mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	Patch by Johannes Schaub! Fixes PR8548 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127047 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1104 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1104 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the common interface used by the various execution engine
 | 
						|
// subclasses.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "jit"
 | 
						|
#include "llvm/ExecutionEngine/ExecutionEngine.h"
 | 
						|
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/ExecutionEngine/GenericValue.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/MutexGuard.h"
 | 
						|
#include "llvm/Support/ValueHandle.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Support/DynamicLibrary.h"
 | 
						|
#include "llvm/Support/Host.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include <cmath>
 | 
						|
#include <cstring>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
 | 
						|
STATISTIC(NumGlobals  , "Number of global vars initialized");
 | 
						|
 | 
						|
ExecutionEngine *(*ExecutionEngine::JITCtor)(
 | 
						|
  Module *M,
 | 
						|
  std::string *ErrorStr,
 | 
						|
  JITMemoryManager *JMM,
 | 
						|
  CodeGenOpt::Level OptLevel,
 | 
						|
  bool GVsWithCode,
 | 
						|
  CodeModel::Model CMM,
 | 
						|
  StringRef MArch,
 | 
						|
  StringRef MCPU,
 | 
						|
  const SmallVectorImpl<std::string>& MAttrs) = 0;
 | 
						|
ExecutionEngine *(*ExecutionEngine::MCJITCtor)(
 | 
						|
  Module *M,
 | 
						|
  std::string *ErrorStr,
 | 
						|
  JITMemoryManager *JMM,
 | 
						|
  CodeGenOpt::Level OptLevel,
 | 
						|
  bool GVsWithCode,
 | 
						|
  CodeModel::Model CMM,
 | 
						|
  StringRef MArch,
 | 
						|
  StringRef MCPU,
 | 
						|
  const SmallVectorImpl<std::string>& MAttrs) = 0;
 | 
						|
ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M,
 | 
						|
                                                std::string *ErrorStr) = 0;
 | 
						|
 | 
						|
ExecutionEngine::ExecutionEngine(Module *M)
 | 
						|
  : EEState(*this),
 | 
						|
    LazyFunctionCreator(0),
 | 
						|
    ExceptionTableRegister(0),
 | 
						|
    ExceptionTableDeregister(0) {
 | 
						|
  CompilingLazily         = false;
 | 
						|
  GVCompilationDisabled   = false;
 | 
						|
  SymbolSearchingDisabled = false;
 | 
						|
  Modules.push_back(M);
 | 
						|
  assert(M && "Module is null?");
 | 
						|
}
 | 
						|
 | 
						|
ExecutionEngine::~ExecutionEngine() {
 | 
						|
  clearAllGlobalMappings();
 | 
						|
  for (unsigned i = 0, e = Modules.size(); i != e; ++i)
 | 
						|
    delete Modules[i];
 | 
						|
}
 | 
						|
 | 
						|
void ExecutionEngine::DeregisterAllTables() {
 | 
						|
  if (ExceptionTableDeregister) {
 | 
						|
    DenseMap<const Function*, void*>::iterator it = AllExceptionTables.begin();
 | 
						|
    DenseMap<const Function*, void*>::iterator ite = AllExceptionTables.end();
 | 
						|
    for (; it != ite; ++it)
 | 
						|
      ExceptionTableDeregister(it->second);
 | 
						|
    AllExceptionTables.clear();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
/// \brief Helper class which uses a value handler to automatically deletes the
 | 
						|
/// memory block when the GlobalVariable is destroyed.
 | 
						|
class GVMemoryBlock : public CallbackVH {
 | 
						|
  GVMemoryBlock(const GlobalVariable *GV)
 | 
						|
    : CallbackVH(const_cast<GlobalVariable*>(GV)) {}
 | 
						|
 | 
						|
public:
 | 
						|
  /// \brief Returns the address the GlobalVariable should be written into.  The
 | 
						|
  /// GVMemoryBlock object prefixes that.
 | 
						|
  static char *Create(const GlobalVariable *GV, const TargetData& TD) {
 | 
						|
    const Type *ElTy = GV->getType()->getElementType();
 | 
						|
    size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy);
 | 
						|
    void *RawMemory = ::operator new(
 | 
						|
      TargetData::RoundUpAlignment(sizeof(GVMemoryBlock),
 | 
						|
                                   TD.getPreferredAlignment(GV))
 | 
						|
      + GVSize);
 | 
						|
    new(RawMemory) GVMemoryBlock(GV);
 | 
						|
    return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock);
 | 
						|
  }
 | 
						|
 | 
						|
  virtual void deleted() {
 | 
						|
    // We allocated with operator new and with some extra memory hanging off the
 | 
						|
    // end, so don't just delete this.  I'm not sure if this is actually
 | 
						|
    // required.
 | 
						|
    this->~GVMemoryBlock();
 | 
						|
    ::operator delete(this);
 | 
						|
  }
 | 
						|
};
 | 
						|
}  // anonymous namespace
 | 
						|
 | 
						|
char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) {
 | 
						|
  return GVMemoryBlock::Create(GV, *getTargetData());
 | 
						|
}
 | 
						|
 | 
						|
bool ExecutionEngine::removeModule(Module *M) {
 | 
						|
  for(SmallVector<Module *, 1>::iterator I = Modules.begin(),
 | 
						|
        E = Modules.end(); I != E; ++I) {
 | 
						|
    Module *Found = *I;
 | 
						|
    if (Found == M) {
 | 
						|
      Modules.erase(I);
 | 
						|
      clearGlobalMappingsFromModule(M);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
 | 
						|
  for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
 | 
						|
    if (Function *F = Modules[i]->getFunction(FnName))
 | 
						|
      return F;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void *ExecutionEngineState::RemoveMapping(const MutexGuard &,
 | 
						|
                                          const GlobalValue *ToUnmap) {
 | 
						|
  GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap);
 | 
						|
  void *OldVal;
 | 
						|
 | 
						|
  // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the
 | 
						|
  // GlobalAddressMap.
