llvm-6502/lib/CodeGen/RegAllocFast.cpp
Jakob Stoklund Olesen ac3e529831 Execute virtreg kills immediately instead of after processing all uses.
This is safe to do because the physreg has been marked UsedInInstr and the kill flag will be set on the last operand using the virtreg if there are more then one.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@103933 91177308-0d34-0410-b5e6-96231b3b80d8
2010-05-17 03:26:06 +00:00

854 lines
29 KiB
C++

//===-- RegAllocFast.cpp - A fast register allocator for debug code -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This register allocator allocates registers to a basic block at a time,
// attempting to keep values in registers and reusing registers as appropriate.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "llvm/BasicBlock.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
using namespace llvm;
static cl::opt<bool> VerifyFastRegalloc("verify-fast-regalloc", cl::Hidden,
cl::desc("Verify machine code before fast regalloc"));
STATISTIC(NumStores, "Number of stores added");
STATISTIC(NumLoads , "Number of loads added");
STATISTIC(NumCopies, "Number of copies coalesced");
static RegisterRegAlloc
fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);
namespace {
class RAFast : public MachineFunctionPass {
public:
static char ID;
RAFast() : MachineFunctionPass(&ID), StackSlotForVirtReg(-1),
isBulkSpilling(false) {}
private:
const TargetMachine *TM;
MachineFunction *MF;
MachineRegisterInfo *MRI;
const TargetRegisterInfo *TRI;
const TargetInstrInfo *TII;
// Basic block currently being allocated.
MachineBasicBlock *MBB;
// StackSlotForVirtReg - Maps virtual regs to the frame index where these
// values are spilled.
IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
// Everything we know about a live virtual register.
struct LiveReg {
MachineInstr *LastUse; // Last instr to use reg.
unsigned PhysReg; // Currently held here.
unsigned short LastOpNum; // OpNum on LastUse.
bool Dirty; // Register needs spill.
LiveReg(unsigned p=0) : LastUse(0), PhysReg(p), LastOpNum(0),
Dirty(false) {}
};
typedef DenseMap<unsigned, LiveReg> LiveRegMap;
typedef LiveRegMap::value_type LiveRegEntry;
// LiveVirtRegs - This map contains entries for each virtual register
// that is currently available in a physical register.
LiveRegMap LiveVirtRegs;
// RegState - Track the state of a physical register.
enum RegState {
// A disabled register is not available for allocation, but an alias may
// be in use. A register can only be moved out of the disabled state if
// all aliases are disabled.
regDisabled,
// A free register is not currently in use and can be allocated
// immediately without checking aliases.
regFree,
// A reserved register has been assigned expolicitly (e.g., setting up a
// call parameter), and it remains reserved until it is used.
regReserved
// A register state may also be a virtual register number, indication that
// the physical register is currently allocated to a virtual register. In
// that case, LiveVirtRegs contains the inverse mapping.
};
// PhysRegState - One of the RegState enums, or a virtreg.
std::vector<unsigned> PhysRegState;
// UsedInInstr - BitVector of physregs that are used in the current
// instruction, and so cannot be allocated.
BitVector UsedInInstr;
// Allocatable - vector of allocatable physical registers.
BitVector Allocatable;
// isBulkSpilling - This flag is set when LiveRegMap will be cleared
// completely after spilling all live registers. LiveRegMap entries should
// not be erased.
bool isBulkSpilling;
public:
virtual const char *getPassName() const {
return "Fast Register Allocator";
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequiredID(PHIEliminationID);
AU.addRequiredID(TwoAddressInstructionPassID);
MachineFunctionPass::getAnalysisUsage(AU);
}
private:
bool runOnMachineFunction(MachineFunction &Fn);
void AllocateBasicBlock();
int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
bool isLastUseOfLocalReg(MachineOperand&);
void addKillFlag(const LiveReg&);
void killVirtReg(LiveRegMap::iterator);
void killVirtReg(unsigned VirtReg);
void spillVirtReg(MachineBasicBlock::iterator MI, LiveRegMap::iterator);
void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg);
void usePhysReg(MachineOperand&);
void definePhysReg(MachineInstr *MI, unsigned PhysReg, RegState NewState);
void assignVirtToPhysReg(LiveRegEntry &LRE, unsigned PhysReg);
void allocVirtReg(MachineInstr *MI, LiveRegEntry &LRE, unsigned Hint);
unsigned defineVirtReg(MachineInstr *MI, unsigned OpNum,
unsigned VirtReg, unsigned Hint);
unsigned reloadVirtReg(MachineInstr *MI, unsigned OpNum,
unsigned VirtReg, unsigned Hint);
void spillAll(MachineInstr *MI);
bool setPhysReg(MachineOperand &MO, unsigned PhysReg);
};
char RAFast::ID = 0;
}
/// getStackSpaceFor - This allocates space for the specified virtual register
/// to be held on the stack.
