mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@26939 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			523 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			523 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the pass that transforms the X86 machine instructions into
 | |
| // relocatable machine code.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "X86TargetMachine.h"
 | |
| #include "X86Relocations.h"
 | |
| #include "X86.h"
 | |
| #include "llvm/PassManager.h"
 | |
| #include "llvm/CodeGen/MachineCodeEmitter.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include <iostream>
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
|   Statistic<>
 | |
|   NumEmitted("x86-emitter", "Number of machine instructions emitted");
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   class Emitter : public MachineFunctionPass {
 | |
|     const X86InstrInfo  *II;
 | |
|     MachineCodeEmitter  &MCE;
 | |
|     std::map<const MachineBasicBlock*, unsigned> BasicBlockAddrs;
 | |
|     std::vector<std::pair<const MachineBasicBlock *, unsigned> > BBRefs;
 | |
|   public:
 | |
|     explicit Emitter(MachineCodeEmitter &mce) : II(0), MCE(mce) {}
 | |
|     Emitter(MachineCodeEmitter &mce, const X86InstrInfo& ii)
 | |
|         : II(&ii), MCE(mce) {}
 | |
| 
 | |
|     bool runOnMachineFunction(MachineFunction &MF);
 | |
| 
 | |
|     virtual const char *getPassName() const {
 | |
|       return "X86 Machine Code Emitter";
 | |
|     }
 | |
| 
 | |
|     void emitInstruction(const MachineInstr &MI);
 | |
| 
 | |
|   private:
 | |
|     void emitBasicBlock(const MachineBasicBlock &MBB);
 | |
| 
 | |
|     void emitPCRelativeBlockAddress(const MachineBasicBlock *BB);
 | |
|     void emitPCRelativeValue(unsigned Address);
 | |
|     void emitGlobalAddressForCall(GlobalValue *GV, bool isTailCall);
 | |
|     void emitGlobalAddressForPtr(GlobalValue *GV, int Disp = 0);
 | |
|     void emitExternalSymbolAddress(const char *ES, bool isPCRelative,
 | |
|                                    bool isTailCall);
 | |
| 
 | |
|     void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField);
 | |
|     void emitSIBByte(unsigned SS, unsigned Index, unsigned Base);
 | |
|     void emitConstant(unsigned Val, unsigned Size);
 | |
| 
 | |
|     void emitMemModRMByte(const MachineInstr &MI,
 | |
|                           unsigned Op, unsigned RegOpcodeField);
 | |
| 
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// createX86CodeEmitterPass - Return a pass that emits the collected X86 code
 | |
| /// to the specified MCE object.
 | |
| FunctionPass *llvm::createX86CodeEmitterPass(MachineCodeEmitter &MCE) {
 | |
|   return new Emitter(MCE);
 | |
| }
 | |
| 
 | |
| bool Emitter::runOnMachineFunction(MachineFunction &MF) {
 | |
|   assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
 | |
|           MF.getTarget().getRelocationModel() != Reloc::Static) &&
 | |
|          "JIT relocation model must be set to static or default!");
 | |
|   II = ((X86TargetMachine&)MF.getTarget()).getInstrInfo();
 | |
| 
 | |
|   MCE.startFunction(MF);
 | |
|   MCE.emitConstantPool(MF.getConstantPool());
 | |
|   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
 | |
|     emitBasicBlock(*I);
 | |
|   MCE.finishFunction(MF);
 | |
| 
 | |
|   // Resolve all forward branches now...
 | |
|   for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) {
 | |
|     unsigned Location = BasicBlockAddrs[BBRefs[i].first];
 | |
|     unsigned Ref = BBRefs[i].second;
 | |
|     MCE.emitWordAt(Location-Ref-4, (unsigned*)(intptr_t)Ref);
 | |
|   }
 | |
|   BBRefs.clear();
 | |
|   BasicBlockAddrs.clear();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void Emitter::emitBasicBlock(const MachineBasicBlock &MBB) {
 | |
|   if (uint64_t Addr = MCE.getCurrentPCValue())
 | |
|     BasicBlockAddrs[&MBB] = Addr;
 | |
| 
 | |
|   for (MachineBasicBlock::const_iterator I = MBB.begin(), E = MBB.end();
 | |
|        I != E; ++I)
 | |
|     emitInstruction(*I);
 | |
| }
 | |
| 
 | |
| /// emitPCRelativeValue - Emit a 32-bit PC relative address.
