maxASAP = findMaxASAP();
 | 
						|
  //Calculate ALAP which depends on ASAP being totally calculated
 | 
						|
  for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
 | 
						|
    calculateALAP(I->first, MII, maxASAP, (MSchedGraphNode*) 0);
 | 
						|
    visitedNodes.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  //Calculate MOB which depends on ASAP being totally calculated, also do depth and height
 | 
						|
  for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
 | 
						|
    (I->second).MOB = std::max(0,(I->second).ALAP - (I->second).ASAP);
 | 
						|
 | 
						|
    DEBUG(std::cerr << "MOB: " << (I->second).MOB << " (" << *(I->first) << ")\n");
 | 
						|
    calculateDepth(I->first, (MSchedGraphNode*) 0);
 | 
						|
    calculateHeight(I->first, (MSchedGraphNode*) 0);
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/// ignoreEdge - Checks to see if this edge of a recurrence should be ignored or not
 | 
						|
bool ModuloSchedulingPass::ignoreEdge(MSchedGraphNode *srcNode, MSchedGraphNode *destNode) {
 | 
						|
  if(destNode == 0 || srcNode ==0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool findEdge = edgesToIgnore.count(std::make_pair(srcNode, destNode->getInEdgeNum(srcNode)));
 | 
						|
 | 
						|
  DEBUG(std::cerr << "Ignoring edge? from: " << *srcNode << " to " << *destNode << "\n");
 | 
						|
 | 
						|
  return findEdge;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// calculateASAP - Calculates the
 | 
						|
int  ModuloSchedulingPass::calculateASAP(MSchedGraphNode *node, int MII, MSchedGraphNode *destNode) {
 | 
						|
 | 
						|
  DEBUG(std::cerr << "Calculating ASAP for " << *node << "\n");
 | 
						|
 | 
						|
  //Get current node attributes
 | 
						|
  MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
 | 
						|
 | 
						|
  if(attributes.ASAP != -1)
 | 
						|
    return attributes.ASAP;
 | 
						|
 | 
						|
  int maxPredValue = 0;
 | 
						|
 | 
						|
  //Iterate over all of the predecessors and find max
 | 
						|
  for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) {
 | 
						|
 | 
						|
    //Only process if we are not ignoring the edge
 | 
						|
    if(!ignoreEdge(*P, node)) {
 | 
						|
      int predASAP = -1;
 | 
						|
      predASAP = calculateASAP(*P, MII, node);
 | 
						|
 | 
						|
      assert(predASAP != -1 && "ASAP has not been calculated");
 | 
						|
      int iteDiff = node->getInEdge(*P).getIteDiff();
 | 
						|
 | 
						|
      int currentPredValue = predASAP + (*P)->getLatency() - (iteDiff * MII);
 | 
						|
      DEBUG(std::cerr << "pred ASAP: " << predASAP << ", iteDiff: " << iteDiff << ", PredLatency: " << (*P)->getLatency() << ", Current ASAP pred: " << currentPredValue << "\n");
 | 
						|
      maxPredValue = std::max(maxPredValue, currentPredValue);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  attributes.ASAP = maxPredValue;
 | 
						|
 | 
						|
  DEBUG(std::cerr << "ASAP: " << attributes.ASAP << " (" << *node << ")\n");
 | 
						|
 | 
						|
  return maxPredValue;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int ModuloSchedulingPass::calculateALAP(MSchedGraphNode *node, int MII,
 | 
						|
                                        int maxASAP, MSchedGraphNode *srcNode) {
 | 
						|
 | 
						|
  DEBUG(std::cerr << "Calculating ALAP for " << *node << "\n");
 | 
						|
 | 
						|
  MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
 | 
						|
 | 
						|
  if(attributes.ALAP != -1)
 | 
						|
    return attributes.ALAP;
 | 
						|
 | 
						|
  if(node->hasSuccessors()) {
 | 
						|
 | 
						|
    //Trying to deal with the issue where the node has successors, but
 | 
						|
    //we are ignoring all of the edges to them. So this is my hack for
 | 
						|
    //now.. there is probably a more elegant way of doing this (FIXME)
 | 
						|
    bool processedOneEdge = false;
 | 
						|
 | 
						|
    //FIXME, set to something high to start
 | 
						|
    int minSuccValue = 9999999;
 | 
						|
 | 
						|
    //Iterate over all of the predecessors and fine max
 | 
						|
    for(MSchedGraphNode::succ_iterator P = node->succ_begin(),
 | 
						|
          E = node->succ_end(); P != E; ++P) {
 | 
						|
 | 
						|
      //Only process if we are not ignoring the edge
 | 
						|
      if(!ignoreEdge(node, *P)) {
 | 
						|
        processedOneEdge = true;
 | 
						|
        int succALAP = -1;
 | 
						|
        succALAP = calculateALAP(*P, MII, maxASAP, node);
 | 
						|
 | 
						|
        assert(succALAP != -1 && "Successors ALAP should have been caclulated");
 | 
						|
 | 
						|
        int iteDiff = P.getEdge().getIteDiff();
 | 
						|
 | 
						|
        int currentSuccValue = succALAP - node->getLatency() + iteDiff * MII;
 | 
						|
 | 
						|
        DEBUG(std::cerr << "succ ALAP: " << succALAP << ", iteDiff: " << iteDiff << ", SuccLatency: " << (*P)->getLatency() << ", Current ALAP succ: " << currentSuccValue << "\n");
 | 
						|
 | 
						|
        minSuccValue = std::min(minSuccValue, currentSuccValue);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if(processedOneEdge)
 | 
						|
        attributes.ALAP = minSuccValue;
 | 
						|
 | 
						|
    else
 | 
						|
      attributes.ALAP = maxASAP;
 | 
						|
  }
 | 
						|
  else
 | 
						|
    attributes.ALAP = maxASAP;
 | 
						|
 | 
						|
  DEBUG(std::cerr << "ALAP: " << attributes.ALAP << " (" << *node << ")\n");
 | 
						|
 | 
						|
  if(attributes.ALAP < 0)
 | 
						|
    attributes.ALAP = 0;
 | 
						|
 | 
						|
  return attributes.ALAP;
 | 
						|
}
 | 
						|
 | 
						|
int ModuloSchedulingPass::findMaxASAP() {
 | 
						|
  int maxASAP = 0;
 | 
						|
 | 
						|
  for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(),
 | 
						|
        E = nodeToAttributesMap.end(); I != E; ++I)
 | 
						|
    maxASAP = std::max(maxASAP, I->second.ASAP);
 | 
						|
  return maxASAP;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int ModuloSchedulingPass::calculateHeight(MSchedGraphNode *node,MSchedGraphNode *srcNode) {
 | 
						|
 | 
						|
  MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
 | 
						|
 | 
						|
  if(attributes.height != -1)
 | 
						|
    return attributes.height;
 | 
						|
 | 
						|
  int maxHeight = 0;
 | 
						|
 | 
						|
  //Iterate over all of the predecessors and find max
 | 
						|
  for(MSchedGraphNode::succ_iterator P = node->succ_begin(),
 | 
						|
        E = node->succ_end(); P != E; ++P) {
 | 
						|
 | 
						|
 | 
						|
    if(!ignoreEdge(node, *P)) {
 | 
						|
      int succHeight = calculateHeight(*P, node);
 | 
						|
 | 
						|
      assert(succHeight != -1 && "Successors Height should have been caclulated");
 | 
						|
 | 
						|
      int currentHeight = succHeight + node->getLatency();
 | 
						|
      maxHeight = std::max(maxHeight, currentHeight);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  attributes.height = maxHeight;
 | 
						|
  DEBUG(std::cerr << "Height: " << attributes.height << " (" << *node << ")\n");
 | 
						|
  return maxHeight;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int ModuloSchedulingPass::calculateDepth(MSchedGraphNode *node,
 | 
						|
                                          MSchedGraphNode *destNode) {
 | 
						|
 | 
						|
  MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
 | 
						|
 | 
						|
  if(attributes.depth != -1)
 | 
						|
    return attributes.depth;
 | 
						|
 | 
						|
  int maxDepth = 0;
 | 
						|
 | 
						|
  //Iterate over all of the predecessors and fine max
 | 
						|
  for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) {
 | 
						|
 | 
						|
    if(!ignoreEdge(*P, node)) {
 | 
						|
      int predDepth = -1;
 | 
						|
      predDepth = calculateDepth(*P, node);
 | 
						|
 | 
						|
      assert(predDepth != -1 && "Predecessors ASAP should have been caclulated");
 | 
						|
 | 
						|
      int currentDepth = predDepth + (*P)->getLatency();
 | 
						|
      maxDepth = std::max(maxDepth, currentDepth);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  attributes.depth = maxDepth;
 | 
						|
 | 
						|
  DEBUG(std::cerr << "Depth: " << attributes.depth << " (" << *node << "*)\n");
 | 
						|
  return maxDepth;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
void ModuloSchedulingPass::addReccurrence(std::vector<MSchedGraphNode*> &recurrence, int II, MSchedGraphNode *srcBENode, MSchedGraphNode *destBENode) {
 | 
						|
  //Check to make sure that this recurrence is unique
 | 
						|
  bool same = false;
 | 
						|
 | 
						|
 | 
						|
  //Loop over all recurrences already in our list
 | 
						|
  for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::iterator R = recurrenceList.begin(), RE = recurrenceList.end(); R != RE; ++R) {
 | 
						|
 | 
						|
    bool all_same = true;
 | 
						|
     //First compare size
 | 
						|
    if(R->second.size() == recurrence.size()) {
 | 
						|
 | 
						|
      for(std::vector<MSchedGraphNode*>::const_iterator node = R->second.begin(), end = R->second.end(); node != end; ++node) {
 | 
						|
        if(std::find(recurrence.begin(), recurrence.end(), *node) == recurrence.end()) {
 | 
						|
          all_same = all_same && false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        else
 | 
						|
          all_same = all_same && true;
 | 
						|
      }
 | 
						|
      if(all_same) {
 | 
						|
        same = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if(!same) {
 | 
						|
    srcBENode = recurrence.back();
 | 
						|
    destBENode = recurrence.front();
 | 
						|
 | 
						|
    //FIXME
 | 
						|
    if(destBENode->getInEdge(srcBENode).getIteDiff() == 0) {
 | 
						|
      //DEBUG(std::cerr << "NOT A BACKEDGE\n");
 | 
						|
      //find actual backedge HACK HACK
 | 
						|
      for(unsigned i=0; i< recurrence.size()-1; ++i) {
 | 
						|
        if(recurrence[i+1]->getInEdge(recurrence[i]).getIteDiff() == 1) {
 | 
						|
          srcBENode = recurrence[i];
 | 
						|
          destBENode = recurrence[i+1];
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
      }
 | 
						|
 | 
						|
    }
 | 
						|
    DEBUG(std::cerr << "Back Edge to Remove: " << *srcBENode << " to " << *destBENode << "\n");
 | 
						|
    edgesToIgnore.insert(std::make_pair(srcBENode, destBENode->getInEdgeNum(srcBENode)));
 | 
						|
    recurrenceList.insert(std::make_pair(II, recurrence));
 | 
						|
  }
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
int CircCount;
 | 
						|
 | 
						|
void ModuloSchedulingPass::unblock(MSchedGraphNode *u, std::set<MSchedGraphNode*> &blocked,
 | 
						|
             std::map<MSchedGraphNode*, std::set<MSchedGraphNode*> > &B) {
 | 
						|
 | 
						|
  //Unblock u
 | 
						|
  DEBUG(std::cerr << "Unblocking: " << *u << "\n");
 | 
						|
  blocked.erase(u);
 | 
						|
 | 
						|
  //std::set<MSchedGraphNode*> toErase;
 | 
						|
  while (!B[u].empty()) {
 | 
						|
    MSchedGraphNode *W = *B[u].begin();
 | 
						|
    B[u].erase(W);
 | 
						|
    //toErase.insert(*W);
 | 
						|
    DEBUG(std::cerr << "Removed: " << *W << "from B-List\n");
 | 
						|
    if(blocked.count(W))
 | 
						|
      unblock(W, blocked, B);
 | 
						|
  }
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
bool ModuloSchedulingPass::circuit(MSchedGraphNode *v, std::vector<MSchedGraphNode*> &stack,
 | 
						|
             std::set<MSchedGraphNode*> &blocked, std::vector<MSchedGraphNode*> &SCC,
 | 
						|
             MSchedGraphNode *s, std::map<MSchedGraphNode*, std::set<MSchedGraphNode*> > &B,
 | 
						|
                                   int II, std::map<MSchedGraphNode*, MSchedGraphNode*> &newNodes) {
 | 
						|
  bool f = false;
 | 
						|
 | 
						|
  DEBUG(std::cerr << "Finding Circuits Starting with: ( " << v << ")"<< *v << "\n");
 | 
						|
 | 
						|
  //Push node onto the stack
 | 
						|
  stack.push_back(v);
 | 
						|
 | 
						|
  //block this node
 | 
						|
  blocked.insert(v);
 | 
						|
 | 
						|
  //Loop over all successors of node v that are in the scc, create Adjaceny list
 | 
						|
  std::set<MSchedGraphNode*> AkV;
 | 
						|
  for(MSchedGraphNode::succ_iterator I = v->succ_begin(), E = v->succ_end(); I != E; ++I) {
 | 
						|
    if((std::find(SCC.begin(), SCC.end(), *I) != SCC.end())) {
 | 
						|
      AkV.insert(*I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for(std::set<MSchedGraphNode*>::iterator I = AkV.begin(), E = AkV.end(); I != E; ++I) {
 | 
						|
    if(*I == s) {
 | 
						|
      //We have a circuit, so add it to our list
 | 
						|
      addRecc(stack, newNodes);
 | 
						|
      f = true;
 | 
						|
    }
 | 
						|
    else if(!blocked.count(*I)) {
 | 
						|