int RAFast::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
// Find the location Reg would belong...
int SS = StackSlotForVirtReg[VirtReg];
if (SS != -1)
return SS; // Already has space allocated?
// Allocate a new stack object for this spill location...
int FrameIdx = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(),
RC->getAlignment());
// Assign the slot.
StackSlotForVirtReg[VirtReg] = FrameIdx;
return FrameIdx;
}
/// isLastUseOfLocalReg - Return true if MO is the only remaining reference to
/// its virtual register, and it is guaranteed to be a block-local register.
///
bool RAFast::isLastUseOfLocalReg(MachineOperand &MO) {
// Check for non-debug uses or defs following MO.
// This is the most likely way to fail - fast path it.
MachineOperand *Next = &MO;
while ((Next = Next->getNextOperandForReg()))
if (!Next->isDebug())
return false;
// If the register has ever been spilled or reloaded, we conservatively assume
// it is a global register used in multiple blocks.
if (StackSlotForVirtReg[MO.getReg()] != -1)
return false;
// Check that the use/def chain has exactly one operand - MO.
return &MRI->reg_nodbg_begin(MO.getReg()).getOperand() == &MO;
}
/// addKillFlag - Set kill flags on last use of a virtual register.
void RAFast::addKillFlag(const LiveReg &LR) {
if (!LR.LastUse) return;
MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum);
if (MO.isDef())
MO.setIsDead();
else if (!LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum))
MO.setIsKill();
}
/// killVirtReg - Mark virtreg as no longer available.
void RAFast::killVirtReg(LiveRegMap::iterator LRI) {
addKillFlag(LRI->second);
const LiveReg &LR = LRI->second;
assert(PhysRegState[LR.PhysReg] == LRI->first && "Broken RegState mapping");
PhysRegState[LR.PhysReg] = regFree;
// Erase from LiveVirtRegs unless we're spilling in bulk.
if (!isBulkSpilling)
LiveVirtRegs.erase(LRI);
}
/// killVirtReg - Mark virtreg as no longer available.
void RAFast::killVirtReg(unsigned VirtReg) {
assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
"killVirtReg needs a virtual register");
LiveRegMap::iterator LRI = LiveVirtRegs.find(VirtReg);
if (LRI != LiveVirtRegs.end())
killVirtReg(LRI);
}
/// spillVirtReg - This method spills the value specified by VirtReg into the
/// corresponding stack slot if needed. If isKill is set, the register is also
/// killed.
void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg) {
assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
"Spilling a physical register is illegal!");
LiveRegMap::iterator LRI = LiveVirtRegs.find(VirtReg);
assert(LRI != LiveVirtRegs.end() && "Spilling unmapped virtual register");
spillVirtReg(MI, LRI);
}
/// spillVirtReg - Do the actual work of spilling.
void RAFast::spillVirtReg(MachineBasicBlock::iterator MI,
LiveRegMap::iterator LRI) {
LiveReg &LR = LRI->second;
assert(PhysRegState[LR.PhysReg] == LRI->first && "Broken RegState mapping");
if (LR.Dirty) {
// If this physreg is used by the instruction, we want to kill it on the
// instruction, not on the spill.
