llvm-6502/tools/llvm-upgrade/UpgradeParser.y
2007-01-21 19:30:52 +00:00

2280 lines
68 KiB
Plaintext

//===-- UpgradeParser.y - Upgrade parser for llvm assmbly -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Reid Spencer and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the bison parser for LLVM 1.9 assembly language.
//
//===----------------------------------------------------------------------===//
%{
#include "UpgradeInternals.h"
#include <algorithm>
#include <map>
#include <utility>
#include <iostream>
#define YYERROR_VERBOSE 1
#define YYINCLUDED_STDLIB_H
#define YYDEBUG 1
int yylex(); // declaration" of xxx warnings.
int yyparse();
extern int yydebug;
static std::string CurFilename;
static std::ostream *O = 0;
std::istream* LexInput = 0;
unsigned SizeOfPointer = 32;
// This bool controls whether attributes are ever added to function declarations
// definitions and calls.
static bool AddAttributes = false;
static void warning(const std::string& msg);
void UpgradeAssembly(const std::string &infile, std::istream& in,
std::ostream &out, bool debug, bool addAttrs)
{
Upgradelineno = 1;
CurFilename = infile;
LexInput = &in;
yydebug = debug;
AddAttributes = addAttrs;
O = &out;
if (yyparse()) {
std::cerr << "llvm-upgrade: parse failed.\n";
out << "llvm-upgrade: parse failed.\n";
exit(1);
}
}
namespace { // Anonymous namespace to keep our implementation local
/// This type is used to keep track of the signedness of values. Instead
/// of creating llvm::Value directly, the parser will create Value which
/// associates a Value* with a Signedness indication.
struct Value {
std::string* val;
const Type* type;
bool constant;
bool isConstant() const { return constant; }
~Value() { delete val; }
};
/// This type is used to keep track of the signedness of the obsolete
/// integer types. Instead of creating an llvm::Type directly, the Lexer will
/// create instances of Type which retains the signedness indication so
/// it can be used by the parser for upgrade decisions.
/// For example if "uint" is encountered then the "first" field will be set
/// to "int32" and the "second" field will be set to "isUnsigned". If the
/// type is not obsolete then "second" will be set to "isSignless".
class Type {
public:
static const Type* get(const std::string &newType, TypeIDs oldType);
static const Type* get(const std::string& newType, TypeIDs oldType,
const Type* eTy, const Type* rTy);
static const Type* get(const std::string& newType, TypeIDs oldType,
const Type *eTy, uint64_t elems);
static const Type* get(const std::string& newType, TypeIDs oldType,
TypeList* TL);
static const Type* get(const std::string& newType, const Type* resTy,
TypeList* TL);
const Type* resolve() const;
bool operator<(const Type& that) const;
bool sameNewTyAs(const Type* that) const {
return this->newTy == that->newTy;
}
bool sameOldTyAs(const Type* that) const;
TypeIDs getElementTy() const {
if (elemTy) {
return elemTy->oldTy;
}
return UnresolvedTy;
}
unsigned getUpRefNum() const {
assert(oldTy == UpRefTy && "Can't getUpRefNum on non upreference");
return atoi(&((getNewTy().c_str())[1])); // skip the slash
}
typedef std::vector<const Type*> UpRefStack;
void getSignedness(unsigned &sNum, unsigned &uNum, UpRefStack& stk) const;
std::string makeUniqueName(const std::string& BaseName) const;
const std::string& getNewTy() const { return newTy; }
const Type* getResultType() const { return resultTy; }
const Type* getElementType() const { return elemTy; }
const Type* getPointerType() const {
return get(newTy + "*", PointerTy, this, (Type*)0);
}
bool isUnresolved() const { return oldTy == UnresolvedTy; }
bool isUpReference() const { return oldTy == UpRefTy; }
bool isVoid() const { return oldTy == VoidTy; }
bool isBool() const { return oldTy == BoolTy; }
bool isSigned() const {
return oldTy == SByteTy || oldTy == ShortTy ||
oldTy == IntTy || oldTy == LongTy;
}
bool isUnsigned() const {
return oldTy == UByteTy || oldTy == UShortTy ||
oldTy == UIntTy || oldTy == ULongTy;
}
bool isSignless() const { return !isSigned() && !isUnsigned(); }
bool isInteger() const { return isSigned() || isUnsigned(); }
bool isIntegral() const { return oldTy == BoolTy || isInteger(); }
bool isFloatingPoint() const { return oldTy == DoubleTy || oldTy == FloatTy; }
bool isPacked() const { return oldTy == PackedTy; }
bool isPointer() const { return oldTy == PointerTy; }
bool isStruct() const { return oldTy == StructTy || oldTy == PackedStructTy; }
bool isArray() const { return oldTy == ArrayTy; }
bool isOther() const {
return !isPacked() && !isPointer() && !isFloatingPoint() && !isIntegral(); }
bool isFunction() const { return oldTy == FunctionTy; }
bool isComposite() const {
return isStruct() || isPointer() || isArray() || isPacked();
}
bool isAttributeCandidate() const {
return isIntegral() && getBitWidth() < 32;
}
bool isUnresolvedDeep() const;
unsigned getBitWidth() const;
const Type* getIndexedType(const Value* V) const;
unsigned getNumStructElements() const {
return (elements ? elements->size() : 0);
}
const Type* getElement(unsigned idx) const {
if (elements)
if (idx < elements->size())
return (*elements)[idx];
return 0;
}
private:
Type()
: newTy(), oldTy(UnresolvedTy), elemTy(0), resultTy(0), elements(0),
nelems(0) {
}
Type(const Type& that); // do not implement
Type& operator=(const Type& that); // do not implement
~Type() { delete elements; }
struct ltfunctor
{
bool operator()(const Type* X, const Type* Y) const {
assert(X && "Can't compare null pointer");
assert(Y && "Can't compare null pointer");
return *X < *Y;
}
};
typedef std::set<const Type*, ltfunctor> TypeRegMap;
static const Type* add_new_type(Type* existing);
std::string newTy;
TypeIDs oldTy;
Type *elemTy;
Type *resultTy;
TypeList *elements;
uint64_t nelems;
static TypeRegMap registry;
public:
typedef std::vector<const Type*> TypeVector;
typedef std::map<std::string,const Type*> TypeMap;
typedef std::map<const Type*,std::string> TypePlaneMap;
typedef std::map<std::string,TypePlaneMap> GlobalsTypeMap;
static TypeVector EnumeratedTypes;
static TypeMap NamedTypes;
static GlobalsTypeMap Globals;
};
Type::TypeRegMap Type::registry;
Type::TypeVector Type::EnumeratedTypes;
Type::TypeMap Type::NamedTypes;
Type::GlobalsTypeMap Type::Globals;
const Type* Type::get(const std::string &newType, TypeIDs oldType) {
Type* Ty = new Type();
Ty->newTy = newType;
Ty->oldTy = oldType;
return add_new_type(Ty);
}
const Type* Type::get(const std::string& newType, TypeIDs oldType,
const Type* eTy, const Type* rTy) {
Type* Ty= new Type();
Ty->newTy = newType;
Ty->oldTy = oldType;
Ty->elemTy = const_cast<Type*>(eTy);
Ty->resultTy = const_cast<Type*>(rTy);
return add_new_type(Ty);
}
const Type* Type::get(const std::string& newType, TypeIDs oldType,
const Type *eTy, uint64_t elems) {
Type* Ty = new Type();
Ty->newTy = newType;
Ty->oldTy = oldType;
Ty->elemTy = const_cast<Type*>(eTy);
Ty->nelems = elems;
return add_new_type(Ty);
}
const Type* Type::get(const std::string& newType, TypeIDs oldType,
TypeList* TL) {
Type* Ty = new Type();
Ty->newTy = newType;
Ty->oldTy = oldType;
Ty->elements = TL;
return add_new_type(Ty);
}
const Type* Type::get(const std::string& newType, const Type* resTy,
TypeList* TL) {
Type* Ty = new Type();
Ty->newTy = newType;
Ty->oldTy = FunctionTy;
Ty->resultTy = const_cast<Type*>(resTy);
Ty->elements = TL;
return add_new_type(Ty);
}
const Type* Type::resolve() const {
if (isUnresolved()) {
if (getNewTy()[0] == '%' && isdigit(newTy[1])) {
unsigned ref = atoi(&((newTy.c_str())[1])); // skip the %
if (ref < EnumeratedTypes.size()) {
return EnumeratedTypes[ref];
} else {
std::string msg("Can't resolve numbered type: ");
msg += getNewTy();
yyerror(msg.c_str());
}
} else {
Type::TypeMap::iterator I = NamedTypes.find(newTy);
if (I != NamedTypes.end()) {
return I->second;
} else {
std::string msg("Cannot resolve type: ");
msg += getNewTy();
yyerror(msg.c_str());
}
}
}
// otherwise its already resolved.
