mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	is currently off by default, and can be enabled with -disable-post-RA-scheduler=false. This doesn't have a significant impact on most code yet because it doesn't yet do anything to address anti-dependencies and it doesn't attempt to disambiguate memory references. Also, several popular targets don't have pipeline descriptions yet. The majority of the changes here are splitting the SelectionDAG-specific code out of ScheduleDAG, so that ScheduleDAG can be moved to libLLVMCodeGen.a. The interface between ScheduleDAG-using code and the rest of the scheduling code is somewhat rough and will evolve. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@59676 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			125 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			125 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===---- LatencyPriorityQueue.h - A latency-oriented priority queue ------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file declares the LatencyPriorityQueue class, which is a
 | |
| // SchedulingPriorityQueue that schedules using latency information to
 | |
| // reduce the length of the critical path through the basic block.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LATENCY_PRIORITY_QUEUE_H
 | |
| #define LATENCY_PRIORITY_QUEUE_H
 | |
| 
 | |
| #include "llvm/CodeGen/ScheduleDAG.h"
 | |
| #include "llvm/ADT/PriorityQueue.h"
 | |
| 
 | |
| namespace llvm {
 | |
|   class LatencyPriorityQueue;
 | |
|   
 | |
|   /// Sorting functions for the Available queue.
 | |
|   struct latency_sort : public std::binary_function<SUnit*, SUnit*, bool> {
 | |
|     LatencyPriorityQueue *PQ;
 | |
|     explicit latency_sort(LatencyPriorityQueue *pq) : PQ(pq) {}
 | |
|     
 | |
|     bool operator()(const SUnit* left, const SUnit* right) const;
 | |
|   };
 | |
| 
 | |
|   class LatencyPriorityQueue : public SchedulingPriorityQueue {
 | |
|     // SUnits - The SUnits for the current graph.
 | |
|     std::vector<SUnit> *SUnits;
 | |
|     
 | |
|     // Latencies - The latency (max of latency from this node to the bb exit)
 | |
|     // for each node.
 | |
|     std::vector<int> Latencies;
 | |
| 
 | |
|     /// NumNodesSolelyBlocking - This vector contains, for every node in the
 | |
|     /// Queue, the number of nodes that the node is the sole unscheduled
 | |
|     /// predecessor for.  This is used as a tie-breaker heuristic for better
 | |
|     /// mobility.
 | |
|     std::vector<unsigned> NumNodesSolelyBlocking;
 | |
| 
 | |
|     PriorityQueue<SUnit*, std::vector<SUnit*>, latency_sort> Queue;
 | |
| public:
 | |
|     LatencyPriorityQueue() : Queue(latency_sort(this)) {
 | |
|     }
 | |
|     
 | |
|     void initNodes(std::vector<SUnit> &sunits) {
 | |
|       SUnits = &sunits;
 | |
|       // Calculate node priorities.
 | |
|       CalculatePriorities();
 | |
|     }
 | |
| 
 | |
|     void addNode(const SUnit *SU) {
 | |
|       Latencies.resize(SUnits->size(), -1);
 | |
|       NumNodesSolelyBlocking.resize(SUnits->size(), 0);
 | |
|       CalcLatency(*SU);
 | |
|     }
 | |
| 
 | |
|     void updateNode(const SUnit *SU) {
 | |
|       Latencies[SU->NodeNum] = -1;
 | |
|       CalcLatency(*SU);
 | |
|     }
 | |
| 
 | |
|     void releaseState() {
 | |
|       SUnits = 0;
 | |
|       Latencies.clear();
 | |
|     }
 | |
|     
 | |
|     unsigned getLatency(unsigned NodeNum) const {
 | |
|       assert(NodeNum < Latencies.size());
 | |
|       return Latencies[NodeNum];
 | |
|     }
 | |
|     
 | |
|     unsigned getNumSolelyBlockNodes(unsigned NodeNum) const {
 | |
|       assert(NodeNum < NumNodesSolelyBlocking.size());
 | |
|       return NumNodesSolelyBlocking[NodeNum];
 | |
|     }
 | |
|     
 | |
|     unsigned size() const { return Queue.size(); }
 | |
| 
 | |
|     bool empty() const { return Queue.empty(); }
 | |
|     
 | |
|     virtual void push(SUnit *U) {
 | |
|       push_impl(U);
 | |
|     }
 | |
|     void push_impl(SUnit *U);
 | |
|     
 | |
|     void push_all(const std::vector<SUnit *> &Nodes) {
 | |
|       for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
 | |
|         push_impl(Nodes[i]);
 | |
|     }
 | |
|     
 | |
|     SUnit *pop() {
 | |
|       if (empty()) return NULL;
 | |
|       SUnit *V = Queue.top();
 | |
|       Queue.pop();
 | |
|       return V;
 | |
|     }
 | |
| 
 | |
|     void remove(SUnit *SU) {
 | |
|       assert(!Queue.empty() && "Not in queue!");
 | |
|       Queue.erase_one(SU);
 | |
|     }
 | |
| 
 | |
|     // ScheduledNode - As nodes are scheduled, we look to see if there are any
 | |
|     // successor nodes that have a single unscheduled predecessor.  If so, that
 | |
|     // single predecessor has a higher priority, since scheduling it will make
 | |
|     // the node available.
 | |
|     void ScheduledNode(SUnit *Node);
 | |
| 
 | |
| private:
 | |
|     void CalculatePriorities();
 | |
|     int CalcLatency(const SUnit &SU);
 | |
|     void AdjustPriorityOfUnscheduledPreds(SUnit *SU);
 | |
|     SUnit *getSingleUnscheduledPred(SUnit *SU);
 | |
|   };
 | |
| }
 | |
| 
 | |
| #endif
 |