bool SpillKill = LR.LastUse != MI;
LR.Dirty = false;
DEBUG(dbgs() << "Spilling %reg" << LRI->first
<< " in " << TRI->getName(LR.PhysReg));
const TargetRegisterClass *RC = MRI->getRegClass(LRI->first);
int FI = getStackSpaceFor(LRI->first, RC);
DEBUG(dbgs() << " to stack slot #" << FI << "\n");
TII->storeRegToStackSlot(*MBB, MI, LR.PhysReg, SpillKill, FI, RC, TRI);
++NumStores; // Update statistics
if (SpillKill)
LR.LastUse = 0; // Don't kill register again
}
killVirtReg(LRI);
}
/// spillAll - Spill all dirty virtregs without killing them.
void RAFast::spillAll(MachineInstr *MI) {
isBulkSpilling = true;
for (LiveRegMap::iterator i = LiveVirtRegs.begin(),
e = LiveVirtRegs.end(); i != e; ++i)
spillVirtReg(MI, i);
LiveVirtRegs.clear();
isBulkSpilling = false;
}
/// usePhysReg - Handle the direct use of a physical register.
/// Check that the register is not used by a virtreg.
/// Kill the physreg, marking it free.
/// This may add implicit kills to MO->getParent() and invalidate MO.
void RAFast::usePhysReg(MachineOperand &MO) {
unsigned PhysReg = MO.getReg();
assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
"Bad usePhysReg operand");
switch (PhysRegState[PhysReg]) {
case regDisabled:
break;
case regReserved:
PhysRegState[PhysReg] = regFree;
// Fall through
case regFree:
UsedInInstr.set(PhysReg);
MO.setIsKill();
return;
default:
// The physreg was allocated to a virtual register. That means to value we
// wanted has been clobbered.
llvm_unreachable("Instruction uses an allocated register");
}
// Maybe a superregister is reserved?
for (const unsigned *AS = TRI->getAliasSet(PhysReg);
unsigned Alias = *AS; ++AS) {
switch (PhysRegState[Alias]) {
case regDisabled:
break;
case regReserved:
assert(TRI->isSuperRegister(PhysReg, Alias) &&
"Instruction is not using a subregister of a reserved register");
// Leave the superregister in the working set.
PhysRegState[Alias] = regFree;
UsedInInstr.set(Alias);
MO.getParent()->addRegisterKilled(Alias, TRI, true);
return;
case regFree:
if (TRI->isSuperRegister(PhysReg, Alias)) {
// Leave the superregister in the working set.
UsedInInstr.set(Alias);
MO.getParent()->addRegisterKilled(Alias, TRI, true);
return;
}
// Some other alias was in the working set - clear it.
PhysRegState[Alias] = regDisabled;
break;
default:
llvm_unreachable("Instruction uses an alias of an allocated register");
}
}
// All aliases are disabled, bring register into working set.
PhysRegState[PhysReg] = regFree;
UsedInInstr.set(PhysReg);
MO.setIsKill();
}
/// definePhysReg - Mark PhysReg as reserved or free after spilling any
/// virtregs. This is very similar to defineVirtReg except the physreg is
/// reserved instead of allocated.
void RAFast::definePhysReg(MachineInstr *MI, unsigned PhysReg,
RegState NewState) {
UsedInInstr.set(PhysReg);
switch (unsigned VirtReg = PhysRegState[PhysReg]) {
case regDisabled:
break;
default:
spillVirtReg(MI, VirtReg);
// Fall through.
case regFree:
case regReserved:
PhysRegState[PhysReg] = NewState;
return;
}
// This is a disabled register, disable all aliases.
PhysRegState[PhysReg] = NewState;
for (const unsigned *AS = TRI->getAliasSet(PhysReg);
unsigned Alias = *AS; ++AS) {
UsedInInstr.set(Alias);
switch (unsigned VirtReg = PhysRegState[Alias]) {
case regDisabled:
break;
default:
spillVirtReg(MI, VirtReg);
// Fall through.
case regFree:
case regReserved:
PhysRegState[Alias] = regDisabled;
if (TRI->isSuperRegister(PhysReg, Alias))
return;
break;
}
}
}
/// assignVirtToPhysReg - This method updates local state so that we know
/// that PhysReg is the proper container for VirtReg now. The physical
/// register must not be used for anything else when this is called.