 | 
						|
  if (I == GlobalAddressMap.end())
 | 
						|
    OldVal = 0;
 | 
						|
  else {
 | 
						|
    OldVal = I->second;
 | 
						|
    GlobalAddressMap.erase(I);
 | 
						|
  }
 | 
						|
 | 
						|
  GlobalAddressReverseMap.erase(OldVal);
 | 
						|
  return OldVal;
 | 
						|
}
 | 
						|
 | 
						|
void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
 | 
						|
  MutexGuard locked(lock);
 | 
						|
 | 
						|
  DEBUG(dbgs() << "JIT: Map \'" << GV->getName()
 | 
						|
        << "\' to [" << Addr << "]\n";);
 | 
						|
  void *&CurVal = EEState.getGlobalAddressMap(locked)[GV];
 | 
						|
  assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
 | 
						|
  CurVal = Addr;
 | 
						|
 | 
						|
  // If we are using the reverse mapping, add it too.
 | 
						|
  if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
 | 
						|
    AssertingVH<const GlobalValue> &V =
 | 
						|
      EEState.getGlobalAddressReverseMap(locked)[Addr];
 | 
						|
    assert((V == 0 || GV == 0) && "GlobalMapping already established!");
 | 
						|
    V = GV;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ExecutionEngine::clearAllGlobalMappings() {
 | 
						|
  MutexGuard locked(lock);
 | 
						|
 | 
						|
  EEState.getGlobalAddressMap(locked).clear();
 | 
						|
  EEState.getGlobalAddressReverseMap(locked).clear();
 | 
						|
}
 | 
						|
 | 
						|
void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
 | 
						|
  MutexGuard locked(lock);
 | 
						|
 | 
						|
  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI)
 | 
						|
    EEState.RemoveMapping(locked, FI);
 | 
						|
  for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
 | 
						|
       GI != GE; ++GI)
 | 
						|
    EEState.RemoveMapping(locked, GI);
 | 
						|
}
 | 
						|
 | 
						|
void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
 | 
						|
  MutexGuard locked(lock);
 | 
						|
 | 
						|
  ExecutionEngineState::GlobalAddressMapTy &Map =
 | 
						|
    EEState.getGlobalAddressMap(locked);
 | 
						|
 | 
						|
  // Deleting from the mapping?
 | 
						|
  if (Addr == 0)
 | 
						|
    return EEState.RemoveMapping(locked, GV);
 | 
						|
 | 
						|
  void *&CurVal = Map[GV];
 | 
						|
  void *OldVal = CurVal;
 | 
						|
 | 
						|
  if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty())
 | 
						|
    EEState.getGlobalAddressReverseMap(locked).erase(CurVal);
 | 
						|
  CurVal = Addr;
 | 
						|
 | 
						|
  // If we are using the reverse mapping, add it too.
 | 
						|
  if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
 | 
						|
    AssertingVH<const GlobalValue> &V =
 | 
						|
      EEState.getGlobalAddressReverseMap(locked)[Addr];
 | 
						|
    assert((V == 0 || GV == 0) && "GlobalMapping already established!");
 | 
						|
    V = GV;
 | 
						|
  }
 | 
						|
  return OldVal;
 | 
						|
}
 | 
						|
 | 
						|
void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
 | 
						|
  MutexGuard locked(lock);
 | 
						|
 | 
						|
  ExecutionEngineState::GlobalAddressMapTy::iterator I =
 | 
						|
    EEState.getGlobalAddressMap(locked).find(GV);
 | 
						|
  return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0;
 | 
						|
}
 | 
						|
 | 
						|
const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
 | 
						|
  MutexGuard locked(lock);
 | 
						|
 | 
						|
  // If we haven't computed the reverse mapping yet, do so first.
 | 
						|
  if (EEState.getGlobalAddressReverseMap(locked).empty()) {
 | 
						|
    for (ExecutionEngineState::GlobalAddressMapTy::iterator
 | 
						|
         I = EEState.getGlobalAddressMap(locked).begin(),
 | 
						|
         E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I)
 | 
						|
      EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair(
 | 
						|
                                                          I->second, I->first));
 | 
						|
  }
 | 
						|
 | 
						|
  std::map<void *, AssertingVH<const GlobalValue> >::iterator I =
 | 
						|
    EEState.getGlobalAddressReverseMap(locked).find(Addr);
 | 
						|
  return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
class ArgvArray {
 | 
						|
  char *Array;
 | 
						|
  std::vector<char*> Values;
 | 
						|
public:
 | 
						|
  ArgvArray() : Array(NULL) {}
 | 
						|
  ~ArgvArray() { clear(); }
 | 
						|
  void clear() {
 | 
						|
    delete[] Array;
 | 
						|
    Array = NULL;
 | 
						|
    for (size_t I = 0, E = Values.size(); I != E; ++I) {
 | 
						|
      delete[] Values[I];
 | 
						|
    }
 | 
						|
    Values.clear();
 | 
						|
  }
 | 
						|
  /// Turn a vector of strings into a nice argv style array of pointers to null
 | 
						|
  /// terminated strings.
 | 
						|
  void *reset(LLVMContext &C, ExecutionEngine *EE,
 | 
						|
              const std::vector<std::string> &InputArgv);
 | 
						|
};
 | 
						|
}  // anonymous namespace
 | 
						|
void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE,
 | 
						|
                       const std::vector<std::string> &InputArgv) {
 | 
						|
  clear();  // Free the old contents.