      if(circuit(*I, stack, blocked, SCC, s, B, II, newNodes))
 | 
						|
        f = true;
 | 
						|
    }
 | 
						|
    else
 | 
						|
      DEBUG(std::cerr << "Blocked: " << **I << "\n");
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  if(f) {
 | 
						|
    unblock(v, blocked, B);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    for(std::set<MSchedGraphNode*>::iterator I = AkV.begin(), E = AkV.end(); I != E; ++I)
 | 
						|
      B[*I].insert(v);
 | 
						|
 | 
						|
  }
 | 
						|
 | 
						|
  //Pop v
 | 
						|
  stack.pop_back();
 | 
						|
 | 
						|
  return f;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void ModuloSchedulingPass::addRecc(std::vector<MSchedGraphNode*> &stack, std::map<MSchedGraphNode*, MSchedGraphNode*> &newNodes) {
 | 
						|
  std::vector<MSchedGraphNode*> recc;
 | 
						|
  //Dump recurrence for now
 | 
						|
  DEBUG(std::cerr << "Starting Recc\n");
 | 
						|
 | 
						|
  int totalDelay = 0;
 | 
						|
  int totalDistance = 0;
 | 
						|
  MSchedGraphNode *lastN = 0;
 | 
						|
  MSchedGraphNode *start = 0;
 | 
						|
  MSchedGraphNode *end = 0;
 | 
						|
 | 
						|
  //Loop over recurrence, get delay and distance
 | 
						|
  for(std::vector<MSchedGraphNode*>::iterator N = stack.begin(), NE = stack.end(); N != NE; ++N) {
 | 
						|
    DEBUG(std::cerr << **N << "\n");
 | 
						|
    totalDelay += (*N)->getLatency();
 | 
						|
    if(lastN) {
 | 
						|
      int iteDiff = (*N)->getInEdge(lastN).getIteDiff();
 | 
						|
      totalDistance += iteDiff;
 | 
						|
 | 
						|
      if(iteDiff > 0) {
 | 
						|
        start = lastN;
 | 
						|
        end = *N;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    //Get the original node
 | 
						|
    lastN = *N;
 | 
						|
    recc.push_back(newNodes[*N]);
 | 
						|
 | 
						|
 | 
						|
  }
 | 
						|
 | 
						|
  //Get the loop edge
 | 
						|
  totalDistance += lastN->getIteDiff(*stack.begin());
 | 
						|
 | 
						|
  DEBUG(std::cerr << "End Recc\n");
 | 
						|
  CircCount++;
 | 
						|
 | 
						|
  if(start && end) {
 | 
						|
    //Insert reccurrence into the list
 | 
						|
    DEBUG(std::cerr << "Ignore Edge from!!: " << *start << " to " << *end << "\n");
 | 
						|
    edgesToIgnore.insert(std::make_pair(newNodes[start], (newNodes[end])->getInEdgeNum(newNodes[start])));
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    //Insert reccurrence into the list
 | 
						|
    DEBUG(std::cerr << "Ignore Edge from: " << *lastN << " to " << **stack.begin() << "\n");
 | 
						|
    edgesToIgnore.insert(std::make_pair(newNodes[lastN], newNodes[(*stack.begin())]->getInEdgeNum(newNodes[lastN])));
 | 
						|
 | 
						|
  }
 | 
						|
  //Adjust II until we get close to the inequality delay - II*distance <= 0
 | 
						|
  int RecMII = II; //Starting value
 | 
						|
  int value = totalDelay-(RecMII * totalDistance);
 | 
						|
  int lastII = II;
 | 
						|
  while(value < 0) {
 | 
						|
 | 
						|
    lastII = RecMII;
 | 
						|
    RecMII--;
 | 
						|
    value = totalDelay-(RecMII * totalDistance);
 | 
						|
  }
 | 
						|
 | 
						|
  recurrenceList.insert(std::make_pair(lastII, recc));
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void ModuloSchedulingPass::addSCC(std::vector<MSchedGraphNode*> &SCC, std::map<MSchedGraphNode*, MSchedGraphNode*> &newNodes) {
 | 
						|
 | 
						|
  int totalDelay = 0;
 | 
						|
  int totalDistance = 0;
 | 
						|
  std::vector<MSchedGraphNode*> recc;
 | 
						|
  MSchedGraphNode *start = 0;
 | 
						|
  MSchedGraphNode *end = 0;
 | 
						|
 | 
						|
  //Loop over recurrence, get delay and distance
 | 
						|
  for(std::vector<MSchedGraphNode*>::iterator N = SCC.begin(), NE = SCC.end(); N != NE; ++N) {
 | 
						|
    DEBUG(std::cerr << **N << "\n");
 | 
						|
    totalDelay += (*N)->getLatency();
 | 
						|
 | 
						|
    for(unsigned i = 0; i < (*N)->succ_size(); ++i) {
 | 
						|
      MSchedGraphEdge *edge = (*N)->getSuccessor(i);
 | 
						|
      if(find(SCC.begin(), SCC.end(), edge->getDest()) != SCC.end()) {
 | 
						|
        totalDistance += edge->getIteDiff();
 | 
						|
        if(edge->getIteDiff() > 0)
 | 
						|
          if(!start && !end) {
 | 
						|
            start = *N;
 | 
						|
            end = edge->getDest();
 | 
						|
          }
 | 
						|
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    //Get the original node
 | 
						|
    recc.push_back(newNodes[*N]);
 | 
						|
 | 
						|
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(std::cerr << "End Recc\n");
 | 
						|
  CircCount++;
 | 
						|
 | 
						|
  assert( (start && end) && "Must have start and end node to ignore edge for SCC");
 | 
						|
 | 
						|
  if(start && end) {
 | 
						|
    //Insert reccurrence into the list
 | 
						|
    DEBUG(std::cerr << "Ignore Edge from!!: " << *start << " to " << *end << "\n");
 | 
						|
    edgesToIgnore.insert(std::make_pair(newNodes[start], (newNodes[end])->getInEdgeNum(newNodes[start])));
 | 
						|
  }
 | 
						|
 | 
						|
  int lastII = totalDelay / totalDistance;
 | 
						|
 | 
						|
 | 
						|
  recurrenceList.insert(std::make_pair(lastII, recc));
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void ModuloSchedulingPass::findAllCircuits(MSchedGraph *g, int II) {
 | 
						|
 | 
						|
  CircCount = 0;
 | 
						|
 | 
						|
  //Keep old to new node mapping information
 | 
						|
  std::map<MSchedGraphNode*, MSchedGraphNode*> newNodes;
 | 
						|
 | 
						|
  //copy the graph
 | 
						|
  MSchedGraph *MSG = new MSchedGraph(*g, newNodes);
 | 
						|
 | 
						|
  DEBUG(std::cerr << "Finding All Circuits\n");
 | 
						|
 | 
						|
  //Set of blocked nodes
 | 
						|
  std::set<MSchedGraphNode*> blocked;
 | 
						|
 | 
						|
  //Stack holding current circuit
 | 
						|
  std::vector<MSchedGraphNode*> stack;
 | 
						|
 | 
						|
  //Map for B Lists
 | 
						|
  std::map<MSchedGraphNode*, std::set<MSchedGraphNode*> > B;
 | 
						|
 | 
						|
  //current node
 | 
						|
  MSchedGraphNode *s;
 | 
						|
 | 
						|
 | 
						|
  //Iterate over the graph until its down to one node or empty
 | 
						|
  while(MSG->size() > 1) {
 | 
						|
 | 
						|
    //Write Graph out to file
 | 
						|
    //WriteGraphToFile(std::cerr, "Graph" + utostr(MSG->size()), MSG);
 | 
						|
 | 
						|
    DEBUG(std::cerr << "Graph Size: " << MSG->size() << "\n");
 | 
						|
    DEBUG(std::cerr << "Finding strong component Vk with least vertex\n");
 | 
						|
 | 
						|
    //Iterate over all the SCCs in the graph
 | 
						|
    std::set<MSchedGraphNode*> Visited;
 | 
						|
    std::vector<MSchedGraphNode*> Vk;
 | 
						|
    MSchedGraphNode* s = 0;
 | 
						|
    int numEdges = 0;
 | 
						|
 | 
						|
    //Find scc with the least vertex
 | 
						|
    for (MSchedGraph::iterator GI = MSG->begin(), E = MSG->end(); GI != E; ++GI)
 | 
						|
      if (Visited.insert(GI->second).second) {
 | 
						|
        for (scc_iterator<MSchedGraphNode*> SCCI = scc_begin(GI->second),
 | 
						|
               E = scc_end(GI->second); SCCI != E; ++SCCI) {
 | 
						|
          std::vector<MSchedGraphNode*> &nextSCC = *SCCI;
 | 
						|
 | 
						|
          if (Visited.insert(nextSCC[0]).second) {
 | 
						|
            Visited.insert(nextSCC.begin()+1, nextSCC.end());
 | 
						|
 | 
						|
            if(nextSCC.size() > 1) {
 | 
						|
              std::cerr << "SCC size: " << nextSCC.size() << "\n";
 | 
						|
 | 
						|
              for(unsigned i = 0; i < nextSCC.size(); ++i) {
 | 
						|
                //Loop over successor and see if in scc, then count edge
 | 
						|
                MSchedGraphNode *node = nextSCC[i];
 | 
						|
                for(MSchedGraphNode::succ_iterator S = node->succ_begin(), SE = node->succ_end(); S != SE; ++S) {
 | 
						|
                  if(find(nextSCC.begin(), nextSCC.end(), *S) != nextSCC.end())
 | 
						|
                    numEdges++;
 | 
						|
                }
 | 
						|
              }
 | 
						|
              std::cerr << "Num Edges: " << numEdges << "\n";
 | 
						|
            }
 | 
						|
 | 
						|
            //Ignore self loops
 | 
						|
            if(nextSCC.size() > 1) {
 | 
						|
 | 
						|
              //Get least vertex in Vk
 | 
						|
              if(!s) {
 | 
						|
                s = nextSCC[0];
 | 
						|
                Vk = nextSCC;
 | 
						|
              }
 | 
						|
 | 
						|
              for(unsigned i = 0; i < nextSCC.size(); ++i) {
 | 
						|
                if(nextSCC[i] < s) {
 | 
						|
                  s = nextSCC[i];
 | 
						|
                  Vk = nextSCC;
 | 
						|
                }
 | 
						|
              }
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
 | 
						|
 | 
						|
    //Process SCC
 | 
						|
    DEBUG(for(std::vector<MSchedGraphNode*>::iterator N = Vk.begin(), NE = Vk.end();
 | 
						|
              N != NE; ++N) { std::cerr << *((*N)->getInst()); });
 | 
						|
 | 
						|
    //Iterate over all nodes in this scc
 | 
						|
    for(std::vector<MSchedGraphNode*>::iterator N = Vk.begin(), NE = Vk.end();
 | 
						|
        N != NE; ++N) {
 | 
						|
      blocked.erase(*N);
 | 
						|
      B[*N].clear();
 | 
						|
    }
 | 
						|
    if(Vk.size() > 1) {
 | 
						|
      if(numEdges < 98)
 | 
						|
        circuit(s, stack, blocked, Vk, s, B, II, newNodes);
 | 
						|
      else
 | 
						|
        addSCC(Vk, newNodes);
 | 
						|
 | 
						|
      //Delete nodes from the graph
 | 
						|
      //Find all nodes up to s and delete them
 | 
						|
      std::vector<MSchedGraphNode*> nodesToRemove;
 | 
						|
      nodesToRemove.push_back(s);
 | 
						|
      for(MSchedGraph::iterator N = MSG->begin(), NE = MSG->end(); N != NE; ++N) {
 | 
						|
        if(N->second < s )
 | 
						|
            nodesToRemove.push_back(N->second);
 | 
						|
      }
 | 
						|
      for(std::vector<MSchedGraphNode*>::iterator N = nodesToRemove.begin(), NE = nodesToRemove.end(); N != NE; ++N) {
 | 
						|
        DEBUG(std::cerr << "Deleting Node: " << **N << "\n");
 | 
						|
        MSG->deleteNode(*N);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  DEBUG(std::cerr << "Num Circuits found: " << CircCount << "\n");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void ModuloSchedulingPass::findAllReccurrences(MSchedGraphNode *node,
 | 
						|
                                               std::vector<MSchedGraphNode*> &visitedNodes,
 | 
						|
                                               int II) {
 | 
						|
 | 
						|
 | 
						|
  if(std::find(visitedNodes.begin(), visitedNodes.end(), node) != visitedNodes.end()) {
 | 
						|
    std::vector<MSchedGraphNode*> recurrence;
 | 
						|
    bool first = true;
 | 
						|
    int delay = 0;
 | 
						|
    int distance = 0;
 | 
						|
    int RecMII = II; //Starting value
 | 
						|
    MSchedGraphNode *last = node;
 | 
						|
    MSchedGraphNode *srcBackEdge = 0;
 | 
						|
    MSchedGraphNode *destBackEdge = 0;
 | 
						|
 | 
						|
 | 
						|
 | 
						|
    for(std::vector<MSchedGraphNode*>::iterator I = visitedNodes.begin(), E = visitedNodes.end();
 | 
						|
        I !=E; ++I) {
 | 
						|
 | 
						|
      if(*I == node)
 | 
						|
        first = false;
 | 
						|
      if(first)
 | 
						|
        continue;
 | 
						|
 | 
						|
      delay = delay + (*I)->getLatency();
 | 
						|
 | 
						|
      if(*I != node) {
 | 
						|
        int diff = (*I)->getInEdge(last).getIteDiff();
 | 
						|
        distance += diff;
 | 
						|
        if(diff > 0) {
 | 
						|
          srcBackEdge = last;
 | 
						|
          destBackEdge = *I;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      recurrence.push_back(*I);
 | 
						|
      last = *I;
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
 | 
						|
    //Get final distance calc
 | 
						|
    distance += node->getInEdge(last).getIteDiff();
 | 
						|
    DEBUG(std::cerr << "Reccurrence Distance: " << distance << "\n");
 | 
						|
 | 
						|
    //Adjust II until we get close to the inequality delay - II*distance <= 0
 | 
						|
 | 
						|
    int value = delay-(RecMII * distance);
 | 
						|
    int lastII = II;
 | 
						|
    while(value <= 0) {
 | 
						|
 | 
						|
      lastII = RecMII;
 | 
						|
      RecMII--;
 | 
						|
      value = delay-(RecMII * distance);
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    DEBUG(std::cerr << "Final II for this recurrence: " << lastII << "\n");
 | 
						|
    addReccurrence(recurrence, lastII, srcBackEdge, destBackEdge);
 | 
						|
    assert(distance != 0 && "Recurrence distance should not be zero");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned count = 0;