///
void RAFast::assignVirtToPhysReg(LiveRegEntry &LRE, unsigned PhysReg) {
DEBUG(dbgs() << "Assigning %reg" << LRE.first << " to "
<< TRI->getName(PhysReg) << "\n");
PhysRegState[PhysReg] = LRE.first;
assert(!LRE.second.PhysReg && "Already assigned a physreg");
LRE.second.PhysReg = PhysReg;
}
/// allocVirtReg - Allocate a physical register for VirtReg.
void RAFast::allocVirtReg(MachineInstr *MI, LiveRegEntry &LRE, unsigned Hint) {
const unsigned SpillCost = 100;
const unsigned VirtReg = LRE.first;
assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
"Can only allocate virtual registers");
const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
TargetRegisterClass::iterator AOB = RC->allocation_order_begin(*MF);
TargetRegisterClass::iterator AOE = RC->allocation_order_end(*MF);
// Ignore invalid hints.
if (Hint && (!TargetRegisterInfo::isPhysicalRegister(Hint) ||
!RC->contains(Hint) || UsedInInstr.test(Hint) ||
!Allocatable.test(Hint)))
Hint = 0;
// If there is no hint, peek at the first use of this register.
if (!Hint && !MRI->use_nodbg_empty(VirtReg)) {
MachineInstr &MI = *MRI->use_nodbg_begin(VirtReg);
unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
// Copy to physreg -> use physreg as hint.
if (TII->isMoveInstr(MI, SrcReg, DstReg, SrcSubReg, DstSubReg) &&
SrcReg == VirtReg && TargetRegisterInfo::isPhysicalRegister(DstReg) &&
RC->contains(DstReg) && !UsedInInstr.test(DstReg) &&
Allocatable.test(DstReg)) {
Hint = DstReg;
DEBUG(dbgs() << "%reg" << VirtReg << " gets hint from " << MI);
}
}
// Take hint when possible.
if (Hint) {
assert(RC->contains(Hint) && !UsedInInstr.test(Hint) &&
Allocatable.test(Hint) && "Invalid hint should have been cleared");
switch(PhysRegState[Hint]) {
case regDisabled:
case regReserved:
break;
default:
spillVirtReg(MI, PhysRegState[Hint]);
// Fall through.
case regFree:
return assignVirtToPhysReg(LRE, Hint);
}
}
// First try to find a completely free register.
unsigned BestCost = 0, BestReg = 0;
bool hasDisabled = false;
for (TargetRegisterClass::iterator I = AOB; I != AOE; ++I) {
unsigned PhysReg = *I;
switch(PhysRegState[PhysReg]) {
case regDisabled:
hasDisabled = true;
case regReserved:
continue;
case regFree:
if (!UsedInInstr.test(PhysReg))
return assignVirtToPhysReg(LRE, PhysReg);
continue;
default:
// Grab the first spillable register we meet.
if (!BestReg && !UsedInInstr.test(PhysReg))
BestReg = PhysReg, BestCost = SpillCost;
continue;
}
}
DEBUG(dbgs() << "Allocating %reg" << VirtReg << " from " << RC->getName()
<< " candidate=" << TRI->getName(BestReg) << "\n");
// Try to extend the working set for RC if there were any disabled registers.
if (hasDisabled && (!BestReg || BestCost >= SpillCost)) {
for (TargetRegisterClass::iterator I = AOB; I != AOE; ++I) {
unsigned PhysReg = *I;
if (PhysRegState[PhysReg] != regDisabled || UsedInInstr.test(PhysReg))
continue;
// Calculate the cost of bringing PhysReg into the working set.
unsigned Cost=0;
bool Impossible = false;
for (const unsigned *AS = TRI->getAliasSet(PhysReg);
unsigned Alias = *AS; ++AS) {
if (UsedInInstr.test(Alias)) {
Impossible = true;
break;
}
switch (PhysRegState[Alias]) {
case regDisabled:
break;
case regReserved:
Impossible = true;
break;
case regFree:
Cost++;
break;
default:
Cost += SpillCost;
break;
}
}
if (Impossible) continue;
DEBUG(dbgs() << "- candidate " << TRI->getName(PhysReg)
<< " cost=" << Cost << "\n");
if (!BestReg || Cost < BestCost) {
BestReg = PhysReg;
BestCost = Cost;
if (Cost < SpillCost) break;
}
}
}
if (BestReg) {
// BestCost is 0 when all aliases are already disabled.