return this;
}
bool Type::operator<(const Type& that) const {
if (this == &that)
return false;
if (oldTy != that.oldTy)
return oldTy < that.oldTy;
switch (oldTy) {
case UpRefTy: {
unsigned thisUp = this->getUpRefNum();
unsigned thatUp = that.getUpRefNum();
return thisUp < thatUp;
}
case PackedTy:
case ArrayTy:
if (this->nelems != that.nelems)
return nelems < that.nelems;
case PointerTy: {
const Type* thisTy = this->elemTy;
const Type* thatTy = that.elemTy;
return *thisTy < *thatTy;
}
case FunctionTy: {
const Type* thisTy = this->resultTy;
const Type* thatTy = that.resultTy;
if (!thisTy->sameOldTyAs(thatTy))
return *thisTy < *thatTy;
/* FALL THROUGH */
}
case StructTy:
case PackedStructTy: {
if (elements->size() != that.elements->size())
return elements->size() < that.elements->size();
for (unsigned i = 0; i < elements->size(); i++) {
const Type* thisTy = (*this->elements)[i];
const Type* thatTy = (*that.elements)[i];
if (!thisTy->sameOldTyAs(thatTy))
return *thisTy < *thatTy;
}
break;
}
case UnresolvedTy:
return this->newTy < that.newTy;
default:
break;
}
return false;
}
bool Type::sameOldTyAs(const Type* that) const {
if (that == 0)
return false;
if ( this == that )
return true;
if (oldTy != that->oldTy)
return false;
switch (oldTy) {
case PackedTy:
case ArrayTy:
if (nelems != that->nelems)
return false;
/* FALL THROUGH */
case PointerTy: {
const Type* thisTy = this->elemTy;
const Type* thatTy = that->elemTy;
return thisTy->sameOldTyAs(thatTy);
}
case FunctionTy: {
const Type* thisTy = this->resultTy;
const Type* thatTy = that->resultTy;
if (!thisTy->sameOldTyAs(thatTy))
return false;
/* FALL THROUGH */
}
case StructTy:
case PackedStructTy: {
if (elements->size() != that->elements->size())
return false;
for (unsigned i = 0; i < elements->size(); i++) {
const Type* thisTy = (*this->elements)[i];
const Type* thatTy = (*that->elements)[i];
if (!thisTy->sameOldTyAs(thatTy))
return false;
}
return true;
}
case UnresolvedTy:
return this->newTy == that->newTy;
default:
return true; // for all others oldTy == that->oldTy is sufficient
}
return true;
}
bool Type::isUnresolvedDeep() const {
switch (oldTy) {
case UnresolvedTy:
return true;
case PackedTy:
case ArrayTy:
case PointerTy:
return elemTy->isUnresolvedDeep();
case PackedStructTy:
case StructTy:
for (unsigned i = 0; i < elements->size(); i++)
if ((*elements)[i]->isUnresolvedDeep())
return true;
return false;
default:
return false;
}
}
unsigned Type::getBitWidth() const {
switch (oldTy) {
default:
case LabelTy:
case VoidTy : return 0;
case BoolTy : return 1;
case SByteTy: case UByteTy : return 8;
case ShortTy: case UShortTy : return 16;
case IntTy: case UIntTy: case FloatTy: return 32;
case LongTy: case ULongTy: case DoubleTy : return 64;
case PointerTy: return SizeOfPointer; // global var
case PackedTy:
case ArrayTy:
return nelems * elemTy->getBitWidth();
case StructTy:
case PackedStructTy: {
uint64_t size = 0;
for (unsigned i = 0; i < elements->size(); i++) {
size += (*elements)[i]->getBitWidth();
}
return size;
}
}
}
const Type* Type::getIndexedType(const Value* V) const {
if (isStruct()) {
if (V->isConstant() && V->type->isInteger()) {
size_t pos = V->val->find(' ') + 1;
if (pos < V->val->size()) {
uint64_t idx = atoi(V->val->substr(pos).c_str());
return (*elements)[idx];
} else {
yyerror("Invalid value for constant integer");
return 0;
}
} else {
yyerror("Structure requires constant index");
return 0;
}
}
if (isArray() || isPacked() || isPointer())
return elemTy;
yyerror("Invalid type for getIndexedType");
return 0;
}
void Type::getSignedness(unsigned &sNum, unsigned &uNum,
UpRefStack& stack) const {
switch (oldTy) {
default:
case OpaqueTy: case LabelTy: case VoidTy: case BoolTy:
case FloatTy : case DoubleTy: case UpRefTy:
return;
case SByteTy: case ShortTy: case LongTy: case IntTy:
sNum++;
return;
case UByteTy: case UShortTy: case UIntTy: case ULongTy:
uNum++;
return;
case PointerTy:
case PackedTy:
case ArrayTy:
stack.push_back(this);
elemTy->getSignedness(sNum, uNum, stack);
return;
case StructTy:
case PackedStructTy: {
stack.push_back(this);
for (unsigned i = 0; i < elements->size(); i++) {
(*elements)[i]->getSignedness(sNum, uNum, stack);
}
return;
}
case UnresolvedTy: {
const Type* Ty = this->resolve();
// Let's not recurse.
UpRefStack::const_iterator I = stack.begin(), E = stack.end();
for ( ; I != E && *I != Ty; ++I)
;
if (I == E)
Ty->getSignedness(sNum, uNum, stack);
return;
}
}
}
std::string AddSuffix(const std::string& Name, const std::string& Suffix) {
if (Name[Name.size()-1] == '"') {
std::string Result = Name;
Result.insert(Result.size()-1, Suffix);
return Result;
}
return Name + Suffix;
}
std::string Type::makeUniqueName(const std::string& BaseName) const {
if (BaseName == "\"alloca point\"")
return BaseName;
switch (oldTy) {
default:
break;
case OpaqueTy: case LabelTy: case VoidTy: case BoolTy: case UpRefTy:
case FloatTy : case DoubleTy: case UnresolvedTy:
return BaseName;
case SByteTy: case ShortTy: case LongTy: case IntTy:
return AddSuffix(BaseName, ".s");
case UByteTy: case UShortTy: case UIntTy: case ULongTy:
return AddSuffix(BaseName, ".u");
}
unsigned uNum = 0, sNum = 0;
std::string Suffix;
switch (oldTy) {
case PointerTy:
case PackedTy:
case ArrayTy: {
Type::UpRefStack stack;
elemTy->resolve()->getSignedness(sNum, uNum, stack);
break;
}
case StructTy:
case PackedStructTy: {
for (unsigned i = 0; i < elements->size(); i++) {
Type::UpRefStack stack;
(*elements)[i]->resolve()->getSignedness(sNum, uNum, stack);
}
break;
}
default:
assert(0 && "Invalid Type");
break;
}
if (sNum == 0 && uNum == 0)
return BaseName;
switch (oldTy) {
default: Suffix += ".nada"; break;
case PointerTy: Suffix += ".pntr"; break;
case PackedTy: Suffix += ".pckd"; break;
case ArrayTy: Suffix += ".arry"; break;
case StructTy: Suffix += ".strc"; break;
case PackedStructTy: Suffix += ".pstr"; break;
}
Suffix += ".s" + llvm::utostr(sNum);
Suffix += ".u" + llvm::utostr(uNum);
return AddSuffix(BaseName, Suffix);
}
Type& Type::operator=(const Type& that) {
oldTy = that.oldTy;
nelems = that.nelems;
newTy = that.newTy;
elemTy = that.elemTy;
resultTy = that.resultTy;
if (that.elements) {
elements = new TypeList(that.elements->size());
*elements = *that.elements;
} else {
elements = 0;
}
return *this;
}
const Type* Type::add_new_type(Type* newTy) {
TypeRegMap::iterator I = registry.find(newTy);
if (I != registry.end()) {
delete newTy;
return *I;
}
registry.insert(newTy);
return newTy;
}
class Instruction {
};
/// This type is used to keep track of the signedness of constants.
struct Constant {
std::string *cnst;
const Type *type;
~Constant() { delete cnst; }
};
/// This variable provides a counter for unique names. It is used in various
/// productions to ensure a unique name is generated.
static uint64_t UniqueNameCounter = 1;
// This is set when a DECLARE keyword is recognized so that subsequent parsing
// of a function prototype can know if its a declaration or definition.
static bool isDeclare = false;
// This bool is used to communicate between the InstVal and Inst rules about
// whether or not a cast should be deleted. When the flag is set, InstVal has
// determined that the cast is a candidate. However, it can only be deleted if
// the value being casted is the same value name as the instruction. The Inst
// rule makes that comparison if the flag is set and comments out the
// instruction if they match.
static bool deleteUselessCastFlag = false;
static std::string* deleteUselessCastName = 0;
const char* getCastOpcode(std::string& Source, const Type* SrcTy,
const Type* DstTy) {
unsigned SrcBits = SrcTy->getBitWidth();
unsigned DstBits = DstTy->getBitWidth();
const char* opcode = "bitcast";
// Run through the possibilities ...