 | 
						|
  for(MSchedGraphNode::succ_iterator I = node->succ_begin(), E = node->succ_end(); I != E; ++I) {
 | 
						|
    visitedNodes.push_back(node);
 | 
						|
    //if(!edgesToIgnore.count(std::make_pair(node, count)))
 | 
						|
    findAllReccurrences(*I, visitedNodes, II);
 | 
						|
    visitedNodes.pop_back();
 | 
						|
    count++;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ModuloSchedulingPass::searchPath(MSchedGraphNode *node,
 | 
						|
                                      std::vector<MSchedGraphNode*> &path,
 | 
						|
                                      std::set<MSchedGraphNode*> &nodesToAdd,
 | 
						|
                                     std::set<MSchedGraphNode*> &new_reccurrence) {
 | 
						|
  //Push node onto the path
 | 
						|
  path.push_back(node);
 | 
						|
 | 
						|
  //Loop over all successors and see if there is a path from this node to
 | 
						|
  //a recurrence in the partial order, if so.. add all nodes to be added to recc
 | 
						|
  for(MSchedGraphNode::succ_iterator S = node->succ_begin(), SE = node->succ_end(); S != SE;
 | 
						|
      ++S) {
 | 
						|
 | 
						|
    //Check if we should ignore this edge first
 | 
						|
    if(ignoreEdge(node,*S))
 | 
						|
      continue;
 | 
						|
 | 
						|
    //check if successor is in this recurrence, we will get to it eventually
 | 
						|
    if(new_reccurrence.count(*S))
 | 
						|
      continue;
 | 
						|
 | 
						|
    //If this node exists in a recurrence already in the partial
 | 
						|
    //order, then add all nodes in the path to the set of nodes to add
 | 
						|
     //Check if its already in our partial order, if not add it to the
 | 
						|
     //final vector
 | 
						|
    bool found = false;
 | 
						|
    for(std::vector<std::set<MSchedGraphNode*> >::iterator PO = partialOrder.begin(),
 | 
						|
          PE = partialOrder.end(); PO != PE; ++PO) {
 | 
						|
 | 
						|
      if(PO->count(*S)) {
 | 
						|
        found = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if(!found) {
 | 
						|
      nodesToAdd.insert(*S);
 | 
						|
      searchPath(*S, path, nodesToAdd, new_reccurrence);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  //Pop Node off the path
 | 
						|
  path.pop_back();
 | 
						|
}
 | 
						|
 | 
						|
void ModuloSchedulingPass::pathToRecc(MSchedGraphNode *node,
 | 
						|
                                      std::vector<MSchedGraphNode*> &path,
 | 
						|
                                      std::set<MSchedGraphNode*> &poSet,
 | 
						|
                                      std::set<MSchedGraphNode*> &lastNodes) {
 | 
						|
  //Push node onto the path
 | 
						|
  path.push_back(node);
 | 
						|
 | 
						|
  DEBUG(std::cerr << "Current node: " << *node << "\n");
 | 
						|
 | 
						|
  //Loop over all successors and see if there is a path from this node to
 | 
						|
  //a recurrence in the partial order, if so.. add all nodes to be added to recc
 | 
						|
  for(MSchedGraphNode::succ_iterator S = node->succ_begin(), SE = node->succ_end(); S != SE;
 | 
						|
      ++S) {
 | 
						|
    DEBUG(std::cerr << "Succ:" << **S << "\n");
 | 
						|
    //Check if we should ignore this edge first
 | 
						|
    if(ignoreEdge(node,*S))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if(poSet.count(*S)) {
 | 
						|
      DEBUG(std::cerr << "Found path to recc from no pred\n");
 | 
						|
      //Loop over path, if it exists in lastNodes, then add to poset, and remove from lastNodes
 | 
						|
      for(std::vector<MSchedGraphNode*>::iterator I = path.begin(), IE = path.end(); I != IE; ++I) {
 | 
						|
        if(lastNodes.count(*I)) {
 | 
						|
          DEBUG(std::cerr << "Inserting node into recc: " << **I << "\n");
 | 
						|
          poSet.insert(*I);
 | 
						|
          lastNodes.erase(*I);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else
 | 
						|
      pathToRecc(*S, path, poSet, lastNodes);
 | 
						|
  }
 | 
						|
 | 
						|
  //Pop Node off the path
 | 
						|
  path.pop_back();
 | 
						|
}
 | 
						|
 | 
						|
void ModuloSchedulingPass::computePartialOrder() {
 | 
						|
 | 
						|
  TIME_REGION(X, "calculatePartialOrder");
 | 
						|
 | 
						|
  DEBUG(std::cerr << "Computing Partial Order\n");
 | 
						|
 | 
						|
  //Only push BA branches onto the final node order, we put other
 | 
						|
  //branches after it FIXME: Should we really be pushing branches on
 | 
						|
  //it a specific order instead of relying on BA being there?
 | 
						|
 | 
						|
  std::vector<MSchedGraphNode*> branches;
 | 
						|
 | 
						|
  //Steps to add a recurrence to the partial order 1) Find reccurrence
 | 
						|
  //with the highest RecMII. Add it to the partial order.  2) For each
 | 
						|
  //recurrence with decreasing RecMII, add it to the partial order
 | 
						|
  //along with any nodes that connect this recurrence to recurrences
 | 
						|
  //already in the partial order
 | 
						|
  for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::reverse_iterator
 | 
						|
        I = recurrenceList.rbegin(), E=recurrenceList.rend(); I !=E; ++I) {
 | 
						|
 | 
						|
    std::set<MSchedGraphNode*> new_recurrence;
 | 
						|
 | 
						|
    //Loop through recurrence and remove any nodes already in the partial order
 | 
						|
    for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(),
 | 
						|
          NE = I->second.end(); N != NE; ++N) {
 | 
						|
 | 
						|
      bool found = false;
 | 
						|
      for(std::vector<std::set<MSchedGraphNode*> >::iterator PO = partialOrder.begin(),
 | 
						|
            PE = partialOrder.end(); PO != PE; ++PO) {
 | 
						|
        if(PO->count(*N))
 | 
						|
          found = true;
 | 
						|
      }
 | 
						|
 | 
						|
      //Check if its a branch, and remove to handle special
 | 
						|
      if(!found) {
 | 
						|
        if((*N)->isBranch() && !(*N)->hasPredecessors()) {
 | 
						|
          branches.push_back(*N);
 | 
						|
        }
 | 
						|
        else
 | 
						|
          new_recurrence.insert(*N);
 | 
						|
      }
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    if(new_recurrence.size() > 0) {
 | 
						|
 | 
						|
      std::vector<MSchedGraphNode*> path;
 | 
						|
      std::set<MSchedGraphNode*> nodesToAdd;
 | 
						|
 | 
						|
      //Dump recc we are dealing with (minus nodes already in PO)
 | 
						|
      DEBUG(std::cerr << "Recc: ");
 | 
						|
      DEBUG(for(std::set<MSchedGraphNode*>::iterator R = new_recurrence.begin(), RE = new_recurrence.end(); R != RE; ++R) { std::cerr << **R ; });
 | 
						|
 | 
						|
      //Add nodes that connect this recurrence to recurrences in the partial path
 | 
						|
      for(std::set<MSchedGraphNode*>::iterator N = new_recurrence.begin(),
 | 
						|
          NE = new_recurrence.end(); N != NE; ++N)
 | 
						|
        searchPath(*N, path, nodesToAdd, new_recurrence);
 | 
						|
 | 
						|
      //Add nodes to this recurrence if they are not already in the partial order
 | 
						|
      for(std::set<MSchedGraphNode*>::iterator N = nodesToAdd.begin(), NE = nodesToAdd.end();
 | 
						|
          N != NE; ++N) {
 | 
						|
        bool found = false;
 | 
						|
        for(std::vector<std::set<MSchedGraphNode*> >::iterator PO = partialOrder.begin(),
 | 
						|
              PE = partialOrder.end(); PO != PE; ++PO) {
 | 
						|
          if(PO->count(*N))
 | 
						|
            found = true;
 | 
						|
        }
 | 
						|
        if(!found) {
 | 
						|
          assert("FOUND CONNECTOR");
 | 
						|
          new_recurrence.insert(*N);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      partialOrder.push_back(new_recurrence);
 | 
						|
 | 
						|
 | 
						|
      //Dump out partial order
 | 
						|
      DEBUG(for(std::vector<std::set<MSchedGraphNode*> >::iterator I = partialOrder.begin(),
 | 
						|
                  E = partialOrder.end(); I !=E; ++I) {
 | 
						|
              std::cerr << "Start set in PO\n";
 | 
						|
              for(std::set<MSchedGraphNode*>::iterator J = I->begin(), JE = I->end(); J != JE; ++J)
 | 
						|
                std::cerr << "PO:" << **J << "\n";
 | 
						|
            });
 | 
						|
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  //Add any nodes that are not already in the partial order
 | 
						|
  //Add them in a set, one set per connected component
 | 
						|
  std::set<MSchedGraphNode*> lastNodes;
 | 
						|
  std::set<MSchedGraphNode*> noPredNodes;
 | 
						|
  for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(),
 | 
						|
        E = nodeToAttributesMap.end(); I != E; ++I) {
 | 
						|
 | 
						|
    bool found = false;
 | 
						|
 | 
						|
    //Check if its already in our partial order, if not add it to the final vector
 | 
						|
    for(std::vector<std::set<MSchedGraphNode*> >::iterator PO = partialOrder.begin(),
 | 
						|
          PE = partialOrder.end(); PO != PE; ++PO) {
 | 
						|
      if(PO->count(I->first))
 | 
						|
        found = true;
 | 
						|
    }
 | 
						|
    if(!found)
 | 
						|
      lastNodes.insert(I->first);
 | 
						|
  }
 | 
						|
 | 
						|
  //For each node w/out preds, see if there is a path to one of the
 | 
						|
  //recurrences, and if so add them to that current recc
 | 
						|
  /*for(std::set<MSchedGraphNode*>::iterator N = noPredNodes.begin(), NE = noPredNodes.end();
 | 
						|
      N != NE; ++N) {
 | 
						|
    DEBUG(std::cerr << "No Pred Path from: " << **N << "\n");
 | 
						|
    for(std::vector<std::set<MSchedGraphNode*> >::iterator PO = partialOrder.begin(),
 | 
						|
          PE = partialOrder.end(); PO != PE; ++PO) {
 | 
						|
      std::vector<MSchedGraphNode*> path;
 | 
						|
      pathToRecc(*N, path, *PO, lastNodes);
 | 
						|
    }
 | 
						|
    }*/
 | 
						|
 | 
						|
 | 
						|
  //Break up remaining nodes that are not in the partial order
 | 
						|
  ///into their connected compoenents
 | 
						|
    while(lastNodes.size() > 0) {
 | 
						|
      std::set<MSchedGraphNode*> ccSet;
 | 
						|
      connectedComponentSet(*(lastNodes.begin()),ccSet, lastNodes);
 | 
						|
      if(ccSet.size() > 0)
 | 
						|
        partialOrder.push_back(ccSet);
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
  //Clean up branches by putting them in final order
 | 
						|
    assert(branches.size() == 0 && "We should not have any branches in our graph");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void ModuloSchedulingPass::connectedComponentSet(MSchedGraphNode *node, std::set<MSchedGraphNode*> &ccSet, std::set<MSchedGraphNode*> &lastNodes) {
 | 
						|
 | 
						|
//Add to final set
 | 
						|
  if( !ccSet.count(node) && lastNodes.count(node)) {
 | 
						|
    lastNodes.erase(node);
 | 
						|
    ccSet.insert(node);
 | 
						|
  }
 | 
						|
  else
 | 
						|
    return;
 | 
						|
 | 
						|
  //Loop over successors and recurse if we have not seen this node before
 | 
						|
  for(MSchedGraphNode::succ_iterator node_succ = node->succ_begin(), end=node->succ_end(); node_succ != end; ++node_succ) {
 | 
						|
    connectedComponentSet(*node_succ, ccSet, lastNodes);
 | 
						|
  }
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void ModuloSchedulingPass::predIntersect(std::set<MSchedGraphNode*> &CurrentSet, std::set<MSchedGraphNode*> &IntersectResult) {
 | 
						|
 | 
						|
  for(unsigned j=0; j < FinalNodeOrder.size(); ++j) {
 | 
						|
    for(MSchedGraphNode::pred_iterator P = FinalNodeOrder[j]->pred_begin(),
 | 
						|
          E = FinalNodeOrder[j]->pred_end(); P != E; ++P) {
 | 
						|
 | 
						|
      //Check if we are supposed to ignore this edge or not
 | 
						|
      if(ignoreEdge(*P,FinalNodeOrder[j]))
 | 
						|
        continue;
 | 
						|
 | 
						|
      if(CurrentSet.count(*P))
 | 
						|
        if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end())
 | 
						|
          IntersectResult.insert(*P);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
void ModuloSchedulingPass::succIntersect(std::set<MSchedGraphNode*> &CurrentSet, std::set<MSchedGraphNode*> &IntersectResult) {
 | 
						|
 | 
						|
  for(unsigned j=0; j < FinalNodeOrder.size(); ++j) {
 | 
						|
    for(MSchedGraphNode::succ_iterator P = FinalNodeOrder[j]->succ_begin(),
 | 
						|
          E = FinalNodeOrder[j]->succ_end(); P != E; ++P) {
 | 
						|
 | 
						|
      //Check if we are supposed to ignore this edge or not
 | 
						|
      if(ignoreEdge(FinalNodeOrder[j],*P))
 | 
						|
        continue;
 | 
						|
 | 
						|
      if(CurrentSet.count(*P))
 | 
						|
        if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end())
 | 
						|