 | 
						|
  unsigned PtrSize = EE->getTargetData()->getPointerSize();
 | 
						|
  Array = new char[(InputArgv.size()+1)*PtrSize];
 | 
						|
 | 
						|
  DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array << "\n");
 | 
						|
  const Type *SBytePtr = Type::getInt8PtrTy(C);
 | 
						|
 | 
						|
  for (unsigned i = 0; i != InputArgv.size(); ++i) {
 | 
						|
    unsigned Size = InputArgv[i].size()+1;
 | 
						|
    char *Dest = new char[Size];
 | 
						|
    Values.push_back(Dest);
 | 
						|
    DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n");
 | 
						|
 | 
						|
    std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
 | 
						|
    Dest[Size-1] = 0;
 | 
						|
 | 
						|
    // Endian safe: Array[i] = (PointerTy)Dest;
 | 
						|
    EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Array+i*PtrSize),
 | 
						|
                           SBytePtr);
 | 
						|
  }
 | 
						|
 | 
						|
  // Null terminate it
 | 
						|
  EE->StoreValueToMemory(PTOGV(0),
 | 
						|
                         (GenericValue*)(Array+InputArgv.size()*PtrSize),
 | 
						|
                         SBytePtr);
 | 
						|
  return Array;
 | 
						|
}
 | 
						|
 | 
						|
void ExecutionEngine::runStaticConstructorsDestructors(Module *module,
 | 
						|
                                                       bool isDtors) {
 | 
						|
  const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
 | 
						|
  GlobalVariable *GV = module->getNamedGlobal(Name);
 | 
						|
 | 
						|
  // If this global has internal linkage, or if it has a use, then it must be
 | 
						|
  // an old-style (llvmgcc3) static ctor with __main linked in and in use.  If
 | 
						|
  // this is the case, don't execute any of the global ctors, __main will do
 | 
						|
  // it.
 | 
						|
  if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
 | 
						|
 | 
						|
  // Should be an array of '{ int, void ()* }' structs.  The first value is
 | 
						|
  // the init priority, which we ignore.
 | 
						|
  ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
 | 
						|
  if (!InitList) return;
 | 
						|
  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
 | 
						|
    ConstantStruct *CS =
 | 
						|
      dyn_cast<ConstantStruct>(InitList->getOperand(i));
 | 
						|
    if (!CS) continue;
 | 
						|
    if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
 | 
						|
 | 
						|
    Constant *FP = CS->getOperand(1);
 | 
						|
    if (FP->isNullValue())
 | 
						|
      break;  // Found a null terminator, exit.
 | 
						|
 | 
						|
    // Strip off constant expression casts.
 | 
						|
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
 | 
						|
      if (CE->isCast())
 | 
						|
        FP = CE->getOperand(0);
 | 
						|
 | 
						|
    // Execute the ctor/dtor function!
 | 
						|
    if (Function *F = dyn_cast<Function>(FP))
 | 
						|
      runFunction(F, std::vector<GenericValue>());
 | 
						|
 | 
						|
    // FIXME: It is marginally lame that we just do nothing here if we see an
 | 
						|
    // entry we don't recognize. It might not be unreasonable for the verifier
 | 
						|
    // to not even allow this and just assert here.
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
 | 
						|
  // Execute global ctors/dtors for each module in the program.
 | 
						|
  for (unsigned i = 0, e = Modules.size(); i != e; ++i)
 | 
						|
    runStaticConstructorsDestructors(Modules[i], isDtors);
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
/// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
 | 
						|
static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
 | 
						|
  unsigned PtrSize = EE->getTargetData()->getPointerSize();
 | 
						|
  for (unsigned i = 0; i < PtrSize; ++i)
 | 
						|
    if (*(i + (uint8_t*)Loc))
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
int ExecutionEngine::runFunctionAsMain(Function *Fn,
 | 
						|
                                       const std::vector<std::string> &argv,
 | 
						|
                                       const char * const * envp) {
 | 
						|
  std::vector<GenericValue> GVArgs;
 | 
						|
  GenericValue GVArgc;
 | 
						|
  GVArgc.IntVal = APInt(32, argv.size());
 | 
						|
 | 
						|
  // Check main() type
 | 
						|
  unsigned NumArgs = Fn->getFunctionType()->getNumParams();
 | 
						|
  const FunctionType *FTy = Fn->getFunctionType();
 | 
						|
  const Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo();
 | 
						|
 | 
						|
  // Check the argument types.
 | 
						|
  if (NumArgs > 3)
 | 
						|
    report_fatal_error("Invalid number of arguments of main() supplied");
 | 
						|
  if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty)
 | 
						|
    report_fatal_error("Invalid type for third argument of main() supplied");
 | 
						|
  if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty)
 | 
						|
    report_fatal_error("Invalid type for second argument of main() supplied");
 | 
						|
  if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32))
 | 
						|
    report_fatal_error("Invalid type for first argument of main() supplied");
 | 
						|
  if (!FTy->getReturnType()->isIntegerTy() &&
 | 
						|
      !FTy->getReturnType()->isVoidTy())
 | 
						|
    report_fatal_error("Invalid return type of main() supplied");
 | 
						|
 | 
						|
  ArgvArray CArgv;
 | 
						|
  ArgvArray CEnv;
 | 
						|
  if (NumArgs) {
 | 
						|
    GVArgs.push_back(GVArgc); // Arg #0 = argc.
 | 
						|
    if (NumArgs > 1) {
 | 
						|
      // Arg #1 = argv.
 | 
						|
      GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv)));
 | 
						|
      assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
 | 
						|
             "argv[0] was null after CreateArgv");
 | 
						|
      if (NumArgs > 2) {
 | 
						|
        std::vector<std::string> EnvVars;
 | 
						|
        for (unsigned i = 0; envp[i]; ++i)
 | 
						|
          EnvVars.push_back(envp[i]);
 | 
						|
        // Arg #2 = envp.
 | 
						|
        GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars)));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return runFunction(Fn, GVArgs).IntVal.getZExtValue();
 | 
						|
}
 | 
						|
 | 
						|
ExecutionEngine *ExecutionEngine::create(Module *M,
 | 
						|
                                         bool ForceInterpreter,
 | 
						|
                                         std::string *ErrorStr,
 | 
						|
                                         CodeGenOpt::Level OptLevel,
 | 
						|
                                         bool GVsWithCode) {
 | 
						|
  return EngineBuilder(M)
 | 
						|
      .setEngineKind(ForceInterpreter
 | 
						|
                     ? EngineKind::Interpreter
 | 
						|
                     : EngineKind::JIT)
 | 
						|
      .setErrorStr(ErrorStr)
 | 
						|
      .setOptLevel(OptLevel)
 | 
						|
      .setAllocateGVsWithCode(GVsWithCode)
 | 
						|
      .create();
 | 
						|
}
 | 
						|
 | 
						|
ExecutionEngine *EngineBuilder::create() {
 | 
						|
  // Make sure we can resolve symbols in the program as well. The zero arg
 | 
						|
  // to the function tells DynamicLibrary to load the program, not a library.