if (BestCost) {
if (PhysRegState[BestReg] != regDisabled)
spillVirtReg(MI, PhysRegState[BestReg]);
else {
// Make sure all aliases are disabled.
for (const unsigned *AS = TRI->getAliasSet(BestReg);
unsigned Alias = *AS; ++AS) {
switch (PhysRegState[Alias]) {
case regDisabled:
continue;
case regFree:
PhysRegState[Alias] = regDisabled;
break;
default:
spillVirtReg(MI, PhysRegState[Alias]);
PhysRegState[Alias] = regDisabled;
break;
}
}
}
}
return assignVirtToPhysReg(LRE, BestReg);
}
// Nothing we can do.
std::string msg;
raw_string_ostream Msg(msg);
Msg << "Ran out of registers during register allocation!";
if (MI->isInlineAsm()) {
Msg << "\nPlease check your inline asm statement for "
<< "invalid constraints:\n";
MI->print(Msg, TM);
}
report_fatal_error(Msg.str());
}
/// defineVirtReg - Allocate a register for VirtReg and mark it as dirty.
unsigned RAFast::defineVirtReg(MachineInstr *MI, unsigned OpNum,
unsigned VirtReg, unsigned Hint) {
assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
"Not a virtual register");
LiveRegMap::iterator LRI;
bool New;
tie(LRI, New) = LiveVirtRegs.insert(std::make_pair(VirtReg, LiveReg()));
LiveReg &LR = LRI->second;
if (New)
allocVirtReg(MI, *LRI, Hint);
else
addKillFlag(LR); // Kill before redefine.
assert(LR.PhysReg && "Register not assigned");
LR.LastUse = MI;
LR.LastOpNum = OpNum;
LR.Dirty = true;
UsedInInstr.set(LR.PhysReg);
return LR.PhysReg;
}
/// reloadVirtReg - Make sure VirtReg is available in a physreg and return it.
unsigned RAFast::reloadVirtReg(MachineInstr *MI, unsigned OpNum,
unsigned VirtReg, unsigned Hint) {
assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
"Not a virtual register");
LiveRegMap::iterator LRI;
bool New;
tie(LRI, New) = LiveVirtRegs.insert(std::make_pair(VirtReg, LiveReg()));
LiveReg &LR = LRI->second;
MachineOperand &MO = MI->getOperand(OpNum);
if (New) {
allocVirtReg(MI, *LRI, Hint);
const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
int FrameIndex = getStackSpaceFor(VirtReg, RC);
DEBUG(dbgs() << "Reloading %reg" << VirtReg << " into "
<< TRI->getName(LR.PhysReg) << "\n");
TII->loadRegFromStackSlot(*MBB, MI, LR.PhysReg, FrameIndex, RC, TRI);
++NumLoads;
} else if (LR.Dirty) {
if (isLastUseOfLocalReg(MO)) {
DEBUG(dbgs() << "Killing last use: " << MO << "\n");
MO.setIsKill();
} else if (MO.isKill()) {
DEBUG(dbgs() << "Clearing dubious kill: " << MO << "\n");
MO.setIsKill(false);
}
} else if (MO.isKill()) {
// We must remove kill flags from uses of reloaded registers because the
// register would be killed immediately, and there might be a second use:
// %foo = OR %x<kill>, %x
// This would cause a second reload of %x into a different register.
DEBUG(dbgs() << "Clearing clean kill: " << MO << "\n");
MO.setIsKill(false);
}
assert(LR.PhysReg && "Register not assigned");
LR.LastUse = MI;
LR.LastOpNum = OpNum;
UsedInInstr.set(LR.PhysReg);
return LR.PhysReg;
}
// setPhysReg - Change MO the refer the PhysReg, considering subregs.
// This may invalidate MO if it is necessary to add implicit kills for a
// superregister.
// Return tru if MO kills its register.
bool RAFast::setPhysReg(MachineOperand &MO, unsigned PhysReg) {
if (!MO.getSubReg()) {
MO.setReg(PhysReg);
return MO.isKill() || MO.isDead();
}
// Handle subregister index.
MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0);
MO.setSubReg(0);
if (MO.isUse()) {
if (MO.isKill()) {
MO.getParent()->addRegisterKilled(PhysReg, TRI, true);
return true;
}
return false;
}
// A subregister def implicitly defines the whole physreg.
if (MO.isDead()) {
MO.getParent()->addRegisterDead(PhysReg, TRI, true);
return true;
}
MO.getParent()->addRegisterDefined(PhysReg, TRI);
return false;
}
void RAFast::AllocateBasicBlock() {
DEBUG(dbgs() << "\nAllocating " << *MBB);
PhysRegState.assign(TRI->getNumRegs(), regDisabled);
assert(LiveVirtRegs.empty() && "Mapping not cleared form last block?");
MachineBasicBlock::iterator MII = MBB->begin();
// Add live-in registers as live.
for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
E = MBB->livein_end(); I != E; ++I)
definePhysReg(MII, *I, regReserved);
SmallVector<unsigned, 8> PhysECs;
SmallVector<MachineInstr*, 32> Coalesced;
// Otherwise, sequentially allocate each instruction in the MBB.
while (MII != MBB->end()) {
MachineInstr *MI = MII++;
const TargetInstrDesc &TID = MI->getDesc();
DEBUG({
dbgs() << "\n>> " << *MI << "Regs:";
for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) {
if (PhysRegState[Reg] == regDisabled) continue;
dbgs() << " " << TRI->getName(Reg);
switch(PhysRegState[Reg]) {
case regFree:
break;
case regReserved:
dbgs() << "*";
break;
default:
dbgs() << "=%reg" << PhysRegState[Reg];
if (LiveVirtRegs[PhysRegState[Reg]].Dirty)
dbgs() << "*";
assert(LiveVirtRegs[PhysRegState[Reg]].PhysReg == Reg &&
"Bad inverse map");
break;
}
}
dbgs() << '\n';
// Check that LiveVirtRegs is the inverse.
for (LiveRegMap::iterator i = LiveVirtRegs.begin(),
e = LiveVirtRegs.end(); i != e; ++i) {
assert(TargetRegisterInfo::isVirtualRegister(i->first) &&
"Bad map key");
assert(TargetRegisterInfo::isPhysicalRegister(i->second.PhysReg) &&
"Bad map value");
assert(PhysRegState[i->second.PhysReg] == i->first &&
"Bad inverse map");
}
});
// Debug values are not allowed to change codegen in any way.
if (MI->isDebugValue()) {
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg()) continue;
unsigned Reg = MO.getReg();
if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
LiveRegMap::iterator LRI = LiveVirtRegs.find(Reg);
if (LRI != LiveVirtRegs.end())
setPhysReg(MO, LRI->second.PhysReg);
else
MO.setReg(0); // We can't allocate a physreg for a DebugValue, sorry!
}
// Next instruction.
continue;
}
// If this is a copy, we may be able to coalesce.
unsigned CopySrc, CopyDst, CopySrcSub, CopyDstSub;
if (!TII->isMoveInstr(*MI, CopySrc, CopyDst, CopySrcSub, CopyDstSub))
CopySrc = CopyDst = 0;
// Track registers used by instruction.
UsedInInstr.reset();
PhysECs.clear();
// First scan.
// Mark physreg uses and early clobbers as used.
// Find the end of the virtreg operands
unsigned VirtOpEnd = 0;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg()) continue;
unsigned Reg = MO.getReg();
if (!Reg) continue;
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
VirtOpEnd = i+1;
continue;
}
if (!Allocatable.test(Reg)) continue;
if (MO.isUse()) {
usePhysReg(MO);
} else if (MO.isEarlyClobber()) {
definePhysReg(MI, Reg, MO.isDead() ? regFree : regReserved);
PhysECs.push_back(Reg);
}
}
// Second scan.
// Allocate virtreg uses and early clobbers.