if (DstTy->isIntegral()) { // Casting to integral
if (SrcTy->isIntegral()) { // Casting from integral
if (DstBits < SrcBits)
opcode = "trunc";
else if (DstBits > SrcBits) { // its an extension
if (SrcTy->isSigned())
opcode ="sext"; // signed -> SEXT
else
opcode = "zext"; // unsigned -> ZEXT
} else {
opcode = "bitcast"; // Same size, No-op cast
}
} else if (SrcTy->isFloatingPoint()) { // Casting from floating pt
if (DstTy->isSigned())
opcode = "fptosi"; // FP -> sint
else
opcode = "fptoui"; // FP -> uint
} else if (SrcTy->isPacked()) {
assert(DstBits == SrcTy->getBitWidth() &&
"Casting packed to integer of different width");
opcode = "bitcast"; // same size, no-op cast
} else {
assert(SrcTy->isPointer() &&
"Casting from a value that is not first-class type");
opcode = "ptrtoint"; // ptr -> int
}
} else if (DstTy->isFloatingPoint()) { // Casting to floating pt
if (SrcTy->isIntegral()) { // Casting from integral
if (SrcTy->isSigned())
opcode = "sitofp"; // sint -> FP
else
opcode = "uitofp"; // uint -> FP
} else if (SrcTy->isFloatingPoint()) { // Casting from floating pt
if (DstBits < SrcBits) {
opcode = "fptrunc"; // FP -> smaller FP
} else if (DstBits > SrcBits) {
opcode = "fpext"; // FP -> larger FP
} else {
opcode ="bitcast"; // same size, no-op cast
}
} else if (SrcTy->isPacked()) {
assert(DstBits == SrcTy->getBitWidth() &&
"Casting packed to floating point of different width");
opcode = "bitcast"; // same size, no-op cast
} else {
assert(0 && "Casting pointer or non-first class to float");
}
} else if (DstTy->isPacked()) {
if (SrcTy->isPacked()) {
assert(DstTy->getBitWidth() == SrcTy->getBitWidth() &&
"Casting packed to packed of different widths");
opcode = "bitcast"; // packed -> packed
} else if (DstTy->getBitWidth() == SrcBits) {
opcode = "bitcast"; // float/int -> packed
} else {
assert(!"Illegal cast to packed (wrong type or size)");
}
} else if (DstTy->isPointer()) {
if (SrcTy->isPointer()) {
opcode = "bitcast"; // ptr -> ptr
} else if (SrcTy->isIntegral()) {
opcode = "inttoptr"; // int -> ptr
} else {
assert(!"Casting invalid type to pointer");
}
} else {
assert(!"Casting to type that is not first-class");
}
return opcode;
}
std::string getCastUpgrade(const std::string& Src, const Type* SrcTy,
const Type* DstTy, bool isConst) {
std::string Result;
std::string Source = Src;
if (SrcTy->isFloatingPoint() && DstTy->isPointer()) {
// fp -> ptr cast is no longer supported but we must upgrade this
// by doing a double cast: fp -> int -> ptr
if (isConst)
Source = "i64 fptoui(" + Source + " to i64)";
else {
*O << " %cast_upgrade" << UniqueNameCounter << " = fptoui "
<< Source << " to i64\n";
Source = "i64 %cast_upgrade" + llvm::utostr(UniqueNameCounter++);
}
// Update the SrcTy for the getCastOpcode call below
SrcTy = Type::get("i64", ULongTy);
} else if (DstTy->isBool()) {
// cast type %x to bool was previously defined as setne type %x, null
// The cast semantic is now to truncate, not compare so we must retain
// the original intent by replacing the cast with a setne
const char* comparator = SrcTy->isPointer() ? ", null" :
(SrcTy->isFloatingPoint() ? ", 0.0" :
(SrcTy->isBool() ? ", false" : ", 0"));
const char* compareOp = SrcTy->isFloatingPoint() ? "fcmp one " : "icmp ne ";
if (isConst) {
Result = "(" + Source + comparator + ")";
Result = compareOp + Result;
} else
Result = compareOp + Source + comparator;
return Result; // skip cast processing below
}
SrcTy = SrcTy->resolve();
DstTy = DstTy->resolve();
std::string Opcode(getCastOpcode(Source, SrcTy, DstTy));
if (isConst)
Result += Opcode + "( " + Source + " to " + DstTy->getNewTy() + ")";
else
Result += Opcode + " " + Source + " to " + DstTy->getNewTy();
return Result;
}
const char* getDivRemOpcode(const std::string& opcode, const Type* TI) {
const char* op = opcode.c_str();
const Type* Ty = TI->resolve();
if (Ty->isPacked())
Ty = Ty->getElementType();
if (opcode == "div")
if (Ty->isFloatingPoint())
op = "fdiv";
else if (Ty->isUnsigned())
op = "udiv";
else if (Ty->isSigned())
op = "sdiv";
else
yyerror("Invalid type for div instruction");
else if (opcode == "rem")
if (Ty->isFloatingPoint())
op = "frem";
else if (Ty->isUnsigned())
op = "urem";
else if (Ty->isSigned())
op = "srem";
else
yyerror("Invalid type for rem instruction");
return op;
}
std::string getCompareOp(const std::string& setcc, const Type* TI) {
assert(setcc.length() == 5);
char cc1 = setcc[3];
char cc2 = setcc[4];
assert(cc1 == 'e' || cc1 == 'n' || cc1 == 'l' || cc1 == 'g');
assert(cc2 == 'q' || cc2 == 'e' || cc2 == 'e' || cc2 == 't');
std::string result("xcmp xxx");
result[6] = cc1;
result[7] = cc2;
if (TI->isFloatingPoint()) {
result[0] = 'f';
result[5] = 'o';
if (cc1 == 'n')
result[5] = 'u'; // NE maps to unordered
else
result[5] = 'o'; // everything else maps to ordered
} else if (TI->isIntegral() || TI->isPointer()) {
result[0] = 'i';
if ((cc1 == 'e' && cc2 == 'q') || (cc1 == 'n' && cc2 == 'e'))
result.erase(5,1);
else if (TI->isSigned())
result[5] = 's';
else if (TI->isUnsigned() || TI->isPointer() || TI->isBool())
result[5] = 'u';
else
yyerror("Invalid integral type for setcc");
}
return result;
}
const Type* getFunctionReturnType(const Type* PFTy) {
PFTy = PFTy->resolve();
if (PFTy->isPointer()) {
const Type* ElemTy = PFTy->getElementType();
ElemTy = ElemTy->resolve();
if (ElemTy->isFunction())
return ElemTy->getResultType();
} else if (PFTy->isFunction()) {
return PFTy->getResultType();
}
return PFTy;
}
const Type* ResolveUpReference(const Type* Ty,
Type::UpRefStack* stack) {
assert(Ty->isUpReference() && "Can't resolve a non-upreference");
unsigned upref = Ty->getUpRefNum();
assert(upref < stack->size() && "Invalid up reference");
return (*stack)[upref - stack->size() - 1];
}
const Type* getGEPIndexedType(const Type* PTy, ValueList* idxs) {
const Type* Result = PTy = PTy->resolve();
assert(PTy->isPointer() && "GEP Operand is not a pointer?");
Type::UpRefStack stack;
for (unsigned i = 0; i < idxs->size(); ++i) {
if (Result->isComposite()) {
Result = Result->getIndexedType((*idxs)[i]);
Result = Result->resolve();
stack.push_back(Result);
} else
yyerror("Invalid type for index");
}
// Resolve upreferences so we can return a more natural type
if (Result->isPointer()) {
if (Result->getElementType()->isUpReference()) {
stack.push_back(Result);
Result = ResolveUpReference(Result->getElementType(), &stack);
}
} else if (Result->isUpReference()) {
Result = ResolveUpReference(Result->getElementType(), &stack);
}
return Result->getPointerType();
}
// This function handles appending .u or .s to integer value names that
// were previously unsigned or signed, respectively. This avoids name
// collisions since the unsigned and signed type planes have collapsed
// into a single signless type plane.
std::string getUniqueName(const std::string *Name, const Type* Ty,
bool isGlobal = false, bool isDef = false) {
// If its not a symbolic name, don't modify it, probably a constant val.
if ((*Name)[0] != '%' && (*Name)[0] != '"')
return *Name;
// If its a numeric reference, just leave it alone.
if (isdigit((*Name)[1]))
return *Name;
// Resolve the type
Ty = Ty->resolve();
// If its a global name, get its uniquified name, if any
Type::GlobalsTypeMap::iterator GI = Type::Globals.find(*Name);
if (GI != Type::Globals.end()) {
Type::TypePlaneMap::iterator TPI = GI->second.begin();
Type::TypePlaneMap::iterator TPE = GI->second.end();
for ( ; TPI != TPE ; ++TPI) {
if (TPI->first->sameNewTyAs(Ty))
return TPI->second;
}
}
if (isGlobal) {
// We didn't find a global name, but if its supposed to be global then all
// we can do is return the name. This is probably a forward reference of a
// global value that hasn't been defined yet. Since we have no definition
// we don't know its linkage class. Just assume its an external and the name
// shouldn't change.
return *Name;
}
// Default the result to the current name
std::string Result = Ty->makeUniqueName(*Name);
return Result;
}
std::string getGlobalName(const std::string* Name, const std::string Linkage,
const Type* Ty, bool isConstant) {
// Default to given name
std::string Result = *Name;
// Look up the name in the Globals Map
Type::GlobalsTypeMap::iterator GI = Type::Globals.find(*Name);
// Did we see this global name before?
if (GI != Type::Globals.end()) {
if (Ty->isUnresolvedDeep()) {
// The Gval's type is unresolved. Consequently, we can't disambiguate it
// by type. We'll just change its name and emit a warning.
warning("Cannot disambiguate global value '" + *Name +
"' because type '" + Ty->getNewTy() + "'is unresolved.\n");
Result = *Name + ".unique";
UniqueNameCounter++;
Result += llvm::utostr(UniqueNameCounter);
return Result;
} else {
Type::TypePlaneMap::iterator TPI = GI->second.find(Ty);
if (TPI != GI->second.end()) {
// We found an existing name of the same old type. This isn't allowed
// in LLVM 2.0. Consequently, we must alter the name of the global so it
// can at least compile. References to the global will yield the first
// definition, which is okay. We also must warn about this.