 | 
						|
  if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // If the user specified a memory manager but didn't specify which engine to
 | 
						|
  // create, we assume they only want the JIT, and we fail if they only want
 | 
						|
  // the interpreter.
 | 
						|
  if (JMM) {
 | 
						|
    if (WhichEngine & EngineKind::JIT)
 | 
						|
      WhichEngine = EngineKind::JIT;
 | 
						|
    else {
 | 
						|
      if (ErrorStr)
 | 
						|
        *ErrorStr = "Cannot create an interpreter with a memory manager.";
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Unless the interpreter was explicitly selected or the JIT is not linked,
 | 
						|
  // try making a JIT.
 | 
						|
  if (WhichEngine & EngineKind::JIT) {
 | 
						|
    if (UseMCJIT && ExecutionEngine::MCJITCtor) {
 | 
						|
      ExecutionEngine *EE =
 | 
						|
        ExecutionEngine::MCJITCtor(M, ErrorStr, JMM, OptLevel,
 | 
						|
                                   AllocateGVsWithCode, CMModel,
 | 
						|
                                   MArch, MCPU, MAttrs);
 | 
						|
      if (EE) return EE;
 | 
						|
    } else if (ExecutionEngine::JITCtor) {
 | 
						|
      ExecutionEngine *EE =
 | 
						|
        ExecutionEngine::JITCtor(M, ErrorStr, JMM, OptLevel,
 | 
						|
                                 AllocateGVsWithCode, CMModel,
 | 
						|
                                 MArch, MCPU, MAttrs);
 | 
						|
      if (EE) return EE;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we can't make a JIT and we didn't request one specifically, try making
 | 
						|
  // an interpreter instead.
 | 
						|
  if (WhichEngine & EngineKind::Interpreter) {
 | 
						|
    if (ExecutionEngine::InterpCtor)
 | 
						|
      return ExecutionEngine::InterpCtor(M, ErrorStr);
 | 
						|
    if (ErrorStr)
 | 
						|
      *ErrorStr = "Interpreter has not been linked in.";
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0) {
 | 
						|
    if (ErrorStr)
 | 
						|
      *ErrorStr = "JIT has not been linked in.";
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
 | 
						|
  if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
 | 
						|
    return getPointerToFunction(F);
 | 
						|
 | 
						|
  MutexGuard locked(lock);
 | 
						|
  if (void *P = EEState.getGlobalAddressMap(locked)[GV])
 | 
						|
    return P;
 | 
						|
 | 
						|
  // Global variable might have been added since interpreter started.
 | 
						|
  if (GlobalVariable *GVar =
 | 
						|
          const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
 | 
						|
    EmitGlobalVariable(GVar);
 | 
						|
  else
 | 
						|
    llvm_unreachable("Global hasn't had an address allocated yet!");
 | 
						|
 | 
						|
  return EEState.getGlobalAddressMap(locked)[GV];
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Converts a Constant* into a GenericValue, including handling of
 | 
						|
/// ConstantExpr values.
 | 
						|
GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
 | 
						|
  // If its undefined, return the garbage.
 | 
						|
  if (isa<UndefValue>(C)) {
 | 
						|
    GenericValue Result;
 | 
						|
    switch (C->getType()->getTypeID()) {
 | 
						|
    case Type::IntegerTyID:
 | 
						|
    case Type::X86_FP80TyID:
 | 
						|
    case Type::FP128TyID:
 | 
						|
    case Type::PPC_FP128TyID:
 | 
						|
      // Although the value is undefined, we still have to construct an APInt
 | 
						|
      // with the correct bit width.
 | 
						|
      Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0);
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, if the value is a ConstantExpr...
 | 
						|
  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
 | 
						|
    Constant *Op0 = CE->getOperand(0);
 | 
						|
    switch (CE->getOpcode()) {
 | 
						|
    case Instruction::GetElementPtr: {
 | 
						|
      // Compute the index
 | 
						|
      GenericValue Result = getConstantValue(Op0);
 | 
						|
      SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
 | 
						|
      uint64_t Offset =
 | 
						|
        TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size());
 | 
						|
 | 
						|
      char* tmp = (char*) Result.PointerVal;
 | 
						|
      Result = PTOGV(tmp + Offset);
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
    case Instruction::Trunc: {
 | 
						|
      GenericValue GV = getConstantValue(Op0);
 | 
						|
      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
 | 
						|
      GV.IntVal = GV.IntVal.trunc(BitWidth);
 | 
						|
      return GV;
 | 
						|
    }
 | 
						|
    case Instruction::ZExt: {
 | 
						|
      GenericValue GV = getConstantValue(Op0);
 | 
						|
      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
 | 
						|
      GV.IntVal = GV.IntVal.zext(BitWidth);
 | 
						|
      return GV;
 | 
						|
    }
 | 
						|
    case Instruction::SExt: {
 | 
						|
      GenericValue GV = getConstantValue(Op0);
 | 
						|
      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
 | 
						|
      GV.IntVal = GV.IntVal.sext(BitWidth);
 | 
						|
      return GV;
 | 
						|
    }
 | 
						|
    case Instruction::FPTrunc: {
 | 
						|
      // FIXME long double
 | 
						|
      GenericValue GV = getConstantValue(Op0);
 | 
						|
      GV.FloatVal = float(GV.DoubleVal);
 | 
						|
      return GV;
 | 
						|
    }
 | 
						|
    case Instruction::FPExt:{
 | 
						|
      // FIXME long double
 | 
						|
      GenericValue GV = getConstantValue(Op0);
 | 
						|
      GV.DoubleVal = double(GV.FloatVal);
 | 
						|
      return GV;
 | 
						|
    }
 | 
						|
    case Instruction::UIToFP: {
 | 
						|
      GenericValue GV = getConstantValue(Op0);
 | 
						|
      if (CE->getType()->isFloatTy())
 | 
						|
        GV.FloatVal = float(GV.IntVal.roundToDouble());
 | 
						|
      else if (CE->getType()->isDoubleTy())
 | 
						|
        GV.DoubleVal = GV.IntVal.roundToDouble();
 | 
						|
      else if (CE->getType()->isX86_FP80Ty()) {
 | 
						|
        APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended);