// Collect VirtKills
for (unsigned i = 0; i != VirtOpEnd; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg()) continue;
unsigned Reg = MO.getReg();
if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
if (MO.isUse()) {
unsigned PhysReg = reloadVirtReg(MI, i, Reg, CopyDst);
CopySrc = (CopySrc == Reg || CopySrc == PhysReg) ? PhysReg : 0;
if (setPhysReg(MO, PhysReg))
killVirtReg(Reg);
} else if (MO.isEarlyClobber()) {
unsigned PhysReg = defineVirtReg(MI, i, Reg, 0);
setPhysReg(MO, PhysReg);
PhysECs.push_back(PhysReg);
}
}
MRI->addPhysRegsUsed(UsedInInstr);
// Track registers defined by instruction - early clobbers at this point.
UsedInInstr.reset();
for (unsigned i = 0, e = PhysECs.size(); i != e; ++i) {
unsigned PhysReg = PhysECs[i];
UsedInInstr.set(PhysReg);
for (const unsigned *AS = TRI->getAliasSet(PhysReg);
unsigned Alias = *AS; ++AS)
UsedInInstr.set(Alias);
}
unsigned DefOpEnd = MI->getNumOperands();
if (TID.isCall()) {
// Spill all virtregs before a call. This serves two purposes: 1. If an
// exception is thrown, the landing pad is going to expect to find registers
// in their spill slots, and 2. we don't have to wade through all the
// <imp-def> operands on the call instruction.
DefOpEnd = VirtOpEnd;
DEBUG(dbgs() << " Spilling remaining registers before call.\n");
spillAll(MI);
}
// Third scan.
// Allocate defs and collect dead defs.
for (unsigned i = 0; i != DefOpEnd; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || !MO.isDef() || !MO.getReg()) continue;
unsigned Reg = MO.getReg();
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
if (!Allocatable.test(Reg)) continue;
definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ?
regFree : regReserved);
continue;
}
unsigned PhysReg = defineVirtReg(MI, i, Reg, CopySrc);
if (setPhysReg(MO, PhysReg)) {
killVirtReg(Reg);
CopyDst = 0; // cancel coalescing;
} else
CopyDst = (CopyDst == Reg || CopyDst == PhysReg) ? PhysReg : 0;
}
MRI->addPhysRegsUsed(UsedInInstr);
if (CopyDst && CopyDst == CopySrc && CopyDstSub == CopySrcSub) {
DEBUG(dbgs() << "-- coalescing: " << *MI);
Coalesced.push_back(MI);
} else {
DEBUG(dbgs() << "<< " << *MI);
}
}
// Spill all physical registers holding virtual registers now.
DEBUG(dbgs() << "Spilling live registers at end of block.\n");
spillAll(MBB->getFirstTerminator());
// Erase all the coalesced copies. We are delaying it until now because
// LiveVirtRegs might refer to the instrs.
for (unsigned i = 0, e = Coalesced.size(); i != e; ++i)
MBB->erase(Coalesced[i]);
NumCopies += Coalesced.size();
DEBUG(MBB->dump());
}
/// runOnMachineFunction - Register allocate the whole function
///
bool RAFast::runOnMachineFunction(MachineFunction &Fn) {
DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
<< "********** Function: "
<< ((Value*)Fn.getFunction())->getName() << '\n');
if (VerifyFastRegalloc)
Fn.verify(this, true);
MF = &Fn;
MRI = &MF->getRegInfo();
TM = &Fn.getTarget();
TRI = TM->getRegisterInfo();
TII = TM->getInstrInfo();
UsedInInstr.resize(TRI->getNumRegs());
Allocatable = TRI->getAllocatableSet(*MF);
// initialize the virtual->physical register map to have a 'null'
// mapping for all virtual registers
unsigned LastVirtReg = MRI->getLastVirtReg();
StackSlotForVirtReg.grow(LastVirtReg);
// Loop over all of the basic blocks, eliminating virtual register references
for (MachineFunction::iterator MBBi = Fn.begin(), MBBe = Fn.end();
MBBi != MBBe; ++MBBi) {
MBB = &*MBBi;
AllocateBasicBlock();
}
// Make sure the set of used physregs is closed under subreg operations.
MRI->closePhysRegsUsed(*TRI);
StackSlotForVirtReg.clear();
return true;
}
FunctionPass *llvm::createFastRegisterAllocator() {
return new RAFast();
}