          IntersectResult.insert(*P);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void dumpIntersection(std::set<MSchedGraphNode*> &IntersectCurrent) {
 | 
						|
  std::cerr << "Intersection (";
 | 
						|
  for(std::set<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(), E = IntersectCurrent.end(); I != E; ++I)
 | 
						|
    std::cerr << **I << ", ";
 | 
						|
  std::cerr << ")\n";
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
void ModuloSchedulingPass::orderNodes() {
 | 
						|
 | 
						|
  TIME_REGION(X, "orderNodes");
 | 
						|
 | 
						|
  int BOTTOM_UP = 0;
 | 
						|
  int TOP_DOWN = 1;
 | 
						|
 | 
						|
  //Set default order
 | 
						|
  int order = BOTTOM_UP;
 | 
						|
 | 
						|
 | 
						|
  //Loop over all the sets and place them in the final node order
 | 
						|
  for(std::vector<std::set<MSchedGraphNode*> >::iterator CurrentSet = partialOrder.begin(), E= partialOrder.end(); CurrentSet != E; ++CurrentSet) {
 | 
						|
 | 
						|
    DEBUG(std::cerr << "Processing set in S\n");
 | 
						|
    DEBUG(dumpIntersection(*CurrentSet));
 | 
						|
 | 
						|
    //Result of intersection
 | 
						|
    std::set<MSchedGraphNode*> IntersectCurrent;
 | 
						|
 | 
						|
    predIntersect(*CurrentSet, IntersectCurrent);
 | 
						|
 | 
						|
    //If the intersection of predecessor and current set is not empty
 | 
						|
    //sort nodes bottom up
 | 
						|
    if(IntersectCurrent.size() != 0) {
 | 
						|
      DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is NOT empty\n");
 | 
						|
      order = BOTTOM_UP;
 | 
						|
    }
 | 
						|
    //If empty, use successors
 | 
						|
    else {
 | 
						|
      DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is empty\n");
 | 
						|
 | 
						|
      succIntersect(*CurrentSet, IntersectCurrent);
 | 
						|
 | 
						|
      //sort top-down
 | 
						|
      if(IntersectCurrent.size() != 0) {
 | 
						|
         DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is NOT empty\n");
 | 
						|
        order = TOP_DOWN;
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is empty\n");
 | 
						|
        //Find node with max ASAP in current Set
 | 
						|
        MSchedGraphNode *node;
 | 
						|
        int maxASAP = 0;
 | 
						|
        DEBUG(std::cerr << "Using current set of size " << CurrentSet->size() << "to find max ASAP\n");
 | 
						|
        for(std::set<MSchedGraphNode*>::iterator J = CurrentSet->begin(), JE = CurrentSet->end(); J != JE; ++J) {
 | 
						|
          //Get node attributes
 | 
						|
          MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*J)->second;
 | 
						|
          //assert(nodeAttr != nodeToAttributesMap.end() && "Node not in attributes map!");
 | 
						|
 | 
						|
          if(maxASAP <= nodeAttr.ASAP) {
 | 
						|
            maxASAP = nodeAttr.ASAP;
 | 
						|
            node = *J;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        assert(node != 0 && "In node ordering node should not be null");
 | 
						|
        IntersectCurrent.insert(node);
 | 
						|
        order = BOTTOM_UP;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    //Repeat until all nodes are put into the final order from current set
 | 
						|
    while(IntersectCurrent.size() > 0) {
 | 
						|
 | 
						|
      if(order == TOP_DOWN) {
 | 
						|
        DEBUG(std::cerr << "Order is TOP DOWN\n");
 | 
						|
 | 
						|
        while(IntersectCurrent.size() > 0) {
 | 
						|
          DEBUG(std::cerr << "Intersection is not empty, so find heighest height\n");
 | 
						|
 | 
						|
          int MOB = 0;
 | 
						|
          int height = 0;
 | 
						|
          MSchedGraphNode *highestHeightNode = *(IntersectCurrent.begin());
 | 
						|
 | 
						|
          //Find node in intersection with highest heigh and lowest MOB
 | 
						|
          for(std::set<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(),
 | 
						|
                E = IntersectCurrent.end(); I != E; ++I) {
 | 
						|
 | 
						|
            //Get current nodes properties
 | 
						|
            MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*I)->second;
 | 
						|
 | 
						|
            if(height < nodeAttr.height) {
 | 
						|
              highestHeightNode = *I;
 | 
						|
              height = nodeAttr.height;
 | 
						|
              MOB = nodeAttr.MOB;
 | 
						|
            }
 | 
						|
            else if(height ==  nodeAttr.height) {
 | 
						|
              if(MOB > nodeAttr.height) {
 | 
						|
                highestHeightNode = *I;
 | 
						|
                height =  nodeAttr.height;
 | 
						|
                MOB = nodeAttr.MOB;
 | 
						|
              }
 | 
						|
            }
 | 
						|
          }
 | 
						|
 | 
						|
          //Append our node with greatest height to the NodeOrder
 | 
						|
          if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestHeightNode) == FinalNodeOrder.end()) {
 | 
						|
            DEBUG(std::cerr << "Adding node to Final Order: " << *highestHeightNode << "\n");
 | 
						|
            FinalNodeOrder.push_back(highestHeightNode);
 | 
						|
          }
 | 
						|
 | 
						|
          //Remove V from IntersectOrder
 | 
						|
          IntersectCurrent.erase(std::find(IntersectCurrent.begin(),
 | 
						|
                                      IntersectCurrent.end(), highestHeightNode));
 | 
						|
 | 
						|
 | 
						|
          //Intersect V's successors with CurrentSet
 | 
						|
          for(MSchedGraphNode::succ_iterator P = highestHeightNode->succ_begin(),
 | 
						|
                E = highestHeightNode->succ_end(); P != E; ++P) {
 | 
						|
            //if(lower_bound(CurrentSet->begin(),
 | 
						|
            //     CurrentSet->end(), *P) != CurrentSet->end()) {
 | 
						|
            if(std::find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) {
 | 
						|
              if(ignoreEdge(highestHeightNode, *P))
 | 
						|
                continue;
 | 
						|
              //If not already in Intersect, add
 | 
						|
              if(!IntersectCurrent.count(*P))
 | 
						|
                IntersectCurrent.insert(*P);
 | 
						|
            }
 | 
						|
          }
 | 
						|
        } //End while loop over Intersect Size
 | 
						|
 | 
						|
        //Change direction
 | 
						|
        order = BOTTOM_UP;
 | 
						|
 | 
						|
        //Reset Intersect to reflect changes in OrderNodes
 | 
						|
        IntersectCurrent.clear();
 | 
						|
        predIntersect(*CurrentSet, IntersectCurrent);
 | 
						|
 | 
						|
      } //End If TOP_DOWN
 | 
						|
 | 
						|
        //Begin if BOTTOM_UP
 | 
						|
      else {
 | 
						|
        DEBUG(std::cerr << "Order is BOTTOM UP\n");
 | 
						|
        while(IntersectCurrent.size() > 0) {
 | 
						|
          DEBUG(std::cerr << "Intersection of size " << IntersectCurrent.size() << ", finding highest depth\n");
 | 
						|
 | 
						|
          //dump intersection
 | 
						|
          DEBUG(dumpIntersection(IntersectCurrent));
 | 
						|
          //Get node with highest depth, if a tie, use one with lowest
 | 
						|
          //MOB
 | 
						|
          int MOB = 0;
 | 
						|
          int depth = 0;
 | 
						|
          MSchedGraphNode *highestDepthNode = *(IntersectCurrent.begin());
 | 
						|
 | 
						|
          for(std::set<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(),
 | 
						|
                E = IntersectCurrent.end(); I != E; ++I) {
 | 
						|
            //Find node attribute in graph
 | 
						|
            MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*I)->second;
 | 
						|
 | 
						|
            if(depth < nodeAttr.depth) {
 | 
						|
              highestDepthNode = *I;
 | 
						|
              depth = nodeAttr.depth;
 | 
						|
              MOB = nodeAttr.MOB;
 | 
						|
            }
 | 
						|
            else if(depth == nodeAttr.depth) {
 | 
						|
              if(MOB > nodeAttr.MOB) {
 | 
						|
                highestDepthNode = *I;
 | 
						|
                depth = nodeAttr.depth;
 | 
						|
                MOB = nodeAttr.MOB;
 | 
						|
              }
 | 
						|
            }
 | 
						|
          }
 | 
						|
 | 
						|
 | 
						|
 | 
						|
          //Append highest depth node to the NodeOrder
 | 
						|
           if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestDepthNode) == FinalNodeOrder.end()) {
 | 
						|
             DEBUG(std::cerr << "Adding node to Final Order: " << *highestDepthNode << "\n");
 | 
						|
             FinalNodeOrder.push_back(highestDepthNode);
 | 
						|
           }
 | 
						|
          //Remove heightestDepthNode from IntersectOrder
 | 
						|
           IntersectCurrent.erase(highestDepthNode);
 | 
						|
 | 
						|
 | 
						|
          //Intersect heightDepthNode's pred with CurrentSet
 | 
						|
          for(MSchedGraphNode::pred_iterator P = highestDepthNode->pred_begin(),
 | 
						|
                E = highestDepthNode->pred_end(); P != E; ++P) {
 | 
						|
            if(CurrentSet->count(*P)) {
 | 
						|
              if(ignoreEdge(*P, highestDepthNode))
 | 
						|
                continue;
 | 
						|
 | 
						|
            //If not already in Intersect, add
 | 
						|
            if(!IntersectCurrent.count(*P))
 | 
						|
              IntersectCurrent.insert(*P);
 | 
						|
            }
 | 
						|
          }
 | 
						|
 | 
						|
        } //End while loop over Intersect Size
 | 
						|
 | 
						|
          //Change order
 | 
						|
        order = TOP_DOWN;
 | 
						|
 | 
						|
        //Reset IntersectCurrent to reflect changes in OrderNodes
 | 
						|
        IntersectCurrent.clear();
 | 
						|
        succIntersect(*CurrentSet, IntersectCurrent);
 | 
						|
        } //End if BOTTOM_DOWN
 | 
						|
 | 
						|
      DEBUG(std::cerr << "Current Intersection Size: " << IntersectCurrent.size() << "\n");
 | 
						|
    }
 | 
						|
    //End Wrapping while loop
 | 
						|
    DEBUG(std::cerr << "Ending Size of Current Set: " << CurrentSet->size() << "\n");
 | 
						|
  }//End for over all sets of nodes
 | 
						|
 | 
						|
  //FIXME: As the algorithm stands it will NEVER add an instruction such as ba (with no
 | 
						|
  //data dependencies) to the final order. We add this manually. It will always be
 | 
						|
  //in the last set of S since its not part of a recurrence
 | 
						|
    //Loop over all the sets and place them in the final node order
 | 
						|
  std::vector<std::set<MSchedGraphNode*> > ::reverse_iterator LastSet = partialOrder.rbegin();
 | 
						|
  for(std::set<MSchedGraphNode*>::iterator CurrentNode = LastSet->begin(), LastNode = LastSet->end();
 | 
						|
      CurrentNode != LastNode; ++CurrentNode) {
 | 
						|
    if((*CurrentNode)->getInst()->getOpcode() == V9::BA)
 | 
						|
      FinalNodeOrder.push_back(*CurrentNode);
 | 
						|
  }
 | 
						|
  //Return final Order
 | 
						|
  //return FinalNodeOrder;
 | 
						|
}
 | 
						|
 | 
						|
bool ModuloSchedulingPass::computeSchedule(const MachineBasicBlock *BB, MSchedGraph *MSG) {
 | 
						|
 | 
						|
  TIME_REGION(X, "computeSchedule");
 | 
						|
 | 
						|
  bool success = false;
 | 
						|
 | 
						|
  //FIXME: Should be set to max II of the original loop
 | 
						|
  //Cap II in order to prevent infinite loop
 | 
						|
  int capII = MSG->totalDelay();
 | 
						|
 | 
						|
  while(!success) {
 | 
						|
 | 
						|
    //Keep track of branches, but do not insert into the schedule
 | 
						|
    std::vector<MSchedGraphNode*> branches;
 | 
						|
 | 
						|
    //Loop over the final node order and process each node
 | 
						|
    for(std::vector<MSchedGraphNode*>::iterator I = FinalNodeOrder.begin(),
 | 
						|
          E = FinalNodeOrder.end(); I != E; ++I) {
 | 
						|
 | 
						|
      //CalculateEarly and Late start
 | 
						|
      bool initialLSVal = false;
 | 
						|
      bool initialESVal = false;
 | 
						|
      int EarlyStart = 0;
 | 
						|
      int LateStart = 0;
 | 
						|
      bool hasSucc = false;
 | 
						|
      bool hasPred = false;
 | 
						|
      bool sched;
 | 
						|
 | 
						|
      if((*I)->isBranch())
 | 
						|
        if((*I)->hasPredecessors())
 | 
						|
          sched = true;
 | 
						|
        else
 | 
						|
          sched = false;
 | 
						|
      else
 | 
						|
        sched = true;
 | 
						|
 | 
						|
      if(sched) {
 | 
						|
        //Loop over nodes in the schedule and determine if they are predecessors
 | 
						|
        //or successors of the node we are trying to schedule
 | 
						|
        for(MSSchedule::schedule_iterator nodesByCycle = schedule.begin(), nodesByCycleEnd = schedule.end();
 | 
						|
            nodesByCycle != nodesByCycleEnd; ++nodesByCycle) {
 | 
						|