 | |
| ///
 | |
| void Emitter::emitPCRelativeValue(unsigned Address) {
 | |
|   MCE.emitWord(Address-MCE.getCurrentPCValue()-4);
 | |
| }
 | |
| 
 | |
| /// emitPCRelativeBlockAddress - This method emits the PC relative address of
 | |
| /// the specified basic block, or if the basic block hasn't been emitted yet
 | |
| /// (because this is a forward branch), it keeps track of the information
 | |
| /// necessary to resolve this address later (and emits a dummy value).
 | |
| ///
 | |
| void Emitter::emitPCRelativeBlockAddress(const MachineBasicBlock *MBB) {
 | |
|   // If this is a backwards branch, we already know the address of the target,
 | |
|   // so just emit the value.
 | |
|   std::map<const MachineBasicBlock*, unsigned>::iterator I =
 | |
|     BasicBlockAddrs.find(MBB);
 | |
|   if (I != BasicBlockAddrs.end()) {
 | |
|     emitPCRelativeValue(I->second);
 | |
|   } else {
 | |
|     // Otherwise, remember where this reference was and where it is to so we can
 | |
|     // deal with it later.
 | |
|     BBRefs.push_back(std::make_pair(MBB, MCE.getCurrentPCValue()));
 | |
|     MCE.emitWord(0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// emitGlobalAddressForCall - Emit the specified address to the code stream
 | |
| /// assuming this is part of a function call, which is PC relative.
 | |
| ///
 | |
| void Emitter::emitGlobalAddressForCall(GlobalValue *GV, bool isTailCall) {
 | |
|   MCE.addRelocation(MachineRelocation(MCE.getCurrentPCOffset(),
 | |
|                                       X86::reloc_pcrel_word, GV, 0,
 | |
|                                       !isTailCall /*Doesn'tNeedStub*/));
 | |
|   MCE.emitWord(0);
 | |
| }
 | |
| 
 | |
| /// emitGlobalAddress - Emit the specified address to the code stream assuming
 | |
| /// this is part of a "take the address of a global" instruction, which is not
 | |
| /// PC relative.
 | |
| ///
 | |
| void Emitter::emitGlobalAddressForPtr(GlobalValue *GV, int Disp /* = 0 */) {
 | |
|   MCE.addRelocation(MachineRelocation(MCE.getCurrentPCOffset(),
 | |
|                                       X86::reloc_absolute_word, GV));
 | |
|   MCE.emitWord(Disp);   // The relocated value will be added to the displacement
 | |
| }
 | |
| 
 | |
| /// emitExternalSymbolAddress - Arrange for the address of an external symbol to
 | |
| /// be emitted to the current location in the function, and allow it to be PC
 | |
| /// relative.
 | |
| void Emitter::emitExternalSymbolAddress(const char *ES, bool isPCRelative,
 | |
|                                         bool isTailCall) {
 | |
|   MCE.addRelocation(MachineRelocation(MCE.getCurrentPCOffset(),
 | |
|           isPCRelative ? X86::reloc_pcrel_word : X86::reloc_absolute_word, ES));
 | |
|   MCE.emitWord(0);
 | |
| }
 | |
| 
 | |
| /// N86 namespace - Native X86 Register numbers... used by X86 backend.
 | |
| ///
 | |
| namespace N86 {
 | |
|   enum {
 | |
|     EAX = 0, ECX = 1, EDX = 2, EBX = 3, ESP = 4, EBP = 5, ESI = 6, EDI = 7
 | |
|   };
 | |
| }
 | |
| 
 | |
| 
 | |
| // getX86RegNum - This function maps LLVM register identifiers to their X86
 | |
| // specific numbering, which is used in various places encoding instructions.