 | 
						|
        (void)apf.convertFromAPInt(GV.IntVal,
 | 
						|
                                   false,
 | 
						|
                                   APFloat::rmNearestTiesToEven);
 | 
						|
        GV.IntVal = apf.bitcastToAPInt();
 | 
						|
      }
 | 
						|
      return GV;
 | 
						|
    }
 | 
						|
    case Instruction::SIToFP: {
 | 
						|
      GenericValue GV = getConstantValue(Op0);
 | 
						|
      if (CE->getType()->isFloatTy())
 | 
						|
        GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
 | 
						|
      else if (CE->getType()->isDoubleTy())
 | 
						|
        GV.DoubleVal = GV.IntVal.signedRoundToDouble();
 | 
						|
      else if (CE->getType()->isX86_FP80Ty()) {
 | 
						|
        APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended);
 | 
						|
        (void)apf.convertFromAPInt(GV.IntVal,
 | 
						|
                                   true,
 | 
						|
                                   APFloat::rmNearestTiesToEven);
 | 
						|
        GV.IntVal = apf.bitcastToAPInt();
 | 
						|
      }
 | 
						|
      return GV;
 | 
						|
    }
 | 
						|
    case Instruction::FPToUI: // double->APInt conversion handles sign
 | 
						|
    case Instruction::FPToSI: {
 | 
						|
      GenericValue GV = getConstantValue(Op0);
 | 
						|
      uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
 | 
						|
      if (Op0->getType()->isFloatTy())
 | 
						|
        GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
 | 
						|
      else if (Op0->getType()->isDoubleTy())
 | 
						|
        GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
 | 
						|
      else if (Op0->getType()->isX86_FP80Ty()) {
 | 
						|
        APFloat apf = APFloat(GV.IntVal);
 | 
						|
        uint64_t v;
 | 
						|
        bool ignored;
 | 
						|
        (void)apf.convertToInteger(&v, BitWidth,
 | 
						|
                                   CE->getOpcode()==Instruction::FPToSI,
 | 
						|
                                   APFloat::rmTowardZero, &ignored);
 | 
						|
        GV.IntVal = v; // endian?
 | 
						|
      }
 | 
						|
      return GV;
 | 
						|
    }
 | 
						|
    case Instruction::PtrToInt: {
 | 
						|
      GenericValue GV = getConstantValue(Op0);
 | 
						|
      uint32_t PtrWidth = TD->getPointerSizeInBits();
 | 
						|
      GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
 | 
						|
      return GV;
 | 
						|
    }
 | 
						|
    case Instruction::IntToPtr: {
 | 
						|
      GenericValue GV = getConstantValue(Op0);
 | 
						|
      uint32_t PtrWidth = TD->getPointerSizeInBits();
 | 
						|
      if (PtrWidth != GV.IntVal.getBitWidth())
 | 
						|
        GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
 | 
						|
      assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
 | 
						|
      GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
 | 
						|
      return GV;
 | 
						|
    }
 | 
						|
    case Instruction::BitCast: {
 | 
						|
      GenericValue GV = getConstantValue(Op0);
 | 
						|
      const Type* DestTy = CE->getType();
 | 
						|
      switch (Op0->getType()->getTypeID()) {
 | 
						|
        default: llvm_unreachable("Invalid bitcast operand");
 | 
						|
        case Type::IntegerTyID:
 | 
						|
          assert(DestTy->isFloatingPointTy() && "invalid bitcast");
 | 
						|
          if (DestTy->isFloatTy())
 | 
						|
            GV.FloatVal = GV.IntVal.bitsToFloat();
 | 
						|
          else if (DestTy->isDoubleTy())
 | 
						|
            GV.DoubleVal = GV.IntVal.bitsToDouble();
 | 
						|
          break;
 | 
						|
        case Type::FloatTyID:
 | 
						|
          assert(DestTy->isIntegerTy(32) && "Invalid bitcast");
 | 
						|
          GV.IntVal = APInt::floatToBits(GV.FloatVal);
 | 
						|
          break;
 | 
						|
        case Type::DoubleTyID:
 | 
						|
          assert(DestTy->isIntegerTy(64) && "Invalid bitcast");
 | 
						|
          GV.IntVal = APInt::doubleToBits(GV.DoubleVal);
 | 
						|
          break;
 | 
						|
        case Type::PointerTyID:
 | 
						|
          assert(DestTy->isPointerTy() && "Invalid bitcast");
 | 
						|
          break; // getConstantValue(Op0)  above already converted it
 | 
						|
      }
 | 
						|
      return GV;
 | 
						|
    }
 | 
						|
    case Instruction::Add:
 | 
						|
    case Instruction::FAdd:
 | 
						|
    case Instruction::Sub:
 | 
						|
    case Instruction::FSub:
 | 
						|
    case Instruction::Mul:
 | 
						|
    case Instruction::FMul:
 | 
						|
    case Instruction::UDiv:
 | 
						|
    case Instruction::SDiv:
 | 
						|
    case Instruction::URem:
 | 
						|
    case Instruction::SRem:
 | 
						|
    case Instruction::And:
 | 
						|
    case Instruction::Or:
 | 
						|
    case Instruction::Xor: {
 | 
						|
      GenericValue LHS = getConstantValue(Op0);
 | 
						|
      GenericValue RHS = getConstantValue(CE->getOperand(1));
 | 
						|
      GenericValue GV;
 | 
						|
      switch (CE->getOperand(0)->getType()->getTypeID()) {
 | 
						|
      default: llvm_unreachable("Bad add type!");
 | 
						|
      case Type::IntegerTyID:
 | 
						|
        switch (CE->getOpcode()) {
 | 
						|
          default: llvm_unreachable("Invalid integer opcode");
 | 
						|
          case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
 | 
						|
          case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
 | 
						|
          case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
 | 
						|
          case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
 | 
						|
          case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
 | 
						|
          case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
 | 
						|
          case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
 | 
						|
          case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
 | 
						|
          case Instruction::Or:  GV.IntVal = LHS.IntVal | RHS.IntVal; break;
 | 
						|