Result = *Name + ".unique";
UniqueNameCounter++;
Result += llvm::utostr(UniqueNameCounter);
warning(std::string("Global variable '") + *Name + "' was renamed to '"+
Result + "'");
} else {
// There isn't an existing definition for this name according to the
// old types. Now search the TypePlanMap for types with the same new
// name.
Type::TypePlaneMap::iterator TPI = GI->second.begin();
Type::TypePlaneMap::iterator TPE = GI->second.end();
for ( ; TPI != TPE; ++TPI) {
if (TPI->first->sameNewTyAs(Ty)) {
// The new types are the same but the old types are different so
// this is a global name collision resulting from type planes
// collapsing.
if (Linkage == "external" || Linkage == "dllimport" ||
Linkage == "extern_weak" || Linkage == "") {
// The linkage of this gval is external so we can't reliably
// rename it because it could potentially create a linking
// problem. However, we can't leave the name conflict in the
// output either or it won't assemble with LLVM 2.0. So, all we
// can do is rename this one to something unique and emit a
// warning about the problem.
Result = *Name + ".unique";
UniqueNameCounter++;
Result += llvm::utostr(UniqueNameCounter);
warning("Renaming global value '" + *Name + "' to '" + Result +
"' may cause linkage errors.");
return Result;
} else {
// Its linkage is internal and its type is known so we can
// disambiguate the name collision successfully based on the type.
Result = getUniqueName(Name, Ty);
TPI->second = Result;
return Result;
}
}
}
// We didn't find an entry in the type plane with the same new type and
// the old types differ so this is a new type plane for this global
// variable. We just fall through to the logic below which inserts
// the global.
}
}
}
// Its a new global name, if it is external we can't change it
if (isConstant || Linkage == "external" || Linkage == "dllimport" ||
Linkage == "extern_weak" || Linkage == "") {
Type::Globals[Result][Ty] = Result;
return Result;
}
// Its a new global name, and it is internal, change the name to make it
// unique for its type.
// Result = getUniqueName(Name, Ty);
Type::Globals[*Name][Ty] = Result;
return Result;
}
} // End anonymous namespace
// This function is used by the Lexer to create a Type. It can't be
// in the anonymous namespace.
const Type* getType(const std::string& newTy, TypeIDs oldTy) {
return Type::get(newTy, oldTy);
}
%}
// %file-prefix="UpgradeParser"
%union {
std::string* String;
const Type* Ty;
Value* Val;
Constant* Const;
ValueList* ValList;
TypeList* TypeVec;
}
%token <Ty> VOID BOOL SBYTE UBYTE SHORT USHORT INT UINT LONG ULONG
%token <Ty> FLOAT DOUBLE LABEL
%token <String> OPAQUE ESINT64VAL EUINT64VAL SINTVAL UINTVAL FPVAL
%token <String> NULL_TOK UNDEF ZEROINITIALIZER TRUETOK FALSETOK
%token <String> TYPE VAR_ID LABELSTR STRINGCONSTANT
%token <String> IMPLEMENTATION BEGINTOK ENDTOK
%token <String> DECLARE GLOBAL CONSTANT SECTION VOLATILE
%token <String> TO DOTDOTDOT CONST INTERNAL LINKONCE WEAK
%token <String> DLLIMPORT DLLEXPORT EXTERN_WEAK APPENDING
%token <String> EXTERNAL TARGET TRIPLE ENDIAN POINTERSIZE LITTLE BIG
%token <String> ALIGN UNINITIALIZED
%token <String> DEPLIBS CALL TAIL ASM_TOK MODULE SIDEEFFECT
%token <String> CC_TOK CCC_TOK CSRETCC_TOK FASTCC_TOK COLDCC_TOK
%token <String> X86_STDCALLCC_TOK X86_FASTCALLCC_TOK
%token <String> DATALAYOUT
%token <String> RET BR SWITCH INVOKE EXCEPT UNWIND UNREACHABLE
%token <String> ADD SUB MUL DIV UDIV SDIV FDIV REM UREM SREM FREM AND OR XOR
%token <String> SETLE SETGE SETLT SETGT SETEQ SETNE // Binary Comparators
%token <String> ICMP FCMP EQ NE SLT SGT SLE SGE OEQ ONE OLT OGT OLE OGE
%token <String> ORD UNO UEQ UNE ULT UGT ULE UGE
%token <String> MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR
%token <String> PHI_TOK SELECT SHL SHR ASHR LSHR VAARG
%token <String> EXTRACTELEMENT INSERTELEMENT SHUFFLEVECTOR
%token <String> CAST TRUNC ZEXT SEXT FPTRUNC FPEXT FPTOUI FPTOSI UITOFP SITOFP
%token <String> PTRTOINT INTTOPTR BITCAST
%type <String> OptAssign OptLinkage OptCallingConv OptAlign OptCAlign
%type <String> SectionString OptSection GlobalVarAttributes GlobalVarAttribute
%type <String> ConstExpr DefinitionList
%type <String> ConstPool TargetDefinition LibrariesDefinition LibList OptName
%type <String> ArgVal ArgListH ArgList FunctionHeaderH BEGIN FunctionHeader END
%type <String> Function FunctionProto BasicBlock
%type <String> InstructionList BBTerminatorInst JumpTable Inst
%type <String> OptTailCall OptVolatile Unwind
%type <String> SymbolicValueRef OptSideEffect GlobalType
%type <String> FnDeclareLinkage BasicBlockList BigOrLittle AsmBlock
%type <String> Name ConstValueRef ConstVector External
%type <String> ShiftOps SetCondOps LogicalOps ArithmeticOps CastOps
%type <String> IPredicates FPredicates
%type <ValList> ValueRefList ValueRefListE IndexList
%type <TypeVec> TypeListI ArgTypeListI
%type <Ty> IntType SIntType UIntType FPType TypesV Types
%type <Ty> PrimType UpRTypesV UpRTypes
%type <String> IntVal EInt64Val
%type <Const> ConstVal
%type <Val> ValueRef ResolvedVal InstVal PHIList MemoryInst
%start Module
%%
// Handle constant integer size restriction and conversion...
IntVal : SINTVAL | UINTVAL ;
EInt64Val : ESINT64VAL | EUINT64VAL;
// Operations that are notably excluded from this list include:
// RET, BR, & SWITCH because they end basic blocks and are treated specially.
ArithmeticOps: ADD | SUB | MUL | DIV | UDIV | SDIV | FDIV
| REM | UREM | SREM | FREM;
LogicalOps : AND | OR | XOR;
SetCondOps : SETLE | SETGE | SETLT | SETGT | SETEQ | SETNE;
IPredicates : EQ | NE | SLT | SGT | SLE | SGE | ULT | UGT | ULE | UGE;
FPredicates : OEQ | ONE | OLT | OGT | OLE | OGE | ORD | UNO | UEQ | UNE
| ULT | UGT | ULE | UGE | TRUETOK | FALSETOK;
ShiftOps : SHL | SHR | ASHR | LSHR;
CastOps : TRUNC | ZEXT | SEXT | FPTRUNC | FPEXT | FPTOUI | FPTOSI |
UITOFP | SITOFP | PTRTOINT | INTTOPTR | BITCAST | CAST
;
// These are some types that allow classification if we only want a particular
// thing... for example, only a signed, unsigned, or integral type.
SIntType : LONG | INT | SHORT | SBYTE;
UIntType : ULONG | UINT | USHORT | UBYTE;
IntType : SIntType | UIntType;
FPType : FLOAT | DOUBLE;
// OptAssign - Value producing statements have an optional assignment component
OptAssign : Name '=' {
$$ = $1;
}
| /*empty*/ {
$$ = new std::string("");
};
OptLinkage
: INTERNAL | LINKONCE | WEAK | APPENDING | DLLIMPORT | DLLEXPORT
| EXTERN_WEAK
| /*empty*/ { $$ = new std::string(""); } ;
OptCallingConv
: CCC_TOK | CSRETCC_TOK | FASTCC_TOK | COLDCC_TOK | X86_STDCALLCC_TOK
| X86_FASTCALLCC_TOK
| CC_TOK EUINT64VAL {
*$1 += *$2;
delete $2;
$$ = $1;
}
| /*empty*/ { $$ = new std::string(""); } ;
// OptAlign/OptCAlign - An optional alignment, and an optional alignment with
// a comma before it.
OptAlign
: /*empty*/ { $$ = new std::string(); }
| ALIGN EUINT64VAL { *$1 += " " + *$2; delete $2; $$ = $1; };
OptCAlign
: /*empty*/ { $$ = new std::string(); }
| ',' ALIGN EUINT64VAL {
$2->insert(0, ", ");
*$2 += " " + *$3;
delete $3;
$$ = $2;
};
SectionString
: SECTION STRINGCONSTANT {
*$1 += " " + *$2;
delete $2;
$$ = $1;
};
OptSection : /*empty*/ { $$ = new std::string(); }
| SectionString;
GlobalVarAttributes
: /* empty */ { $$ = new std::string(); }
| ',' GlobalVarAttribute GlobalVarAttributes {
$2->insert(0, ", ");
if (!$3->empty())
*$2 += " " + *$3;
delete $3;
$$ = $2;
};
GlobalVarAttribute
: SectionString
| ALIGN EUINT64VAL {
*$1 += " " + *$2;
delete $2;
$$ = $1;
};
//===----------------------------------------------------------------------===//
// Types includes all predefined types... except void, because it can only be
// used in specific contexts (function returning void for example). To have
// access to it, a user must explicitly use TypesV.
//
// TypesV includes all of 'Types', but it also includes the void type.