 | |
| //
 | |
| static unsigned getX86RegNum(unsigned RegNo) {
 | |
|   switch(RegNo) {
 | |
|   case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
 | |
|   case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
 | |
|   case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
 | |
|   case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
 | |
|   case X86::ESP: case X86::SP: case X86::AH: return N86::ESP;
 | |
|   case X86::EBP: case X86::BP: case X86::CH: return N86::EBP;
 | |
|   case X86::ESI: case X86::SI: case X86::DH: return N86::ESI;
 | |
|   case X86::EDI: case X86::DI: case X86::BH: return N86::EDI;
 | |
| 
 | |
|   case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3:
 | |
|   case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7:
 | |
|     return RegNo-X86::ST0;
 | |
| 
 | |
|   case X86::XMM0: case X86::XMM1: case X86::XMM2: case X86::XMM3:
 | |
|   case X86::XMM4: case X86::XMM5: case X86::XMM6: case X86::XMM7:
 | |
|     return RegNo-X86::XMM0;
 | |
| 
 | |
|   default:
 | |
|     assert(MRegisterInfo::isVirtualRegister(RegNo) &&
 | |
|            "Unknown physical register!");
 | |
|     assert(0 && "Register allocator hasn't allocated reg correctly yet!");
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
 | |
|                                       unsigned RM) {
 | |
|   assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
 | |
|   return RM | (RegOpcode << 3) | (Mod << 6);
 | |
| }
 | |
| 
 | |
| void Emitter::emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeFld){
 | |
|   MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)));
 | |
| }
 | |
| 
 | |
| void Emitter::emitSIBByte(unsigned SS, unsigned Index, unsigned Base) {
 | |
|   // SIB byte is in the same format as the ModRMByte...
 | |
|   MCE.emitByte(ModRMByte(SS, Index, Base));
 | |
| }
 | |
| 
 | |
| void Emitter::emitConstant(unsigned Val, unsigned Size) {
 | |
|   // Output the constant in little endian byte order...
 | |
|   for (unsigned i = 0; i != Size; ++i) {
 | |
|     MCE.emitByte(Val & 255);
 | |
|     Val >>= 8;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool isDisp8(int Value) {
 | |
|   return Value == (signed char)Value;
 | |
| }
 | |
| 
 | |
| void Emitter::emitMemModRMByte(const MachineInstr &MI,
 | |
|                                unsigned Op, unsigned RegOpcodeField) {
 | |
|   const MachineOperand &Op3 = MI.getOperand(Op+3);
 | |
|   GlobalValue *GV = 0;
 | |
|   int DispVal = 0;
 | |
| 
 | |
|   if (Op3.isGlobalAddress()) {
 | |
|     GV = Op3.getGlobal();
 | |
|     DispVal = Op3.getOffset();
 | |
|   } else if (Op3.isConstantPoolIndex()) {
 | |
|     DispVal += MCE.getConstantPoolEntryAddress(Op3.getConstantPoolIndex());
 | |
|     DispVal += Op3.getOffset();
 | |
|   } else {
 | |
|     DispVal = Op3.getImmedValue();
 | |
|   }
 | |
| 
 | |
|   const MachineOperand &Base     = MI.getOperand(Op);
 | |
|   const MachineOperand &Scale    = MI.getOperand(Op+1);
 | |
|   const MachineOperand &IndexReg = MI.getOperand(Op+2);
 | |
| 
 | |
|   unsigned BaseReg = Base.getReg();
 | |
| 
 | |
|   // Is a SIB byte needed?
 | |
|   if (IndexReg.getReg() == 0 && BaseReg != X86::ESP) {
 | |
|     if (BaseReg == 0) {  // Just a displacement?
 | |
|       // Emit special case [disp32] encoding
 | |
|       MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
 | |
|       if (GV)
 | |
|         emitGlobalAddressForPtr(GV, DispVal);
 | |
|       else
 | |
|         emitConstant(DispVal, 4);
 | |
|     } else {
 | |
|       unsigned BaseRegNo = getX86RegNum(BaseReg);
 | |
|       if (GV) {
 | |
|         // Emit the most general non-SIB encoding: [REG+disp32]
 | |
|         MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo));
 | |
|         emitGlobalAddressForPtr(GV, DispVal);
 | |
|       } else if (DispVal == 0 && BaseRegNo != N86::EBP) {
 | |
|         // Emit simple indirect register encoding... [EAX] f.e.