 | 
						|
          //For this cycle, get the vector of nodes schedule and loop over it
 | 
						|
          for(std::vector<MSchedGraphNode*>::iterator schedNode = nodesByCycle->second.begin(), SNE = nodesByCycle->second.end(); schedNode != SNE; ++schedNode) {
 | 
						|
 | 
						|
            if((*I)->isPredecessor(*schedNode)) {
 | 
						|
              int diff = (*I)->getInEdge(*schedNode).getIteDiff();
 | 
						|
              int ES_Temp = nodesByCycle->first + (*schedNode)->getLatency() - diff * II;
 | 
						|
              DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n");
 | 
						|
              DEBUG(std::cerr << "Temp EarlyStart: " << ES_Temp << " Prev EarlyStart: " << EarlyStart << "\n");
 | 
						|
              if(initialESVal)
 | 
						|
                EarlyStart = std::max(EarlyStart, ES_Temp);
 | 
						|
              else {
 | 
						|
                EarlyStart = ES_Temp;
 | 
						|
                initialESVal = true;
 | 
						|
              }
 | 
						|
              hasPred = true;
 | 
						|
            }
 | 
						|
            if((*I)->isSuccessor(*schedNode)) {
 | 
						|
              int diff = (*schedNode)->getInEdge(*I).getIteDiff();
 | 
						|
              int LS_Temp = nodesByCycle->first - (*I)->getLatency() + diff * II;
 | 
						|
              DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n");
 | 
						|
              DEBUG(std::cerr << "Temp LateStart: " << LS_Temp << " Prev LateStart: " << LateStart << "\n");
 | 
						|
              if(initialLSVal)
 | 
						|
                LateStart = std::min(LateStart, LS_Temp);
 | 
						|
              else {
 | 
						|
                LateStart = LS_Temp;
 | 
						|
                initialLSVal = true;
 | 
						|
              }
 | 
						|
              hasSucc = true;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        branches.push_back(*I);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      //Check if this node is a pred or succ to a branch, and restrict its placement
 | 
						|
      //even though the branch is not in the schedule
 | 
						|
      /*int count = branches.size();
 | 
						|
      for(std::vector<MSchedGraphNode*>::iterator B = branches.begin(), BE = branches.end();
 | 
						|
          B != BE; ++B) {
 | 
						|
        if((*I)->isPredecessor(*B)) {
 | 
						|
          int diff = (*I)->getInEdge(*B).getIteDiff();
 | 
						|
          int ES_Temp = (II+count-1) + (*B)->getLatency() - diff * II;
 | 
						|
          DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << (II+count)-1 << "\n");
 | 
						|
          DEBUG(std::cerr << "Temp EarlyStart: " << ES_Temp << " Prev EarlyStart: " << EarlyStart << "\n");
 | 
						|
          EarlyStart = std::max(EarlyStart, ES_Temp);
 | 
						|
          hasPred = true;
 | 
						|
        }
 | 
						|
 | 
						|
        if((*I)->isSuccessor(*B)) {
 | 
						|
          int diff = (*B)->getInEdge(*I).getIteDiff();
 | 
						|
          int LS_Temp = (II+count-1) - (*I)->getLatency() + diff * II;
 | 
						|
          DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << (II+count-1) << "\n");
 | 
						|
          DEBUG(std::cerr << "Temp LateStart: " << LS_Temp << " Prev LateStart: " << LateStart << "\n");
 | 
						|
          LateStart = std::min(LateStart, LS_Temp);
 | 
						|
          hasSucc = true;
 | 
						|
        }
 | 
						|
 | 
						|
        count--;
 | 
						|
      }*/
 | 
						|
 | 
						|
      //Check if the node has no pred or successors and set Early Start to its ASAP
 | 
						|
      if(!hasSucc && !hasPred)
 | 
						|
        EarlyStart = nodeToAttributesMap.find(*I)->second.ASAP;
 | 
						|
 | 
						|
      DEBUG(std::cerr << "Has Successors: " << hasSucc << ", Has Pred: " << hasPred << "\n");
 | 
						|
      DEBUG(std::cerr << "EarlyStart: " << EarlyStart << ", LateStart: " << LateStart << "\n");
 | 
						|
 | 
						|
      //Now, try to schedule this node depending upon its pred and successor in the schedule
 | 
						|
      //already
 | 
						|
      if(!hasSucc && hasPred)
 | 
						|
        success = scheduleNode(*I, EarlyStart, (EarlyStart + II -1));
 | 
						|
      else if(!hasPred && hasSucc)
 | 
						|
        success = scheduleNode(*I, LateStart, (LateStart - II +1));
 | 
						|
      else if(hasPred && hasSucc) {
 | 
						|
        if(EarlyStart > LateStart) {
 | 
						|
        success = false;
 | 
						|
          //LateStart = EarlyStart;
 | 
						|
          DEBUG(std::cerr << "Early Start can not be later then the late start cycle, schedule fails\n");
 | 
						|
        }
 | 
						|
        else
 | 
						|
          success = scheduleNode(*I, EarlyStart, std::min(LateStart, (EarlyStart + II -1)));
 | 
						|
      }
 | 
						|
      else
 | 
						|
        success = scheduleNode(*I, EarlyStart, EarlyStart + II - 1);
 | 
						|
 | 
						|
      if(!success) {
 | 
						|
        ++II;
 | 
						|
        schedule.clear();
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
    if(success) {
 | 
						|
      DEBUG(std::cerr << "Constructing Schedule Kernel\n");
 | 
						|
      success = schedule.constructKernel(II, branches, indVarInstrs[BB]);
 | 
						|
      DEBUG(std::cerr << "Done Constructing Schedule Kernel\n");
 | 
						|
      if(!success) {
 | 
						|
        ++II;
 | 
						|
        schedule.clear();
 | 
						|
      }
 | 
						|
      DEBUG(std::cerr << "Final II: " << II << "\n");
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    if(II >= capII) {
 | 
						|
      DEBUG(std::cerr << "Maximum II reached, giving up\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(II < capII && "The II should not exceed the original loop number of cycles");
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool ModuloSchedulingPass::scheduleNode(MSchedGraphNode *node,
 | 
						|
                                      int start, int end) {
 | 
						|
  bool success = false;
 | 
						|
 | 
						|
  DEBUG(std::cerr << *node << " (Start Cycle: " << start << ", End Cycle: " << end << ")\n");
 | 
						|
 | 
						|
  //Make sure start and end are not negative
 | 
						|
  //if(start < 0) {
 | 
						|
  //start = 0;
 | 
						|
 | 
						|
  //}
 | 
						|
  //if(end < 0)
 | 
						|
  //end = 0;
 | 
						|
 | 
						|
  bool forward = true;
 | 
						|
  if(start > end)
 | 
						|
    forward = false;
 | 
						|
 | 
						|
  bool increaseSC = true;
 | 
						|
  int cycle = start ;
 | 
						|
 | 
						|
 | 
						|
  while(increaseSC) {
 | 
						|
 | 
						|
    increaseSC = false;
 | 
						|
 | 
						|
    increaseSC = schedule.insert(node, cycle, II);
 | 
						|
 | 
						|
    if(!increaseSC)
 | 
						|
      return true;
 | 
						|
 | 
						|
    //Increment cycle to try again
 | 
						|
    if(forward) {
 | 
						|
      ++cycle;
 | 
						|
      DEBUG(std::cerr << "Increase cycle: " << cycle << "\n");
 | 
						|
      if(cycle > end)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      --cycle;
 | 
						|
      DEBUG(std::cerr << "Decrease cycle: " << cycle << "\n");
 | 
						|
      if(cycle < end)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return success;
 | 
						|
}
 | 
						|
 | 
						|
void ModuloSchedulingPass::writePrologues(std::vector<MachineBasicBlock *> &prologues, MachineBasicBlock *origBB, std::vector<BasicBlock*> &llvm_prologues, std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation) {
 | 
						|
 | 
						|
  //Keep a map to easily know whats in the kernel
 | 
						|
  std::map<int, std::set<const MachineInstr*> > inKernel;
 | 
						|
  int maxStageCount = 0;
 | 
						|
 | 
						|
  //Keep a map of new values we consumed in case they need to be added back
 | 
						|
  std::map<Value*, std::map<int, Value*> > consumedValues;
 | 
						|
 | 
						|
  MSchedGraphNode *branch = 0;
 | 
						|
  MSchedGraphNode *BAbranch = 0;
 | 
						|
 | 
						|
  DEBUG(schedule.print(std::cerr));
 | 
						|
 | 
						|
  std::vector<MSchedGraphNode*> branches;
 | 
						|
 | 
						|
  for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
 | 
						|
    maxStageCount = std::max(maxStageCount, I->second);
 | 
						|
 | 
						|
    //Put int the map so we know what instructions in each stage are in the kernel
 | 
						|
    DEBUG(std::cerr << "Inserting instruction " << *(I->first) << " into map at stage " << I->second << "\n");
 | 
						|
    inKernel[I->second].insert(I->first);
 | 
						|
  }
 | 
						|
 | 
						|
  //Get target information to look at machine operands
 | 
						|
  const TargetInstrInfo *mii = target.getInstrInfo();
 | 
						|
 | 
						|
 //Now write the prologues
 | 
						|
  for(int i = 0; i < maxStageCount; ++i) {
 | 
						|
    BasicBlock *llvmBB = new BasicBlock("PROLOGUE", (Function*) (origBB->getBasicBlock()->getParent()));
 | 
						|
    MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB);
 | 
						|
 | 
						|
    DEBUG(std::cerr << "i=" << i << "\n");
 | 
						|
    for(int j = i; j >= 0; --j) {
 | 
						|
      for(MachineBasicBlock::const_iterator MI = origBB->begin(), ME = origBB->end(); ME != MI; ++MI) {
 | 
						|
        if(inKernel[j].count(&*MI)) {
 | 
						|
          MachineInstr *instClone = MI->clone();
 | 
						|
          machineBB->push_back(instClone);
 | 
						|
 | 
						|
          //If its a branch, insert a nop
 | 
						|
          if(mii->isBranch(instClone->getOpcode()))
 | 
						|
            BuildMI(machineBB, V9::NOP, 0);
 | 
						|
 | 
						|
 | 
						|
          DEBUG(std::cerr << "Cloning: " << *MI << "\n");
 | 
						|
 | 
						|
          //After cloning, we may need to save the value that this instruction defines
 | 
						|
          for(unsigned opNum=0; opNum < MI->getNumOperands(); ++opNum) {
 | 
						|
            Instruction *tmp;
 | 
						|
 | 
						|
            //get machine operand
 | 
						|
            MachineOperand &mOp = instClone->getOperand(opNum);
 | 
						|
            if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) {
 | 
						|
 | 
						|
              //Check if this is a value we should save
 | 
						|
              if(valuesToSave.count(mOp.getVRegValue())) {
 | 
						|
                //Save copy in tmpInstruction
 | 
						|
                tmp = new TmpInstruction(mOp.getVRegValue());
 | 
						|
 | 
						|
                //Add TmpInstruction to safe LLVM Instruction MCFI
 | 
						|
                MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst);
 | 
						|
                tempMvec.addTemp((Value*) tmp);
 | 
						|
 | 
						|
                DEBUG(std::cerr << "Value: " << *(mOp.getVRegValue()) << " New Value: " << *tmp << " Stage: " << i << "\n");
 | 
						|
 | 
						|
                newValues[mOp.getVRegValue()][i]= tmp;
 | 
						|
                newValLocation[tmp] = machineBB;
 | 
						|
 | 
						|
                DEBUG(std::cerr << "Machine Instr Operands: " << *(mOp.getVRegValue()) << ", 0, " << *tmp << "\n");
 | 
						|
 | 
						|
                //Create machine instruction and put int machineBB
 | 
						|
                MachineInstr *saveValue;
 | 
						|
                if(mOp.getVRegValue()->getType() == Type::FloatTy)
 | 
						|
                  saveValue = BuildMI(machineBB, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
 | 
						|
                else if(mOp.getVRegValue()->getType() == Type::DoubleTy)
 | 
						|
                  saveValue = BuildMI(machineBB, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
 | 
						|
                else
 | 
						|
                  saveValue = BuildMI(machineBB, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
 | 
						|
 | 
						|
 | 
						|
                DEBUG(std::cerr << "Created new machine instr: " << *saveValue << "\n");
 | 
						|
              }
 | 
						|
            }
 | 
						|
 | 
						|
            //We may also need to update the value that we use if its from an earlier prologue
 | 
						|
            if(j != 0) {
 | 
						|
              if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) {
 | 
						|
                if(newValues.count(mOp.getVRegValue())) {
 | 
						|
                  if(newValues[mOp.getVRegValue()].count(i-1)) {
 | 
						|
                    Value *oldV =  mOp.getVRegValue();
 | 
						|
                    DEBUG(std::cerr << "Replaced this value: " << mOp.getVRegValue() << " With:" << (newValues[mOp.getVRegValue()][i-1]) << "\n");
 | 
						|
                    //Update the operand with the right value
 | 
						|
                    mOp.setValueReg(newValues[mOp.getVRegValue()][i-1]);
 | 
						|
 | 
						|
                    //Remove this value since we have consumed it
 | 
						|
                    //NOTE: Should this only be done if j != maxStage?