TypesV : Types | VOID ;
UpRTypesV : UpRTypes | VOID ;
Types : UpRTypes ;
// Derived types are added later...
//
PrimType : BOOL | SBYTE | UBYTE | SHORT | USHORT | INT | UINT ;
PrimType : LONG | ULONG | FLOAT | DOUBLE | LABEL;
UpRTypes
: OPAQUE {
$$ = Type::get(*$1, OpaqueTy);
}
| SymbolicValueRef {
$$ = Type::get(*$1, UnresolvedTy);
}
| PrimType {
$$ = $1;
}
| '\\' EUINT64VAL { // Type UpReference
$2->insert(0, "\\");
$$ = Type::get(*$2, UpRefTy);
}
| UpRTypesV '(' ArgTypeListI ')' { // Function derived type?
std::string newTy( $1->getNewTy() + "(");
for (unsigned i = 0; i < $3->size(); ++i) {
if (i != 0)
newTy += ", ";
if ((*$3)[i]->isVoid())
newTy += "...";
else
newTy += (*$3)[i]->getNewTy();
}
newTy += ")";
$$ = Type::get(newTy, $1, $3);
}
| '[' EUINT64VAL 'x' UpRTypes ']' { // Sized array type?
uint64_t elems = atoi($2->c_str());
$2->insert(0,"[ ");
*$2 += " x " + $4->getNewTy() + " ]";
$$ = Type::get(*$2, ArrayTy, $4, elems);
}
| '<' EUINT64VAL 'x' UpRTypes '>' { // Packed array type?
uint64_t elems = atoi($2->c_str());
$2->insert(0,"< ");
*$2 += " x " + $4->getNewTy() + " >";
$$ = Type::get(*$2, PackedTy, $4, elems);
}
| '{' TypeListI '}' { // Structure type?
std::string newTy("{");
for (unsigned i = 0; i < $2->size(); ++i) {
if (i != 0)
newTy += ", ";
newTy += (*$2)[i]->getNewTy();
}
newTy += "}";
$$ = Type::get(newTy, StructTy, $2);
}
| '{' '}' { // Empty structure type?
$$ = Type::get("{}", StructTy, new TypeList());
}
| '<' '{' TypeListI '}' '>' { // Packed Structure type?
std::string newTy("<{");
for (unsigned i = 0; i < $3->size(); ++i) {
if (i != 0)
newTy += ", ";
newTy += (*$3)[i]->getNewTy();
}
newTy += "}>";
$$ = Type::get(newTy, PackedStructTy, $3);
}
| '<' '{' '}' '>' { // Empty packed structure type?
$$ = Type::get("<{}>", PackedStructTy, new TypeList());
}
| UpRTypes '*' { // Pointer type?
$$ = $1->getPointerType();
};
// TypeList - Used for struct declarations and as a basis for function type
// declaration type lists
//
TypeListI
: UpRTypes {
$$ = new TypeList();
$$->push_back($1);
}
| TypeListI ',' UpRTypes {
$$ = $1;
$$->push_back($3);
};
// ArgTypeList - List of types for a function type declaration...
ArgTypeListI
: TypeListI
| TypeListI ',' DOTDOTDOT {
$$ = $1;
$$->push_back(Type::get("void",VoidTy));
delete $3;
}
| DOTDOTDOT {
$$ = new TypeList();
$$->push_back(Type::get("void",VoidTy));
delete $1;
}
| /*empty*/ {
$$ = new TypeList();
};
// ConstVal - The various declarations that go into the constant pool. This
// production is used ONLY to represent constants that show up AFTER a 'const',
// 'constant' or 'global' token at global scope. Constants that can be inlined
// into other expressions (such as integers and constexprs) are handled by the
// ResolvedVal, ValueRef and ConstValueRef productions.
//
ConstVal: Types '[' ConstVector ']' { // Nonempty unsized arr
$$ = new Constant;
$$->type = $1;
$$->cnst = new std::string($1->getNewTy());
*$$->cnst += " [ " + *$3 + " ]";
delete $3;
}
| Types '[' ']' {
$$ = new Constant;
$$->type = $1;
$$->cnst = new std::string($1->getNewTy());
*$$->cnst += "[ ]";
}
| Types 'c' STRINGCONSTANT {
$$ = new Constant;
$$->type = $1;
$$->cnst = new std::string($1->getNewTy());
*$$->cnst += " c" + *$3;
delete $3;
}
| Types '<' ConstVector '>' { // Nonempty unsized arr
$$ = new Constant;
$$->type = $1;
$$->cnst = new std::string($1->getNewTy());
*$$->cnst += " < " + *$3 + " >";
delete $3;
}
| Types '{' ConstVector '}' {
$$ = new Constant;
$$->type = $1;
$$->cnst = new std::string($1->getNewTy());
*$$->cnst += " { " + *$3 + " }";
delete $3;
}
| Types '{' '}' {
$$ = new Constant;
$$->type = $1;
$$->cnst = new std::string($1->getNewTy());
*$$->cnst += " {}";
}
| Types NULL_TOK {
$$ = new Constant;
$$->type = $1;
$$->cnst = new std::string($1->getNewTy());
*$$->cnst += " " + *$2;
delete $2;
}
| Types UNDEF {
$$ = new Constant;
$$->type = $1;
$$->cnst = new std::string($1->getNewTy());
*$$->cnst += " " + *$2;
delete $2;
}
| Types SymbolicValueRef {
$$ = new Constant;
std::string Name = getUniqueName($2, $1->resolve(), true);
$$->type = $1;
$$->cnst = new std::string($1->getNewTy());
*$$->cnst += " " + Name;
delete $2;
}
| Types ConstExpr {
$$ = new Constant;
$$->type = $1;
$$->cnst = new std::string($1->getNewTy());
*$$->cnst += " " + *$2;
delete $2;
}
| Types ZEROINITIALIZER {
$$ = new Constant;
$$->type = $1;
$$->cnst = new std::string($1->getNewTy());
*$$->cnst += " " + *$2;
delete $2;
}
| SIntType EInt64Val { // integral constants
$$ = new Constant;
$$->type = $1;
$$->cnst = new std::string($1->getNewTy());
*$$->cnst += " " + *$2;
delete $2;
}
| UIntType EInt64Val { // integral constants
$$ = new Constant;
$$->type = $1;
$$->cnst = new std::string($1->getNewTy());
*$$->cnst += " " + *$2;
delete $2;
}
| BOOL TRUETOK { // Boolean constants
$$ = new Constant;
$$->type = $1;
$$->cnst = new std::string($1->getNewTy());
*$$->cnst += " " + *$2;
delete $2;
}
| BOOL FALSETOK { // Boolean constants
$$ = new Constant;
$$->type = $1;
$$->cnst = new std::string($1->getNewTy());
*$$->cnst += " " + *$2;
delete $2;
}
| FPType FPVAL { // Float & Double constants
$$ = new Constant;
$$->type = $1;
$$->cnst = new std::string($1->getNewTy());
*$$->cnst += " " + *$2;
delete $2;
};
ConstExpr: CastOps '(' ConstVal TO Types ')' {
std::string source = *$3->cnst;
const Type* SrcTy = $3->type->resolve();
const Type* DstTy = $5->resolve();
if (*$1 == "cast") {
// Call getCastUpgrade to upgrade the old cast
$$ = new std::string(getCastUpgrade(source, SrcTy, DstTy, true));
} else {
// Nothing to upgrade, just create the cast constant expr
$$ = new std::string(*$1);
*$$ += "( " + source + " to " + $5->getNewTy() + ")";
}
delete $1; delete $3; delete $4;
}
| GETELEMENTPTR '(' ConstVal IndexList ')' {
*$1 += "(" + *$3->cnst;
for (unsigned i = 0; i < $4->size(); ++i) {
Value* V = (*$4)[i];
*$1 += ", " + *V->val;
delete V;
}
*$1 += ")";
$$ = $1;
delete $3;
delete $4;
}
| SELECT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
*$1 += "(" + *$3->cnst + "," + *$5->cnst + "," + *$7->cnst + ")";
delete $3; delete $5; delete $7;
$$ = $1;
}
| ArithmeticOps '(' ConstVal ',' ConstVal ')' {
const char* op = getDivRemOpcode(*$1, $3->type);
$$ = new std::string(op);
*$$ += "(" + *$3->cnst + "," + *$5->cnst + ")";
delete $1; delete $3; delete $5;
}
| LogicalOps '(' ConstVal ',' ConstVal ')' {
*$1 += "(" + *$3->cnst + "," + *$5->cnst + ")";
delete $3; delete $5;
$$ = $1;
}
| SetCondOps '(' ConstVal ',' ConstVal ')' {
*$1 = getCompareOp(*$1, $3->type);
*$1 += "(" + *$3->cnst + "," + *$5->cnst + ")";
delete $3; delete $5;
$$ = $1;
}
| ICMP IPredicates '(' ConstVal ',' ConstVal ')' {
*$1 += " " + *$2 + " (" + *$4->cnst + "," + *$6->cnst + ")";
delete $2; delete $4; delete $6;
$$ = $1;
}
| FCMP FPredicates '(' ConstVal ',' ConstVal ')' {
*$1 += " " + *$2 + " (" + *$4->cnst + "," + *$6->cnst + ")";
delete $2; delete $4; delete $6;
$$ = $1;
}
| ShiftOps '(' ConstVal ',' ConstVal ')' {
const char* shiftop = $1->c_str();
if (*$1 == "shr")
shiftop = ($3->type->isUnsigned()) ? "lshr" : "ashr";
$$ = new std::string(shiftop);
*$$ += "(" + *$3->cnst + "," + *$5->cnst + ")";
delete $1; delete $3; delete $5;
}
| EXTRACTELEMENT '(' ConstVal ',' ConstVal ')' {
*$1 += "(" + *$3->cnst + "," + *$5->cnst + ")";
delete $3; delete $5;
$$ = $1;
}
| INSERTELEMENT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
*$1 += "(" + *$3->cnst + "," + *$5->cnst + "," + *$7->cnst + ")";
delete $3; delete $5; delete $7;
$$ = $1;
}
| SHUFFLEVECTOR '(' ConstVal ',' ConstVal ',' ConstVal ')' {
*$1 += "(" + *$3->cnst + "," + *$5->cnst + "," + *$7->cnst + ")";
delete $3; delete $5; delete $7;
$$ = $1;
};
// ConstVector - A list of comma separated constants.