 | |
|         MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo));
 | |
|       } else if (isDisp8(DispVal)) {
 | |
|         // Emit the disp8 encoding... [REG+disp8]
 | |
|         MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo));
 | |
|         emitConstant(DispVal, 1);
 | |
|       } else {
 | |
|         // Emit the most general non-SIB encoding: [REG+disp32]
 | |
|         MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo));
 | |
|         emitConstant(DispVal, 4);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   } else {  // We need a SIB byte, so start by outputting the ModR/M byte first
 | |
|     assert(IndexReg.getReg() != X86::ESP && "Cannot use ESP as index reg!");
 | |
| 
 | |
|     bool ForceDisp32 = false;
 | |
|     bool ForceDisp8  = false;
 | |
|     if (BaseReg == 0) {
 | |
|       // If there is no base register, we emit the special case SIB byte with
 | |
|       // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
 | |
|       MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
 | |
|       ForceDisp32 = true;
 | |
|     } else if (GV) {
 | |
|       // Emit the normal disp32 encoding...
 | |
|       MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
 | |
|       ForceDisp32 = true;
 | |
|     } else if (DispVal == 0 && BaseReg != X86::EBP) {
 | |
|       // Emit no displacement ModR/M byte
 | |
|       MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
 | |
|     } else if (isDisp8(DispVal)) {
 | |
|       // Emit the disp8 encoding...
 | |
|       MCE.emitByte(ModRMByte(1, RegOpcodeField, 4));
 | |
|       ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
 | |
|     } else {
 | |
|       // Emit the normal disp32 encoding...
 | |
|       MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
 | |
|     }
 | |
| 
 | |
|     // Calculate what the SS field value should be...
 | |
|     static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
 | |
|     unsigned SS = SSTable[Scale.getImmedValue()];
 | |
| 
 | |
|     if (BaseReg == 0) {
 | |
|       // Handle the SIB byte for the case where there is no base.  The
 | |
|       // displacement has already been output.
 | |
|       assert(IndexReg.getReg() && "Index register must be specified!");
 | |
|       emitSIBByte(SS, getX86RegNum(IndexReg.getReg()), 5);
 | |
|     } else {
 | |
|       unsigned BaseRegNo = getX86RegNum(BaseReg);
 | |
|       unsigned IndexRegNo;
 | |
|       if (IndexReg.getReg())
 | |
|         IndexRegNo = getX86RegNum(IndexReg.getReg());
 | |
|       else
 | |
|         IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
 | |
|       emitSIBByte(SS, IndexRegNo, BaseRegNo);
 | |
|     }
 | |
| 
 | |
|     // Do we need to output a displacement?
 | |
|     if (DispVal != 0 || ForceDisp32 || ForceDisp8) {
 | |
|       if (!ForceDisp32 && isDisp8(DispVal))
 | |
|         emitConstant(DispVal, 1);
 | |
|       else if (GV)
 | |
|         emitGlobalAddressForPtr(GV, DispVal);
 | |
|       else
 | |
|         emitConstant(DispVal, 4);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static unsigned sizeOfImm(const TargetInstrDescriptor &Desc) {
 | |
|   switch (Desc.TSFlags & X86II::ImmMask) {
 | |
|   case X86II::Imm8:   return 1;
 | |
|   case X86II::Imm16:  return 2;
 | |
|   case X86II::Imm32:  return 4;
 | |
|   default: assert(0 && "Immediate size not set!");
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Emitter::emitInstruction(const MachineInstr &MI) {
 | |
|   NumEmitted++;  // Keep track of the # of mi's emitted
 | |
| 
 | |
|   unsigned Opcode = MI.getOpcode();
 | |
|   const TargetInstrDescriptor &Desc = II->get(Opcode);
 | |
| 
 | |
|   // Emit the repeat opcode prefix as needed.
 | |
|   if ((Desc.TSFlags & X86II::Op0Mask) == X86II::REP) MCE.emitByte(0xF3);
 | |
| 
 | |
|   // Emit the operand size opcode prefix as needed.
 | |
|   if (Desc.TSFlags & X86II::OpSize) MCE.emitByte(0x66);
 | |
| 
 | |
|   switch (Desc.TSFlags & X86II::Op0Mask) {
 | |
|   case X86II::TB:
 | |
|     MCE.emitByte(0x0F);   // Two-byte opcode prefix
 | |
|     break;
 | |
|   case X86II::REP: break; // already handled.