 | 
						|
                    consumedValues[oldV][i-1] = (newValues[oldV][i-1]);
 | 
						|
                    DEBUG(std::cerr << "Deleted value: " << consumedValues[oldV][i-1] << "\n");
 | 
						|
                    newValues[oldV].erase(i-1);
 | 
						|
                  }
 | 
						|
                }
 | 
						|
                else
 | 
						|
                  if(consumedValues.count(mOp.getVRegValue()))
 | 
						|
                    assert(!consumedValues[mOp.getVRegValue()].count(i-1) && "Found a case where we need the value");
 | 
						|
              }
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    MachineFunction *F = (((MachineBasicBlock*)origBB)->getParent());
 | 
						|
    MachineFunction::BasicBlockListType &BL = F->getBasicBlockList();
 | 
						|
    MachineFunction::BasicBlockListType::iterator BLI = origBB;
 | 
						|
    assert(BLI != BL.end() && "Must find original BB in machine function\n");
 | 
						|
    BL.insert(BLI,machineBB);
 | 
						|
    prologues.push_back(machineBB);
 | 
						|
    llvm_prologues.push_back(llvmBB);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ModuloSchedulingPass::writeEpilogues(std::vector<MachineBasicBlock *> &epilogues, const MachineBasicBlock *origBB, std::vector<BasicBlock*> &llvm_epilogues, std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues,std::map<Value*, MachineBasicBlock*> &newValLocation, std::map<Value*, std::map<int, Value*> > &kernelPHIs ) {
 | 
						|
 | 
						|
  std::map<int, std::set<const MachineInstr*> > inKernel;
 | 
						|
 | 
						|
  for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
 | 
						|
 | 
						|
    //Ignore the branch, we will handle this separately
 | 
						|
    //if(I->first->isBranch())
 | 
						|
    //continue;
 | 
						|
 | 
						|
    //Put int the map so we know what instructions in each stage are in the kernel
 | 
						|
    inKernel[I->second].insert(I->first);
 | 
						|
  }
 | 
						|
 | 
						|
  std::map<Value*, Value*> valPHIs;
 | 
						|
 | 
						|
  //some debug stuff, will remove later
 | 
						|
  DEBUG(for(std::map<Value*, std::map<int, Value*> >::iterator V = newValues.begin(), E = newValues.end(); V !=E; ++V) {
 | 
						|
    std::cerr << "Old Value: " << *(V->first) << "\n";
 | 
						|
    for(std::map<int, Value*>::iterator I = V->second.begin(), IE = V->second.end(); I != IE; ++I)
 | 
						|
      std::cerr << "Stage: " << I->first << " Value: " << *(I->second) << "\n";
 | 
						|
  });
 | 
						|
 | 
						|
  //some debug stuff, will remove later
 | 
						|
  DEBUG(for(std::map<Value*, std::map<int, Value*> >::iterator V = kernelPHIs.begin(), E = kernelPHIs.end(); V !=E; ++V) {
 | 
						|
    std::cerr << "Old Value: " << *(V->first) << "\n";
 | 
						|
    for(std::map<int, Value*>::iterator I = V->second.begin(), IE = V->second.end(); I != IE; ++I)
 | 
						|
      std::cerr << "Stage: " << I->first << " Value: " << *(I->second) << "\n";
 | 
						|
  });
 | 
						|
 | 
						|
  //Now write the epilogues
 | 
						|
  for(int i = schedule.getMaxStage()-1; i >= 0; --i) {
 | 
						|
    BasicBlock *llvmBB = new BasicBlock("EPILOGUE", (Function*) (origBB->getBasicBlock()->getParent()));
 | 
						|
    MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB);
 | 
						|
 | 
						|
    DEBUG(std::cerr << " Epilogue #: " << i << "\n");
 | 
						|
 | 
						|
 | 
						|
    std::map<Value*, int> inEpilogue;
 | 
						|
 | 
						|
     for(MachineBasicBlock::const_iterator MI = origBB->begin(), ME = origBB->end(); ME != MI; ++MI) {
 | 
						|
      for(int j=schedule.getMaxStage(); j > i; --j) {
 | 
						|
        if(inKernel[j].count(&*MI)) {
 | 
						|
          DEBUG(std::cerr << "Cloning instruction " << *MI << "\n");
 | 
						|
          MachineInstr *clone = MI->clone();
 | 
						|
 | 
						|
          //Update operands that need to use the result from the phi
 | 
						|
          for(unsigned opNum=0; opNum < clone->getNumOperands(); ++opNum) {
 | 
						|
            //get machine operand
 | 
						|
            const MachineOperand &mOp = clone->getOperand(opNum);
 | 
						|
 | 
						|
            if((mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse())) {
 | 
						|
 | 
						|
              DEBUG(std::cerr << "Writing PHI for " << (mOp.getVRegValue()) << "\n");
 | 
						|
 | 
						|
              //If this is the last instructions for the max iterations ago, don't update operands
 | 
						|
              if(inEpilogue.count(mOp.getVRegValue()))
 | 
						|
                if(inEpilogue[mOp.getVRegValue()] == i)
 | 
						|
                  continue;
 | 
						|
 | 
						|
              //Quickly write appropriate phis for this operand
 | 
						|
              if(newValues.count(mOp.getVRegValue())) {
 | 
						|
                if(newValues[mOp.getVRegValue()].count(i)) {
 | 
						|
                  Instruction *tmp = new TmpInstruction(newValues[mOp.getVRegValue()][i]);
 | 
						|
 | 
						|
                  //Get machine code for this instruction
 | 
						|
                  MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst);
 | 
						|
                  tempMvec.addTemp((Value*) tmp);
 | 
						|
 | 
						|
                  //assert of no kernelPHI for this value
 | 
						|
                  assert(kernelPHIs[mOp.getVRegValue()][i] !=0 && "Must have final kernel phi to construct epilogue phi");
 | 
						|
 | 
						|
                  MachineInstr *saveValue = BuildMI(machineBB, V9::PHI, 3).addReg(newValues[mOp.getVRegValue()][i]).addReg(kernelPHIs[mOp.getVRegValue()][i]).addRegDef(tmp);
 | 
						|
                  DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n");
 | 
						|
                  valPHIs[mOp.getVRegValue()] = tmp;
 | 
						|
                }
 | 
						|
              }
 | 
						|
 | 
						|
              if(valPHIs.count(mOp.getVRegValue())) {
 | 
						|
                //Update the operand in the cloned instruction
 | 
						|
                clone->getOperand(opNum).setValueReg(valPHIs[mOp.getVRegValue()]);
 | 
						|
              }
 | 
						|
            }
 | 
						|
            else if((mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef())) {
 | 
						|
              inEpilogue[mOp.getVRegValue()] = i;
 | 
						|
            }
 | 
						|
          }
 | 
						|
          machineBB->push_back(clone);
 | 
						|
        }
 | 
						|
      }
 | 
						|
     }
 | 
						|
 | 
						|
     MachineFunction *F = (((MachineBasicBlock*)origBB)->getParent());
 | 
						|
     MachineFunction::BasicBlockListType &BL = F->getBasicBlockList();
 | 
						|
     MachineFunction::BasicBlockListType::iterator BLI = (MachineBasicBlock*) origBB;
 | 
						|
     assert(BLI != BL.end() && "Must find original BB in machine function\n");
 | 
						|
     BL.insert(BLI,machineBB);
 | 
						|
     epilogues.push_back(machineBB);
 | 
						|
     llvm_epilogues.push_back(llvmBB);
 | 
						|
 | 
						|
     DEBUG(std::cerr << "EPILOGUE #" << i << "\n");
 | 
						|
     DEBUG(machineBB->print(std::cerr));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ModuloSchedulingPass::writeKernel(BasicBlock *llvmBB, MachineBasicBlock *machineBB, std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation, std::map<Value*, std::map<int, Value*> > &kernelPHIs) {
 | 
						|
 | 
						|
  //Keep track of operands that are read and saved from a previous iteration. The new clone
 | 
						|
  //instruction will use the result of the phi instead.
 | 
						|
  std::map<Value*, Value*> finalPHIValue;
 | 
						|
  std::map<Value*, Value*> kernelValue;
 | 
						|
 | 
						|
  //Branches are a special case
 | 
						|
  std::vector<MachineInstr*> branches;
 | 
						|
 | 
						|
  //Get target information to look at machine operands
 | 
						|
  const TargetInstrInfo *mii = target.getInstrInfo();
 | 
						|
 | 
						|
  //Create TmpInstructions for the final phis
 | 
						|
  for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
 | 
						|
 | 
						|
   DEBUG(std::cerr << "Stage: " << I->second << " Inst: " << *(I->first) << "\n";);
 | 
						|
 | 
						|
   //Clone instruction
 | 
						|
   const MachineInstr *inst = I->first;
 | 
						|
   MachineInstr *instClone = inst->clone();
 | 
						|
 | 
						|
   //Insert into machine basic block
 | 
						|
   machineBB->push_back(instClone);
 | 
						|
 | 
						|
   if(mii->isBranch(instClone->getOpcode()))
 | 
						|
     BuildMI(machineBB, V9::NOP, 0);
 | 
						|
 | 
						|
   DEBUG(std::cerr <<  "Cloned Inst: " << *instClone << "\n");
 | 
						|
 | 
						|
   //Loop over Machine Operands
 | 
						|
   for(unsigned i=0; i < inst->getNumOperands(); ++i) {
 | 
						|
     //get machine operand
 | 
						|
     const MachineOperand &mOp = inst->getOperand(i);
 | 
						|
 | 
						|
     if(I->second != 0) {
 | 
						|
       if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) {
 | 
						|
 | 
						|
         //Check to see where this operand is defined if this instruction is from max stage
 | 
						|
         if(I->second == schedule.getMaxStage()) {
 | 
						|
           DEBUG(std::cerr << "VREG: " << *(mOp.getVRegValue()) << "\n");
 | 
						|
         }
 | 
						|
 | 
						|
         //If its in the value saved, we need to create a temp instruction and use that instead
 | 
						|
         if(valuesToSave.count(mOp.getVRegValue())) {
 | 
						|
 | 
						|
           //Check if we already have a final PHI value for this
 | 
						|
           if(!finalPHIValue.count(mOp.getVRegValue())) {
 | 
						|
             //Only create phi if the operand def is from a stage before this one
 | 
						|
             if(schedule.defPreviousStage(mOp.getVRegValue(), I->second)) {
 | 
						|
             TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue());
 | 
						|
 | 
						|
             //Get machine code for this instruction
 | 
						|
             MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst);
 | 
						|
             tempMvec.addTemp((Value*) tmp);
 | 
						|
 | 
						|
             //Update the operand in the cloned instruction
 | 
						|
             instClone->getOperand(i).setValueReg(tmp);
 | 
						|
 | 
						|
             //save this as our final phi
 | 
						|
             finalPHIValue[mOp.getVRegValue()] = tmp;
 | 
						|
             newValLocation[tmp] = machineBB;
 | 
						|
             }
 | 
						|
           }
 | 
						|
           else {
 | 
						|
             //Use the previous final phi value
 | 
						|
             instClone->getOperand(i).setValueReg(finalPHIValue[mOp.getVRegValue()]);
 | 
						|
           }
 | 
						|
         }
 | 
						|
       }
 | 
						|
     }
 | 
						|
     if(I->second != schedule.getMaxStage()) {
 | 
						|
       if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) {
 | 
						|
         if(valuesToSave.count(mOp.getVRegValue())) {
 | 
						|
 | 
						|
           TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue());
 | 
						|
 | 
						|
           //Get machine code for this instruction
 | 
						|
           MachineCodeForInstruction & tempVec = MachineCodeForInstruction::get(defaultInst);
 | 
						|
           tempVec.addTemp((Value*) tmp);
 | 
						|
 | 
						|
           //Create new machine instr and put in MBB
 | 
						|
           MachineInstr *saveValue;
 | 
						|
           if(mOp.getVRegValue()->getType() == Type::FloatTy)
 | 
						|
             saveValue = BuildMI(machineBB, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
 | 
						|
           else if(mOp.getVRegValue()->getType() == Type::DoubleTy)
 | 
						|
             saveValue = BuildMI(machineBB, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
 | 
						|
           else
 | 
						|
             saveValue = BuildMI(machineBB, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
 | 
						|
 | 
						|
 | 
						|
           //Save for future cleanup
 | 
						|
           kernelValue[mOp.getVRegValue()] = tmp;
 | 
						|
           newValLocation[tmp] = machineBB;
 | 
						|
           kernelPHIs[mOp.getVRegValue()][schedule.getMaxStage()-1] = tmp;
 | 
						|
         }
 | 
						|
       }
 | 
						|
     }
 | 
						|
   }
 | 
						|
 | 
						|
 }
 | 
						|
 | 
						|
 //Add branches
 | 
						|
 for(std::vector<MachineInstr*>::iterator I = branches.begin(), E = branches.end(); I != E; ++I) {
 | 
						|
   machineBB->push_back(*I);
 | 
						|
   BuildMI(machineBB, V9::NOP, 0);
 | 
						|
 }
 | 
						|
 | 
						|
 | 
						|
  DEBUG(std::cerr << "KERNEL before PHIs\n");
 | 
						|
  DEBUG(machineBB->print(std::cerr));
 | 
						|
 | 
						|
 | 
						|
 //Loop over each value we need to generate phis for
 | 
						|
 for(std::map<Value*, std::map<int, Value*> >::iterator V = newValues.begin(),
 | 
						|
       E = newValues.end(); V != E; ++V) {
 | 
						|
 | 
						|
 | 
						|
   DEBUG(std::cerr << "Writing phi for" << *(V->first));
 | 
						|
   DEBUG(std::cerr << "\nMap of Value* for this phi\n");
 | 
						|
   DEBUG(for(std::map<int, Value*>::iterator I = V->second.begin(),
 | 
						|
               IE = V->second.end(); I != IE; ++I) {
 | 
						|
     std::cerr << "Stage: " << I->first;
 | 
						|
     std::cerr << " Value: " << *(I->second) << "\n";
 | 
						|
   });
 | 
						|
 | 
						|
   //If we only have one current iteration live, its safe to set lastPhi = to kernel value
 | 
						|
   if(V->second.size() == 1) {
 | 
						|
     assert(kernelValue[V->first] != 0 && "Kernel value* must exist to create phi");
 | 
						|
     MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(),V9::PHI, 3).addReg(V->second.begin()->second).addReg(kernelValue[V->first]).addRegDef(finalPHIValue[V->first]);
 | 
						|
     DEBUG(std::cerr << "Resulting PHI (one live): " << *saveValue << "\n");
 | 
						|
     kernelPHIs[V->first][V->second.begin()->first] = kernelValue[V->first];
 | 
						|
     DEBUG(std::cerr << "Put kernel phi in at stage: " << schedule.getMaxStage()-1 << " (map stage = " << V->second.begin()->first << ")\n");
 | 
						|
    }
 | 
						|
   else {
 | 
						|
 | 
						|
     //Keep track of last phi created.