ConstVector
: ConstVector ',' ConstVal {
*$1 += ", " + *$3->cnst;
delete $3;
$$ = $1;
}
| ConstVal { $$ = new std::string(*$1->cnst); delete $1; }
;
// GlobalType - Match either GLOBAL or CONSTANT for global declarations...
GlobalType : GLOBAL | CONSTANT ;
//===----------------------------------------------------------------------===//
// Rules to match Modules
//===----------------------------------------------------------------------===//
// Module rule: Capture the result of parsing the whole file into a result
// variable...
//
Module : DefinitionList {
};
// DefinitionList - Top level definitions
//
DefinitionList : DefinitionList Function {
$$ = 0;
}
| DefinitionList FunctionProto {
*O << *$2 << '\n';
delete $2;
$$ = 0;
}
| DefinitionList MODULE ASM_TOK AsmBlock {
*O << "module asm " << ' ' << *$4 << '\n';
$$ = 0;
}
| DefinitionList IMPLEMENTATION {
*O << "implementation\n";
$$ = 0;
}
| ConstPool { $$ = 0; }
;
External : EXTERNAL | UNINITIALIZED { $$ = $1; *$$ = "external"; } ;
// ConstPool - Constants with optional names assigned to them.
ConstPool : ConstPool OptAssign TYPE TypesV {
Type::EnumeratedTypes.push_back($4);
if (!$2->empty()) {
Type::NamedTypes[*$2] = $4;
*O << *$2 << " = ";
}
*O << "type " << $4->getNewTy() << '\n';
delete $2; delete $3;
$$ = 0;
}
| ConstPool FunctionProto { // Function prototypes can be in const pool
*O << *$2 << '\n';
delete $2;
$$ = 0;
}
| ConstPool MODULE ASM_TOK AsmBlock { // Asm blocks can be in the const pool
*O << *$2 << ' ' << *$3 << ' ' << *$4 << '\n';
delete $2; delete $3; delete $4;
$$ = 0;
}
| ConstPool OptAssign OptLinkage GlobalType ConstVal GlobalVarAttributes {
if (!$2->empty()) {
std::string Name = getGlobalName($2,*$3, $5->type->getPointerType(),
*$4 == "constant");
*O << Name << " = ";
}
*O << *$3 << ' ' << *$4 << ' ' << *$5->cnst << ' ' << *$6 << '\n';
delete $2; delete $3; delete $4; delete $6;
$$ = 0;
}
| ConstPool OptAssign External GlobalType Types GlobalVarAttributes {
if (!$2->empty()) {
std::string Name = getGlobalName($2,*$3,$5->getPointerType(),
*$4 == "constant");
*O << Name << " = ";
}
*O << *$3 << ' ' << *$4 << ' ' << $5->getNewTy() << ' ' << *$6 << '\n';
delete $2; delete $3; delete $4; delete $6;
$$ = 0;
}
| ConstPool OptAssign DLLIMPORT GlobalType Types GlobalVarAttributes {
if (!$2->empty()) {
std::string Name = getGlobalName($2,*$3,$5->getPointerType(),
*$4 == "constant");
*O << Name << " = ";
}
*O << *$3 << ' ' << *$4 << ' ' << $5->getNewTy() << ' ' << *$6 << '\n';
delete $2; delete $3; delete $4; delete $6;
$$ = 0;
}
| ConstPool OptAssign EXTERN_WEAK GlobalType Types GlobalVarAttributes {
if (!$2->empty()) {
std::string Name = getGlobalName($2,*$3,$5->getPointerType(),
*$4 == "constant");
*O << Name << " = ";
}
*O << *$3 << ' ' << *$4 << ' ' << $5->getNewTy() << ' ' << *$6 << '\n';
delete $2; delete $3; delete $4; delete $6;
$$ = 0;
}
| ConstPool TARGET TargetDefinition {
*O << *$2 << ' ' << *$3 << '\n';
delete $2; delete $3;
$$ = 0;
}
| ConstPool DEPLIBS '=' LibrariesDefinition {
*O << *$2 << " = " << *$4 << '\n';
delete $2; delete $4;
$$ = 0;
}
| /* empty: end of list */ {
$$ = 0;
};
AsmBlock : STRINGCONSTANT ;
BigOrLittle : BIG | LITTLE ;
TargetDefinition
: ENDIAN '=' BigOrLittle {
*$1 += " = " + *$3;
delete $3;
$$ = $1;
}
| POINTERSIZE '=' EUINT64VAL {
*$1 += " = " + *$3;
if (*$3 == "64")
SizeOfPointer = 64;
delete $3;
$$ = $1;
}
| TRIPLE '=' STRINGCONSTANT {
*$1 += " = " + *$3;
delete $3;
$$ = $1;
}
| DATALAYOUT '=' STRINGCONSTANT {
*$1 += " = " + *$3;
delete $3;
$$ = $1;
};
LibrariesDefinition
: '[' LibList ']' {
$2->insert(0, "[ ");
*$2 += " ]";
$$ = $2;
};
LibList
: LibList ',' STRINGCONSTANT {
*$1 += ", " + *$3;
delete $3;
$$ = $1;
}
| STRINGCONSTANT
| /* empty: end of list */ {
$$ = new std::string();
};
//===----------------------------------------------------------------------===//
// Rules to match Function Headers
//===----------------------------------------------------------------------===//
Name : VAR_ID | STRINGCONSTANT;
OptName : Name | /*empty*/ { $$ = new std::string(); };
ArgVal : Types OptName {
$$ = new std::string($1->getNewTy());
if (!$2->empty()) {
std::string Name = getUniqueName($2, $1->resolve());
*$$ += " " + Name;
}
delete $2;
};
ArgListH : ArgListH ',' ArgVal {
*$1 += ", " + *$3;
delete $3;
}
| ArgVal {
$$ = $1;
};
ArgList : ArgListH {
$$ = $1;
}
| ArgListH ',' DOTDOTDOT {
*$1 += ", ...";
$$ = $1;
delete $3;
}
| DOTDOTDOT {
$$ = $1;
}
| /* empty */ { $$ = new std::string(); };
FunctionHeaderH
: OptCallingConv TypesV Name '(' ArgList ')' OptSection OptAlign {
if (*$3 == "%llvm.va_start" || *$3 == "%llvm.va_end") {
*$5 = "i8*";
} else if (*$3 == "%llvm.va_copy") {
*$5 = "i8*, i8*";
}
if (!$1->empty()) {
*$1 += " ";
}
*$1 += $2->getNewTy() + " " + *$3 + "(" + *$5 + ")";
if (!$7->empty()) {
*$1 += " " + *$7;
}
if (!$8->empty()) {
*$1 += " " + *$8;
}
delete $3;
delete $5;
delete $7;
delete $8;
$$ = $1;
};
BEGIN : BEGINTOK { $$ = new std::string("{"); delete $1; }
| '{' { $$ = new std::string ("{"); }
;
FunctionHeader
: OptLinkage FunctionHeaderH BEGIN {
*O << "define ";
if (!$1->empty()) {
*O << *$1 << ' ';
}
*O << *$2 << ' ' << *$3 << '\n';
delete $1; delete $2; delete $3;
$$ = 0;
}
;
END : ENDTOK { $$ = new std::string("}"); delete $1; }
| '}' { $$ = new std::string("}"); };
Function : FunctionHeader BasicBlockList END {
if ($2)
*O << *$2;
*O << *$3 << "\n\n";
delete $1; delete $2; delete $3;
$$ = 0;
};
FnDeclareLinkage
: /*default*/ { $$ = new std::string(); }
| DLLIMPORT
| EXTERN_WEAK
;
FunctionProto
: DECLARE { isDeclare = true; } FnDeclareLinkage FunctionHeaderH {
if (!$3->empty())
*$1 += " " + *$3;
*$1 += " " + *$4;
delete $3;
delete $4;
$$ = $1;
isDeclare = false;
};
//===----------------------------------------------------------------------===//
// Rules to match Basic Blocks
//===----------------------------------------------------------------------===//
OptSideEffect : /* empty */ { $$ = new std::string(); }
| SIDEEFFECT;
ConstValueRef
: ESINT64VAL | EUINT64VAL | FPVAL | TRUETOK | FALSETOK | NULL_TOK | UNDEF
| ZEROINITIALIZER
| '<' ConstVector '>' {
$2->insert(0, "<");
*$2 += ">";
$$ = $2;
}
| ConstExpr
| ASM_TOK OptSideEffect STRINGCONSTANT ',' STRINGCONSTANT {
if (!$2->empty()) {
*$1 += " " + *$2;
}
*$1 += " " + *$3 + ", " + *$5;
delete $2; delete $3; delete $5;
$$ = $1;
};
SymbolicValueRef : IntVal | Name ;
// ValueRef - A reference to a definition... either constant or symbolic
ValueRef
: SymbolicValueRef {
$$ = new Value;
$$->val = $1;
$$->constant = false;
$$->type = 0;
}
| ConstValueRef {
$$ = new Value;
$$->val = $1;
$$->constant = true;
$$->type = 0;
}
;
// ResolvedVal - a <type> <value> pair. This is used only in cases where the
// type immediately preceeds the value reference, and allows complex constant
// pool references (for things like: 'ret [2 x int] [ int 12, int 42]')
ResolvedVal : Types ValueRef {
$1 = $1->resolve();
std::string Name = getUniqueName($2->val, $1);
$$ = $2;
delete $$->val;
$$->val = new std::string($1->getNewTy() + " " + Name);
$$->type = $1;
};
BasicBlockList : BasicBlockList BasicBlock {
$$ = 0;
}
| BasicBlock { // Do not allow functions with 0 basic blocks
$$ = 0;
};
// Basic blocks are terminated by branching instructions:
// br, br/cc, switch, ret
//
BasicBlock : InstructionList BBTerminatorInst {
$$ = 0;
};
InstructionList : InstructionList Inst {
*O << " " << *$2 << '\n';
delete $2;
$$ = 0;
}
| /* empty */ {
$$ = 0;
}
| LABELSTR {
*O << *$1 << '\n';
delete $1;
$$ = 0;
};
Unwind : UNWIND | EXCEPT { $$ = $1; *$$ = "unwind"; } ;
BBTerminatorInst : RET ResolvedVal { // Return with a result...