 | |
|   case X86II::XS:   // F3 0F
 | |
|     MCE.emitByte(0xF3);
 | |
|     MCE.emitByte(0x0F);
 | |
|     break;
 | |
|   case X86II::XD:   // F2 0F
 | |
|     MCE.emitByte(0xF2);
 | |
|     MCE.emitByte(0x0F);
 | |
|     break;
 | |
|   case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
 | |
|   case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
 | |
|     MCE.emitByte(0xD8+
 | |
|                  (((Desc.TSFlags & X86II::Op0Mask)-X86II::D8)
 | |
|                                    >> X86II::Op0Shift));
 | |
|     break; // Two-byte opcode prefix
 | |
|   default: assert(0 && "Invalid prefix!");
 | |
|   case 0: break;  // No prefix!
 | |
|   }
 | |
| 
 | |
|   unsigned char BaseOpcode = II->getBaseOpcodeFor(Opcode);
 | |
|   switch (Desc.TSFlags & X86II::FormMask) {
 | |
|   default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
 | |
|   case X86II::Pseudo:
 | |
| #ifndef NDEBUG
 | |
|     switch (Opcode) {
 | |
|     default: 
 | |
|       assert(0 && "psuedo instructions should be removed before code emission");
 | |
|     case X86::IMPLICIT_USE:
 | |
|     case X86::IMPLICIT_DEF:
 | |
|     case X86::IMPLICIT_DEF_R8:
 | |
|     case X86::IMPLICIT_DEF_R16:
 | |
|     case X86::IMPLICIT_DEF_R32:
 | |
|     case X86::IMPLICIT_DEF_FR32:
 | |
|     case X86::IMPLICIT_DEF_FR64:
 | |
|     case X86::IMPLICIT_DEF_VR64:
 | |
|     case X86::IMPLICIT_DEF_VR128:
 | |
|     case X86::FP_REG_KILL:
 | |
|       break;
 | |
|     }
 | |
| #endif
 | |
|     break;
 | |
| 
 | |
|   case X86II::RawFrm:
 | |
|     MCE.emitByte(BaseOpcode);
 | |
|     if (MI.getNumOperands() == 1) {
 | |
|       const MachineOperand &MO = MI.getOperand(0);
 | |
|       if (MO.isMachineBasicBlock()) {
 | |
|         emitPCRelativeBlockAddress(MO.getMachineBasicBlock());
 | |
|       } else if (MO.isGlobalAddress()) {
 | |
|         bool isTailCall = Opcode == X86::TAILJMPd ||
 | |
|                           Opcode == X86::TAILJMPr || Opcode == X86::TAILJMPm;
 | |
|         emitGlobalAddressForCall(MO.getGlobal(), isTailCall);
 | |
|       } else if (MO.isExternalSymbol()) {
 | |
|         bool isTailCall = Opcode == X86::TAILJMPd ||
 | |
|                           Opcode == X86::TAILJMPr || Opcode == X86::TAILJMPm;
 | |
|         emitExternalSymbolAddress(MO.getSymbolName(), true, isTailCall);
 | |
|       } else if (MO.isImmediate()) {
 | |
|         emitConstant(MO.getImmedValue(), sizeOfImm(Desc));
 | |
|       } else {
 | |
|         assert(0 && "Unknown RawFrm operand!");
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case X86II::AddRegFrm:
 | |
|     MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(0).getReg()));
 | |
|     if (MI.getNumOperands() == 2) {
 | |
|       const MachineOperand &MO1 = MI.getOperand(1);
 | |
|       if (Value *V = MO1.getVRegValueOrNull()) {
 | |
|         assert(sizeOfImm(Desc) == 4 &&
 | |
|                "Don't know how to emit non-pointer values!");
 | |
|         emitGlobalAddressForPtr(cast<GlobalValue>(V));
 | |
|       } else if (MO1.isGlobalAddress()) {
 | |
|         assert(sizeOfImm(Desc) == 4 &&
 | |
|                "Don't know how to emit non-pointer values!");
 | |
|         assert(!MO1.isPCRelative() && "Function pointer ref is PC relative?");
 | |
|         emitGlobalAddressForPtr(MO1.getGlobal(), MO1.getOffset());