          case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case Type::FloatTyID:
 | 
						|
        switch (CE->getOpcode()) {
 | 
						|
          default: llvm_unreachable("Invalid float opcode");
 | 
						|
          case Instruction::FAdd:
 | 
						|
            GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
 | 
						|
          case Instruction::FSub:
 | 
						|
            GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
 | 
						|
          case Instruction::FMul:
 | 
						|
            GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
 | 
						|
          case Instruction::FDiv:
 | 
						|
            GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
 | 
						|
          case Instruction::FRem:
 | 
						|
            GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case Type::DoubleTyID:
 | 
						|
        switch (CE->getOpcode()) {
 | 
						|
          default: llvm_unreachable("Invalid double opcode");
 | 
						|
          case Instruction::FAdd:
 | 
						|
            GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
 | 
						|
          case Instruction::FSub:
 | 
						|
            GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
 | 
						|
          case Instruction::FMul:
 | 
						|
            GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
 | 
						|
          case Instruction::FDiv:
 | 
						|
            GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
 | 
						|
          case Instruction::FRem:
 | 
						|
            GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case Type::X86_FP80TyID:
 | 
						|
      case Type::PPC_FP128TyID:
 | 
						|
      case Type::FP128TyID: {
 | 
						|
        APFloat apfLHS = APFloat(LHS.IntVal);
 | 
						|
        switch (CE->getOpcode()) {
 | 
						|
          default: llvm_unreachable("Invalid long double opcode");
 | 
						|
          case Instruction::FAdd:
 | 
						|
            apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
 | 
						|
            GV.IntVal = apfLHS.bitcastToAPInt();
 | 
						|
            break;
 | 
						|
          case Instruction::FSub:
 | 
						|
            apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
 | 
						|
            GV.IntVal = apfLHS.bitcastToAPInt();
 | 
						|
            break;
 | 
						|
          case Instruction::FMul:
 | 
						|
            apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
 | 
						|
            GV.IntVal = apfLHS.bitcastToAPInt();
 | 
						|
            break;
 | 
						|
          case Instruction::FDiv:
 | 
						|
            apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
 | 
						|
            GV.IntVal = apfLHS.bitcastToAPInt();
 | 
						|
            break;
 | 
						|
          case Instruction::FRem:
 | 
						|
            apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
 | 
						|
            GV.IntVal = apfLHS.bitcastToAPInt();
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      return GV;
 | 
						|
    }
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    SmallString<256> Msg;
 | 
						|
    raw_svector_ostream OS(Msg);
 | 
						|
    OS << "ConstantExpr not handled: " << *CE;
 | 
						|
    report_fatal_error(OS.str());
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, we have a simple constant.
 | 
						|
  GenericValue Result;
 | 
						|
  switch (C->getType()->getTypeID()) {
 | 
						|
  case Type::FloatTyID:
 | 
						|
    Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
 | 
						|
    break;
 | 
						|
  case Type::DoubleTyID:
 | 
						|
    Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
 | 
						|
    break;
 | 
						|
  case Type::X86_FP80TyID:
 | 
						|
  case Type::FP128TyID:
 | 
						|
  case Type::PPC_FP128TyID:
 | 
						|
    Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
 | 
						|
    break;
 | 
						|
  case Type::IntegerTyID:
 | 
						|
    Result.IntVal = cast<ConstantInt>(C)->getValue();
 | 
						|
    break;
 | 
						|
  case Type::PointerTyID:
 | 
						|
    if (isa<ConstantPointerNull>(C))
 | 
						|
      Result.PointerVal = 0;
 | 
						|
    else if (const Function *F = dyn_cast<Function>(C))
 | 
						|
      Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
 | 
						|
    else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
 | 
						|
      Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
 | 
						|
    else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
 | 
						|
      Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>(
 | 
						|
                                                        BA->getBasicBlock())));
 | 
						|
    else
 | 
						|
      llvm_unreachable("Unknown constant pointer type!");
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    SmallString<256> Msg;
 | 
						|
    raw_svector_ostream OS(Msg);
 | 
						|
    OS << "ERROR: Constant unimplemented for type: " << *C->getType();
 | 
						|
    report_fatal_error(OS.str());
 | 
						|
  }
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
 | 
						|
/// with the integer held in IntVal.
 | 
						|
static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
 | 
						|
                             unsigned StoreBytes) {
 | 
						|
  assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
 | 
						|
  uint8_t *Src = (uint8_t *)IntVal.getRawData();
 | 
						|
 | 
						|
  if (sys::isLittleEndianHost()) {
 | 
						|
    // Little-endian host - the source is ordered from LSB to MSB.  Order the
 | 
						|
    // destination from LSB to MSB: Do a straight copy.
 | 
						|
    memcpy(Dst, Src, StoreBytes);
 | 
						|
  } else {
 | 
						|
    // Big-endian host - the source is an array of 64 bit words ordered from
 | 
						|
    // LSW to MSW.  Each word is ordered from MSB to LSB.  Order the destination
 | 
						|
    // from MSB to LSB: Reverse the word order, but not the bytes in a word.
 | 
						|
    while (StoreBytes > sizeof(uint64_t)) {
 | 
						|
      StoreBytes -= sizeof(uint64_t);
 | 
						|
      // May not be aligned so use memcpy.