*O << " " << *$1 << ' ' << *$2->val << '\n';
delete $1; delete $2;
$$ = 0;
}
| RET VOID { // Return with no result...
*O << " " << *$1 << ' ' << $2->getNewTy() << '\n';
delete $1;
$$ = 0;
}
| BR LABEL ValueRef { // Unconditional Branch...
*O << " " << *$1 << ' ' << $2->getNewTy() << ' ' << *$3->val << '\n';
delete $1; delete $3;
$$ = 0;
} // Conditional Branch...
| BR BOOL ValueRef ',' LABEL ValueRef ',' LABEL ValueRef {
std::string Name = getUniqueName($3->val, $2);
*O << " " << *$1 << ' ' << $2->getNewTy() << ' ' << Name << ", "
<< $5->getNewTy() << ' ' << *$6->val << ", " << $8->getNewTy() << ' '
<< *$9->val << '\n';
delete $1; delete $3; delete $6; delete $9;
$$ = 0;
}
| SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' {
std::string Name = getUniqueName($3->val, $2);
*O << " " << *$1 << ' ' << $2->getNewTy() << ' ' << Name << ", "
<< $5->getNewTy() << ' ' << *$6->val << " [" << *$8 << " ]\n";
delete $1;
delete $3;
delete $6;
delete $8;
$$ = 0;
}
| SWITCH IntType ValueRef ',' LABEL ValueRef '[' ']' {
std::string Name = getUniqueName($3->val, $2);
*O << " " << *$1 << ' ' << $2->getNewTy() << ' ' << Name << ", "
<< $5->getNewTy() << ' ' << *$6->val << "[]\n";
delete $1;
delete $3;
delete $6;
$$ = 0;
}
| OptAssign INVOKE OptCallingConv TypesV ValueRef '(' ValueRefListE ')'
TO LABEL ValueRef Unwind LABEL ValueRef {
const Type* ResTy = getFunctionReturnType($4);
*O << " ";
if (!$1->empty()) {
std::string Name = getUniqueName($1, ResTy);
*O << Name << " = ";
}
*O << *$2 << ' ' << *$3 << ' ' << $4->getNewTy() << ' ' << *$5->val << " (";
for (unsigned i = 0; i < $7->size(); ++i) {
Value* V = (*$7)[i];
*O << *V->val;
if (i+1 < $7->size())
*O << ", ";
delete V;
}
*O << ") " << *$9 << ' ' << $10->getNewTy() << ' ' << *$11->val << ' '
<< *$12 << ' ' << $13->getNewTy() << ' ' << *$14->val << '\n';
delete $1; delete $2; delete $3; delete $5; delete $7;
delete $9; delete $11; delete $12; delete $14;
$$ = 0;
}
| Unwind {
*O << " " << *$1 << '\n';
delete $1;
$$ = 0;
}
| UNREACHABLE {
*O << " " << *$1 << '\n';
delete $1;
$$ = 0;
};
JumpTable : JumpTable IntType ConstValueRef ',' LABEL ValueRef {
*$1 += " " + $2->getNewTy() + " " + *$3 + ", " + $5->getNewTy() + " " +
*$6->val;
delete $3; delete $6;
$$ = $1;
}
| IntType ConstValueRef ',' LABEL ValueRef {
$2->insert(0, $1->getNewTy() + " " );
*$2 += ", " + $4->getNewTy() + " " + *$5->val;
delete $5;
$$ = $2;
};
Inst
: OptAssign InstVal {
if (!$1->empty()) {
// Get a unique name for this value, based on its type.
std::string Name = getUniqueName($1, $2->type);
*$1 = Name + " = ";
if (deleteUselessCastFlag && *deleteUselessCastName == Name) {
// don't actually delete it, just comment it out
$1->insert(0, "; USELSS BITCAST: ");
delete deleteUselessCastName;
}
}
*$1 += *$2->val;
delete $2;
deleteUselessCastFlag = false;
$$ = $1;
};
PHIList
: Types '[' ValueRef ',' ValueRef ']' { // Used for PHI nodes
std::string Name = getUniqueName($3->val, $1);
Name.insert(0, $1->getNewTy() + "[");
Name += "," + *$5->val + "]";
$$ = new Value;
$$->val = new std::string(Name);
$$->type = $1;
delete $3; delete $5;
}
| PHIList ',' '[' ValueRef ',' ValueRef ']' {
std::string Name = getUniqueName($4->val, $1->type);
*$1->val += ", [" + Name + "," + *$6->val + "]";
delete $4;
delete $6;
$$ = $1;
};
ValueRefList
: ResolvedVal {
$$ = new ValueList();
$$->push_back($1);
}
| ValueRefList ',' ResolvedVal {
$$ = $1;
$$->push_back($3);
};
// ValueRefListE - Just like ValueRefList, except that it may also be empty!
ValueRefListE
: ValueRefList { $$ = $1; }
| /*empty*/ { $$ = new ValueList(); }
;
OptTailCall
: TAIL CALL {
*$1 += " " + *$2;
delete $2;
$$ = $1;
}
| CALL
;
InstVal : ArithmeticOps Types ValueRef ',' ValueRef {
const char* op = getDivRemOpcode(*$1, $2);
std::string Name1 = getUniqueName($3->val, $2);
std::string Name2 = getUniqueName($5->val, $2);
$$ = $3;
delete $$->val;
$$->val = new std::string(op);
*$$->val += " " + $2->getNewTy() + " " + Name1 + ", " + Name2;
$$->type = $2;
delete $1; delete $5;
}
| LogicalOps Types ValueRef ',' ValueRef {
std::string Name1 = getUniqueName($3->val, $2);
std::string Name2 = getUniqueName($5->val, $2);
*$1 += " " + $2->getNewTy() + " " + Name1 + ", " + Name2;
$$ = $3;
delete $$->val;
$$->val = $1;
$$->type = $2;
delete $5;
}
| SetCondOps Types ValueRef ',' ValueRef {
std::string Name1 = getUniqueName($3->val, $2);
std::string Name2 = getUniqueName($5->val, $2);
*$1 = getCompareOp(*$1, $2);
*$1 += " " + $2->getNewTy() + " " + Name1 + ", " + Name2;
$$ = $3;
delete $$->val;
$$->val = $1;
$$->type = Type::get("i1",BoolTy);
delete $5;
}
| ICMP IPredicates Types ValueRef ',' ValueRef {
std::string Name1 = getUniqueName($4->val, $3);
std::string Name2 = getUniqueName($6->val, $3);
*$1 += " " + *$2 + " " + $3->getNewTy() + " " + Name1 + "," + Name2;
$$ = $4;
delete $$->val;
$$->val = $1;
$$->type = Type::get("i1",BoolTy);
delete $2; delete $6;
}
| FCMP FPredicates Types ValueRef ',' ValueRef {
std::string Name1 = getUniqueName($4->val, $3);
std::string Name2 = getUniqueName($6->val, $3);
*$1 += " " + *$2 + " " + $3->getNewTy() + " " + Name1 + "," + Name2;
$$ = $4;
delete $$->val;
$$->val = $1;
$$->type = Type::get("i1",BoolTy);
delete $2; delete $6;
}
| ShiftOps ResolvedVal ',' ResolvedVal {
const char* shiftop = $1->c_str();
if (*$1 == "shr")
shiftop = ($2->type->isUnsigned()) ? "lshr" : "ashr";
std::string *val = new std::string(shiftop);
*val += " " + *$2->val + ", " + *$4->val;
$$ = $2;
delete $$->val;
$$->val = val;
delete $1; delete $4;
}
| CastOps ResolvedVal TO Types {
std::string source = *$2->val;
const Type* SrcTy = $2->type->resolve();
const Type* DstTy = $4->resolve();
$$ = $2;
delete $$->val;
$$->val = new std::string();
$$->type = DstTy;
if (*$1 == "cast") {
*$$->val += getCastUpgrade(source, SrcTy, DstTy, false);
} else {
*$$->val += *$1 + " " + source + " to " + DstTy->getNewTy();
}
// Check to see if this is a useless cast of a value to the same name
// and the same type. Such casts will probably cause redefinition errors
// when assembled and perform no code gen action so just remove them.