 | |
|       } else if (MO1.isExternalSymbol()) {
 | |
|         assert(sizeOfImm(Desc) == 4 &&
 | |
|                "Don't know how to emit non-pointer values!");
 | |
|         emitExternalSymbolAddress(MO1.getSymbolName(), false, false);
 | |
|       } else {
 | |
|         emitConstant(MO1.getImmedValue(), sizeOfImm(Desc));
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case X86II::MRMDestReg: {
 | |
|     MCE.emitByte(BaseOpcode);
 | |
|     emitRegModRMByte(MI.getOperand(0).getReg(),
 | |
|                      getX86RegNum(MI.getOperand(1).getReg()));
 | |
|     if (MI.getNumOperands() == 3)
 | |
|       emitConstant(MI.getOperand(2).getImmedValue(), sizeOfImm(Desc));
 | |
|     break;
 | |
|   }
 | |
|   case X86II::MRMDestMem:
 | |
|     MCE.emitByte(BaseOpcode);
 | |
|     emitMemModRMByte(MI, 0, getX86RegNum(MI.getOperand(4).getReg()));
 | |
|     if (MI.getNumOperands() == 6)
 | |
|       emitConstant(MI.getOperand(5).getImmedValue(), sizeOfImm(Desc));
 | |
|     break;
 | |
| 
 | |
|   case X86II::MRMSrcReg:
 | |
|     MCE.emitByte(BaseOpcode);
 | |
|     emitRegModRMByte(MI.getOperand(1).getReg(),
 | |
|                      getX86RegNum(MI.getOperand(0).getReg()));
 | |
|     if (MI.getNumOperands() == 3)
 | |
|       emitConstant(MI.getOperand(2).getImmedValue(), sizeOfImm(Desc));
 | |
|     break;
 | |
| 
 | |
|   case X86II::MRMSrcMem:
 | |
|     MCE.emitByte(BaseOpcode);
 | |
|     emitMemModRMByte(MI, 1, getX86RegNum(MI.getOperand(0).getReg()));
 | |
|     if (MI.getNumOperands() == 2+4)
 | |
|       emitConstant(MI.getOperand(5).getImmedValue(), sizeOfImm(Desc));
 | |
|     break;
 | |
| 
 | |
|   case X86II::MRM0r: case X86II::MRM1r:
 | |
|   case X86II::MRM2r: case X86II::MRM3r:
 | |
|   case X86II::MRM4r: case X86II::MRM5r:
 | |
|   case X86II::MRM6r: case X86II::MRM7r:
 | |
|     MCE.emitByte(BaseOpcode);
 | |
|     emitRegModRMByte(MI.getOperand(0).getReg(),
 | |
|                      (Desc.TSFlags & X86II::FormMask)-X86II::MRM0r);
 | |
| 
 | |
|     if (MI.getOperand(MI.getNumOperands()-1).isImmediate()) {
 | |
|       emitConstant(MI.getOperand(MI.getNumOperands()-1).getImmedValue(),
 | |
|                    sizeOfImm(Desc));
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case X86II::MRM0m: case X86II::MRM1m:
 | |
|   case X86II::MRM2m: case X86II::MRM3m:
 | |
|   case X86II::MRM4m: case X86II::MRM5m:
 | |
|   case X86II::MRM6m: case X86II::MRM7m:
 | |
|     MCE.emitByte(BaseOpcode);
 | |
|     emitMemModRMByte(MI, 0, (Desc.TSFlags & X86II::FormMask)-X86II::MRM0m);
 | |
| 
 | |
|     if (MI.getNumOperands() == 5) {
 | |
|       if (MI.getOperand(4).isImmediate())
 | |
|         emitConstant(MI.getOperand(4).getImmedValue(), sizeOfImm(Desc));
 | |
|       else if (MI.getOperand(4).isGlobalAddress())
 | |
|         emitGlobalAddressForPtr(MI.getOperand(4).getGlobal(),
 | |
|                                 MI.getOperand(4).getOffset());
 | |
|       else
 | |
|         assert(0 && "Unknown operand!");
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case X86II::MRMInitReg:
 | |
|     MCE.emitByte(BaseOpcode);
 | |
|     emitRegModRMByte(MI.getOperand(0).getReg(),
 | |
|                      getX86RegNum(MI.getOperand(0).getReg()));
 | |
|     break;
 | |
|   }
 | |
| }
 |