 | 
						|
     Instruction *lastPhi = 0;
 | 
						|
 | 
						|
     unsigned count = 1;
 | 
						|
     //Loop over the the map backwards to generate phis
 | 
						|
     for(std::map<int, Value*>::reverse_iterator I = V->second.rbegin(), IE = V->second.rend();
 | 
						|
         I != IE; ++I) {
 | 
						|
 | 
						|
       if(count < (V->second).size()) {
 | 
						|
         if(lastPhi == 0) {
 | 
						|
           lastPhi = new TmpInstruction(I->second);
 | 
						|
 | 
						|
           //Get machine code for this instruction
 | 
						|
           MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst);
 | 
						|
           tempMvec.addTemp((Value*) lastPhi);
 | 
						|
 | 
						|
           MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(), V9::PHI, 3).addReg(kernelValue[V->first]).addReg(I->second).addRegDef(lastPhi);
 | 
						|
           DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n");
 | 
						|
           newValLocation[lastPhi] = machineBB;
 | 
						|
         }
 | 
						|
         else {
 | 
						|
           Instruction *tmp = new TmpInstruction(I->second);
 | 
						|
 | 
						|
           //Get machine code for this instruction
 | 
						|
           MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst);
 | 
						|
           tempMvec.addTemp((Value*) tmp);
 | 
						|
 | 
						|
 | 
						|
           MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(), V9::PHI, 3).addReg(lastPhi).addReg(I->second).addRegDef(tmp);
 | 
						|
           DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n");
 | 
						|
           lastPhi = tmp;
 | 
						|
           kernelPHIs[V->first][I->first] = lastPhi;
 | 
						|
           newValLocation[lastPhi] = machineBB;
 | 
						|
         }
 | 
						|
       }
 | 
						|
       //Final phi value
 | 
						|
       else {
 | 
						|
         //The resulting value must be the Value* we created earlier
 | 
						|
         assert(lastPhi != 0 && "Last phi is NULL!\n");
 | 
						|
         MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(), V9::PHI, 3).addReg(lastPhi).addReg(I->second).addRegDef(finalPHIValue[V->first]);
 | 
						|
         DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n");
 | 
						|
         kernelPHIs[V->first][I->first] = finalPHIValue[V->first];
 | 
						|
       }
 | 
						|
 | 
						|
       ++count;
 | 
						|
     }
 | 
						|
 | 
						|
   }
 | 
						|
 }
 | 
						|
 | 
						|
  DEBUG(std::cerr << "KERNEL after PHIs\n");
 | 
						|
  DEBUG(machineBB->print(std::cerr));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void ModuloSchedulingPass::removePHIs(const MachineBasicBlock *origBB, std::vector<MachineBasicBlock *> &prologues, std::vector<MachineBasicBlock *> &epilogues, MachineBasicBlock *kernelBB, std::map<Value*, MachineBasicBlock*> &newValLocation) {
 | 
						|
 | 
						|
  //Worklist to delete things
 | 
						|
  std::vector<std::pair<MachineBasicBlock*, MachineBasicBlock::iterator> > worklist;
 | 
						|
 | 
						|
  //Worklist of TmpInstructions that need to be added to a MCFI
 | 
						|
  std::vector<Instruction*> addToMCFI;
 | 
						|
 | 
						|
  //Worklist to add OR instructions to end of kernel so not to invalidate the iterator
 | 
						|
  //std::vector<std::pair<Instruction*, Value*> > newORs;
 | 
						|
 | 
						|
  const TargetInstrInfo *TMI = target.getInstrInfo();
 | 
						|
 | 
						|
  //Start with the kernel and for each phi insert a copy for the phi def and for each arg
 | 
						|
  for(MachineBasicBlock::iterator I = kernelBB->begin(), E = kernelBB->end(); I != E; ++I) {
 | 
						|
 | 
						|
    DEBUG(std::cerr << "Looking at Instr: " << *I << "\n");
 | 
						|
    //Get op code and check if its a phi
 | 
						|
    if(I->getOpcode() == V9::PHI) {
 | 
						|
 | 
						|
      DEBUG(std::cerr << "Replacing PHI: " << *I << "\n");
 | 
						|
      Instruction *tmp = 0;
 | 
						|
 | 
						|
      for(unsigned i = 0; i < I->getNumOperands(); ++i) {
 | 
						|
        //Get Operand
 | 
						|
        const MachineOperand &mOp = I->getOperand(i);
 | 
						|
        assert(mOp.getType() == MachineOperand::MO_VirtualRegister && "Should be a Value*\n");
 | 
						|
 | 
						|
        if(!tmp) {
 | 
						|
          tmp = new TmpInstruction(mOp.getVRegValue());
 | 
						|
          addToMCFI.push_back(tmp);
 | 
						|
        }
 | 
						|
 | 
						|
        //Now for all our arguments we read, OR to the new TmpInstruction that we created
 | 
						|
        if(mOp.isUse()) {
 | 
						|
          DEBUG(std::cerr << "Use: " << mOp << "\n");
 | 
						|
          //Place a copy at the end of its BB but before the branches
 | 
						|
          assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n");
 | 
						|
          //Reverse iterate to find the branches, we can safely assume no instructions have been
 | 
						|
          //put in the nop positions
 | 
						|
          for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) {
 | 
						|
            MachineOpCode opc = inst->getOpcode();
 | 
						|
            if(TMI->isBranch(opc) || TMI->isNop(opc))
 | 
						|
              continue;
 | 
						|
            else {
 | 
						|
              if(mOp.getVRegValue()->getType() == Type::FloatTy)
 | 
						|
                BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
 | 
						|
              else if(mOp.getVRegValue()->getType() == Type::DoubleTy)
 | 
						|
                BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
 | 
						|
              else
 | 
						|
                BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
 | 
						|
 | 
						|
              break;
 | 
						|
            }
 | 
						|
 | 
						|
          }
 | 
						|
 | 
						|
        }
 | 
						|
        else {
 | 
						|
          //Remove the phi and replace it with an OR
 | 
						|
          DEBUG(std::cerr << "Def: " << mOp << "\n");
 | 
						|
          //newORs.push_back(std::make_pair(tmp, mOp.getVRegValue()));
 | 
						|
          if(tmp->getType() == Type::FloatTy)
 | 
						|
            BuildMI(*kernelBB, I, V9::FMOVS, 3).addReg(tmp).addRegDef(mOp.getVRegValue());
 | 
						|
          else if(tmp->getType() == Type::DoubleTy)
 | 
						|
            BuildMI(*kernelBB, I, V9::FMOVD, 3).addReg(tmp).addRegDef(mOp.getVRegValue());
 | 
						|
          else
 | 
						|
            BuildMI(*kernelBB, I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue());
 | 
						|
 | 
						|
 | 
						|
          worklist.push_back(std::make_pair(kernelBB, I));
 | 
						|
        }
 | 
						|
 | 
						|
      }
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
  }
 | 
						|
 | 
						|
  //Add TmpInstructions to some MCFI
 | 
						|
  if(addToMCFI.size() > 0) {
 | 
						|
    MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst);
 | 
						|
    for(unsigned x = 0; x < addToMCFI.size(); ++x) {
 | 
						|
      tempMvec.addTemp(addToMCFI[x]);
 | 
						|
    }
 | 
						|
    addToMCFI.clear();
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  //Remove phis from epilogue
 | 
						|
  for(std::vector<MachineBasicBlock*>::iterator MB = epilogues.begin(), ME = epilogues.end(); MB != ME; ++MB) {
 | 
						|
    for(MachineBasicBlock::iterator I = (*MB)->begin(), E = (*MB)->end(); I != E; ++I) {
 | 
						|
 | 
						|
      DEBUG(std::cerr << "Looking at Instr: " << *I << "\n");
 | 
						|
      //Get op code and check if its a phi
 | 
						|
      if(I->getOpcode() == V9::PHI) {
 | 
						|
        Instruction *tmp = 0;
 | 
						|
 | 
						|
        for(unsigned i = 0; i < I->getNumOperands(); ++i) {
 | 
						|
          //Get Operand
 | 
						|
          const MachineOperand &mOp = I->getOperand(i);
 | 
						|
          assert(mOp.getType() == MachineOperand::MO_VirtualRegister && "Should be a Value*\n");
 | 
						|
 | 
						|
          if(!tmp) {
 | 
						|
            tmp = new TmpInstruction(mOp.getVRegValue());
 | 
						|
            addToMCFI.push_back(tmp);
 | 
						|
          }
 | 
						|
 | 
						|
          //Now for all our arguments we read, OR to the new TmpInstruction that we created
 | 
						|
          if(mOp.isUse()) {
 | 
						|
            DEBUG(std::cerr << "Use: " << mOp << "\n");
 | 
						|
            //Place a copy at the end of its BB but before the branches
 | 
						|
            assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n");
 | 
						|
            //Reverse iterate to find the branches, we can safely assume no instructions have been
 | 
						|
            //put in the nop positions
 | 
						|
            for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) {
 | 
						|
              MachineOpCode opc = inst->getOpcode();
 | 
						|
              if(TMI->isBranch(opc) || TMI->isNop(opc))
 | 
						|
                continue;
 | 
						|
              else {
 | 
						|
                if(mOp.getVRegValue()->getType() == Type::FloatTy)
 | 
						|
                  BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
 | 
						|
                else if(mOp.getVRegValue()->getType() == Type::DoubleTy)
 | 
						|
                  BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
 | 
						|
                else
 | 
						|
                  BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
 | 
						|
 | 
						|
 | 
						|
                break;
 | 
						|
              }
 | 
						|
 | 
						|
            }
 | 
						|
 | 
						|
          }
 | 
						|
          else {
 | 
						|
            //Remove the phi and replace it with an OR
 | 
						|
            DEBUG(std::cerr << "Def: " << mOp << "\n");
 | 
						|
             if(tmp->getType() == Type::FloatTy)
 | 
						|
               BuildMI(**MB, I, V9::FMOVS, 3).addReg(tmp).addRegDef(mOp.getVRegValue());
 | 
						|
             else if(tmp->getType() == Type::DoubleTy)
 | 
						|
               BuildMI(**MB, I, V9::FMOVD, 3).addReg(tmp).addRegDef(mOp.getVRegValue());
 | 
						|
             else
 | 
						|
               BuildMI(**MB, I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue());
 | 
						|
 | 
						|
            worklist.push_back(std::make_pair(*MB,I));
 | 
						|
          }
 | 
						|
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  if(addToMCFI.size() > 0) {
 | 
						|
    MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst);
 | 
						|
    for(unsigned x = 0; x < addToMCFI.size(); ++x) {
 | 
						|
      tempMvec.addTemp(addToMCFI[x]);
 | 
						|
    }
 | 
						|
    addToMCFI.clear();
 | 
						|
  }
 | 
						|
 | 
						|
    //Delete the phis
 | 
						|
  for(std::vector<std::pair<MachineBasicBlock*, MachineBasicBlock::iterator> >::iterator I =  worklist.begin(), E = worklist.end(); I != E; ++I) {
 | 
						|
 | 
						|
    DEBUG(std::cerr << "Deleting PHI " << *I->second << "\n");
 | 
						|
    I->first->erase(I->second);
 | 
						|
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  assert((addToMCFI.size() == 0) && "We should have added all TmpInstructions to some MachineCodeForInstruction");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void ModuloSchedulingPass::reconstructLoop(MachineBasicBlock *BB) {
 | 
						|
 | 
						|
  TIME_REGION(X, "reconstructLoop");
 | 
						|
 | 
						|
 | 
						|
  DEBUG(std::cerr << "Reconstructing Loop\n");
 | 
						|
 | 
						|
  //First find the value *'s that we need to "save"
 | 
						|
  std::map<const Value*, std::pair<const MachineInstr*, int> > valuesToSave;
 | 
						|
 | 
						|
  //Keep track of instructions we have already seen and their stage because
 | 
						|
  //we don't want to "save" values if they are used in the kernel immediately
 | 
						|
  std::map<const MachineInstr*, int> lastInstrs;
 | 
						|
  std::map<const Value*, int> phiUses;
 | 
						|
 | 
						|
  //Loop over kernel and only look at instructions from a stage > 0
 | 
						|
  //Look at its operands and save values *'s that are read
 | 
						|
  for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
 | 
						|
 | 
						|
    if(I->second !=0) {
 | 
						|
      //For this instruction, get the Value*'s that it reads and put them into the set.
 | 
						|
      //Assert if there is an operand of another type that we need to save
 | 
						|
      const MachineInstr *inst = I->first;
 | 
						|
      lastInstrs[inst] = I->second;
 | 
						|
 | 
						|
      for(unsigned i=0; i < inst->getNumOperands(); ++i) {
 | 
						|
        //get machine operand
 | 
						|
        const MachineOperand &mOp = inst->getOperand(i);
 | 
						|
 | 
						|
        if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) {
 | 
						|
          //find the value in the map
 | 
						|
          if (const Value* srcI = mOp.getVRegValue()) {
 | 
						|
 | 
						|
            if(isa<Constant>(srcI) || isa<Argument>(srcI))
 | 
						|
              continue;
 | 
						|
 | 
						|
            //Before we declare this Value* one that we should save
 | 
						|
            //make sure its def is not of the same stage as this instruction
 | 
						|
            //because it will be consumed before its used
 | 
						|
            Instruction *defInst = (Instruction*) srcI;
 | 
						|
 | 
						|
            //Should we save this value?
 | 
						|
            bool save = true;
 | 
						|
 | 
						|
            //Continue if not in the def map, loop invariant code does not need to be saved
 | 
						|
            if(!defMap.count(srcI))
 | 
						|
              continue;
 | 
						|
 | 
						|
            MachineInstr *defInstr = defMap[srcI];
 | 
						|
 | 
						|
 | 
						|
            if(lastInstrs.count(defInstr)) {
 | 
						|
              if(lastInstrs[defInstr] == I->second) {
 | 
						|
                save = false;
 | 
						|
 | 
						|
              }
 | 
						|
            }
 | 
						|
 | 
						|
            if(save) {
 | 
						|
              assert(!phiUses.count(srcI) && "Did not expect to see phi use twice");
 | 
						|
              if(isa<PHINode>(srcI))
 | 
						|
                phiUses[srcI] = I->second;
 | 
						|
 | 
						|
              valuesToSave[srcI] = std::make_pair(I->first, i);
 | 
						|
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
        else if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) {
 | 
						|
          if (const Value* destI = mOp.getVRegValue()) {
 | 
						|
            if(!isa<PHINode>(destI))
 | 
						|
              continue;
 | 
						|
            if(phiUses.count(destI)) {
 | 
						|
              if(phiUses[destI] == I->second) {
 | 
						|
                //remove from save list
 | 
						|
                valuesToSave.erase(destI);
 | 
						|
              }
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        if(mOp.getType() != MachineOperand::MO_VirtualRegister && mOp.isUse()) {
 | 
						|
          assert("Our assumption is wrong. We have another type of register that needs to be saved\n");
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  //The new loop will consist of one or more prologues, the kernel, and one or more epilogues.