 | 
						|
      memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
 | 
						|
      Src += sizeof(uint64_t);
 | 
						|
    }
 | 
						|
 | 
						|
    memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
 | 
						|
                                         GenericValue *Ptr, const Type *Ty) {
 | 
						|
  const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty);
 | 
						|
 | 
						|
  switch (Ty->getTypeID()) {
 | 
						|
  case Type::IntegerTyID:
 | 
						|
    StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
 | 
						|
    break;
 | 
						|
  case Type::FloatTyID:
 | 
						|
    *((float*)Ptr) = Val.FloatVal;
 | 
						|
    break;
 | 
						|
  case Type::DoubleTyID:
 | 
						|
    *((double*)Ptr) = Val.DoubleVal;
 | 
						|
    break;
 | 
						|
  case Type::X86_FP80TyID:
 | 
						|
    memcpy(Ptr, Val.IntVal.getRawData(), 10);
 | 
						|
    break;
 | 
						|
  case Type::PointerTyID:
 | 
						|
    // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
 | 
						|
    if (StoreBytes != sizeof(PointerTy))
 | 
						|
      memset(Ptr, 0, StoreBytes);
 | 
						|
 | 
						|
    *((PointerTy*)Ptr) = Val.PointerVal;
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    dbgs() << "Cannot store value of type " << *Ty << "!\n";
 | 
						|
  }
 | 
						|
 | 
						|
  if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian())
 | 
						|
    // Host and target are different endian - reverse the stored bytes.
 | 
						|
    std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
 | 
						|
}
 | 
						|
 | 
						|
/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
 | 
						|
/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
 | 
						|
static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
 | 
						|
  assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
 | 
						|
  uint8_t *Dst = (uint8_t *)IntVal.getRawData();
 | 
						|
 | 
						|
  if (sys::isLittleEndianHost())
 | 
						|
    // Little-endian host - the destination must be ordered from LSB to MSB.
 | 
						|
    // The source is ordered from LSB to MSB: Do a straight copy.
 | 
						|
    memcpy(Dst, Src, LoadBytes);
 | 
						|
  else {
 | 
						|
    // Big-endian - the destination is an array of 64 bit words ordered from
 | 
						|
    // LSW to MSW.  Each word must be ordered from MSB to LSB.  The source is
 | 
						|
    // ordered from MSB to LSB: Reverse the word order, but not the bytes in
 | 
						|
    // a word.
 | 
						|
    while (LoadBytes > sizeof(uint64_t)) {
 | 
						|
      LoadBytes -= sizeof(uint64_t);
 | 
						|
      // May not be aligned so use memcpy.
 | 
						|
      memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
 | 
						|
      Dst += sizeof(uint64_t);
 | 
						|
    }
 | 
						|
 | 
						|
    memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// FIXME: document
 | 
						|
///
 | 
						|
void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
 | 
						|
                                          GenericValue *Ptr,
 | 
						|
                                          const Type *Ty) {
 | 
						|
  const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty);
 | 
						|
 | 
						|
  switch (Ty->getTypeID()) {
 | 
						|
  case Type::IntegerTyID:
 | 
						|
    // An APInt with all words initially zero.
 | 
						|
    Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
 | 
						|
    LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
 | 
						|
    break;
 | 
						|
  case Type::FloatTyID:
 | 
						|
    Result.FloatVal = *((float*)Ptr);
 | 
						|
    break;
 | 
						|
  case Type::DoubleTyID:
 | 
						|
    Result.DoubleVal = *((double*)Ptr);
 | 
						|
    break;
 | 
						|
  case Type::PointerTyID:
 | 
						|
    Result.PointerVal = *((PointerTy*)Ptr);
 | 
						|
    break;
 | 
						|
  case Type::X86_FP80TyID: {
 | 
						|
    // This is endian dependent, but it will only work on x86 anyway.
 | 
						|
    // FIXME: Will not trap if loading a signaling NaN.
 | 
						|
    uint64_t y[2];
 | 
						|
    memcpy(y, Ptr, 10);
 | 
						|
    Result.IntVal = APInt(80, 2, y);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    SmallString<256> Msg;
 | 
						|
    raw_svector_ostream OS(Msg);
 | 
						|
    OS << "Cannot load value of type " << *Ty << "!";
 | 
						|
    report_fatal_error(OS.str());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
 | 
						|
  DEBUG(dbgs() << "JIT: Initializing " << Addr << " ");
 | 
						|
  DEBUG(Init->dump());
 | 
						|
  if (isa<UndefValue>(Init)) {
 | 
						|
    return;
 | 
						|
  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
 | 
						|
    unsigned ElementSize =
 | 
						|
      getTargetData()->getTypeAllocSize(CP->getType()->getElementType());
 | 
						|
    for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
 | 
						|
      InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
 | 
						|
    return;
 | 
						|
  } else if (isa<ConstantAggregateZero>(Init)) {
 | 
						|
    memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType()));
 | 
						|
    return;
 | 
						|
  } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
 | 
						|
    unsigned ElementSize =
 | 
						|
      getTargetData()->getTypeAllocSize(CPA->getType()->getElementType());
 | 
						|
    for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
 | 
						|
      InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
 | 
						|
    return;
 | 
						|
  } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
 | 
						|
    const StructLayout *SL =
 | 
						|
      getTargetData()->getStructLayout(cast<StructType>(CPS->getType()));
 | 
						|
    for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
 | 
						|
      InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
 | 
						|
    return;
 | 
						|
  } else if (Init->getType()->isFirstClassType()) {
 | 
						|
    GenericValue Val = getConstantValue(Init);
 | 
						|
    StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n");
 | 
						|
  llvm_unreachable("Unknown constant type to initialize memory with!");
 | 
						|
}
 | 
						|
 | 
						|
/// EmitGlobals - Emit all of the global variables to memory, storing their
 | 
						|
/// addresses into GlobalAddress.  This must make sure to copy the contents of
 | 
						|
/// their initializers into the memory.
 | 
						|
void ExecutionEngine::emitGlobals() {
 | 
						|
  // Loop over all of the global variables in the program, allocating the memory
 | 
						|
  // to hold them.  If there is more than one module, do a prepass over globals
 | 
						|
  // to figure out how the different modules should link together.