if (*$1 == "cast" || *$1 == "bitcast")
if (SrcTy->isInteger() && DstTy->isInteger() &&
SrcTy->getBitWidth() == DstTy->getBitWidth()) {
deleteUselessCastFlag = true; // Flag the "Inst" rule
deleteUselessCastName = new std::string(*$2->val); // save the name
size_t pos = deleteUselessCastName->find_first_of("%\"",0);
if (pos != std::string::npos) {
// remove the type portion before val
deleteUselessCastName->erase(0, pos);
}
}
delete $1;
delete $3;
}
| SELECT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
*$1 += " " + *$2->val + ", " + *$4->val + ", " + *$6->val;
$$ = $2;
delete $$->val;
$$->val = $1;
$$->type = $4->type;
delete $4;
delete $6;
}
| VAARG ResolvedVal ',' Types {
*$1 += " " + *$2->val + ", " + $4->getNewTy();
$$ = $2;
delete $$->val;
$$->val = $1;
$$->type = $4;
}
| EXTRACTELEMENT ResolvedVal ',' ResolvedVal {
*$1 += " " + *$2->val + ", " + *$4->val;
$$ = $2;
delete $$->val;
$$->val = $1;
$$->type = $$->type->resolve();
$$->type = $$->type->getElementType();
delete $4;
}
| INSERTELEMENT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
*$1 += " " + *$2->val + ", " + *$4->val + ", " + *$6->val;
$$ = $2;
delete $$->val;
$$->val = $1;
delete $4; delete $6;
}
| SHUFFLEVECTOR ResolvedVal ',' ResolvedVal ',' ResolvedVal {
*$1 += " " + *$2->val + ", " + *$4->val + ", " + *$6->val;
$$ = $2;
delete $$->val;
$$->val = $1;
delete $4; delete $6;
}
| PHI_TOK PHIList {
*$1 += " " + *$2->val;
$$ = $2;
delete $2->val;
$$->val = $1;
}
| OptTailCall OptCallingConv TypesV ValueRef '(' ValueRefListE ')' {
// map llvm.isunordered to "fcmp uno"
$$ = new Value;
if (*$4->val == "%llvm.isunordered.f32" ||
*$4->val == "%llvm.isunordered.f64") {
$$->val = new std::string( "fcmp uno " + *(*$6)[0]->val + ", ");
size_t pos = (*$6)[1]->val->find(' ');
assert(pos != std::string::npos && "no space?");
*$$->val += (*$6)[1]->val->substr(pos+1);
$$->type = Type::get("i1", BoolTy);
} else {
static unsigned upgradeCount = 1;
if (*$4->val == "%llvm.va_start" || *$4->val == "%llvm.va_end") {
if (!$6->empty()) {
std::string name("%va_upgrade");
name += llvm::utostr(upgradeCount++);
$1->insert(0, name + " = bitcast " + *(*$6)[0]->val + " to i8*\n ");
*(*$6)[0]->val = "i8* " + name;
(*$6)[0]->type = Type::get("i8", UByteTy)->getPointerType();
}
} else if (*$4->val == "%llvm.va_copy") {
std::string name0("%va_upgrade");
name0 += llvm::utostr(upgradeCount++);
std::string name1("%va_upgrade");
name1 += llvm::utostr(upgradeCount++);
$1->insert(0, name0 + " = bitcast " + *(*$6)[0]->val + " to i8*\n " +
name1 + " = bitcast " + *(*$6)[1]->val + " to i8*\n ");
*(*$6)[0]->val = "i8* " + name0;
(*$6)[0]->type = Type::get("i8", UByteTy)->getPointerType();
*(*$6)[1]->val = "i8* " + name1;
(*$6)[0]->type = Type::get("i8", UByteTy)->getPointerType();
}
if (!$2->empty())
*$1 += " " + *$2;
if (!$1->empty())
*$1 += " ";
*$1 += $3->getNewTy() + " " + *$4->val + "(";
for (unsigned i = 0; i < $6->size(); ++i) {
Value* V = (*$6)[i];
*$1 += *V->val;
if (i+1 < $6->size())
*$1 += ", ";
delete V;
}
*$1 += ")";
$$ = new Value;
$$->val = $1;
$$->type = getFunctionReturnType($3);
}
delete $2; delete $4; delete $6;
}
| MemoryInst ;
// IndexList - List of indices for GEP based instructions...
IndexList
: ',' ValueRefList { $$ = $2; }
| /* empty */ { $$ = new ValueList(); }
;
OptVolatile
: VOLATILE
| /* empty */ { $$ = new std::string(); }
;
MemoryInst : MALLOC Types OptCAlign {
*$1 += " " + $2->getNewTy();
if (!$3->empty())
*$1 += " " + *$3;
$$ = new Value;
$$->val = $1;
$$->type = $2->getPointerType();
delete $3;
}
| MALLOC Types ',' UINT ValueRef OptCAlign {
std::string Name = getUniqueName($5->val, $4);
*$1 += " " + $2->getNewTy() + ", " + $4->getNewTy() + " " + Name;
if (!$6->empty())
*$1 += " " + *$6;
$$ = new Value;
$$->val = $1;
$$->type = $2->getPointerType();
delete $5; delete $6;
}
| ALLOCA Types OptCAlign {
*$1 += " " + $2->getNewTy();
if (!$3->empty())
*$1 += " " + *$3;
$$ = new Value;
$$->val = $1;
$$->type = $2->getPointerType();
delete $3;
}
| ALLOCA Types ',' UINT ValueRef OptCAlign {
std::string Name = getUniqueName($5->val, $4);
*$1 += " " + $2->getNewTy() + ", " + $4->getNewTy() + " " + Name;
if (!$6->empty())
*$1 += " " + *$6;
$$ = $5;
delete $$->val;
$$->val = $1;
$$->type = $2->getPointerType();
delete $6;
}
| FREE ResolvedVal {
*$1 += " " + *$2->val;
$$ = $2;
delete $2->val;
$$->val = $1;
$$->type = Type::get("void", VoidTy);
}
| OptVolatile LOAD Types ValueRef {
std::string Name = getUniqueName($4->val, $3);
if (!$1->empty())
*$1 += " ";
*$1 += *$2 + " " + $3->getNewTy() + " " + Name;
$$ = $4;
delete $$->val;
$$->val = $1;
$$->type = $3->getElementType();
delete $2;
}
| OptVolatile STORE ResolvedVal ',' Types ValueRef {
std::string Name = getUniqueName($6->val, $5);
if (!$1->empty())
*$1 += " ";
*$1 += *$2 + " " + *$3->val + ", " + $5->getNewTy() + " " + Name;
$$ = $3;
delete $$->val;
$$->val = $1;
$$->type = Type::get("void", VoidTy);
delete $2; delete $6;
}
| GETELEMENTPTR Types ValueRef IndexList {
std::string Name = getUniqueName($3->val, $2);
// Upgrade the indices
for (unsigned i = 0; i < $4->size(); ++i) {
Value* V = (*$4)[i];
if (V->type->isUnsigned() && !V->isConstant() &&
V->type->getBitWidth() < 64) {
*O << " %gep_upgrade" << UniqueNameCounter << " = zext " << *V->val
<< " to i64\n";
*V->val = "i64 %gep_upgrade" + llvm::utostr(UniqueNameCounter++);
V->type = Type::get("i64",ULongTy);
}
}
*$1 += " " + $2->getNewTy() + " " + Name;
for (unsigned i = 0; i < $4->size(); ++i) {
Value* V = (*$4)[i];
*$1 += ", " + *V->val;
}
$$ = $3;
delete $$->val;
$$->val = $1;
$$->type = getGEPIndexedType($2,$4);
for (unsigned i = 0; i < $4->size(); ++i)
delete (*$4)[i];
delete $4;
};
%%
int yyerror(const char *ErrorMsg) {
std::string where
= std::string((CurFilename == "-") ? std::string("<stdin>") : CurFilename)
+ ":" + llvm::utostr((unsigned) Upgradelineno) + ": ";
std::string errMsg = where + "error: " + std::string(ErrorMsg) +
" while reading ";
if (yychar == YYEMPTY || yychar == 0)
errMsg += "end-of-file.";
else
errMsg += "token: '" + std::string(Upgradetext, Upgradeleng) + "'";
std::cerr << "llvm-upgrade: " << errMsg << '\n';
*O << "llvm-upgrade parse failed.\n";
exit(1);
}
void warning(const std::string& ErrorMsg) {
std::string where
= std::string((CurFilename == "-") ? std::string("<stdin>") : CurFilename)
+ ":" + llvm::utostr((unsigned) Upgradelineno) + ": ";
std::string errMsg = where + "warning: " + std::string(ErrorMsg) +
" while reading ";
if (yychar == YYEMPTY || yychar == 0)
errMsg += "end-of-file.";
else
errMsg += "token: '" + std::string(Upgradetext, Upgradeleng) + "'";
std::cerr << "llvm-upgrade: " << errMsg << '\n';
}