 | 
						|
 | 
						|
  //Map to keep track of old to new values
 | 
						|
  std::map<Value*, std::map<int, Value*> > newValues;
 | 
						|
 | 
						|
  //Map to keep track of old to new values in kernel
 | 
						|
  std::map<Value*, std::map<int, Value*> > kernelPHIs;
 | 
						|
 | 
						|
  //Another map to keep track of what machine basic blocks these new value*s are in since
 | 
						|
  //they have no llvm instruction equivalent
 | 
						|
  std::map<Value*, MachineBasicBlock*> newValLocation;
 | 
						|
 | 
						|
  std::vector<MachineBasicBlock*> prologues;
 | 
						|
  std::vector<BasicBlock*> llvm_prologues;
 | 
						|
 | 
						|
 | 
						|
  //Write prologue
 | 
						|
  if(schedule.getMaxStage() != 0)
 | 
						|
    writePrologues(prologues, BB, llvm_prologues, valuesToSave, newValues, newValLocation);
 | 
						|
 | 
						|
  //Print out epilogues and prologue
 | 
						|
  DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = prologues.begin(), E = prologues.end();
 | 
						|
      I != E; ++I) {
 | 
						|
    std::cerr << "PROLOGUE\n";
 | 
						|
    (*I)->print(std::cerr);
 | 
						|
  });
 | 
						|
 | 
						|
  BasicBlock *llvmKernelBB = new BasicBlock("Kernel", (Function*) (BB->getBasicBlock()->getParent()));
 | 
						|
  MachineBasicBlock *machineKernelBB = new MachineBasicBlock(llvmKernelBB);
 | 
						|
 | 
						|
  MachineFunction *F = (((MachineBasicBlock*)BB)->getParent());
 | 
						|
  MachineFunction::BasicBlockListType &BL = F->getBasicBlockList();
 | 
						|
  MachineFunction::BasicBlockListType::iterator BLI = BB;
 | 
						|
  assert(BLI != BL.end() && "Must find original BB in machine function\n");
 | 
						|
  BL.insert(BLI,machineKernelBB);
 | 
						|
 | 
						|
  //(((MachineBasicBlock*)BB)->getParent())->getBasicBlockList().push_back(machineKernelBB);
 | 
						|
  writeKernel(llvmKernelBB, machineKernelBB, valuesToSave, newValues, newValLocation, kernelPHIs);
 | 
						|
 | 
						|
 | 
						|
  std::vector<MachineBasicBlock*> epilogues;
 | 
						|
  std::vector<BasicBlock*> llvm_epilogues;
 | 
						|
 | 
						|
  //Write epilogues
 | 
						|
  if(schedule.getMaxStage() != 0)
 | 
						|
    writeEpilogues(epilogues, BB, llvm_epilogues, valuesToSave, newValues, newValLocation, kernelPHIs);
 | 
						|
 | 
						|
 | 
						|
  //Fix our branches
 | 
						|
  fixBranches(prologues, llvm_prologues, machineKernelBB, llvmKernelBB, epilogues, llvm_epilogues, BB);
 | 
						|
 | 
						|
  //Remove phis
 | 
						|
  removePHIs(BB, prologues, epilogues, machineKernelBB, newValLocation);
 | 
						|
 | 
						|
  //Print out epilogues and prologue
 | 
						|
  DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = prologues.begin(), E = prologues.end();
 | 
						|
      I != E; ++I) {
 | 
						|
    std::cerr << "PROLOGUE\n";
 | 
						|
    (*I)->print(std::cerr);
 | 
						|
  });
 | 
						|
 | 
						|
  DEBUG(std::cerr << "KERNEL\n");
 | 
						|
  DEBUG(machineKernelBB->print(std::cerr));
 | 
						|
 | 
						|
  DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = epilogues.begin(), E = epilogues.end();
 | 
						|
      I != E; ++I) {
 | 
						|
    std::cerr << "EPILOGUE\n";
 | 
						|
    (*I)->print(std::cerr);
 | 
						|
  });
 | 
						|
 | 
						|
 | 
						|
  DEBUG(std::cerr << "New Machine Function" << "\n");
 | 
						|
  DEBUG(std::cerr << BB->getParent() << "\n");
 | 
						|
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void ModuloSchedulingPass::fixBranches(std::vector<MachineBasicBlock *> &prologues, std::vector<BasicBlock*> &llvm_prologues, MachineBasicBlock *machineKernelBB, BasicBlock *llvmKernelBB, std::vector<MachineBasicBlock *> &epilogues, std::vector<BasicBlock*> &llvm_epilogues, MachineBasicBlock *BB) {
 | 
						|
 | 
						|
  const TargetInstrInfo *TMI = target.getInstrInfo();
 | 
						|
 | 
						|
  if(schedule.getMaxStage() != 0) {
 | 
						|
    //Fix prologue branches
 | 
						|
    for(unsigned I = 0; I <  prologues.size(); ++I) {
 | 
						|
 | 
						|
      //Find terminator since getFirstTerminator does not work!
 | 
						|
      for(MachineBasicBlock::reverse_iterator mInst = prologues[I]->rbegin(), mInstEnd = prologues[I]->rend(); mInst != mInstEnd; ++mInst) {
 | 
						|
        MachineOpCode OC = mInst->getOpcode();
 | 
						|
        //If its a branch update its branchto
 | 
						|
        if(TMI->isBranch(OC)) {
 | 
						|
          for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) {
 | 
						|
            MachineOperand &mOp = mInst->getOperand(opNum);
 | 
						|
            if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
 | 
						|
              //Check if we are branching to the kernel, if not branch to epilogue
 | 
						|
              if(mOp.getVRegValue() == BB->getBasicBlock()) {
 | 
						|
                if(I == prologues.size()-1)
 | 
						|
                  mOp.setValueReg(llvmKernelBB);
 | 
						|
                else
 | 
						|
                  mOp.setValueReg(llvm_prologues[I+1]);
 | 
						|
              }
 | 
						|
              else {
 | 
						|
                mOp.setValueReg(llvm_epilogues[(llvm_epilogues.size()-1-I)]);
 | 
						|
              }
 | 
						|
            }
 | 
						|
          }
 | 
						|
 | 
						|
          DEBUG(std::cerr << "New Prologue Branch: " << *mInst << "\n");
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
 | 
						|
      //Update llvm basic block with our new branch instr
 | 
						|
      DEBUG(std::cerr << BB->getBasicBlock()->getTerminator() << "\n");
 | 
						|
      const BranchInst *branchVal = dyn_cast<BranchInst>(BB->getBasicBlock()->getTerminator());
 | 
						|
 | 
						|
      if(I == prologues.size()-1) {
 | 
						|
        TerminatorInst *newBranch = new BranchInst(llvmKernelBB,
 | 
						|
                                                   llvm_epilogues[(llvm_epilogues.size()-1-I)],
 | 
						|
                                                   branchVal->getCondition(),
 | 
						|
                                                   llvm_prologues[I]);
 | 
						|
      }
 | 
						|
      else
 | 
						|
        TerminatorInst *newBranch = new BranchInst(llvm_prologues[I+1],
 | 
						|
                                                   llvm_epilogues[(llvm_epilogues.size()-1-I)],
 | 
						|
                                                   branchVal->getCondition(),
 | 
						|
                                                   llvm_prologues[I]);
 | 
						|
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Value *origBranchExit = 0;
 | 
						|
 | 
						|
  //Fix up kernel machine branches
 | 
						|
  for(MachineBasicBlock::reverse_iterator mInst = machineKernelBB->rbegin(), mInstEnd = machineKernelBB->rend(); mInst != mInstEnd; ++mInst) {
 | 
						|
    MachineOpCode OC = mInst->getOpcode();
 | 
						|
    if(TMI->isBranch(OC)) {
 | 
						|
      for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) {
 | 
						|
        MachineOperand &mOp = mInst->getOperand(opNum);
 | 
						|
 | 
						|
        if(mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
 | 
						|
          if(mOp.getVRegValue() == BB->getBasicBlock())
 | 
						|
            mOp.setValueReg(llvmKernelBB);
 | 
						|
          else
 | 
						|
            if(llvm_epilogues.size() > 0) {
 | 
						|
              assert(origBranchExit == 0 && "There should only be one branch out of the loop");
 | 
						|
 | 
						|
              origBranchExit = mOp.getVRegValue();
 | 
						|
              mOp.setValueReg(llvm_epilogues[0]);
 | 
						|
            }
 | 
						|
            else
 | 
						|
              origBranchExit = mOp.getVRegValue();
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  //Update kernelLLVM branches
 | 
						|
  const BranchInst *branchVal = dyn_cast<BranchInst>(BB->getBasicBlock()->getTerminator());
 | 
						|
 | 
						|
  assert(origBranchExit != 0 && "We must have the original bb the kernel exits to!");
 | 
						|
 | 
						|
  if(epilogues.size() > 0) {
 | 
						|
    TerminatorInst *newBranch = new BranchInst(llvmKernelBB,
 | 
						|
                                               llvm_epilogues[0],
 | 
						|
                                               branchVal->getCondition(),
 | 
						|
                                               llvmKernelBB);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    BasicBlock *origBBExit = dyn_cast<BasicBlock>(origBranchExit);
 | 
						|
    assert(origBBExit !=0 && "Original exit basic block must be set");
 | 
						|
    TerminatorInst *newBranch = new BranchInst(llvmKernelBB,
 | 
						|
                                               origBBExit,
 | 
						|
                                               branchVal->getCondition(),
 | 
						|
                                               llvmKernelBB);
 | 
						|
  }
 | 
						|
 | 
						|
  if(schedule.getMaxStage() != 0) {
 | 
						|
   //Lastly add unconditional branches for the epilogues
 | 
						|
   for(unsigned I = 0; I <  epilogues.size(); ++I) {
 | 
						|
 | 
						|
    //Now since we don't have fall throughs, add a unconditional branch to the next prologue
 | 
						|
     if(I != epilogues.size()-1) {
 | 
						|
       BuildMI(epilogues[I], V9::BA, 1).addPCDisp(llvm_epilogues[I+1]);
 | 
						|
       //Add unconditional branch to end of epilogue
 | 
						|
       TerminatorInst *newBranch = new BranchInst(llvm_epilogues[I+1],
 | 
						|
                                                  llvm_epilogues[I]);
 | 
						|
 | 
						|
     }
 | 
						|
     else {
 | 
						|
       BuildMI(epilogues[I], V9::BA, 1).addPCDisp(origBranchExit);
 | 
						|
 | 
						|
 | 
						|
       //Update last epilogue exit branch
 | 
						|
       BranchInst *branchVal = (BranchInst*) dyn_cast<BranchInst>(BB->getBasicBlock()->getTerminator());
 | 
						|
       //Find where we are supposed to branch to
 | 
						|
       BasicBlock *nextBlock = 0;
 | 
						|
       for(unsigned j=0; j <branchVal->getNumSuccessors(); ++j) {
 | 
						|
         if(branchVal->getSuccessor(j) != BB->getBasicBlock())
 | 
						|
           nextBlock = branchVal->getSuccessor(j);
 | 
						|
       }
 | 
						|
 | 
						|
       assert((nextBlock != 0) && "Next block should not be null!");
 | 
						|
       TerminatorInst *newBranch = new BranchInst(nextBlock, llvm_epilogues[I]);
 | 
						|
     }
 | 
						|
     //Add one more nop!
 | 
						|
     BuildMI(epilogues[I], V9::NOP, 0);
 | 
						|
 | 
						|
   }
 | 
						|
  }
 | 
						|
 | 
						|
   //FIX UP Machine BB entry!!
 | 
						|
   //We are looking at the predecesor of our loop basic block and we want to change its ba instruction
 | 
						|
 | 
						|
 | 
						|
   //Find all llvm basic blocks that branch to the loop entry and change to our first prologue.
 | 
						|
   const BasicBlock *llvmBB = BB->getBasicBlock();
 | 
						|
 | 
						|
   std::vector<const BasicBlock*>Preds (pred_begin(llvmBB), pred_end(llvmBB));
 | 
						|
 | 
						|
   //for(pred_const_iterator P = pred_begin(llvmBB), PE = pred_end(llvmBB); P != PE; ++PE) {
 | 
						|
   for(std::vector<const BasicBlock*>::iterator P = Preds.begin(), PE = Preds.end(); P != PE; ++P) {
 | 
						|
     if(*P == llvmBB)
 | 
						|
       continue;
 | 
						|
     else {
 | 
						|
       DEBUG(std::cerr << "Found our entry BB\n");
 | 
						|
       //Get the Terminator instruction for this basic block and print it out
 | 
						|
       DEBUG(std::cerr << *((*P)->getTerminator()) << "\n");
 | 
						|
       //Update the terminator
 | 
						|
       TerminatorInst *term = ((BasicBlock*)*P)->getTerminator();
 | 
						|
       for(unsigned i=0; i < term->getNumSuccessors(); ++i) {
 | 
						|
         if(term->getSuccessor(i) == llvmBB) {
 | 
						|
           DEBUG(std::cerr << "Replacing successor bb\n");
 | 
						|
           if(llvm_prologues.size() > 0) {
 | 
						|
             term->setSuccessor(i, llvm_prologues[0]);
 | 
						|
             //Also update its corresponding machine instruction
 | 
						|
             MachineCodeForInstruction & tempMvec =
 | 
						|
               MachineCodeForInstruction::get(term);
 | 
						|
             for (unsigned j = 0; j < tempMvec.size(); j++) {
 | 
						|
               MachineInstr *temp = tempMvec[j];
 | 
						|
               MachineOpCode opc = temp->getOpcode();
 | 
						|
               if(TMI->isBranch(opc)) {
 | 
						|
                 DEBUG(std::cerr << *temp << "\n");
 | 
						|
                 //Update branch
 | 
						|
                 for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) {
 | 
						|
                   MachineOperand &mOp = temp->getOperand(opNum);
 | 
						|
                   if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
 | 
						|
                     if(mOp.getVRegValue() == llvmBB)
 | 
						|
                       mOp.setValueReg(llvm_prologues[0]);
 | 
						|
                   }
 | 
						|
                 }
 | 
						|
               }
 | 
						|
             }
 | 
						|
           }
 | 
						|
           else {
 | 
						|
             term->setSuccessor(i, llvmKernelBB);
 | 
						|
           //Also update its corresponding machine instruction
 | 
						|
             MachineCodeForInstruction & tempMvec =
 | 
						|
               MachineCodeForInstruction::get(term);
 | 
						|
             for (unsigned j = 0; j < tempMvec.size(); j++) {
 | 
						|
               MachineInstr *temp = tempMvec[j];
 | 
						|
               MachineOpCode opc = temp->getOpcode();
 | 
						|
               if(TMI->isBranch(opc)) {
 | 
						|
                 DEBUG(std::cerr << *temp << "\n");
 | 
						|
                 //Update branch
 | 
						|
                 for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) {
 | 
						|
                   MachineOperand &mOp = temp->getOperand(opNum);
 | 
						|
                   if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
 | 
						|
                     if(mOp.getVRegValue() == llvmBB)
 | 
						|
                       mOp.setValueReg(llvmKernelBB);
 | 
						|
                   }
 | 
						|
                 }
 | 
						|
               }
 | 
						|
             }
 | 
						|
           }
 | 
						|
         }
 | 
						|
       }
 | 
						|
       break;
 | 
						|
     }
 | 
						|
   }
 | 
						|
 | 
						|
 | 
						|
  //BB->getParent()->getBasicBlockList().erase(BB);
 | 
						|
 | 
						|
}
 | 
						|
 |