 | 
						|
  std::map<std::pair<std::string, const Type*>,
 | 
						|
           const GlobalValue*> LinkedGlobalsMap;
 | 
						|
 | 
						|
  if (Modules.size() != 1) {
 | 
						|
    for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
 | 
						|
      Module &M = *Modules[m];
 | 
						|
      for (Module::const_global_iterator I = M.global_begin(),
 | 
						|
           E = M.global_end(); I != E; ++I) {
 | 
						|
        const GlobalValue *GV = I;
 | 
						|
        if (GV->hasLocalLinkage() || GV->isDeclaration() ||
 | 
						|
            GV->hasAppendingLinkage() || !GV->hasName())
 | 
						|
          continue;// Ignore external globals and globals with internal linkage.
 | 
						|
 | 
						|
        const GlobalValue *&GVEntry =
 | 
						|
          LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
 | 
						|
 | 
						|
        // If this is the first time we've seen this global, it is the canonical
 | 
						|
        // version.
 | 
						|
        if (!GVEntry) {
 | 
						|
          GVEntry = GV;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // If the existing global is strong, never replace it.
 | 
						|
        if (GVEntry->hasExternalLinkage() ||
 | 
						|
            GVEntry->hasDLLImportLinkage() ||
 | 
						|
            GVEntry->hasDLLExportLinkage())
 | 
						|
          continue;
 | 
						|
 | 
						|
        // Otherwise, we know it's linkonce/weak, replace it if this is a strong
 | 
						|
        // symbol.  FIXME is this right for common?
 | 
						|
        if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
 | 
						|
          GVEntry = GV;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  std::vector<const GlobalValue*> NonCanonicalGlobals;
 | 
						|
  for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
 | 
						|
    Module &M = *Modules[m];
 | 
						|
    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
 | 
						|
         I != E; ++I) {
 | 
						|
      // In the multi-module case, see what this global maps to.
 | 
						|
      if (!LinkedGlobalsMap.empty()) {
 | 
						|
        if (const GlobalValue *GVEntry =
 | 
						|
              LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
 | 
						|
          // If something else is the canonical global, ignore this one.
 | 
						|
          if (GVEntry != &*I) {
 | 
						|
            NonCanonicalGlobals.push_back(I);
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (!I->isDeclaration()) {
 | 
						|
        addGlobalMapping(I, getMemoryForGV(I));
 | 
						|
      } else {
 | 
						|
        // External variable reference. Try to use the dynamic loader to
 | 
						|
        // get a pointer to it.
 | 
						|
        if (void *SymAddr =
 | 
						|
            sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName()))
 | 
						|
          addGlobalMapping(I, SymAddr);
 | 
						|
        else {
 | 
						|
          report_fatal_error("Could not resolve external global address: "
 | 
						|
                            +I->getName());
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If there are multiple modules, map the non-canonical globals to their
 | 
						|
    // canonical location.
 | 
						|
    if (!NonCanonicalGlobals.empty()) {
 | 
						|
      for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
 | 
						|
        const GlobalValue *GV = NonCanonicalGlobals[i];
 | 
						|
        const GlobalValue *CGV =
 | 
						|
          LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
 | 
						|
        void *Ptr = getPointerToGlobalIfAvailable(CGV);
 | 
						|
        assert(Ptr && "Canonical global wasn't codegen'd!");
 | 
						|
        addGlobalMapping(GV, Ptr);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Now that all of the globals are set up in memory, loop through them all
 | 
						|
    // and initialize their contents.
 | 
						|
    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
 | 
						|
         I != E; ++I) {
 | 
						|
      if (!I->isDeclaration()) {
 | 
						|
        if (!LinkedGlobalsMap.empty()) {
 | 
						|
          if (const GlobalValue *GVEntry =
 | 
						|
                LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
 | 
						|
            if (GVEntry != &*I)  // Not the canonical variable.
 | 
						|
              continue;
 | 
						|
        }
 | 
						|
        EmitGlobalVariable(I);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// EmitGlobalVariable - This method emits the specified global variable to the
 | 
						|
// address specified in GlobalAddresses, or allocates new memory if it's not
 | 
						|
// already in the map.
 | 
						|
void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
 | 
						|
  void *GA = getPointerToGlobalIfAvailable(GV);
 | 
						|
 | 
						|
  if (GA == 0) {
 | 
						|
    // If it's not already specified, allocate memory for the global.
 | 
						|
    GA = getMemoryForGV(GV);
 | 
						|
    addGlobalMapping(GV, GA);
 | 
						|
  }
 | 
						|
 | 
						|
  // Don't initialize if it's thread local, let the client do it.
 | 
						|
  if (!GV->isThreadLocal())
 | 
						|
    InitializeMemory(GV->getInitializer(), GA);
 | 
						|
 | 
						|
  const Type *ElTy = GV->getType()->getElementType();
 | 
						|
  size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy);
 | 
						|
  NumInitBytes += (unsigned)GVSize;
 | 
						|
  ++NumGlobals;
 | 
						|
}
 | 
						|
 | 
						|
ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE)
 | 
						|
  : EE(EE), GlobalAddressMap(this) {
 | 
						|
}
 | 
						|
 | 
						|
sys::Mutex *
 | 
						|
ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) {
 | 
						|
  return &EES->EE.lock;
 | 
						|
}
 | 
						|
 | 
						|
void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES,
 | 
						|
                                                      const GlobalValue *Old) {
 | 
						|
  void *OldVal = EES->GlobalAddressMap.lookup(Old);
 | 
						|
  EES->GlobalAddressReverseMap.erase(OldVal);
 | 
						|
}
 | 
						|
 | 
						|
void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *,
 | 
						|
                                                    const GlobalValue *,
 | 
						|
                                                    const GlobalValue *) {
 | 
						|
  assert(false && "The ExecutionEngine doesn't know how to handle a"
 | 
						|
         " RAUW on a value it has a global mapping for.");
 | 
						|
}
 |